
Noncommutative functions and regularity properties of
spectral distributions

Tobias Mai

(joint work with M. Banna, R. Speicher, and S. Yin)

Saarland University

Workshop on Applications to Random Matrices and

Free Probability of Free Noncommutative Functions

Fields Institute Toronto

June 17, 2019

Supported by the ERC Advanced Grant �Non-commutative distributions in free probability�

Tobias Mai (Saarland University) Regularity properties June 17, 2019 1 / 20



Noncommutative probability spaces

De�nition

A noncommutative probability space (A, φ) consists of

a complex algebra A with unit 1A and

a linear functional φ : A → C with φ(1A) = 1 (expectation).

Elements X ∈ A are called noncommutative random variables.

De�nition

A noncommutative probability space (A, φ) is called

C∗-probability space if
I A is a unital C∗-algebra and
I φ is a state on A.

tracial W ∗-probability space, if
I A is a von Neumann algebra and
I φ is a faithful normal tracial state on A.
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Noncommutative distributions

De�nition (�combinatorial distribution�)

Let (A, φ) be a noncommutative probability space. For any given family

X = (Xi)i∈I of noncommutative random variables, we call

µX : C〈xi | i ∈ I〉 → C, xi1 · · ·xik 7→ φ(Xi1 · · ·Xik)

the (joint) noncommutative distribution of X.

De�nition (�analytic distribution�)

Let (A, φ) be a C∗-probability space. For any given X = X∗ ∈ A, the
noncommutative distribution of X can be identi�ed with the unique Borel

probability measure µX on the real line R that satis�es

φ(Xk) =

∫
R
tk dµX(t) for all integers k ≥ 0.
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Noncommutative distribution µX1,...,Xn

(X1, . . . , Xn)

X1, . . . , Xn freely indepen-

dent with given individual

distributions µX1 , . . . , µXn

Regularity conditions such as

Φ∗(X1, . . . , Xn) <∞
χ∗(X1, . . . , Xn) > −∞
δ∗(X1, . . . , Xn) = n

Y := f(X1, . . . , Xn)

Compute the analytic distribu-

tion and the Brown measure,

respectively, of Y .

Study regularity properties like

absolute continuity of µY

Hölder continuity of FµY
absence of atoms for µY
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Basic classes of �noncommutative test functions�

1 Noncommutative polynomials, i.e., expressions of the form

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 · · ·xik

in formal non-commuting indeterminates x1, . . . , xn; we denote the

unital complex algebra consisting of all noncommutative polynomials

by C〈x1, . . . , xn〉.
2 Matrices of noncommutative polynomials, i.e., elements P in

MN (C〈x1, . . . , xn〉) for an arbitrary N ∈ N.
3 A�ne linear pencils, i.e., matrices of noncommutative polynomials

that are of the particular form

P = b0 + b1x1 + · · ·+ bnxn

with scalar matrices b0, b1, . . . , bn of appropriate size.
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A more advanced class: noncommutative rational functions

By de�nition, noncommutative rational functions are elements of the

free �eld C (<x1, . . . , xn )>.

Formally, C (<x1, . . . , xn )> is the universal �eld of fractions for the ring

C〈x1, . . . , xn〉 of noncommutative polynomials.

Its existence is a highly non-trivial fact: Amitsur, Bergman, Cohn, ...

But what does this actually mean?

+ Loosely speaking, noncommutative rational functions are built out of

noncommutative polynomials by successive applications of the

arithmetic operations addition, multiplication, and inversion.

+ They can be realized as equivalence classes of noncommutative

rational expressions which are non-degenerate.
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From rational functions to a�ne linear pencils

De�nition

Let Q ∈MN (C〈x1, . . . , xn〉) be given.

The (inner) rank of Q, denoted by ρ(Q), is the least integer k ≥ 1 for

which Q can be written as Q = R1R2 with some rectangular matrices

R1 ∈MN×k(C〈x1, . . . , xn〉) and R2 ∈Mk×N (C〈x1, . . . , xn〉).

We call Q full if it has full rank, i.e., if ρ(Q) = N .

Facts

Q full ⇐⇒ Q invertible in MN (C (<x1, . . . , xn )>)

Every noncommutative rational function r ∈ C (<x1, . . . , xn )> admits a

linear representation, i.e., it can be written as r = uQ−1v with a full

a�ne linear pencil Q ∈MN (C〈x1, . . . , xn〉) and scalar vectors u and

v of appropriate size.
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How can we �evaluate� such functions?

Trivial facts

Let A be a unital algebra and consider X1, . . . , Xn ∈ A. There is a unital

homomorphism

evX : C〈x1, . . . , xn〉 → A

that is uniquely determined by the condition that evX(xi) = Xi for each

i = 1, . . . , n. The latter extends naturally to a unital homomorphism

ev
(N)
X : MN (C〈x1, . . . , xn〉)→MN (A), (Pkl)

N
k,l=1 7→ (evX(Pkl))

N
k,l=1.

This de�nes evaluation of (matrix-valued) noncommutative polynomials

and of a�ne linear pencils, in particular. Rational functions are more subtle.

Challenging facts

Not every rational expression can be evaluated everywhere.

Two rational expressions representing the same rational function do

not necessarily give the same value under evaluation.
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Noncommutative derivatives

Consider again the (∗-)algebra C〈x1, . . . , xn〉 of noncommutative

polynomials in formal (selfadjoint) variables x1, . . . , xn.

De�nition

The noncommutative derivatives are the linear mappings

∂1, . . . , ∂n : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

which are uniquely determined by the two conditions

∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈x1, . . . , xn〉,
∂jxi = δi,j1⊗ 1 for i, j = 1, . . . , n.

C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉 becomes a C〈x1, . . . , xn〉-bimodule via

P1 · (Q1 ⊗Q2) · P2 := (P1Q1)⊗ (Q2P2).
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Conjugate variables and free Fisher information

Let (M, τ) be a tracial W ∗-probability space and consider any selfadjoint

operators X1, . . . , Xn ∈M; we putM0 := vN(X1, . . . , Xn).

De�nition (Voiculescu (1998))

If ξ1, . . . , ξn ∈ L2(M0, τ) are such that for all P ∈ C〈x1, . . . , xn〉

(τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn)), j = 1, . . . , n,

then (ξ1, . . . , ξn) is called the conjugate system for (X1, . . . , Xn).

De�nition (Voiculescu (1998))

The (non-microstates) free Fisher information is de�ned by

Φ∗(X1, . . . , Xn) :=


n∑
j=1

‖ξj‖22,
if a conjugate system (ξ1, . . . , ξn)
for (X1, . . . , Xn) exists

∞, otherwise
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Interlude: Gibbs laws and the Schwinger-Dyson equation

Theorem (Guionnet, Shlyakhtenko (2009))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N following the Gibbs law

dΛVN (X
(N)
1 , . . . , X(N)

n ) =
1

ZVN
e−N Tr(V (X

(N)
1 ,...,X

(N)
n )) dX

(N)
1 . . . dX(N)

n .

Then, for all P ∈ C〈x1, . . . , xn〉,

lim
N→∞

trN (P (X
(N)
1 , . . . , X(N)

n )) = τ(P (X1, . . . , Xn)) almost surely

for selfadjoint operators X1, . . . , Xn in some W ∗-probability space (M, τ)
that satisfy the Schwinger-Dyson equation with potential V .

Observation

For such (X1, . . . , Xn), we always have that Φ∗(X1, . . . , Xn) <∞.
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Useful variants of the free entropy dimension

Suppose that S1, . . . , Sn are freely independent semicircular elements that

are also free from {X1, . . . , Xn}, then (X1 +
√
tS1, . . . , Xn +

√
tSn)

admits a conjugate system for each t > 0. More precisely, we have

n2

C2 + nt
≤ Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn) ≤ n

t
for all t > 0,

with C2 := τ(X2
1 + · · ·+X2

n).

De�nition (Connes, Shlyakhtenko (2005))

δ?(X) := n− lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . ,Xn +

√
tSn)

∆(X) := n− dimM⊗Mop

{
T ∈ F(L2(M))n

∣∣∣ n∑
j=1

[Tj , JX∗j J ] = 0
}

Theorem (Connes, Shlyakhtenko (2005))

0 ≤ δ∗(X1, . . . , Xn) ≤ ∆(X1, . . . , Xn) ≤ n
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Atoms of (matrices of) polynomials and rational functions

Theorem (M., Speicher, Yin (2019))

The condition ∆(X1, . . . , Xn) = n is satis�ed if and only if

(X1, . . . , Xn) induces a �faithful model� of the free �eld inside

the ∗-algebra A of all unbounded linear operators a�liated toM.

In particular, if ∆(X1, . . . , Xn) = n, then the following holds:

1 X = (X1, . . . , Xn) has the strong Atiyah property.

2 For every selfadjoint P ∈MN (C〈x1, . . . , xn〉), the operator

Y := P(X1, . . . , Xn) has atoms precisely at the points in the set{
λ ∈ C | P− λ1N ∈MN (C〈x1, . . . , xn〉) is not full

}
with size µY({λ}) = 1− 1

N ρ(P− λ1N ).

3 Every r ∈ C (<x1, . . . , xn )> admits a well-de�ned evaluation r(X) ∈ A.
If r is non-constant and selfadjoint, then the analytic distribution of

r(X) has no atoms.
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Hölder continuity: a criterion

Consider Y = Y ∗ in (M, τ). Let µY be the analytic distribution of Y and

let FY be its cumulative distribution function, i.e., FY (t) := µY ((−∞, t]).

Lemma (M., Speicher, Yin (2018))

If there exist c > 0 and α > 1 such that

c‖(Y − s)p‖2 ≥ ‖p‖α2

for all s ∈ R and each spectral projection p of Y , then FY is Hölder
continuous with exponent β := 2

α−1 ; more precisely, we have that

|FY (t)−FY (s)| ≤ cβ|t− s|β for all s, t ∈ R.

Proof � following ideas of [Charlesworth, Shlyakhtenko (2016)].

Take p = EY ((s, t]) for the spectral measure EY of Y and observe that

‖p‖2 = µY ((s, t])1/2 and ‖(Y − s)p‖2 ≤ |t− s|µY ((s, t])1/2.
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Hölder continuity of polynomials

Suppose that Φ∗(X1, . . . , Xn) <∞.

Theorem (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1 and consider

Y := P (X1, . . . , Xn).

Then there exists some constant C > 0 such that

|FY (t)−FY (s)| ≤ C|t− s|
2

3(2d−1) for all s, t ∈ R.

In fact, for every R > maxi=1,...,n ‖Xi‖, we can take

C =
(
8Φ∗(X)1/2R

) 2
3 ρR(P )

− 2d

3(2d−1) ‖P‖
− 2

3(2d−1)

R

d−1∏
k=1

( d!

(d− k)!

) 2k

3(2d−1) ,

where ‖P‖R and ρR(P ) are quantities that depend only on P and R.
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Hölder continuity and �niteness of free entropy

Suppose that Φ∗(X1, . . . , Xn) <∞.

Corollary (Banna, M. (2018))

Let P ∈ C〈x1, . . . , xn〉 be selfadjoint with degree d ≥ 1; consider

Y := P (X1, . . . , Xn).

Then, the logarithmic energy (and thus also the free entropy χ∗(Y ))

I(µY ) :=

∫
R

∫
R

log
1

|s− t|
dµY (s) dµY (t)

is �nite; in fact, there is an explicit bound in terms of the input data.

Remark

This is a �rst step towards a conjecture of Charlesworth and Shlyakhtenko
(2016) saying that this should remain valid under the weaker condition

χ∗(X1, . . . , Xn) > −∞.
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Eigenvalue distributions
Consider a random matrix X of size N ×N .

Gaussian random matrices

 Wigner's semicircle theorem

De�nition

The empirical eigenvalue distribution of

X is the random probability measure µX
on C that is given by

ω 7→ µX(ω) :=
1

N

N∑
j=1

δλj(ω).
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De�nition

The mean eigenvalue distribution of X is

the probability measure µX on C that is

given by

µX := E[µX ].
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Gaussian block random matrices

Corollary (M., Speicher, Yin (2018); Banna, M. (2018))

Let b0, b1, . . . , bn ∈Md(C) be selfadjoint such that the quantum operator

L : Md(C)→Md(C), b 7→ b1bb1 + · · ·+ bnbbn

satis�es L(b) ≥ c trd(b)1d for all positive b ∈Md(C) for some c > 0. Put

X(N) := b0 ⊗ 1N + b1 ⊗X(N)
1 + · · ·+ bn ⊗X(N)

n

for independent standard Gaussian random matrices (X
(N)
1 , . . . , X

(N)
n ) and

S := b0 ⊗ 1 + b1 ⊗ S1 + · · ·+ bn ⊗ Sn
for freely independent semicircular elements S1, . . . , Sn.

Then we have:

(i) FS is Hölder continuous with exponent 2
3 .
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Polynomial evaluations for Gibbs laws

Corollary (Banna, M. (2018))

Let V ∈ C〈x1, . . . , xn〉 be �nice� and let (X
(N)
1 , . . . , X

(N)
n ) be random

matrices of size N ×N distributed according to the Gibbs law

dΛVN (X
(N)
1 , . . . , X(N)

n ) =
1

ZVN
e−N Tr(V (X

(N)
1 ,...,X

(N)
n )) dX

(N)
1 . . . dX(N)

n .

Then, for each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have that:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 2

3(2d−1) .

(ii) We have that

dKol(µY (N) , µ)→ 0 as N →∞.
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Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N .

For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!

Tobias Mai (Saarland University) Regularity properties June 17, 2019 20 / 20



Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N .

For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!

Tobias Mai (Saarland University) Regularity properties June 17, 2019 20 / 20



Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N . For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!

Tobias Mai (Saarland University) Regularity properties June 17, 2019 20 / 20



Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N . For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!

Tobias Mai (Saarland University) Regularity properties June 17, 2019 20 / 20



Polynomial evaluations for GUEs

Corollary (Banna, M. (2018))

Let (X
(N)
1 , . . . , X

(N)
n ) be independent Gaussian random matrices of size

N ×N . For each non-constant selfadjoint P ∈ C〈x1, . . . , xn〉, we have:

(i) The empirical eigenvalue distribution µY (N) of

Y (N) := P (X
(N)
1 , . . . , X(N)

n )

converges in distribution almost surely to a compactly supported Borel
probability measure µ on R with a cumulative distribution function
that is Hölder continuous with exponent 1

2d−1 .

(ii) There is a constant C > 0 such that

dKol(µY (N) , µ) ≤ CN−
1

13·2d+2−60 for all N ∈ N.

Thank you!
Tobias Mai (Saarland University) Regularity properties June 17, 2019 20 / 20


	The basics of free probability theory
	Noncommutative probability spaces
	Noncommutative distributions
	Noncommutative test functions
	Linear representations

	Free analysis: L2-theory for free differential operators
	Conjugate variables and free Fisher information
	Gibbs laws and the Schwinger-Dyson equation
	The free entropy dimension

	Regularity results
	Results about atoms
	Hölder continuity

	Random matrix applications of Hölder continuity
	Eigenvalue distributions
	Gaussian block random matrices
	Polynomials in random matrices following Gibbs laws
	Polynomials in Gaussian random matrices


