
CATEGORY THEORY SEMINAR 2020

◻ Participants at all levels of familiarity with category theory and at all stages of
their mathematical education in general are cordially invited to participate. The
talks are meant to cover a wide spectrum of difficulty.

◻ The below list of possible talks is to be regarded as preliminary and very much
open to extension or alteration in response to input from the participants.

◻ In particular, by no means need all topics be covered in the seminar.
◻ Conversely, on certain topics having several talks might be feasible.
◻ Please let us know if there is a topic not listed below on which you would like to

give (or attend) a talk!
◻ Also, email us anytime if you would like more information about the pro-

posed topics.
◻ References given below for individual talks are merely suggestions and only meant

to help you find a starting point for your own engagement with the literature.

Part 1. Basic topics

Among the basic topics each talk can be considered a prerequisite to all the ones
following it.

1. Objects and morphisms

“Report on the various different kinds of special objects and morphisms
and equivalence classes of such which are commonly distinguished in category
theory!”

Important fundamental concepts which feature in many higher-level definitions of cate-
goriy theory are the various types of special objects, special morphisms and special equiv-
alence classes of morphisms usually distinguished. In keeping with the principle of duality
they all appear in pairs. In some cases a special name is given to entities possessing
both properties. E.g., a terminal object by definition admits precisely one morphism
from any object. The dual notion is that of an initial object. If an object is both, it is
called a zero object. Other important kinds of objects are separators and co-separators.
Among morphisms one distinguishes several kinds of analogues and generalizations of
injective, surjective and bijective maps. E.g., an epimorphism is a morphism which is
right-cancellative and a retraction is an epimorphisms which even has a right-inverse.
The dual notions are monomorphism respectively section. Combining both notions yields
so-called bimorphisms respectively isomorphisms. Among monomorphisms and epimor-
phisms one frequently distinguishes between regular, strong and extremal ones. Subobjects
and co-subojects (sometimes also called quotient objects) are certain kinds of equivalence
classes of monomorphisms and epimorphisms, respectively, which generalize the notion of
subsets and quotient sets to categories other than that of sets. ∎ ◻ ◻ ◻ ◻

[AHS09, Chpt. II]
1
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2. Universal property

“Give a precise formal account of what a universal construction is, why it
works and how it is important and exhibit examples, both of different kinds
of universal constructions and also, for each kind of construction, of particular
instances!”

Many central definitions of category theory are universal constructions. A main moti-
vation for using these is the desire to be able to specify a special object not by explaining
“how it can be found” but by “what it is like” (the so-called universal property): Rather
than giving an explicit way of constructing the object, one prescribes how morphisms to
or from it compose with other morphisms. The Yoneda lemma gives a justification for
why this works. And it also explains why a universal construction determines an object
not uniquely but only essentially uniquely, i.e., up to unique isomorphism. Another way
of looking at universal constructions is to recognize that they are equivalent to demands
that something be an initial or terminal object in a comma category. ∎ ∎ ◻ ◻ ◻

[Bra16, Kap. 5]

3. Limits, co-limits, sources, sinks, pull-backs, push-outs

“Present the concept of (co-)limits using the language of sources and sinks
and illustrate it by means of the example of pull-backs and push-outs!”

In category theory, it is often helpful to consider families of morphisms with common
co-domain (so-called sinks) or domain (co-sinks or sources). Particular kinds of co-sinks
are cones of diagrams; particular kinds of sinks are co-cones of diagrams. Universal (co-
)cones are called (co-)limits and form a fundamental concept of category theory. Examples
of limits are pull-backs, examples of co-limits push-outs. They are the “most general”
ways of completing a two-member sink respectively co-sink to a commutative square.
Further examples of (co-)limits include (co-)products, (co-)equalizers and (co-)terminal
objects. Particularly favorable categories with respect to the existence of (co-)limits are
(co-)complete or at least finitely (co-)complete ones. Certain (co-)limits can be constructed
from others. Functors may or may not preserve, lift, reflect or create limits; but for certain
functors and certain limits, some general results are available. ∎ ◻ ◻ ◻ ◻

[AHS09, Chpt. III], [Bae16, Chpt. 2], [Bra16, Kap. 6]

4. Adjoints

“Give the three equivalent definitions of adjoint functors, present the impor-
tant uniqueness, existence and limit-preservation results and provide examples
of adjunctions!”

Adjunctions or pairs of adjoint functors can be seen as relationships between two
categories which generalize that of equivalence. (The name “adjoint” comes from a formal
similarity with Hilbert space operator adjoints.) Of the many examples, the relationship
between sets and groups given by the possibility of forming the free group over a given
set respectively passing to the set of elements of a given group is just one. Another is the
possibility of adjoining a unit element to a given ring or algebra respectively forgetting
that a unit exists. Three definitions of adjunctions can be shown to be equivalent, one via
natural isomorphisms of compositions with hom-functors, one via universal morphisms and
one via so-called unit and co-unit natural transformations. Adjoints are unique. Adjoint
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functor theorems give conditions for when they exist. Left adjoint functors preserve co-
limits, right adjoints preserve limits. ∎ ∎ ◻ ◻ ◻

[AHS09, Chpt. V], [Bra16, Kap. 7]

5. Monoidal categories

“Give an introduction to the theory of (strict and non-strict) monoidal
categories via the example of the Temperley-Lieb category!”

Some categories can be equipped with a “multiplicative” structure. In the category of
sets for example both the operation of forming the Cartesian product of two sets and the
one of taking their disjoint union yield such “multiplications”. The notion of monoidal
product in a monoidal category formalizes this idea. The general definition of a monoidal
category has a simplified special case: strict monoidal categories. The Temperley-Lieb
category of non-crossing pair partitions is an example of the latter. (It plays a role in
the representation theory of quantum groups and much can be said about it. E.g., it is a
universal category and its fibre functors can be classified.) From it one can construct a
non-strict monoidal category by taking the 3-co-cycle twist. ∎ ∎ ◻ ◻ ◻

[Bae16, Chpt. 8], [BC18]

6. Enriched categories

“Present the fundamental concepts and results of enriched category the-
ory!”

A locally small category is one where for any two objects the class of morphisms between
them is not just a class but a set. The theory of enriched categories generalizes this by
demanding that the morphism class be not a set but an object of some monoidal category.
Many definitions and theorems of ordinary category have analogues in enriched category
theory. In particular, there are besides enriched categories also enriched functors and
enriched natural transformations and one can prove an enriched Yoneda lemma. ∎◻◻◻◻

[Rie14, Chpt. 3]

7. Abelian categories

“Show how suitable categories can be given a notion of addition of mor-
phisms and explain what consequences that entails!”

Locally small categories with a zero-object, with binary products and co-products, with
kernels and co-kernels and in which all epimorphisms and monomorphisms are normal
can be endowed canonically with the structure of an enriched category over the monoidal
category of abelian groups (with a choice of tensor product of abelian groups as monoidal
product). Such categories are called abelian. They have various special properties like
essentially unique epi-mono factorizations, existence of zero morphisms, of images and co-
images, well-behaved subobjects and co-subobjects and many more. They are of great im-
portance in homological algebra. By the Freyd-Mitchell embedding theorem each abelian
category embeds into a category of modules over a ring. ∎ ∎ ◻ ◻ ◻

[Lan13, Chpt. VIII]
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Part 2. Special topics

8. Deligne categories

“Show how it is possible to use partitions of finite sets to define a virtual
group of ‘permutations of a non-integer number of points’ ! ”

Deligne categories are tensor categories of a combinatorial type. Their morphisms are
given by formal linear combinations of “partitions”, certain kinds of diagrams one can
draw by hand. Two partitions are composed by a natural graphical procedure applied to
the diagrams. More precisely, for each complex number there is a specific procedure giving
a categorical structure. For non-negative integer values N of this parameter the resulting
tensor category is equivalent to the representation category of the symmetric group SN .
If one defines St for other parameters t as the fictitious “group” whose representation
theory is given by the corresponding Deligne category, one has generalized the notion of a
permutation group. More generally, as Knop showed, such a construction can be carried
out in a many other ways where the morphisms are not given by partitions but by relations
inside any regular category. ∎ ∎ ∎ ◻ ◻

Knowledge of topics 3 and 5 is probably helpful.
[CO14], [Eti14], [Eti16], [Kno07]

9. Generalizations of regular and exact categories

“Illustrate when and how it is possible to have in a category other than
that of sets an analogous theory of (not necessarily binary) relations!”

The notions of regular categories and exact categories with their calculus of relations
can be understood and generalized in a framework called familial regularity and exactness
developed by Ross Street and Michael Shulman. The suggested objective of the talk is to
explain what is meant by that, why it is interesting and, of course, as time allows, how it
works. ∎ ∎ ∎ ∎ ◻

To a large extent topic no. 3 has to be considered a prerequisite for this one. And it
will be most satisfying if one also knows a bit about topic no. 8.

[Shu12], [Str84]

10. Tensor categories and reconstruction

“Give a rough definition and overview of the field of tensor categories under
special consideration of its link with the study of Hopf algebras!”

Tensor categories are certain abelian rigid monoidal categories which are in addition
enriched over the category of finite-dimensional vector spaces over some field and which are
subject to certain “simplicity” assumptions; in particular the set of morphisms between
two objects is a finite-dimensional vector space and the monoidal product is a bi-linear
tensor product. If such a tensor category is paired with a fiber functor, i.e., a certain kind
of linear additive monoidal functor into the category of finite-dimensional vector spaces,
this gives rise to Hopf algebras. The converse viewpoint that this Hopf algebra can be
recovered from the tensor category motivates the name reconstruction theory for this link
between the theories of tensor categories and Hopf algebras. ∎ ∎ ∎ ∎ ∎

Familiarity with topics no. 5–7 is required, familiarity with topics no. 11 and 12 helpful.
[Eti+16, Chpt. 4 and 5]
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11. C*-tensor-categories

“Provide an introduction to the theory of C*-tensor categories and prove
how it is possible to reconstruct a compact quantum group from its C*-tensor
of representations and how, conversely, each C*-tensor category gives rise to
a compact quantum group!”

C∗-categories are topological variants of algebraic tensor categories. The morphism
spaces are not given by vector spaces and algebras of linear maps but by C∗-modules
and C∗-algebras. An important consequence of the ∗-structure is the existence of com-
plex conjugates under certain circumstances. The analogue of the reconstruction the-
ory for Hopf-algebras for algebraic tensor categories is of great importance in the theory
of C∗-algebraic quantum groups: By a famous theorem of Woronowicz’s certain finite-
dimensional C∗-categories give rise to compact quantum groups, particular types of Hopf-
∗-algebras. ∎ ∎ ∎ ∎ ∎

Familiarity with topics no. 5–7 is required, familiarity with topics no. 10 and 12 helpful.
[NT13, Chpt. 3]

12. Tannakian duality exemplified

“Explain roughly how for certain notions of symmetry one can reconstruct
the abstract embodiment of that symmetry (e.g., a group or quantum group)
if one only knows in a certain way sufficiently many systems exhibiting that
symmetry (e.g., the group or quantum group representations).”

“Tannaka(-Krein)-type” reconstruction theorems can be given abstractly as applica-
tions of the Yoneda lemma of enriched category theory to the module categories of a
monoid object. However, in important concrete cases peculiar improvements thereupon
are possible, to the effect that not all modules are necessary. This can be illustrated on
various concrete examples. For instance, co-algebras can be reconstructed from the endo-
morphisms of the functor forgetting the co-action of co-algebra co-modules; but, as shown
by André Joyal and Ross Street, the same is possible if one restricts to finite-dimensional
co-modules. ∎ ∎ ∎ ∎ ◻

Familiarity with topics no. 5–7 is required, familiarity with topics no. 10 and 11 helpful.
[Day96], [DM82], [JS91]

13. Symmetries and braidings in monoidal categories

“Explain how in monoidal categories there is more than one way for the
product to be ‘commutative’, present concepts to ‘quantify’ how ‘symmetric’
a given monoidal category is and clarify the relationship this question has to
braid theory!”

In general monoidal categories the product of two objects taken in one order need not
have any relation with the one taken in the other order. However, for many monoidal
categories the product does display some symmetry in that respect. Of particular interest
are braided monoidal categories where there exists a natural isomorphism between these
two functors, the braiding, introduced by Joyal and Street. Depending on what properties
this natural isomorphism possesses, it makes sense to say that the monoidal product
displays different kinds of “commutativity”. The most symmetric case is that of symmetric
braided categories where the braiding is an involution. More generally, a braided monoidal
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category can be interpreted as a category with an action of the braid category, which
encompasses all braid groups. ∎ ∎ ◻ ◻ ◻

Topic no. 5 is a prerequisite.
[Lan13, Chpt. XI]

14. Stone duality: concrete and abstract

“Prove the classical version of Stone’s representation theorem and interpret
it in the terms of category theory.”

By a famous result of Marshall H. Stone’s, totally disconnected compact Hausdorff
spaces, so-called Stone spaces, are dual to Boolean algebras, i.e., the first category is
categorically equivalent to the opposite category of the second one. The duality between
the two categories is realized by means of a dualizing object, meaning that the equivalence
can be expressed as a restriction of a representable functor.

This topic is not about so-called “abstract Stone duality (ASD)” developed by Paul
Taylor which seeks to give a reaxiomatization of general topology in constructive mathe-
matics. ∎ ∎ ∎ ∎ ◻

[Sto36]

15. Isbell duality: The paradigm and a rigorous instantiation

“Make the popular heuristic that geometry and algebra are two sides of the
same coin precise in the framework of category theory!”

Following William T. Lawvere, (generalized) spaces can be formalized as presheaves
and (generalized) algebras of functions over a space as co-presheaves. In the special case
of enriched (co-)presheaves the left Kan extensions of the covariant and contravariant
enriched Yoneda-embeddings along each other then define an enriched adjunction between
spaces and function algebras, the Isbell conjugacy. More generally, the theory of the Isbell
envelope allows reasoning about whether two categories satisfy such a notion of Isbell
duality.

Knowledge of topic no. 4 has to be considered a prerequisite. Though not strictly
necessary, understanding a bit of topic no. 16 will be helpful. ∎ ∎ ∎ ∎ ◻

[Isb66]

16. All concepts are Kan extensions

“Explain how all other universal constructions, in particular limits and ad-
junctions, are subsumed by that of Kan extensions and clarify to what extent
the reverse is true!”

The notion of Kan extensions allows understanding all other fundamental definitions
of category theory, (co-)limits, adjunctions, (co-)ends, as special cases of just one universal
construction: finding an optimal solution to the problem of extending a functor from a
“subcategory” to the whole category. ∎ ∎ ◻ ◻ ◻

Prerequisites are topics no. 3 and 4.
[Rie17, Chpt. 6]

17. Homological algebra

see topic no. 21.
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18. The homotopy hypothesis: The idea and a proven example

“Provide a brief glimpse into higher category theory by explaining what
is meant when it said that ‘∞-groupoids are equivalent to (weak homotopy
classes of) topological spaces.’”

In contrast to ordinary, “first-order” category theory, there is no single commonly
accepted approach to higher category theory. The central motivation to considering higher
categories in the first place is Quillen’s famous equivalence between the homotopy theories
of topological spaces on the one hand and Kan complexes (of simplicial sets) on the
other hand. This theorem suggests a certain notion of higher groupoids (in particular
∞-groupoids) generalizing that of ordinary, “first-order” groupoids. But there are other
homotopy theories equivalent to that of topological spaces which yield different notions of
higher groupoids. Oversimplifying, higher category theory can be seen as the endeavour to
develop a theory which behaves to higher groupoids as ordinary category theory behaves
to ordinary groupoids, and a main issue is what notion of higher groupoid to choose
as a starting point. For historical reasons this question is often framed as the so-called
homotopy hypothesis. ∎ ∎ ∎ ∎ ∎

[Bae07], [Qui06]

19. Examples from Wengenroth’s book

“Demonstrate how methods and results from category theory enable proofs
in other fields by showing how inverse limits and derived functors are used in
functional analysis in the theory of locally convex vector spaces!”

Following the work of Palamodov, category-theoretical methods, in particular, ho-
mological ideas, have been employed in functional analysis. The Hahn-Banach theorem
implies that the category of (not necesarily Hausdorff) locally convex (complex or real vec-
tor) spaces (with continuous linear maps) has all inverse limits, is quasi-abelian and has
enough injective objects. The operation of taking the inverse limit constitutes a left-exact
functor from the category of co-directed diagrams (of a certain shape) of locally convex
spaces (called “projective spectra” in this context) to the category of locally convex spaces.
Hence, its right derivatives can be defined and measure how far this functor is from being
(also right-)exact. That makes it possible to ask whether, e.g., a global solution to a par-
tial differential equation exists and can be found by aggregating local solutions. Further
questions which can be addressed using category-theoretical instruments is whether an
operator onto a quotient space of a locally convex space can be lifted to a map onto the
whole space or whether the transpose linear map of an operator between locally convex
spaces is again continuous with respect to the strong topology. ∎ ∎ ∎ ∎ ∎

To a large extent, knowledge of topic no. 17/21 has to be regarded a requirement.
[Wen03]

20. From posets to categories

“Clarify the relationships between posets and categories and between con-
cepts of poset theory like minimal/maximal elements, meets and joins on the
one hand and categorical terms like limits and co-limits on the other hand!”

In a certain sense, category theory can be interpreted as a generalization of the theory
of partially ordered sets (posets). For example, a poset is the same as a skeleton of a
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small category. Moreover, the notions of meets and joins correspond to certain limits and
co-limits, respectively, namely products and co-products. ∎ ◻ ◻ ◻ ◻

This topic requires knowledge of topics no. 1 and 3.
[Arm16, Chpt. 1]

21. Derived functors/categories (e.g., Tor, Ext, triangulated categories)

The topics no. 17, “Homological algebra”, and no. 21, “Derived functors/categories
(e.g., Tor, Ext, triangulated categories)”, are for all intents and purposes identical. Having
multiple talks on it seems very much possible. Up to four are outlined below.

Chain complexes. Chain complexes, usually of modules over a ring, are the prominent
entities treated in homological algebra. Chain complexes form a category with chain maps
as morphisms. Actually, they form a 2-category in the sense of higher order category theory
with chain homotopies as second-order morphisms. The functor given by the operation
of taking the homology of given chain complex is what gives the subject of homological
algebra its name. It permits measuring to what degree a given chain complex fails to be
exact (a property inspired by that of the same name for short or long sequences). ∎∎∎◻◻

[Wei94, § 1.1–§ 1.5], [Bla11, § 11.1]
Left and right derived functors. A main interest of homological algebra is to

study functors between categories of modules (or more generally abelian categories) via
the homology of their compositions with other functors. One of the crucial tools for doing
so is the concept of derived functors. The categories in question must have projective or
injective objects, and enough of them at that, for this idea to work. The functor to be
studied is then applied to projective or injective resolutions, chain complexes consisting of
projective/injective objects, after which homology is taken. ∎ ∎ ∎ ∎ ◻

[Wei94, § 2.1–§ 2.5], [Bla11, § 11.2–§ 11.3]
Tor and Ext. Of particular interest are the derived functors of the tensor product

functor of an abelian category, the so-called Tor -functor, and of the hom-functor, the so-
called Ext-functor. They have been used to study algebro-topological invariants of, e.g.,
groups or Lie algebras. ∎ ∎ ◻ ◻ ◻

[Wei94, § 3.1–§ 3.4], [Bla11, § 11.4–§ 11.5]
Triangulated categories. The theory of derived functors can alternatively be ex-

pressed through that of derived categories, a special case of triangulated categories (or
more precisely triangulated categories with chosen t-structures). Generalizing abelian
categories, triangulated categories are merely additive categories but come equipped with
a generalized notion of “exact sequences”, namely exact triangles. Much of classical ho-
mological algebra can be carried out on triangulated categories as well. ∎ ∎ ∎ ∎ ∎

[Wei94, § 10.1–§ 10.2]
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