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1 Rings and modules

1.1 Definition. Let R be a ring. A (left) R-module is an additive abelian group
M equipped with scalar multiplication R × M → M such that for all r, r′ ∈ R and
m,m′ ∈M we have

1. r(m+m′) = rm+ rm′,
2. (r + r′)m = rm+ r′m,
3. (rr′)m = r(r′m),
4. 1m = m.

1.2 Examples.

a) Every vector space over a field k is a k-module.
b) Every group is a Z-module.
c) Every ring is a module over itself.
d) Every ideal in a ring R is an R-module
e) For A an algebra and ϕ:A → L (V ) a representation of A on a vector space V ,

we can define the structure of A-module on V as av := ϕ(a)v.

1.3 Definition. An R-module F is called free if it has a basis. That is, if there exists
a set {eα} (not necessarily finite), which is R-generating and R-linearly independent, i.e.
any element x ∈ F can be uniquely represented as x =

∑
rαeα for some coefficients

rα ∈ R.
A free module with a basis of size n can be constructed as a direct sum of n copies

of R. That is,
Rn := {(r1, . . . , rn) | r1, . . . , rn ∈ R}

with component-wise addition and multiplication. The basis is formed by the elements
ei := (0, . . . , 0, 1, 0, . . . , 0) having the identity on the i-th position.

A free group is a free Z-module.

1.4 Example. A canonical example of a module: Consider an algebra of polynomi-
als A := C[x1, . . . , xn] as a ring and the vector space of n-vectors with components in
C[x1, . . . , xn] as an A-module.

1.5 Example. Not every R-module has a basis. Consider for example A := C[x, y] as
a ring and the ideal 〈x, y〉 generated by the polynomials x and y as an A-module. Then
any generating set must contain both x and y (or any C-linearly independent pair of
polynomials of degree one), but those are not A-linearly independent since y ·x+(−x)·y =
0.
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1.6 Definition. Let M and N be R-modules. Then a map f :M → N is called an
R-homomorphism (or an R-map) if it is R-linear in the sense that for all r ∈ R and
m,m′ ∈M

1. f(m+m′) = f(m) + f(m′),
2. f(rm) = rf(m).

The set of all R-homomorphisms between M and N will be denoted Hom(M,N).

1.7 Example.

a) If R is a field, then an R-module is an R-vector space and an R-map is an
(R-)linear map.

b) Homomorphisms of abelian groups are Z-maps.

1.8 Remark. Given two R-homomorphisms f, g ∈ Hom(M,N), the sum f + g is again
an R-homomorphism. This gives Hom(M,N) the structure of an abelian group. Note
however that it does not hold that rf :x 7→ rf(x) is a homomorphism for r ∈ R unless
r commutes with everything in R (i.e. r is in the centre). Thus, we cannot define the
structure of an R-module on Hom(M,N) unless R is commutative. We can only define
the structure of Z(R)-module, where Z(R) is the centre of R.

2 Functors

2.1 Notation. Let R be a ring. The class (category) of all R-modules will be denoted
as R-Mod. We usually denote Ab := Z-Mod the category of all abelian groups.

2.2 Definition. Let R1 and R2 be rings. A functor T :R1-Mod → R2-Mod is a
collection of the following maps.

a) A map T :R1-Mod→ R2-Mod assigning to a R1-module M an R2-module T (M).
b) For all pairs of R1-modules M,M ′ a map T : Hom(M,M ′)→ Hom(T (M), T (M ′)).

Those must satisfy:

1. For a triple of R1-modules M,M ′,M ′′ and a pair of R1-maps f ∈ Hom(M,M ′)
and g ∈ Hom(M ′,M ′′) we have T (gf) = T (g)T (f).

2. For any R1-module M , the identity homomorphism 1M :M → M is mapped to
the identity morphism 1T (M):T (M)→ T (M).

2.3 Remark. A functor can be seen as a morphism between sets of (R-)homomorphisms.
Such a concept can be introduced in an abstract way within the theory of categories.

2.4 Definition. Let R be a ring and N an R-module. A Hom-functor is a functor
Hom(N,−):R-Mod→ Ab defined by the following maps.

a) Each R-module M is assigned the set Hom(N,M).
b) Consider a pair of R-modules M1,M2. Any R-map f ∈M1 →M2 is assigned an

induced map f∗: Hom(N,M1) → Hom(N,M2) defined by f∗h = f ◦ h for any
h ∈ Hom(N,M1).
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2.5 Remarks.

(i) The Hom-functor is indeed a functor R-Mod → Z-Mod since we have 1∗ = 1,
(gf)∗ = g∗f∗ and f∗(h+ h′) = f∗h+ f∗h

′ (so f∗(αh) = αf∗(h) for α ∈ Z).
(ii) The Hom-functor can be also understood as a functor R-Mod→ Z(R)-Mod. If

R is commutative, then it maps R-Mod→ R-Mod.
(iii) The Hom-functor is, in addition, an additive functor in the sense that (f+g)∗ =

f∗ + g∗.

2.6 Definition. Let R1 and R2 be rings. A contravariant functor T :R1-Mod →
R2-Mod is a collection of the following maps.

a) A map T :R1-Mod→ R2-Mod assigning to a R1-module M an R2-module T (M).
b) For all pairs of R1-modules M,M ′ a map T : Hom(M,M ′)→ Hom(T (M ′), T (M)).

Those must satisfy:

1. For a triple of R1-modules M,M ′,M ′′ and a pair of R1-maps f ∈ Hom(M,M ′)
and g ∈ Hom(M ′,M ′′) we have T (gf) = T (f)T (g).

2. For any R1-module M , the identity homomorphism 1M :M → M is mapped to
the identity morphism 1T (M):T (M)→ T (M).

2.7 Definition. Let R be a ring and N an R-module. A contravariant Hom-functor
is a functor Hom(−, N):R-Mod→ Ab defined by the following maps.

a) Each R-module M is assigned the set Hom(M,N).
b) Consider a pair of R-modules M1,M2. Any R-map f ∈M1 →M2 is assigned an

induced map f∗: Hom(M2, N) → Hom(M1, N) defined by f∗h = h ◦ f for any
h ∈ Hom(M2, N).

2.8 Example. To every vector space V over C (i.e. a C-module), we can associate its
dual vector space V ∗ = Hom(V,C). To every linear map A:V → W we can associate its
adjoint A∗:W ∗ → V ∗ by (A∗ϕ)(v) = ϕ(Av) for any ϕ ∈ W ∗ and v ∈ V . This is exactly
the action of the functor Hom(−,C):C-Mod→ C-Mod.

3 Tensor products

3.1 Definition. Let S be a ring. A right S-module is an additive abelian group M
equipped with scalar multiplication M×S →M such that for all s, s′ ∈ R and m,m′ ∈M
we have

1. (m+m′)s = ms+m′s,
2. m(s+ s′) = ms+ms′,
3. m(ss′) = (ms)s′,
4. m = m1.

A left R-module that is also a right S-module such that (rm)s = r(ms) for all m ∈M ,
r ∈ R and s ∈ S is called an (R,S)-bimodule.

An additive abelian group M equipped with the structure of left R-module is often
denoted RM . If it is equipped with the structure of right S-module, we denote it MS

and if it is an (R, S)-bimodule, we denote it RMS .
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3.2 Definition. Let S be a ring, AS a right S-module and SB a left S-module. The
tensor product of AS and SB is the abelian group A⊗S B defined by generators a⊗ b,
a ∈ A, b ∈ B subject to relations

a⊗ (b+ b′) = a⊗ b+ a⊗ b′,
(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b,

(ar)⊗ b = a⊗ (rb).

3.3 Proposition. Consider two right modules AR and A′R and two left modules RB
and RB

′. For every pair of R-maps f :AR → A′R and g:RB → RB
′ there exists a unique

Z-map f ⊗ g:A⊗RB → A′⊗RB′ mapping a⊗ b 7→ f(a)⊗ f(b) for any a ∈ A and b ∈ B.

Proof. See [Rotman, Section 2.2]. �

3.4 Theorem. Let R be a ring and AR be a right R-module. Then there is a functor
F :R-Mod→ Ab given by

F (B) = A⊗R B and F (g) = 1A ⊗ g

for any left R-module B and any homomorphism g ∈ Hom(B1, B2).

Proof. By definition of homomorphism tensor product formulated in the previous propo-
sition, F (g) is indeed a Z-map. It is easy to see that 1A ⊗ 1B = 1A⊗B . As an exercise,
use the uniqueness to show that (f ⊗ g)(f ′ ⊗ g′) = (ff ′)⊗ (gg′). �

3.5 Proposition. Let R and S be rings. Given an (R, S)-bimodule A and left S-module
B, we can define the structure of left R-module on A⊗S B as

r(a⊗ b) := (ra)⊗ b.

Proof. To prove that the left action of R on the tensor product is well and uniquely
defined by the above formula, we again use Proposition 3.3. Given r ∈ R let us define
fr:A → A the homomorphism of left multiplication a 7→ ra. The left multiplication on
A⊗S B is defined as rx := (fr ⊗ 1)x for any x ∈ A⊗S B.

Now, it is straightforward to check the axioms for a module. �

4 Short exact sequences

4.1 Definition. A finite or infinite sequence of R-maps and R-modules

· · · −→Mn+1
fn+1−→Mn

fn−→Mn−1 −→ · · ·

is called exact sequence if im fn+1 = ker fn for all n.

4.2 Proposition.

(i) A sequence 0 −→ A
f−→ B is exact if and only if f is injective.

(ii) A sequence B
g−→ C −→ 0 is exact if and only if g is surjective.

(iii) A sequence 0 −→ A
h−→ B −→ 0 is exact if and only if h is bijective.

Proof. Follows directly from the definition of exact modules. �
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4.3 Definition. A short exact sequence is an exact sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0.

4.4 Proposition. If 0 −→ A
f−→ B

g−→ C −→ 0 is a short exact sequence, then

A ' im f and C ' B/ im f.

Proof. The first part follows from the fact that an injective homomorphism maps iso-
morphically the domain to its image. The second part follows from the first isomorphism
theorem for modules, which states that im g = B/ ker g for any homomorphism g:B → C.
�

4.5 Definition. A functor T :R-Mod→ Ab is called left resp. right exact if, for every
exact sequence

0 −→ A
f−→ B

g−→ C, resp. A
f−→ B

g−→ C −→ 0

the sequence

0 −→ T (A)
T (f)−→ T (B)

T (g)−→ T (C) resp. T (A)
T (f)−→ T (B)

T (g)−→ T (C) −→ 0

is also exact.
It is called exact if it is both left and right exact. That is, if, for every exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,

the sequence

0 −→ T (A)
T (f)−→ T (B)

T (g)−→ T (C) −→ 0

is also exact.

4.6 Theorem. Let R be a ring and M an R-module. Then the covariant Hom-functor
Hom(M,−):R-Mod→ Ab is left-exact.

Proof. Consider an exact sequence 0 −→ A
f−→ B

g−→ C, which means that f is
injective and im f = ker g. We claim that it remains exact after applying the Hom-
functor. That is, we have to prove that f∗ is injective and im f∗ = ker g∗.

Injectivity of f∗: Consider h ∈ ker f∗, i.e. h ∈ Hom(M,A) such that 0 = f∗h = f ◦ h.
That is, for every x ∈ M , we have f(h(x)) = 0. Since f is injective, it implies h(x) = 0,
so h = 0.

im f∗ ⊂ ker g∗: For any h ∈ Hom(M,A), we have to prove that 0 = g∗f∗h = g ◦ f ◦ h.
But we know that g ◦ f = 0.

im f∗ ⊃ ker g∗: Consider h ∈ ker g∗, i.e. g ◦h = 0. We are looking for h̃ ∈ Hom(M,A)
such that h = f∗h̃. Since g ◦ h = 0, we have that imh ⊂ ker g = im f , so we can define
take the composition h̃ := f−1 ◦h. Since f is injective, f−1 is an isomorphism im f → A,
so h̃:M → A is indeed a homomorphism. Obviously, we have f∗h̃ = f ◦ f−1 ◦ h = h. �

4.7 Theorem. Let R be a ring and M an R-module. Then the contravariant Hom-
functor Hom(−,M):R-Mod→ Ab is left-exact.
Proof. Exercise. �

4.8 Theorem. Let R be a ring and A be a right R-module. Then the tensor product
functor A⊗R −:R-Mod→ Ab is right exact.
Proof. Exercise. �
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5 Projective modules and resolutions

5.1 Definition. Let R be a ring. An R-module P is projective if any homomorphism
from P can be lifted. That is, for any pair of R-modules A,B, any surjective homomor-
phism p:A→ B and any homomorphism h:P → B, there is a homomorphism g:P → A
such that h = p ◦ g = p∗g.

5.2 Proposition. An R-map of a free module is uniquely determined by action on the
basis: Let F be a free R-module with basis E = {eα}. Let M be an R-module. Consider
an arbitrary map f0: E → M . Then there exists a unique R-map f :F → M such that
f |E = f0.

Proof. Any element x ∈ F can be uniquely represented as a linear combination of basis
elements x =

∑
rαeα. We define f(x) :=

∑
rαf0(eα). It is clear that any homomorphism

extending f0 must be of this form. As an exercise, check that f indeed is a homomorphism.
�

5.3 Theorem. Any free module is projective.

Proof. Consider a free R-module F with a basis {eα}. For each basis element eα, we
may consider the preimage p−1(h(eα)) and choose one element xα here (in general, we
need the axiom of choice). Now, we can define the homomorphism g:F → A by linearly
extending eα 7→ xα. �

5.4 Proposition. A left R-module P is projective if and only if Hom(P,−) is an exact
functor.

Proof. We know that the Hom-functor is left exact. The definition of projective module
indeed precisely says that for any surjective homomorphism p:A → B the induced map
p∗: Hom(P,A) → Hom(P,B) is also surjective. That is, for any exact sequence A

p−→
B −→ 0 the sequence Hom(P,A)

p∗−→ Hom(P,B) −→ 0 is also exact. �

5.5 Theorem. An R-module P is projective if and only if P is a direct summand of a
free R-module.

Proof. See [Rotman, Theorem 3.5]. �

5.6 Definition. Let M be an R-module. A projective resolution of M is an exact
sequence

· · ·P2
d2−→ P1

d1−→ P0
ε−→M → 0,

where all Pi are projective. If all Pi are free, it is called a free resolution. If there is
some n ∈ N such that Pn 6= 0, but Pn+1 = 0, we say that the resolution is finite and the
number n is called the length of the resolution.

5.7 Definition. Let M be an R-module. The length of the shortest projective resolution
of M is called the projective dimension of M .

5.8 Proposition. Every R-module M has a free resolution.

Proof. Denote X a set of generators of the module M . Take a free module F0 with
basis indexed {ex}x∈X indexed by the generators. We can define an R-map ε:F0 → M
by ex 7→ x. If we set K1 := ker ε, we have a short exact sequence

0 −→ K1
i1−→ F0

ε−→M −→ 0.
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Performing the same construction for the module K1 instead of M , we obtain the
following short exact sequence

0 −→ K2
i2−→ F1

ε1−→ K1 −→ 0.

The map ε1:F1 → K1 ⊂ F0 induces the map d1 = i1 ◦ ε1:F1 → F0 with im d1 = im ε1 =
K1 = ker ε.

Iterating this process, we obtain a free resolution of the form

· · ·F2
d2−→ F1

d1−→ F0
ε−→M → 0,

where dj = ij ◦ εj . �

6 Homology

6.1 Definition. Let R be a ring. A chain complex of R-modules is a sequence of
R-modules C∗ = (Ci)∞i=0 together with homomorphisms di of the form

· · ·Cn+1
dn+1−→ Cn

dn−→ Cn−1 · · ·
d1−→ C0 −→ 0

such that dndn+1 = 0 for all n.
The condition dndn+1 = 0 is equivalent to ker dn ⊂ im dn+1.
The elements of Cn are called n-chains. We define Zn(C∗) := ker dn the set of

n-cycles and Bn(C∗) := im dn+1 the set of n-boundaries. The quotient Hn(C∗) :=
Zn(C∗)/Bn(C∗) is called the n-th homology.

6.2 Definition. Let R be a ring. A cochain complex of R-modules is a sequence of
R-modules C∗ = (Ci)∞i=0 together with homomorphisms di of the form

0 −→ C0
d0−→ C1 · · ·Cn−1

dn−1−→ Cn
dn−→ Cn+1 · · ·

such that dn+1dn = 0 for all n.
The condition dn+1dn = 0 is equivalent to ker dn+1 ⊂ im dn.
The elements of Cn are called n-cochains. We define Zn(C∗) := ker dn the set of n-

cocycles and Bn(C∗) := im dn+1 the set of n-coboundaries. The quotient Hn(C∗) :=
Zn(C∗)/Bn(C∗) is called the n-th cohomology.

6.3 Remark. A complex with trivial (co)homologies is an exact sequence.

6.4 Remark. Any chain complex induces for arbitrary n fundamental exact se-
quences

0 −→ Bn
in−→ Zn −→ Hn −→ 0,

0 −→ Zn
jn−→ Cn

dn−→ Bn−1 −→ 0,

6.5 Example. Homology of cell complexes and simplicial and singular homology. See
[Hatcher, Chapter 2].

6.6 Example (De Rham cohomology). Consider a manifold M . Denote Ωn(M) the
space of differential n-forms on M . Then the de Rham cohomology is defined as the
cohomology of the following cochain complex

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · ·

Note that there is a duality between simplicial homology and de Rham cohomology
expressed by the Stokes theorem ∫

∂N

ω =
∫
N

dω.

7



7 Derived functors
The question is now, where to get the chain complex, whose homology would somehow
characterize a given module. We can use the following construction.

Let us fix a ring R and a left or right R-module M . Now, choose some projective
resolution of M

· · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→M → 0.

Delete the module M from this resolution. That is, consider the following complex

· · · d3−→ P2
d2−→ P1

d1−→ P0 −→ 0.

Now, choose some additive functor T and apply it to this resolution to get

· · · T (d3)−→ T (P2)
T (d2)−→ T (P1)

T (d1)−→ T (P0) −→ 0.

7.1 Proposition. The homologies Hn(T (P∗)) = kerT (dn)/ imT (dn+1) are (up to iso-
morphism) independent of the choice of the projective resolution of M .

7.2 Definition. We denote (LnT )M := Hn(T (P∗)). The map LnT :R-Mod → Ab is
called the left-derived functor of T .

In particular suppose M is a right R-module. Then we can consider T := − ⊗R N
for some left R-module N . We construct a chain complex

· · · d3⊗1N−→ P2 ⊗N
d2⊗1N−→ P1 ⊗N

d1⊗1N−→ P0 ⊗N −→ 0

and compute its homology. The corresponding derived functor is called Tor, so we denote

TorRn (M,N) := Hn(P∗ ⊗N) = ker(dn ⊗ 1N )/ im(dn+1 ⊗ 1N ).

Note that the functor −⊗N is right exact, so the exact sequence

P1
d1−→ P0

ε−→M → 0.

is mapped to an exact sequence

P1 ⊗N
d1⊗1N−→ P0 ⊗N

ε⊗1N−→ M ⊗N → 0.

So, we have M ⊗N ' P0 ⊗N/ im(d1 ⊗ 1N ) = TorR0 (M,N).
If we consider a k-algebra A as the ring, a canonical choice for the module N is

the field k. Consider for example the algebra A := C[x1, . . . , xn]. Then there exists a
homomorphism ε:A → C mapping f 7→ f(0), i.e. assigning to every polynomial the
absolute coefficient. Then we can define left or right action of A on C as f · α = ε(f)α,
which gives C the structure of A-module. In general, part of the definition of a Hopf
algebra A is such a homomorphism ε:A→ C.

Alternatively, considering a right R-module N , we can consider the contravariant
functor Hom(−, N) and construct the cochain complex

0 −→ Hom(P0, N)
d∗1−→ Hom(P1, N)

d∗2−→ Hom(P2, N)
d∗3−→ · · ·

The corresponding derived functor is called Ext. We denote

ExtnR(M,N) := Hn(Hom(P∗, N)) = ker d∗i+1/ im d∗i .
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