Limit laws of random matrices beyond the Dyson equation

Tobias Mai
(joint work with Sheng Yin)
Saarland University

Workshop “Random Matrices”
Mathematisches Forschungsinstitut Oberwolfach

December 11, 2019

Supported by the ERC Advanced Grant “Non-commutative distributions in free probability”
Some basic random matrix model

\[\text{Definition (self-energy operator / quantum operator)} \]

To the matrices \(b_1, \ldots, b_n \), we associate the positive linear map \(L : M_k(\mathbb{C}) \to M_k(\mathbb{C}) \), \(b \mapsto b_1 b \oplus \cdots \oplus b_n b_n \).

\(L \) is tight if there is \(c > 0 \) so that
\[c - 1 \text{tr}_k(b) \geq L(b) \geq c \text{tr}_k(b) \]
for every positive semi-definite matrix \(b \in M_k(\mathbb{C}) \).

\(L \) is nowhere rank-decreasing if there is no positive semi-definite matrix \(b \in M_k(\mathbb{C}) \) such that \(\text{rank}(L(b)) < \text{rank}(b) \).
Some basic random matrix model

Question

- $X^{(N)} = (X_1^{(N)}, \ldots, X_n^{(N)})$: n-tuples of independent standard complex Gaussian random matrices of size $N \times N$
- b_1, \ldots, b_n: hermitian complex deterministic matrices of size $k \times k$
Some basic random matrix model

Question

- $X^{(N)} = (X_1^{(N)}, \ldots, X_n^{(N)})$: n-tuples of independent standard complex Gaussian random matrices of size $N \times N$
- b_1, \ldots, b_n: hermitian complex deterministic matrices of size $k \times k$

What can be said about the asymptotic eigenvalue distribution of

$$X^{(N)} := b_1 \otimes X_1^{(N)} + \cdots + b_n \otimes X_n^{(N)}$$
Question

- \(X^{(N)} = (X_1^{(N)}, \ldots, X_n^{(N)}) \): \(n \)-tuples of independent standard complex Gaussian random matrices of size \(N \times N \)
- \(b_1, \ldots, b_n \): hermitian complex deterministic matrices of size \(k \times k \)

What can be said about the asymptotic eigenvalue distribution of

\[
X^{(N)} := b_1 \otimes X_1^{(N)} + \cdots + b_n \otimes X_n^{(N)}
\]

Definition (self-energy operator / quantum operator)

To the matrices \(b_1, \ldots, b_n \), we associate the positive linear map

\[
\mathcal{L} : M_k(\mathbb{C}) \rightarrow M_k(\mathbb{C}), \quad b \mapsto b_1 bb_1 + \cdots + b_n bb_n.
\]
Some basic random matrix model

Question

- \(X^{(N)} = (X_1^{(N)}, \ldots, X_n^{(N)}) \): \(n \)-tuples of independent standard complex Gaussian random matrices of size \(N \times N \)
- \(b_1, \ldots, b_n \): hermitian complex deterministic matrices of size \(k \times k \)

What can be said about the asymptotic eigenvalue distribution of

\[X^{(N)} := b_1 \otimes X_1^{(N)} + \cdots + b_n \otimes X_n^{(N)} \]?

Definition (self-energy operator / quantum operator)

To the matrices \(b_1, \ldots, b_n \), we associate the positive linear map

\[\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C}), \quad b \mapsto b_1 bb_1 + \cdots + b_n bb_n. \]

- \(\mathcal{L} \) is flat if there is \(c > 0 \) so that \(c^{-1} \text{tr}_k(b) \mathbf{1}_k \geq \mathcal{L}(b) \geq c \text{tr}_k(b) \mathbf{1}_k \) for every positive semi-definite matrix \(b \in M_k(\mathbb{C}) \).
Some basic random matrix model

Question

- \(X^{(N)} = (X_1^{(N)}, \ldots, X_n^{(N)}) \): \(n \)-tuples of independent standard complex Gaussian random matrices of size \(N \times N \)
- \(b_1, \ldots, b_n \): hermitian complex deterministic matrices of size \(k \times k \)

What can be said about the asymptotic eigenvalue distribution of

\[
X^{(N)} := b_1 \otimes X_1^{(N)} + \cdots + b_n \otimes X_n^{(N)}
\]

Definition (self-energy operator / quantum operator)

To the matrices \(b_1, \ldots, b_n \), we associate the positive linear map

\[
\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C}), \quad b \mapsto b_1 b b_1 + \cdots + b_n b b_n.
\]

- \(\mathcal{L} \) is flat if there is \(c > 0 \) so that \(c^{-1} \text{tr}_k(b) \mathbf{1}_k \geq \mathcal{L}(b) \geq c \text{tr}_k(b) \mathbf{1}_k \) for every positive semi-definite matrix \(b \in M_k(\mathbb{C}) \).
- \(\mathcal{L} \) is nowhere rank-decreasing if there is no positive semi-definite matrix \(b \in M_k(\mathbb{C}) \) such that \(\text{rank}(\mathcal{L}(b)) < \text{rank}(b) \).
The Dyson equation

[Erdős, Knowles, Yau, Yin, ’13], [Ajanki, Erdős, Krüger, ’16], [Alt, Erdős, Krüger, ’18]
The Dyson equation

[Erdoes, Knowles, Yau, Yin, ’13], [Ajanki, Erdoes, Kruger, ’16], [Alt, Erdoes, Kruger, ’18]

- \(X^{(N)} \xrightarrow{\text{dist}} X \), where \(X = (X_1, \ldots, X_n) \) is an \(n \)-tuple of freely independent semicircular elements in a \(W^* \)-probability space \((\mathcal{M}, \tau)\).
The Dyson equation

[Erdős, Knowles, Yau, Yin, ’13], [Ajanki, Erdős, Krüger, ’16], [Alt, Erdős, Krüger, ’18]

- \(X^{(N)} \xrightarrow{\text{dist}} X \), where \(X = (X_1, \ldots, X_n) \) is an \(n \)-tuple of freely independent semicircular elements in a \(W^* \)-probability space \((\mathcal{M}, \tau)\).

- \(\overline{X^{(N)}} \xrightarrow{\text{dist}} \overline{X} \), where \(\overline{X} := b_1 \otimes X_1 + \cdots + b_n \otimes X_n \) is a matrix-valued semicircular element with covariance map \(\mathcal{L} \).
The Dyson equation

[Erdős, Knowles, Yau, Yin, ’13], [Ajanki, Erdős, Krüger, ’16], [Alt, Erdős, Krüger, ’18]

- $X^{(N)} \xrightarrow{\text{dist}} X$, where $X = (X_1, \ldots, X_n)$ is an n-tuple of freely independent semicircular elements in a W^*-probability space (\mathcal{M}, τ).
- $\mathbf{X}^{(N)} \xrightarrow{\text{dist}} \mathbf{X}$, where $\mathbf{X} := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$ is a matrix-valued semicircular element with covariance map \mathcal{L}.
- The Cauchy-transform of \mathbf{X}, i.e., $\mathbf{G}_X : \mathbb{H}^+(M_k(\mathbb{C})) \rightarrow \mathbb{H}^-(M_k(\mathbb{C}))$,

$$
\mathbf{G}_X(b) := (\text{id}_{M_k(\mathbb{C})} \otimes \tau)((b \otimes 1 - \mathbf{X})^{-1}),
$$

is uniquely determined by the Dyson equation

$$
\mathbf{G}_X(b)^{-1} = b - \mathcal{L}(\mathbf{G}_X(b)) \quad \text{for all } b \in \mathbb{H}^+(M_k(\mathbb{C})).
$$
The Dyson equation

[Erdős, Knowles, Yau, Yin, ’13], [Ajanki, Erdős, Krüger, ’16], [Alt, Erdős, Krüger, ’18]

- $X^{(N)} \xrightarrow{\text{dist}} X$, where $X = (X_1, \ldots, X_n)$ is an n-tuple of freely independent semicircular elements in a W^*-probability space (\mathcal{M}, τ).
- $X^{(N)} \xrightarrow{\text{dist}} \mathbb{X}$, where $\mathbb{X} := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$ is a matrix-valued semicircular element with covariance map \mathcal{L}.
- The Cauchy-transform of \mathbb{X}, i.e., $G_{\mathbb{X}} : \mathbb{H}^+(M_k(\mathbb{C})) \to \mathbb{H}^-(M_k(\mathbb{C}))$,

$$G_{\mathbb{X}}(b) := (\text{id}_{M_k(\mathbb{C})} \otimes \tau)((b \otimes 1 - \mathbb{X})^{-1}),$$

is uniquely determined by the Dyson equation

$$G_{\mathbb{X}}(b)^{-1} = b - \mathcal{L}(G_{\mathbb{X}}(b)) \quad \text{for all } b \in \mathbb{H}^+(M_k(\mathbb{C})).$$

Flatness of \mathcal{L} allows deep statements about the spectral distribution $\mu_{\mathbb{X}}$ of \mathbf{X} (aka self-consistent density of states), defined by

$$\text{tr}_k(G_{\mathbb{X}}(z 1_k)) = \int_{\mathbb{R}} \frac{1}{z - t} d\mu_{\mathbb{X}}(t) \quad \text{for all } z \in \mathbb{C}^+,$$

such as absolute continuity and $\frac{1}{3}$-Hölder continuity of the density.
More generally ...
More generally ...

For $X_1, \ldots, X_n \in \mathcal{M}_{\text{sa}}$ and $b_1, \ldots, b_n \in \mathcal{M}_k(\mathbb{C})_{\text{sa}}$ consider

$$X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n.$$
More generally ...

For $X_1, \ldots, X_n \in \mathcal{M}_{sa}$ and $b_1, \ldots, b_n \in M_k(\mathbb{C})_{sa}$ consider

$$X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n.$$

- $1 \in B \subseteq \mathcal{N}$
- $\mathcal{L} : B \to B$, positive and flat
- X in \mathcal{N}_{sa} such that

$$G_X : \mathbb{H}^+(B) \to \mathbb{H}^-(B)$$

satisfies the Dyson equation

$$G_X(b)^{-1} = b - \mathcal{L}(G_X(b))$$

[Alt, Erdős, Krüger, ’18]
More generally ...

For $X_1, \ldots, X_n \in \mathcal{M}_{\text{sa}}$ and $b_1, \ldots, b_n \in M_k(\mathbb{C})_{\text{sa}}$ consider

$$
X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n.
$$

- $1 \in \mathcal{B} \subseteq \mathbb{N}$
- $\mathcal{L} : \mathcal{B} \to \mathcal{B}$, positive and flat
- X in \mathcal{N}_{sa} such that

$$
G_X : \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B})
$$

satisfies the Dyson equation

$$
G_X(b)^{-1} = b - \mathcal{L}(G_X(b))
$$

[Alt, Erdős, Krüger, ’18]

- $1_k \in M_k(\mathbb{C}) \subseteq M_k(\mathcal{M})$
- $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$ for $b_1, \ldots, b_n \in M_k(\mathbb{C})_{\text{sa}}$ is
 - (semi-)flat
 - nowhere rank-decreasing
- X_1, \ldots, X_n in \mathcal{M}_{sa} satisfies
 - $\Phi^*(X_1, \ldots, X_n) < \infty$
 - ...

[M., Speicher, Yin ’19], [M., Yin, ’20]
More generally ...

For $X_1, \ldots, X_n \in \mathcal{M}_{sa}$ and $b_1, \ldots, b_n \in M_k(\mathbb{C})_{sa}$ consider

$$X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n.$$

1. $1 \in \mathcal{B} \subseteq \mathcal{N}$
2. $\mathcal{L} : \mathcal{B} \to \mathcal{B}$, positive and flat
3. X in \mathcal{N}_{sa} such that
 $$G_X : \mathbb{H}^+(\mathcal{B}) \to \mathbb{H}^-(\mathcal{B})$$
 satisfies the Dyson equation
 $$G_X(b)^{-1} = b - \mathcal{L}(G_X(b))$$

[Alt, Erdős, Krüger, ’18]

1. $1_k \in M_k(\mathcal{C}) \subseteq M_k(\mathcal{M})$
2. $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$ for $b_1, \ldots, b_n \in M_k(\mathbb{C})_{sa}$ is
 - (semi-)flat
 - nowhere rank-decreasing
3. X_1, \ldots, X_n in \mathcal{M}_{sa} satisfies
 - $\Phi^*(X_1, \ldots, X_n) < \infty$
 - ...

[M., Speicher, Yin ’19], [M., Yin, ’20]
Consider the algebra $C\langle x \rangle$ of polynomials in the formal variable x.

Definition
The noncommutative derivative $\partial: C\langle x \rangle \to C\langle x \rangle \otimes C\langle x \rangle$ is the unique derivation satisfying $\partial x = 1 \otimes 1$.

Let (N,τ) be a tracial W^*-probability space.

Definition (Voiculescu (1998))
Let $X = X^* \in N$ be given. We call $\xi \in L^2(C\langle X \rangle,\tau)$ the conjugate variable of X if

$$\langle (\partial P)(X), \tau \otimes \tau \rangle = \langle P(X), \xi \rangle$$

for all $P \in C\langle x \rangle$.

The conjugate variable ξ is automatically unique if it exists; it will be denoted by $J(X:C)$.

The free Fisher information is $\Phi^*(X:C) := \|J(X:C)\|_2^2$.

Tobias Mai (Saarland University)
A glimpse at free Fisher information

Consider the algebra $\mathbb{C}\langle x \rangle$ of polynomials in the formal variable x.
A glimpse at free Fisher information

Consider the algebra $\mathbb{C}\langle x \rangle$ of polynomials in the formal variable x.

Definition

The **noncommutative derivative** $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ is the unique derivation satisfying $\partial x = 1 \otimes 1$.

Let (N, τ) be a tracial \mathbb{W}^*-probability space.

Definition (Voiculescu (1998))

Let $X = X^* \in N$ be given. We call $\xi \in L^2(\mathbb{C}\langle X \rangle, \tau)$ the conjugate variable of X if

$$\langle (\partial P)(X), 1 \otimes 1 \rangle_\tau = \langle P(X), \xi \rangle_\tau$$

for all $P \in \mathbb{C}\langle x \rangle$.

The conjugate variable ξ is automatically unique if it exists; it will be denoted by $J(X : C)$.

The free Fisher information is $\Phi^*(X : C) := \| J(X : C) \|^2_2$.

A glimpse at free Fisher information

Consider the algebra $\mathbb{C}\langle x \rangle$ of polynomials in the formal variable x.

Definition

The noncommutative derivative $\partial : \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle x \rangle$ is the unique derivation satisfying $\partial x = 1 \otimes 1$.

Let (\mathcal{N}, τ) be a tracial W^*-probability space.

Definition (Voiculescu (1998))

Let $X = X^* \in \mathcal{N}$ be given.

- We call $\xi \in L^2(\mathbb{C}\langle X \rangle, \tau)$ the conjugate variable of X if

$$\langle (\partial P)(X), 1 \otimes 1 \rangle_{\tau \otimes \tau} = \langle P(X), \xi \rangle_\tau \text{ for all } P \in \mathbb{C}\langle x \rangle.$$

- The conjugate variable ξ is automatically unique if it exists; it will be denoted by $\mathcal{J}(X : \mathbb{C})$.

- The free Fisher information is $\Phi^*(X : \mathbb{C}) := \| \mathcal{J}(X : \mathbb{C}) \|_2^2$.

Tobias Mai (Saarland University) Beyond the Dyson equation December 11, 2019 5 / 6
A glimpse at free Fisher information

Consider the algebra $\mathcal{B}\langle x \rangle$ of polynomials in the formal variable x and \mathcal{B}.

Definition

The noncommutative derivative $\partial : \mathcal{B}\langle x \rangle \rightarrow \mathcal{B}\langle x \rangle \otimes \mathcal{B}\langle x \rangle$ is the unique derivation satisfying $\partial x = 1 \otimes 1$ and $\partial b = 0$ for every $b \in \mathcal{B}$.

Let (\mathcal{N}, τ) be a tracial W^*-probability space and $1 \in \mathcal{B} \subseteq \mathcal{N}$, $\mathcal{L} : \mathcal{B} \rightarrow \mathcal{B}$.

Definition (Voiculescu (1998), Shlyakhtenko (2000))

Let $X = X^* \in \mathcal{N}$ be given.

- We call $\xi \in L^2(\mathcal{B}\langle X \rangle, \tau)$ the conjugate variable of X if

 $$\langle (\partial P)(X), 1 \otimes 1 \rangle_{\tau, \mathcal{L}} = \langle P(X), \xi \rangle_{\tau} \text{ for all } P \in \mathcal{B}\langle x \rangle.$$

- The conjugate variable ξ is automatically unique if it exists; it will be denoted by $\mathcal{J}(X : \mathcal{B}, \mathcal{L})$.

- The free Fisher information is $\Phi^*(X : \mathcal{B}, \mathcal{L}) := \| \mathcal{J}(X : \mathcal{B}, \mathcal{L}) \|_2^2$.

Tobias Mai (Saarland University)
Beyond the Dyson equation
December 11, 2019
Back to the matricial case ...

X_1, \ldots, X_n selfadjoint elements in (M, τ)

b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$

$L : M_k(\mathbb{C}) \to M_k(\mathbb{C})$

$X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$

Theorem (M., Yin (2020))

Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ and that L is semi-at. Then the cumulative distribution function F_{X}, i.e., $F_X(t) := \mu_X((-\infty, t])$, of the spectral measure μ_X of X is 2-Hölder continuous.

Theorem (M., Yin (2020))

Suppose that (X_1, \ldots, X_n) admits a dual system and that L is nowhere rank-decreasing. Then the spectral measure μ_X of X is absolutely continuous with respect to the Lebesgue measure.
Back to the matricial case ...

- X_1, \ldots, X_n selfadjoint elements in (\mathcal{M}, τ)
- b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$, $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$
- $X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$
Back to the matricial case ...

- X_1, \ldots, X_n selfadjoint elements in (\mathcal{M}, τ)
- b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$, $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$
- $X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$

Theorem (M., Yin (2020))

Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ and that \mathcal{L} is semi-flat. Then the cumulative distribution function \mathcal{F}_X, i.e., $\mathcal{F}_X(t) := \mu_X((-\infty, t])$, of the spectral measure μ_X of X is $\frac{2}{3}$-Hölder continuous.
Back to the matricial case ...

- X_1, \ldots, X_n selfadjoint elements in (\mathcal{M}, τ)
- b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$, $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$
- $X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$

Theorem (M., Yin (2020))

Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ and that \mathcal{L} is semi-flat. Then the cumulative distribution function \mathcal{F}_X, i.e., $\mathcal{F}_X(t) := \mu_X((\infty, t])$, of the spectral measure μ_X of X is $\frac{2}{3}$-Hölder continuous.

Banna, M., 2019
Back to the matricial case ...

- X_1, \ldots, X_n selfadjoint elements in (\mathcal{M}, τ)
- b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$, $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$
- $X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$

Theorem (M., Yin (2020))

Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ and that \mathcal{L} is semi-flat. Then the cumulative distribution function F_X, i.e., $F_X(t) := \mu_X((-\infty, t])$, of the spectral measure μ_X of X is $\frac{2}{3}$-Hölder continuous.

[Banna, M., 2019]

Theorem (M., Yin (2020))

Suppose that (X_1, \ldots, X_n) admits a dual system and that \mathcal{L} is nowhere rank-decreasing. Then the spectral measure μ_X of X is absolutely continuous with respect to the Lebesgue measure.
Back to the matricial case ...

- X_1, \ldots, X_n selfadjoint elements in (\mathcal{M}, τ)
- b_1, \ldots, b_n selfadjoint matrices in $M_k(\mathbb{C})$, $\mathcal{L} : M_k(\mathbb{C}) \to M_k(\mathbb{C})$
- $X := b_1 \otimes X_1 + \cdots + b_n \otimes X_n$

Theorem (M., Yin (2020))

Suppose that $\Phi^*(X_1, \ldots, X_n) < \infty$ and that \mathcal{L} is semi-flat. Then the cumulative distribution function \mathcal{F}_X, i.e., $\mathcal{F}_X(t) := \mu_X((-\infty, t])$, of the spectral measure μ_X of X is $\frac{2}{3}$-Hölder continuous.

[![Banna, M., 2019](image)](image)

Theorem (M., Yin (2020))

Suppose that (X_1, \ldots, X_n) admits a dual system and that \mathcal{L} is nowhere rank-decreasing. Then the spectral measure μ_X of X is absolutely continuous with respect to the Lebesgue measure.

Thank you!