Regularity properties of noncommutative distributions

Tobias Mai

(joint work with M. Banna, R. Speicher, M. Weber, and S. Yin)

Saarland University

Workshop "Free Probability Theory"

Mathematisches Forschungsinstitut Oberwolfach

December 4, 2018

 ${\bf Supported\ by\ the\ ERC\ Advanced\ Grant\ "Non-commutative\ distributions\ in\ free\ probability"}$

Noncommutative probability spaces

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Noncommutative probability spaces

Definition

A noncommutative probability space (\mathcal{A},ϕ) consists of

- ullet a complex algebra ${\mathcal A}$ with unit $1_{{\mathcal A}}$ and
- a linear functional $\phi: \mathcal{A} \to \mathbb{C}$ with $\phi(1_{\mathcal{A}}) = 1$ (expectation).

Elements $X \in \mathcal{A}$ are called noncommutative random variables.

Definition

A noncommutative probability space (\mathcal{A}, ϕ) is called

- C*-probability space if
 - $ightharpoonup \mathcal{A}$ is a unital C^* -algebra and
 - $ightharpoonup \phi$ is a state on \mathcal{A} .
- ullet tracial W^* -probability space, if
 - $ightharpoonup \mathcal{A}$ is a von Neumann algebra and
 - $ightharpoonup \phi$ is a faithful normal tracial state on \mathcal{A} .

Noncommutative distributions

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A},ϕ) be a noncommutative probability space. For any given family $X=(X_i)_{i\in I}$ of noncommutative random variables, we call

$$\mu_X: \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$$

the (joint) noncommutative distribution of X.

Noncommutative distributions

Definition ("combinatorial distribution")

Let (\mathcal{A},ϕ) be a noncommutative probability space. For any given family $X=(X_i)_{i\in I}$ of noncommutative random variables, we call

$$\mu_X: \mathbb{C}\langle x_i \mid i \in I \rangle \to \mathbb{C}, \quad x_{i_1} \cdots x_{i_k} \mapsto \phi(X_{i_1} \cdots X_{i_k})$$

the (joint) noncommutative distribution of X.

Definition ("analytic distribution")

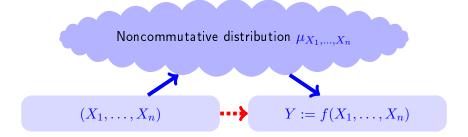
Let (\mathcal{A},ϕ) be a C^* -probability space. For any given $X=X^*\in\mathcal{A}$, the noncommutative distribution of X can be identified with the unique Borel probability measure μ_X on the real line $\mathbb R$ that satisfies

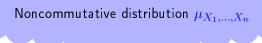
$$\phi(X^k) = \int_{\mathbb{D}} t^k \, d\mu_X(t)$$
 for all integers $k \geq 0$.

$$(X_1,\ldots,X_n)$$

$$(X_1,\ldots,X_n)$$

$$Y:=f(X_1,\ldots,X_n)$$





 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

$$Y := f(X_1, \dots, X_n)$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

$$Y := f(X_1, \dots, X_n)$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- ullet Hölder continuity of \mathcal{F}_{μ_Y}
- absence of atoms for μ_Y

$$(X_1,\ldots,X_n)$$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

$$Y:=f(X_1,\ldots,X_n)$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- ullet Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

[Belinschi-M.-Speicher, 17], [Belinschi-Sniady-Speicher, 18], [Helton-M.-Speicher, 18]

$$(X_1,\ldots,X_n)$$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

$$Y := f(X_1, \dots, X_n)$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- ullet Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

[Skoufranis-Shlyakhtenko, 15], [Ajanki-Erdös-Krüger, 16], [Alt-Erdös-Krüger, 18]

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

Regularity conditions such as

$$\bullet \ \Phi^*(X_1,\ldots,X_n) < \infty$$

•
$$\chi^*(X_1,\ldots,X_n)<\infty$$

$$\bullet \ \delta^*(X_1,\ldots,X_n)=n$$

$$Y:=f(X_1,\ldots,X_n)$$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- ullet Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

$$(X_1,\ldots,X_n)$$

 X_1, \ldots, X_n freely independent with given individual distributions $\mu_{X_1}, \ldots, \mu_{X_n}$

Regularity conditions such as

$$\bullet \ \Phi^*(X_1,\ldots,X_n) < \infty$$

•
$$\chi^*(X_1,\ldots,X_n)<\infty$$

•
$$\delta^*(X_1, ..., X_n) = n$$

 $Y:=f(X_1,\ldots,X_n)$

Compute the analytic distribution and the Brown measure, respectively, of Y.

Study regularity properties like

- ullet absolute continuity of μ_Y
- ullet Hölder continuity of \mathcal{F}_{μ_Y}
- ullet absence of atoms for μ_Y

[Charlesworth-Shlyakhtenko, 16], [M.-Speicher-Weber, 17], [M.-Speicher-Yin, 18]

Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in (formal) non-commuting indeterminates x_1, \ldots, x_n ; we denote the (unital) complex *-algebra that consists of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in (formal) non-commuting indeterminates x_1, \ldots, x_n ; we denote the (unital) complex *-algebra that consists of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

② Affine linear pencils, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1,\dots,x_n\rangle)$ for an arbitrary $N\in\mathbb{N}$ that are of the particular form

$$\mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n$$

with matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$.

Noncommutative polynomials, i.e., expressions of the form

$$P = a_0 + \sum_{k=1}^{d} \sum_{i_1,\dots,i_k=1}^{n} a_{i_1,\dots,i_k} x_{i_1} \cdots x_{i_k}$$

in (formal) non-commuting indeterminates x_1, \ldots, x_n ; we denote the (unital) complex *-algebra that consists of all noncommutative polynomials by $\mathbb{C}\langle x_1, \ldots, x_n \rangle$.

2 Affine linear pencils, i.e., elements \mathbf{P} in $M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle)$ for an arbitrary $N\in\mathbb{N}$ that are of the particular form

$$\mathbf{P} = b_0 + b_1 x_1 + \dots + b_n x_n$$

with matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$.

Noncommutative rational functions, i.e., elements in the universal field of fractions for $\mathbb{C}\langle x_1,\ldots,x_n\rangle$; for the latter, we write $\mathbb{C}\langle x_1,\ldots,x_n\rangle$.

Definition

Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ be given.

• The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

$$\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$
 and $\mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle)$.

Definition

Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ be given.

• The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

$$\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$$

ullet We call ${f Q}$ full if it has full rank, i.e., if $ho({f Q})=N$.

Definition

Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ be given.

• The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

$$\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$$

ullet We call ${f Q}$ full if it has full rank, i.e., if $ho({f Q})=N$.

Facts

• Q full \iff Q invertible in $M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle)$

Definition

Let $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ be given.

• The (inner) rank of \mathbf{Q} , denoted by $\rho(\mathbf{Q})$, is the least integer $k \geq 1$ for which \mathbf{Q} can be written as $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2$ with some rectangular matrices

$$\mathbf{R}_1 \in M_{N \times k}(\mathbb{C}\langle x_1, \dots, x_n \rangle) \quad \text{and} \quad \mathbf{R}_2 \in M_{k \times N}(\mathbb{C}\langle x_1, \dots, x_n \rangle).$$

ullet We call ${f Q}$ full if it has full rank, i.e., if $ho({f Q})=N$.

Facts

- Q full \iff Q invertible in $M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle)$
- Every noncommutative rational function $r \in \mathbb{C} \not \langle x_1, \ldots, x_n \rangle$ admits a linear representation, i.e., it can be written as $r = -u\mathbf{Q}^{-1}v$ with an affine linear pencil $\mathbf{Q} \in M_N(\mathbb{C}\langle x_1, \ldots, x_n \rangle)$ and scalar vectors u and v of appropriate size.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1,\ldots,X_n\in\mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X: \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $\operatorname{ev}_X(x_i) = X_i$ for $i=1,\ldots,n$. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1,\ldots,X_n\in\mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X: \ \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $\operatorname{ev}_X(x_i) = X_i$ for $i=1,\ldots,n$. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1, \ldots, X_n \in \mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X: \ \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $\operatorname{ev}_X(x_i) = X_i$ for $i=1,\ldots,n$. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Challenging facts

• Not every rational expression can be evaluated everywhere.

Trivial facts

Let \mathcal{A} be a unital algebra and consider $X_1,\ldots,X_n\in\mathcal{A}$. There is a unital homomorphism

$$\operatorname{ev}_X: \mathbb{C}\langle x_1, \dots, x_n \rangle \to \mathcal{A}$$

that is uniquely determined by the condition that $\operatorname{ev}_X(x_i) = X_i$ for $i=1,\ldots,n$. The latter extends naturally to a unital homomorphism

$$\operatorname{ev}_X^{(N)}: M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \to M_N(\mathcal{A}), (P_{ij})_{i,j=1}^N \mapsto (\operatorname{ev}_X(P_{ij}))_{i,j=1}^N.$$

This defines evaluation of (matrix-valued) noncommutative polynomials and of affine linear pencils, in particular. Rational functions are more subtle.

Challenging facts

- Not every rational expression can be evaluated everywhere.
- Two rational expressions representing the same rational function need not to give the same value under evaluation.

Noncommutative and cyclic derivatives

Noncommutative and cyclic derivatives

Definition

(i) The noncommutative derivatives are the linear mappings

$$\partial_1,\ldots,\partial_n: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n\rangle$$

which are uniquely determined by the two conditions

- $\partial_j(P_1P_2) = (\partial_jP_1) \cdot P_2 + P_1 \cdot (\partial_jP_2) \text{ for all } P_1, P_2 \in \mathbb{C}\langle x_1, \dots, x_n \rangle,$
- $\partial_j x_i = \delta_{i,j} 1 \otimes 1 \text{ for } i,j = 1,\ldots,n$

Noncommutative and cyclic derivatives

Definition

(i) The noncommutative derivatives are the linear mappings

$$\partial_1, \ldots, \partial_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle \otimes \mathbb{C}\langle x_1, \ldots, x_n \rangle$$

which are uniquely determined by the two conditions

- $\partial_j(P_1P_2) = (\partial_jP_1)\cdot P_2 + P_1\cdot (\partial_jP_2)$ for all $P_1,P_2\in\mathbb{C}\langle x_1,\ldots,x_n
 angle$,
- (ii) The cyclic derivatives are the linear mappings

$$D_1, \ldots, D_n : \mathbb{C}\langle x_1, \ldots, x_n \rangle \to \mathbb{C}\langle x_1, \ldots, x_n \rangle$$

that are defined by $D_j := \tilde{m} \circ \partial_j$, where

$$\tilde{m}: \mathbb{C}\langle x_1,\ldots,x_n\rangle \to \mathbb{C}\langle x_1,\ldots,x_n\rangle \otimes \mathbb{C}\langle x_1,\ldots,x_n\rangle$$

denotes the flipped multiplication defined as $\tilde{m}(P_1 \otimes P_2) := P_2 P_1$.

Conjugate variables and free Fisher information

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \text{vN}(X_1, \ldots, X_n)$.

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \text{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0,\tau)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$

$$(\tau \otimes \tau)((\partial_j P)(X_1, \dots, X_n)) = \tau(\xi_j P(X_1, \dots, X_n)), \quad j = 1, \dots, n,$$

then (ξ_1,\ldots,ξ_n) is called the conjugate system for (X_1,\ldots,X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \text{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0,\tau)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$

$$(\tau \otimes \tau)((\partial_j P)(X_1,\ldots,X_n)) = \tau(\xi_j P(X_1,\ldots,X_n)), \quad j=1,\ldots,n,$$

then (ξ_1,\ldots,ξ_n) is called the conjugate system for (X_1,\ldots,X_n) .

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider any selfadjoint operators $X_1, \ldots, X_n \in \mathcal{M}$; we put $\mathcal{M}_0 := \text{vN}(X_1, \ldots, X_n)$.

Definition (Voiculescu (1998))

If $\xi_1,\ldots,\xi_n\in L^2(\mathcal{M}_0, au)$ are such that for all $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$

$$(\tau \otimes \tau)((\partial_j P)(X_1,\ldots,X_n)) = \tau(\xi_j P(X_1,\ldots,X_n)), \quad j=1,\ldots,n,$$

then (ξ_1,\ldots,ξ_n) is called the conjugate system for (X_1,\ldots,X_n) .

Definition (Voiculescu (1998))

The (non-microstates) free Fisher information is defined by

$$\Phi^*(X_1,\dots,X_n) := \begin{cases} \sum_{j=1}^n \|\xi_j\|_2^2, & \text{if a conjugate system } (\xi_1,\dots,\xi_n) \\ \infty, & \text{for } (X_1,\dots,X_n) \text{ exists} \end{cases}$$

Gibbs laws and the Schwinger-Dyson equation I

Gibbs laws and the Schwinger-Dyson equation I

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be "nice" and let $(X_1^{(N)}, \dots, X_n^{(N)})$ be random matrices of size $N \times N$ following the Gibbs law

$$d\Lambda_N^V(X_1^{(N)}, \dots, X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N \operatorname{Tr}(V(X_1^{(N)}, \dots, X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}.$$

Then, for all $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$,

$$\lim_{N o \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = au(P(X_1, \dots, X_n))$$
 almost surely

for selfadjoint operators X_1,\ldots,X_n in some W^* -probability space (\mathcal{M},τ) that satisfy the Schwinger-Dyson equation with potential V, i.e.

$$(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$$

Gibbs laws and the Schwinger-Dyson equation I

Theorem (Guionnet, Shlyakhtenko (2009))

Let $V \in \mathbb{C}\langle x_1,\ldots,x_n\rangle$ be "nice" and let $(X_1^{(N)},\ldots,X_n^{(N)})$ be random matrices of size $N\times N$ following the Gibbs law

$$d\Lambda_N^V(X_1^{(N)}, \dots, X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N \operatorname{Tr}(V(X_1^{(N)}, \dots, X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}.$$

Then, for all $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$,

$$\lim_{N o \infty} \operatorname{tr}_N(P(X_1^{(N)}, \dots, X_n^{(N)})) = au(P(X_1, \dots, X_n))$$
 almost surely

for selfadjoint operators X_1,\ldots,X_n in some W^* -probability space (\mathcal{M},τ) that satisfy the Schwinger-Dyson equation with potential V, i.e.

$$(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$$

Gibbs laws and the Schwinger-Dyson equation II

Definition (Schwinger-Dyson equation)

Let $X_1,\ldots,X_n\in\mathcal{M}$ be selfadjoint operators in (\mathcal{M},τ) . We say that (X_1,\ldots,X_n) satisfies the Schwinger-Dyson equation with potential V if

$$(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$$

for all $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ and for every $j = 1, \dots, n$.

Gibbs laws and the Schwinger-Dyson equation II

Definition (Schwinger-Dyson equation)

Let $X_1,\ldots,X_n\in\mathcal{M}$ be selfadjoint operators in (\mathcal{M},τ) . We say that (X_1,\ldots,X_n) satisfies the Schwinger-Dyson equation with potential V if

$$(\tau \otimes \tau) \big((\partial_j P)(X_1, \dots, X_n) \big) = \tau \big((D_j V)(X_1, \dots, X_n) P(X_1, \dots, X_n) \big)$$

for all $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ and for every $j = 1, \dots, n$.

Observation

If (X_1,\ldots,X_n) satisfies the Schwinger-Dyson equation with potential V, then (ξ_1,\ldots,ξ_n) defined by

$$\xi_j := (D_j V)(X_1, \dots, X_n)$$
 for $j = 1, \dots, n$

is the conjugate system of (X_1, \ldots, X_n) . Hence:

$$\Phi^*(X_1,\ldots,X_n)<\infty$$

Suppose that S_1,\ldots,S_n are freely independent semicircular elements that are also free from $\{X_1,\ldots,X_n\}$, then $(X_1+\sqrt{t}S_n,\ldots,X_n+\sqrt{t}S_n)$ admits a conjugate system for each t>0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2:= au(X_1^2+\cdots+X_n^2)$.

Suppose that S_1,\ldots,S_n are freely independent semicircular elements that are also free from $\{X_1,\ldots,X_n\}$, then $(X_1+\sqrt{t}S_n,\ldots,X_n+\sqrt{t}S_n)$ admits a conjugate system for each t>0. More precisely, we have

$$\frac{n^2}{C^2+nt} \leq \Phi^*(X_1+\sqrt{t}S_1,\dots,X_n+\sqrt{t}S_n) \leq \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2 := \tau(X_1^2 + \dots + X_n^2)$.

Definition (Connes, Shlyakhtenko (2005))

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

Suppose that S_1,\ldots,S_n are freely independent semicircular elements that are also free from $\{X_1,\ldots,X_n\}$, then $(X_1+\sqrt{t}S_n,\ldots,X_n+\sqrt{t}S_n)$ admits a conjugate system for each t>0. More precisely, we have

$$\frac{n^2}{C^2+nt} \leq \Phi^*(X_1+\sqrt{t}S_1,\dots,X_n+\sqrt{t}S_n) \leq \frac{n}{t} \quad \text{for all } t>0,$$

with $C^2:= au(X_1^2+\cdots+X_n^2)$.

Definition (Connes, Shlyakhtenko (2005))

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Suppose that S_1,\ldots,S_n are freely independent semicircular elements that are also free from $\{X_1,\ldots,X_n\}$, then $(X_1+\sqrt{t}S_n,\ldots,X_n+\sqrt{t}S_n)$ admits a conjugate system for each t>0. More precisely, we have

$$\frac{n^2}{C^2 + nt} \le \Phi^*(X_1 + \sqrt{t}S_1, \dots, X_n + \sqrt{t}S_n) \le \frac{n}{t} \quad \text{for all } t > 0,$$

with $C^2:= au(X_1^2+\cdots+X_n^2)$.

Definition (Connes, Shlyakhtenko (2005))

$$\delta^{\star}(X_1,\ldots,X_n) := n - \liminf_{t \searrow 0} t\Phi^{\star}(X_1 + \sqrt{t}S_1,\ldots,X_n + \sqrt{t}S_n)$$

We always have that $\delta^{\star}(X_1,\ldots,X_n) \in [0,n]$.

Philosophy

If $\delta^{\star}(X_1,\ldots,X_n)=n$, then μ_{X_1,\ldots,X_n} has no "atomic part".

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1,\ldots,x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1,\ldots,X_n)}$ has no atoms.

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{P(X_1,\dots,X_n)}$ has no atoms.

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

has atoms precisely at the points in the set

$$\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda 1_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \}$$

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint and non-constant.

Then $\mu_{P(X_1,...,X_n)}$ has no atoms.

free analysis

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

has atoms precisely at the points in the set

$$\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda 1_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \}$$

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint and non-constant.

Then $\mu_{P(X_1,...,X_n)}$ has no atoms.

Theorem (MSY18)

Let $r\in\mathbb{C}\langle\!\!\langle x_1,\ldots,x_n\rangle\!\!\rangle$ be selfadjoint and non-constant. Then $\mu_{r(X_1,\ldots,X_n)}$ has no atoms.

free analysis

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

has atoms precisely at the points in the set

$$\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda 1_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \}$$

Suppose that $\delta^{\star}(X_1,\ldots,X_n)=n$.

Theorem (CS16, MSW17)

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint and non-constant.

Then $\mu_{P(X_1,...,X_n)}$ has no atoms.

Theorem (MSY18)

Let $r \in \mathbb{C} \langle x_1, \dots, x_n \rangle$ be selfadjoint and non-constant. Then $\mu_{r(X_1,\dots,X_n)}$ has no atoms.

free analysis

nc algebra

Theorem (MSY18)

Take selfadjoint matrices $b_0, b_1, \ldots, b_n \in M_N(\mathbb{C})$, then the matrix-valued element $\mathbf{Y} := \mathbf{P}(X_1, \ldots, X_n)$ for

$$\mathbf{P} := b_0 + b_1 x_1 + \dots + b_n x_n \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle)$$

has atoms precisely at the points in the set

$$\{\lambda \in \mathbb{C} \mid \mathbf{P} - \lambda 1_N \in M_N(\mathbb{C}\langle x_1, \dots, x_n \rangle) \text{ is not full} \}$$

The main step is to prove by induction on N that

$$A(N) \ \begin{cases} &\text{ If } b_0,b_1,\ldots,b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ &\mathbf{P} = b_0 + b_1 x_1 + \cdots + b_n x_n \in M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle) \\ &\text{ is full over } \mathbb{C}\langle x_1,\ldots,x_n\rangle, \text{ then the only projection} \\ &p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{cases}$$

The main step is to prove by induction on N that

$$A(N) \quad \left\{ \begin{array}{l} \text{ If } b_0,b_1,\ldots,b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \\ \mathbf{P} = b_0 + b_1x_1 + \cdots + b_nx_n \in M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle) \\ \\ \text{is full over } \mathbb{C}\langle x_1,\ldots,x_n\rangle, \text{ then the only projection} \\ \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{array} \right.$$

 $oldsymbol{\delta}^{\star}(X_1,\ldots,X_n)=n$ tells us that there is a projection $q\in M_N(\mathcal{M}_0)$ such that

such that
$$(\operatorname{tr}_N\circ\tau^{(N)})(q)\geq (\operatorname{tr}_N\circ\tau^{(N)})(p)$$
 and such that, if we put $\tilde p:=\tau^{(N)}(p)$ and $\tilde q:=\tau^{(N)}(q)$,
$$\tilde pb_j\tilde q=0 \qquad \text{for } j=0,1,\dots,n.$$

The main step is to prove by induction on N that

$$A(N) \quad \left\{ \begin{array}{l} \text{ If } b_0,b_1,\ldots,b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \\ \mathbf{P} = b_0 + b_1x_1 + \cdots + b_nx_n \in M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle) \\ \\ \text{is full over } \mathbb{C}\langle x_1,\ldots,x_n\rangle, \text{ then the only projection} \\ \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{array} \right.$$

 $oldsymbol{\delta}^{\star}(X_1,\ldots,X_n)=n$ tells us that there is a projection $q\in M_N(\mathcal{M}_0)$ such that

such that
$$(\operatorname{tr}_N \circ \tau^{(N)})(q) \geq (\operatorname{tr}_N \circ \tau^{(N)})(p)$$
 and such that, if we put $\tilde{p} := \tau^{(N)}(p)$ and $\tilde{q} := \tau^{(N)}(q)$,
$$\tilde{p}b_j\tilde{q} = 0 \qquad \text{for } j = 0,1,\dots,n.$$

② Fullness of P gives that $rank(\tilde{p}) + rank(\tilde{q}) \leq N$.

The main step is to prove by induction on N that

$$A(N) \quad \left\{ \begin{array}{l} \text{ If } b_0,b_1,\ldots,b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \\ \mathbf{P} = b_0 + b_1x_1 + \cdots + b_nx_n \in M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle) \\ \\ \text{is full over } \mathbb{C}\langle x_1,\ldots,x_n\rangle, \text{ then the only projection} \\ \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{array} \right.$$

 \bullet $\delta^{\star}(X_1,\ldots,X_n)=n$ tells us that there is a projection $q\in M_N(\mathcal{M}_0)$ such that

$$(\operatorname{tr}_N\circ\tau^{(N)})(q)\geq (\operatorname{tr}_N\circ\tau^{(N)})(p)$$
 and such that, if we put $\tilde p:=\tau^{(N)}(p)$ and $\tilde q:=\tau^{(N)}(q)$,

$$\tilde{p}b_j\tilde{q}=0$$
 for $j=0,1,\ldots,n$.

- ② Fullness of P gives that $rank(\tilde{p}) + rank(\tilde{q}) \leq N$.
- ① Use this to construct a full matrix $\mathbf{P}' \in M_{N-1}(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ and a projection $p' \in M_{N-1}(\mathcal{M}_0)$ such that $\mathbf{P}'(X)p' = 0$.

The main step is to prove by induction on N that

$$A(N) \quad \left\{ \begin{array}{l} \text{ If } b_0,b_1,\ldots,b_n \text{ are matrices in } M_N(\mathbb{C}) \text{ for which} \\ \\ \mathbf{P} = b_0 + b_1x_1 + \cdots + b_nx_n \in M_N(\mathbb{C}\langle x_1,\ldots,x_n\rangle) \\ \\ \text{ is full over } \mathbb{C}\langle x_1,\ldots,x_n\rangle, \text{ then the only projection} \\ \\ p \in M_N(\mathcal{M}_0) \text{ that satisfies } P(X)p = 0 \text{ is } p = 0. \end{array} \right.$$

 \bullet $\delta^{\star}(X_1,\ldots,X_n)=n$ tells us that there is a projection $q\in M_N(\mathcal{M}_0)$ such that

$$(\operatorname{tr}_N\circ\tau^{(N)})(q)\geq (\operatorname{tr}_N\circ\tau^{(N)})(p)$$
 and such that, if we put $\tilde p:=\tau^{(N)}(p)$ and $\tilde q:=\tau^{(N)}(q)$,
$$\tilde pb_j\tilde q=0\qquad\text{for }j=0,1,\dots,n.$$

- **2** Fullness of **P** gives that $rank(\tilde{p}) + rank(\tilde{q}) \leq N$.
- ① Use this to construct a full matrix $\mathbf{P}' \in M_{N-1}(\mathbb{C}\langle x_1, \dots, x_n \rangle)$ and a projection $p' \in M_{N-1}(\mathcal{M}_0)$ such that $\mathbf{P}'(X)p' = 0$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Lemma (M., Speicher, Yin (2018))

If there exist c>0 and $\alpha>1$ such that

$$c\|(Y-s)p\|_2 \ge \|p\|_2^{\alpha}$$

for all $s \in \mathbb{R}$ and each spectral projection p of Y, then \mathcal{F}_Y is Hölder continuous with exponent $\beta := \frac{2}{\alpha-1}$; more precisely, we have that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le c^{\beta} |t - s|^{\beta}$$
 for all $s, t \in \mathbb{R}$.

Consider $Y = Y^*$ in (\mathcal{M}, τ) . Let μ_Y be the analytic distribution of Y and let \mathcal{F}_Y be its cumulative distribution function, i.e., $\mathcal{F}_Y(t) := \mu_Y((-\infty, t])$.

Lemma (M., Speicher, Yin (2018))

If there exist c>0 and $\alpha>1$ such that

$$c||(Y-s)p||_2 \ge ||p||_2^{\alpha}$$

for all $s \in \mathbb{R}$ and each spectral projection p of Y, then \mathcal{F}_Y is Hölder continuous with exponent $\beta := \frac{2}{\alpha - 1}$; more precisely, we have that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le c^{\beta} |t - s|^{\beta}$$
 for all $s, t \in \mathbb{R}$.

Proof – following ideas of [Charlesworth, Shlyakhtenko (2016)].

Take $p = E_Y((s,t])$ for the spectral measure E_Y of Y and observe that

$$\|p\|_2 = \mu_Y((s,t])^{1/2} \qquad \text{and} \qquad \|(Y-s)p\|_2 \le |t-s|\mu_Y((s,t])^{1/2}.$$

Hölder continuity of noncommutative polynomials

Hölder continuity of noncommutative polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Hölder continuity of noncommutative polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \geq 1$ and consider

$$Y:=P(X_1,\ldots,X_n).$$

Then there exists some constant C>0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}} \qquad \text{for all } s, t \in \mathbb{R}.$$

Hölder continuity of noncommutative polynomials Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$.

Theorem (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \geq 1$ and consider

$$Y := P(X_1, \dots, X_n).$$

Then there exists some constant C>0 such that

$$|\mathcal{F}_Y(t) - \mathcal{F}_Y(s)| \le C|t - s|^{\frac{2}{3(2^d - 1)}}$$
 for all $s, t \in \mathbb{R}$.

In fact, for every $R > \max_{i=1,\dots,n} ||X_i||$, we can take

$$C = \left(8\Phi^*(X)^{1/2}R\right)^{\frac{2}{3}}\rho_R(P)^{-\frac{2^d}{3(2^d-1)}} \|P\|_R^{-\frac{2}{3(2^d-1)}} \prod_{i=1}^{d-1} \left(\frac{d!}{(d-k)!}\right)^{\frac{2^k}{3(2^d-1)}},$$

where $||P||_R$ and $\rho_R(P)$ are quantities that depend only on P and R.

Hölder continuity and free entropy

Hölder continuity and free entropy Suppose that $\Phi^*(X_1,\ldots,X_n)<\infty$.

Hölder continuity and free entropy

Suppose that $\Phi^*(X_1,\ldots,X_n)<\infty$.

Corollary (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \geq 1$; consider

$$Y:=P(X_1,\ldots,X_n).$$

Then, the logarithmic energy (and thus also the free entropy $\chi^*(Y)$)

$$I(\mu_Y) := \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|s-t|} d\mu_Y(s) d\mu_Y(t)$$

is finite; in fact, there is an explicit bound in terms of the input data.

Hölder continuity and free entropy

Suppose that $\Phi^*(X_1,\ldots,X_n)<\infty$.

Corollary (Banna, M. (2018))

Let $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$ be selfadjoint with degree $d \geq 1$; consider

$$Y:=P(X_1,\ldots,X_n).$$

Then, the logarithmic energy (and thus also the free entropy $\chi^*(Y)$)

$$I(\mu_Y) := \int_{\mathbb{R}} \int_{\mathbb{R}} \log \frac{1}{|s-t|} d\mu_Y(s) d\mu_Y(t)$$

is finite; in fact, there is an explicit bound in terms of the input data.

Remark

This is a first step towards a conjecture of Charlesworth and Shlyakhtenko (2016) saying that this should remain valid under the weaker condition

$$\chi^*(X_1,\ldots,X_n) > -\infty.$$

Consider a random matrix X of size $N \times N$.

Consider a random matrix X of size $N \times N$.

Definition

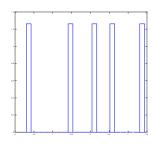
$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

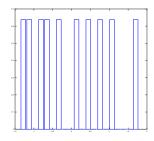


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

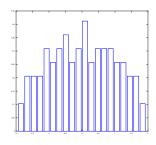


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

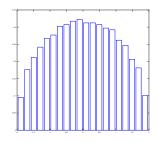


Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)}.$$



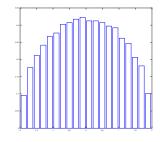
Gaussian random matrices

Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$



Definition

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$

Gaussian random matrices

Consider a random matrix X of size $N \times N$.

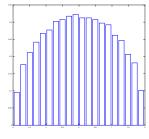
Definition

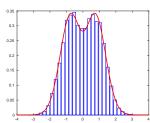
The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)}.$$

Definition

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$





Gaussian random matrices

Consider a random matrix X of size $N \times N$.

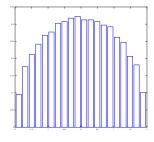
Definition

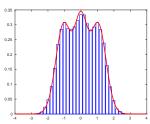
The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)}.$$

Definition

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$





Gaussian random matrices

Consider a random matrix X of size $N \times N$.

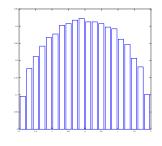
Definition

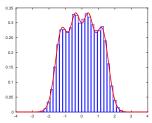
The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)}.$$

Definition

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$





Gaussian random matrices

Consider a random matrix X of size $N \times N$.

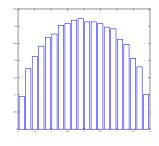
Definition

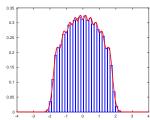
The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_{j}(\omega)}.$$

Definition

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$





Consider a random matrix X of size $N \times N$.

Definition

The empirical eigenvalue distribution of X is the random probability measure μ_X on $\mathbb C$ that is given by

$$\omega \mapsto \mu_{X(\omega)} := \frac{1}{N} \sum_{j=1}^{N} \delta_{\lambda_j(\omega)}.$$

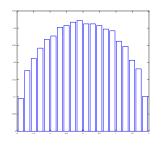
Definition

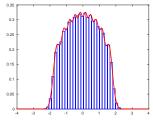
The mean eigenvalue distribution of X is the probability measure $\overline{\mu}_X$ on $\mathbb C$ that is given by

$$\overline{\mu}_X := \mathbb{E}[\mu_X].$$

Gaussian random matrices

→ Wigner's semicircle theorem





Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1,\ldots,x_n \rangle$ be "nice" and let $(X_1^{(N)},\ldots,X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))}\, dX_1^{(N)}\,\dots\, dX_n^{(N)}.$$

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1,\dots,x_n \rangle$ be "nice" and let $(X_1^{(N)},\dots,X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} \, dX_1^{(N)} \, \dots \, dX_n^{(N)}.$$

Then, for each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$, we have that:

(i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on $\mathbb R$ with a cumulative distribution function that is Hölder continuous with exponent $\frac{2}{3(2^d-1)}$.

Corollary (Banna, M. (2018))

Let $V \in \mathbb{C}\langle x_1,\ldots,x_n \rangle$ be "nice" and let $(X_1^{(N)},\ldots,X_n^{(N)})$ be random matrices of size $N \times N$ distributed according to the Gibbs law

$$d\Lambda_N^V(X_1^{(N)},\dots,X_n^{(N)}) = \frac{1}{Z_N^V} e^{-N\operatorname{Tr}(V(X_1^{(N)},\dots,X_n^{(N)}))} dX_1^{(N)} \dots dX_n^{(N)}.$$

Then, for each non-constant selfadjoint $P \in \mathbb{C}\langle x_1, \dots, x_n \rangle$, we have that:

(i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on $\mathbb R$ with a cumulative distribution function that is Hölder continuous with exponent $\frac{2}{3(2^d-1)}$.

(ii) With respect to the Kolmogorov distance Δ , we have that

$$\Delta(\overline{\mu}_{V^{(N)}},\mu)\to 0$$
 as $N\to\infty$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N$. For each non-constant selfadjoint $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$, we have:

(i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on $\mathbb R$ with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N$. For each non-constant selfadjoint $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$, we have:

(i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on $\mathbb R$ with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C>0 such that

$$\Delta(\overline{\mu}_{Y^{(N)}},\mu) \le CN^{-\frac{1}{13\cdot 2^{d+2}-60}}$$
 for all $N \in \mathbb{N}$.

Corollary (Banna, M. (2018))

Let $(X_1^{(N)},\ldots,X_n^{(N)})$ be independent Gaussian random matrices of size $N\times N$. For each non-constant selfadjoint $P\in\mathbb{C}\langle x_1,\ldots,x_n\rangle$, we have:

(i) The empirical eigenvalue distribution $\mu_{Y^{(N)}}$ of

$$Y^{(N)} := P(X_1^{(N)}, \dots, X_n^{(N)})$$

converges in distribution almost surely to a compactly supported Borel probability measure μ on $\mathbb R$ with a cumulative distribution function that is Hölder continuous with exponent $\frac{1}{2^d-1}$.

(ii) There is a constant C>0 such that

$$\Delta(\overline{\mu}_{Y^{(N)}},\mu) \leq CN^{-\frac{1}{13\cdot 2^{d+2}-60}} \qquad \text{ for all } N \in \mathbb{N}.$$

Thank you!