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1 Rings and modules

1.1 Definition. Let R be a ring. A (left) R-module is an additive abelian group
M equipped with scalar multiplication R x M — M such that for all .7/ € R and
m,m’ € M we have

L r(im+m')=rm+rm/,
2. (r+r"Ym=rm+r'm,
3. (rr"ym =r(r'm),

4. Im =m.

1.2 Examples.

a) Every vector space over a field k is a k-module.

b) Every group is a Z-module.

c¢) Every ring is a module over itself.

d) Every ideal in a ring R is an R-module

e) For A an algebra and ¢: A — Z(V) a representation of A on a vector space V,
we can define the structure of A-module on V' as av := p(a)v.

1.3 Definition. An R-module F is called free if it has a basis. That is, if there exists
a set {es} (not necessarily finite), which is R-generating and R-linearly independent, i.e.
any element z € F' can be uniquely represented as © = > r,e, for some coefficients
re € R.
A free module with a basis of size n can be constructed as a direct sum of n copies
of R. That is,
R" :={(r1,...,m) | T1,...,7n € R}

with component-wise addition and multiplication. The basis is formed by the elements
e; :=(0,...,0,1,0,...,0) having the identity on the i-th position.
A free group is a free Z-module.

1.4 Example. A canonical example of a module: Consider an algebra of polynomi-
als A := Clzy,...,x,] as a ring and the vector space of n-vectors with components in
Clx1,...,z,] as an A-module.

1.5 Example. Not every R-module has a basis. Consider for example A := Clz,y] as
a ring and the ideal (z,y) generated by the polynomials x and y as an A-module. Then
any generating set must contain both = and y (or any C-linearly independent pair of
polynomials of degree one), but those are not A-linearly independent since y-z+(—z)-y =
0.


http://pi.math.cornell.edu/~hatcher/AT/AT.pdf

1.6 Definition. Let M and N be R-modules. Then a map f: M — N is called an
R-homomorphism (or an R-map) if it is R-linear in the sense that for all » € R and
m,m’ € M

L f(m+m') = f(m)+ f(m'),
2. f(rm) =rf(m).

The set of all R-homomorphisms between M and N will be denoted Hom(M, N).
1.7 Example.

a) If R is a field, then an R-module is an R-vector space and an R-map is an
(R-)linear map.
b) Homomorphisms of abelian groups are Z-maps.

1.8 Remark. Given two R-homomorphisms f,g € Hom(M, N), the sum f + g is again
an R-homomorphism. This gives Hom(M, N) the structure of an abelian group. Note
however that it does not hold that rf:xz — rf(x) is a homomorphism for » € R unless
r commutes with everything in R (i.e. r is in the centre). Thus, we cannot define the
structure of an R-module on Hom(M, N) unless R is commutative. We can only define
the structure of Z(R)-module, where Z(R) is the centre of R.

2 Functors

2.1 Notation. Let R be a ring. The class (category) of all R-modules will be denoted
as R-Mod. We usually denote Ab := Z-Mod the category of all abelian groups.

2.2 Definition. Let R; and Ry be rings. A functor 7: R;-Mod — Rs-Mod is a
collection of the following maps.

a) A map T: R1-Mod — R2-Mod assigning to a R;-module M an Ry-module T'(M).
b) For all pairs of Ry-modules M, M" a map T: Hom(M, M') — Hom(T' (M), T(M")).

Those must satisfy:

1. For a triple of Rj-modules M, M’ M" and a pair of R;-maps f € Hom(M, M")
and g € Hom(M’, M") we have T'(gf) = T(g9)T(f).

2. For any R;-module M, the identity homomorphism 1,;,: M — M is mapped to
the identity morphism 1pp: T (M) — T(M).

2.3 Remark. A functor can be seen as a morphism between sets of (R-)homomorphisms.
Such a concept can be introduced in an abstract way within the theory of categories.

2.4 Definition. Let R be a ring and N an R-module. A Hom-functor is a functor
Hom(N, —): R-Mod — Ab defined by the following maps.

a) Each R-module M is assigned the set Hom(N, M).

b) Consider a pair of R-modules My, My. Any R-map f € M; — M, is assigned an
induced map f,: Hom(N, M;) — Hom(N, Ms) defined by f.h = f o h for any
h € Hom(N, My).



2.5 Remarks.

(i) The Hom-functor is indeed a functor R-Mod — Z-Mod since we have 1, = 1,
(9f)« = gufv and fu(h + 1) = fih + fib! (so fi(ah) = af.(h) for a € Z).
(ii) The Hom-functor can be also understood as a functor R-Mod — Z(R)-Mod. If
R is commutative, then it maps R-Mod — R-Mod.
(iii) The Hom-functor is, in addition, an additive functor in the sense that (f+g¢). =

fe + G-

2.6 Definition. Let R, and Ry be rings. A contravariant functor 7: R;-Mod —
Ry-Mod is a collection of the following maps.

a) A map T: R1-Mod — R2-Mod assigning to a R;-module M an Ry-module T'(M).
b) For all pairs of R;-modules M, M’ a map T: Hom(M, M') — Hom(T'(M'), T(M)).

Those must satisfy:

1. For a triple of Rj-modules M, M’ M" and a pair of Rj;-maps f € Hom(M, M")
and g € Hom(M’, M") we have T'(gf) = T(f)T(g).

2. For any R;-module M, the identity homomorphism 1,;,: M — M is mapped to
the identity morphism 1py: T (M) — T'(M).

2.7 Definition. Let R be a ring and N an R-module. A contravariant Hom-functor
is a functor Hom(—, V): R-Mod — Ab defined by the following maps.

a) Each R-module M is assigned the set Hom(M, N).

b) Consider a pair of R-modules My, My. Any R-map f € M; — M, is assigned an
induced map f*:Hom(My, N) — Hom(M;, N) defined by f*h = ho f for any
h € Hom(Ms, N).

2.8 Example. To every vector space V over C (i.e. a C-module), we can associate its
dual vector space V* = Hom(V,C). To every linear map A:V — W we can associate its
adjoint A*: W* — V* by (A*p)(v) = ¢(Av) for any ¢ € W* and v € V. This is exactly
the action of the functor Hom(—, C): C-Mod — C-Mod.

3 Tensor products

3.1 Definition. Let S be a ring. A right S-module is an additive abelian group M
equipped with scalar multiplication M xS — M such that for all s, s’ € Rand m,m' € M
we have

L. (m+m')s =ms+m's,
2. m(s+s') =ms+ms,
3. m(ss’) = (ms)s,

4. m=ml

A left R-module that is also a right S-module such that (rm)s = r(ms) for allm € M,
r € Rand s € S is called an (R, S)-bimodule.

An additive abelian group M equipped with the structure of left R-module is often
denoted g M. If it is equipped with the structure of right S-module, we denote it Mg
and if it is an (R, S)-bimodule, we denote it pMg.
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3.2 Definition. Let S be a ring, Ag a right S-module and gB a left S-module. The
tensor product of Ag and B is the abelian group A ®g B defined by generators a ® b,
a € A, b € B subject to relations

a@(b+V)=axb+axlb,
(a+d)®@b=a®b+d @D,
(ar) @b =a® (rd).

3.3 Proposition. Consider two right modules Ap and A%, and two left modules B
and pB’. For every pair of R-maps f: Ar — A, and ¢g: gpB — rB’ there exists a unique
Z-map f®g:A®r B — A'®r B’ mapping a @b — f(a)® f(b) for any a € A and b € B.

Proof. See [Rotman, Section 2.2]. O

3.4 Theorem. Let R be a ring and Agi be a right R-module. Then there is a functor
F: R-Mod — Ab given by

F(B)=A®rB and F(g9)=14®g

for any left R-module B and any homomorphism g € Hom(Bj, Bs).

Proof. By definition of homomorphism tensor product formulated in the previous propo-
sition, F'(g) is indeed a Z-map. It is easy to see that 14 ® 1 = 1agp. As an exercise,
use the uniqueness to show that (f @ ¢)(f' ® ¢') = (ff") ® (99). O

3.5 Proposition. Let R and S be rings. Given an (R, S)-bimodule A and left S-module
B, we can define the structure of left R-module on A ®g B as

r(a®0b):= (ra) ®b.

Proof. To prove that the left action of R on the tensor product is well and uniquely
defined by the above formula, we again use Proposition 3.3. Given r € R let us define
fr: A — A the homomorphism of left multiplication a — ra. The left multiplication on
A ®g B is defined as rx := (f, ® 1)z for any x € A ®g B.

Now, it is straightforward to check the axioms for a module. O

4 Short exact sequences

4.1 Definition. A finite or infinite sequence of R-maps and R-modules

..._>Mn+1f"_+1>Mn£>Mn_1_>...

is called exact sequence if im f, 1 = ker f,, for all n.
4.2 Proposition.

(i) A sequence 0 — A L Bis exact if and only if f is injective.
(ii) A sequence B 25 C — 0 is exact if and only if ¢ is surjective.

(iii) A sequence 0 — A "y B — 0 is exact if and only if & is bijective.

Proof. Follows directly from the definition of exact modules. U



4.3 Definition. A short exact sequence is an exact sequence of the form

0—ALsB %o

4.4 Proposition. If 0 — A L B2 ¢~ 0is a short exact sequence, then
A~imf and C=~B/imf.

Proof. The first part follows from the fact that an injective homomorphism maps iso-
morphically the domain to its image. The second part follows from the first isomorphism
theorem for modules, which states that im g = B/ ker g for any homomorphism ¢g: B — C.
O

4.5 Definition. A functor 7: R-Mod — Ab is called left resp. right exact if, for every
exact sequence

0—>AL>BL>C, resp. AL oo

the sequence

0 — 7(A) ") " 1(¢) resp. T(A) 1) T T0) — 0

is also exact.
It is called exact if it is both left and right exact. That is, if, for every exact sequence

0— A i> B-LsC —0,
the sequence
0 — 7(A) ") " o) — 0
is also exact.

4.6 Theorem. Let R be a ring and M an R-module. Then the covariant Hom-functor
Hom(M, —): R-Mod — Ab is left-exact.

Proof. Consider an exact sequence 0 — A NEAN ; JIN C, which means that f is
injective and im f = kerg. We claim that it remains exact after applying the Hom-
functor. That is, we have to prove that f, is injective and im f, = ker g,.

Injectivity of fi.: Consider h € ker f,, i.e. h € Hom(M, A) such that 0 = f.h = foh.
That is, for every x € M, we have f(h(x)) = 0. Since f is injective, it implies h(z) = 0,
so h = 0.

im f, C ker g,: For any h € Hom(M, A), we have to prove that 0 = g, fsh = go foh.
But we know that go f = 0. 3

im f, D ker g,: Consider h € ker g,, i.e. goh = 0. We are looking for h € Hom(M, A)
such that h = f.h. Since g o h = 0, we have that imh C ker g = im f, so we can define
take the composition h := f ~loh. Since f is injective, f~! is an isomorphism im f — A,
so h: M — A is indeed a homomorphism. Obviously, we have f,h = fo f~'oh=h. O

4.7 Theorem. Let R be a ring and M an R-module. Then the contravariant Hom-
functor Hom(—, M): R-Mod — Ab is left-exact.

Proof. Exercise. O

4.8 Theorem. Let R be a ring and A be a right R-module. Then the tensor product
functor A ® g —: R-Mod — Ab is right exact.

Proof. Exercise. U



5 Projective modules and resolutions

5.1 Definition. Let R be a ring. An R-module P is projective if any homomorphism
from P can be lifted. That is, for any pair of R-modules A, B, any surjective homomor-
phism p: A — B and any homomorphism h: P — B, there is a homomorphism ¢g: P — A
such that h = po g = p.g.

5.2 Proposition. An R-map of a free module is uniquely determined by action on the
basis: Let F' be a free R-module with basis £ = {e,}. Let M be an R-module. Consider
an arbitrary map fo:£ — M. Then there exists a unique R-map f: F' — M such that
fle = fo.

Proof. Any element x € F' can be uniquely represented as a linear combination of basis
elements © = > rye,. We define f(x) := > rofo(eq). It is clear that any homomorphism
extending fy must be of this form. As an exercise, check that f indeed is a homomorphism.
O

5.3 Theorem. Any free module is projective.

Proof. Consider a free R-module F' with a basis {e,}. For each basis element e,, we
may consider the preimage p~!(h(e,)) and choose one element x, here (in general, we
need the axiom of choice). Now, we can define the homomorphism g: F — A by linearly
extending e, — T4 O

5.4 Proposition. A left R-module P is projective if and only if Hom(P, —) is an exact
functor.

Proof. We know that the Hom-functor is left exact. The definition of projective module
indeed precisely says that for any surjective homomorphism p: A — B the induced map

p«: Hom(P, A) — Hom(P, B) is also surjective. That is, for any exact sequence A 2,
B — 0 the sequence Hom(P, A) 2~ Hom(P, B) — 0 is also exact. O

5.5 Theorem. An R-module P is projective if and only if P is a direct summand of a
free R-module.

Proof. See [Rotman, Theorem 3.5]. O

5.6 Definition. Let M be an R-module. A projective resolution of M is an exact
sequence

PP B P S M0,
where all P; are projective. If all P; are free, it is called a free resolution. If there is

some n € N such that P, # 0, but P,;1 = 0, we say that the resolution is finite and the
number n is called the length of the resolution.

5.7 Definition. Let M be an R-module. The length of the shortest projective resolution
of M is called the projective dimension of M.

5.8 Proposition. Every R-module M has a free resolution.

Proof. Denote X a set of generators of the module M. Take a free module Fy with
basis indexed {e; }.cx indexed by the generators. We can define an R-map e: Fy — M
by e, +— x. If we set K7 := kere, we have a short exact sequence

0— K| 5 Fy S5 M — 0.
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Performing the same construction for the module K instead of M, we obtain the
following short exact sequence

0—)K2i>F1i>K1—>0

The map e1: F1 — Ky C Fy induces the map d; = i1 oe1: F1 — Fjy with imd; =ime; =
K, =kere.
Iterating this process, we obtain a free resolution of the form

FQ&F&&F@%M—)O,

where d; = i 0 ¢;. O

6 Homology

6.1 Definition. Let R be a ring. A chain complex of R-modules is a sequence of
R-modules C, = ()2, together with homomorphisms d; of the form

dn dn d
Oy T8 O 25 Oy B Gy — 0

such that d,d,+; = 0 for all n.

The condition d,,d,+; = 0 is equivalent to kerd,, C imd,,41.

The elements of C,, are called n-chains. We define Z,,(C.) := kerd, the set of
n-cycles and B, (C) := imd,1; the set of n-boundaries. The quotient H,(C,) :=
Zn(Cy)/ B (Cy) is called the n-th homology.

6.2 Definition. Let R be a ring. A cochain complex of R-modules is a sequence of
R-modules C, = (C;)72, together with homomorphisms d; of the form

d dn— dn
0— Co—5Cr--Cpg == Cp = Cryy -

such that d,1d,, = 0 for all n.

The condition d,,y1d,, = 0 is equivalent to kerd,,;1 C imd,,.

The elements of C,, are called n-cochains. We define Z,,(C) := ker d,, the set of n-
cocycles and B, (C,) := imd,41 the set of n-coboundaries. The quotient H,(C,) :=
Zn(Cy)/Bn(Cy) is called the n-th cohomology.

6.3 Remark. A complex with trivial (co)homologies is an exact sequence.
6.4 Remark. Any chain complex induces for arbitrary n fundamental exact se-
quences

0 — B, - Z, — H,, — 0,

0— 7, 2 c, B, | —0,

6.5 Example. Homology of cell complexes and simplicial and singular homology. See
[Hatcher, Chapter 2].

6.6 Example (De Rham cohomology). Consider a manifold M. Denote Q"(M) the
space of differential n-forms on M. Then the de Rham cohomology is defined as the
cohomology of the following cochain complex
0 — QM) -5 o' (M) - QM) - -
Note that there is a duality between simplicial homology and de Rham cohomology
expressed by the Stokes theorem
/ w = / dw.
ON N
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7 Derived functors

The question is now, where to get the chain complex, whose homology would somehow
characterize a given module. We can use the following construction.
Let us fix a ring R and a left or right R-module M. Now, choose some projective
resolution of M
N N LNy R V)

Delete the module M from this resolution. That is, consider the following complex
ds ds d
= P —= P, — Py — 0.

Now, choose some additive functor 7" and apply it to this resolution to get

Ty T(dy) T(dy

") p(py) "9 7Py MY T(Py) — 0.
7.1 Proposition. The homologies H,(T(P.)) = ker T'(d,)/im T (d,+1) are (up to iso-

morphism) independent of the choice of the projective resolution of M.

7.2 Definition. We denote (L,T)M := H,(T(P.)). The map L,T: R-Mod — Ab is
called the left-derived functor of 7.

In particular suppose M is a right R-module. Then we can consider 7" := — ®Qr N
for some left R-module N. We construct a chain complex

) d3®1N d2®1N d1®1N

S BbON — PN — BN —0

and compute its homology. The corresponding derived functor is called Tor, so we denote
Tor®(M,N) := H,(P, ® N) = ker(d, ® 1y)/im(dp1 ® 1x).

Note that the functor — ® N is right exact, so the exact sequence

P Py S M 0.

is mapped to an exact sequence

PN Y poNEY e N - 0.

So, we have M @ N ~ Py ® N/im(d; ® 1) = Tor{(M, N).

If we consider a k-algebra A as the ring, a canonical choice for the module N is
the field k. Consider for example the algebra A := C[xq,...,2,]. Then there exists a
homomorphism e: A — C mapping f — f(0), i.e. assigning to every polynomial the
absolute coefficient. Then we can define left or right action of A on C as f - a = &(f)«,
which gives C the structure of A-module. In general, part of the definition of a Hopf
algebra A is such a homomorphism e: A — C.

Alternatively, considering a right R-module N, we can consider the contravariant
functor Hom(—, V) and construct the cochain complex

* *

0 —s Hom(Py, N) -5 Hom(Pr, N) 2 Hom(Py, N) -2 ...
The corresponding derived functor is called Ext. We denote

Exth(M,N) := H"(Hom(P,, N)) = kerd;,,/imd;.



