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Introduction

Free Probability Theory is a quite recent theory, bringing together
many different fields of mathematics — like operator algebras, random
matrices, combinatorics, or representation theory of symmetric groups.
So it has a lot to offer to various mathematical communities and the
interest in learning about free probability has steadily increased over
the last years.

However, this diversity of the field also has the consequence that it
is considered as being hard to access for a beginner. Most of the litera-
ture on free probability consists of a mixture of operator algebraic and
probabilistic notions and arguments, interwoven with a bit of random
matrices and combinatorics.

Whereas more advanced operator algebraic or probabilistic exper-
tise might indeed be necessary for a deeper appreciation of special
applications in the respective fields, the basic core of the theory, how-
ever, can be mostly freed from this and it is possible to give a fairly
elementary introduction to the main notions, ideas and problems of
free probability theory. The present lectures are intended to provide
such an introduction.

Our main emphasis will be on the combinatorial side of free prob-
ability. Even when stripped from analytical structure, the main fea-
tures of free independence are still present; moreover, even on this more
combinatorial level it is important to organize all relevant information
about the considered variables in the right way. Someone who has tried
to perform computations of joint distributions for non-commuting vari-
ables will probably agree that they tend to be horribly messy if done in
anaive way. One of the main goals of the book is to show how such com-
putations can be vastly simplified by appropriately relying on a suitable
combinatorial structure — the lattices of non-crossing partitions. The
combinatorial development starts from the standard theory of Mobius
inversion on non-crossing partitions, but has its own specific flavor —
one arrives to a theory of free or non-crossing cumulants, or, in alter-
native approach, one talks about R-transforms for non-commutative
random variables.



10 INTRODUCTION

While writing this book, there were two kinds of readers that we
had primarily in mind:

(a) a reader with background in operator algebras or probability
who wants to see what are the more advanced “tools of the
trade” on the combinatorial side of free probability.

(b) a reader with background from algebraic combinatorics who
wants to get acquainted to a field (and a possible source of
interesting problems) where non-trivial combinatorial tools are
used.

We wrote our lectures by trying to accommodate the readers from
both these categories. The result is a fairly elementary exposition,
which should be accessible to a beginning graduate student or even to
a strong senior undergraduate student.

Free probability also has applications outside of mathematics, in
particular in electrical engineering. Our exposition should also be use-
ful for readers with engineering background, who have seen the use of
R- or S-transform techniques in applications, e.g. to wireless commu-
nications, and who want to learn more about the underlying theory.

We emphasize that the presentation style used throughout the book
is a detailed one, making the material largely self-contained, and only
rarely requiring that other textbooks or research papers are consulted.
The basic units of this book are called “lectures”. They were written
following the idea that the material contained in one of them should be
suitable for being presented in one class of a first-year graduate course.
(We have in mind a class of 90 minutes, where the instructor presents
the essential points of the lecture, and leaves a number of things for
individual study.)

While the emphasis is on combinatorial aspects, we still felt that
we must give an introduction of how the general framework of free
probability comes about. Also, we felt that the flavor of the theory
will be better conveyed if we show, with moderation and within a self-
contained exposition, how analytical arguments can be interwoven with
the combinatorial ones. It should be however clearly understood that
in the analytical respects, this book is only an appetizer and an invi-
tation to further reading. In particular, the analytical framework used
for illustrations is exclusively the one of a C*-probability space. The
reader should be aware that some of the most significant applications of
free probability to operator algebras take place in the more elaborate
framework of W*-probability spaces; but going to W*-structures (or
in other words, to von Neumann algebra theory) didn’t seem possible
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within the detailed, self-contained style of the book, and within the
given page limits.

A consequence of the frugality of the analytic aspects covered by
the book is that we did not get to discuss at all about free entropy and
free Fisher information, and about how free cumulants can be used in
some cases to perform free information calculations. Free entropy is
currently one of the main directions of development in free probability,
for an overview of the topic see the recent survey by Voiculescu [85].

Coming to things that are not covered by the book we must also say,
with regret, that we only consider free independence over the complex
field. The combinatorial ideas of free probability have a far-reaching
extension to the situation when free independence is considered over
an algebra B (instead of just C) — the reader interested in this direction
is referred to the memoir [73].

The references to the literature are not made in the body of the
lectures, but are collected in the section of “Notes and Comments” at
the end of the book. The literature on free probability is growing at an
explosive rate, and, with due apologies, we felt it is beyond our limits
to even try an exhaustive bibliography. We have followed the line of
only citing the research work which is presented in the lectures, or is
very directly connected to it. For a more complete image of the work
in this field, the reader can consult the survey papers indicated at the
beginning of the “Notes and Comments” section.

So, to summarize. From one point of view this is a research mono-
graph, presenting the current state of the combinatorial facet of free
probability. On the other hand this is at the same time an introduc-
tion to the field — one which is, we hope, friendly and self-contained.
Finally, the book is written with the specific purpose of being used for
teaching a course. We hope this will be a contribution towards making
free probability appear more often as a topic for a graduate course,
and we look forward to hearing from other people how following these
lectures has worked for them.

Finally we would like to mention that the idea of writing this book
came from a sequence of lectures which we gave at the Henri Poincaré
Institute in Paris, during a special semester on free probability and
operator spaces hosted by the institute in Fall 1999. Time has flown
quickly since then, but we hope it is not too late to thank the Poincaré
Institute, and particularly the organizers of that special semester —
Philippe Biane, Gilles Pisier, and Dan Voiculescu — for the great envi-
ronment they offered us, and for the opportunity of getting started on
this project.






Part 1

Basic Concepts






LECTURE 1

Non-commutative probability spaces and
distributions

Since we are interested in the combinatorial aspects of free proba-
bility, we will focus on a framework which is stripped of its analytical
structure (i.e., where we ignore the metric or topological structure of
the spaces involved). The reason for the existence of this monograph
is that even so (without analytical structure), the phenomenon of free
independence is rich enough to be worth studying. The interesting
combinatorial features of this phenomenon come from the fact that
we will allow the algebras of random variables to be non-commutative.
This certainly means that we have to consider a generalized concept of
“random variable” (since in the usual meaning of the concept, where
a random variable is a function on a probability space, the algebras of
random variables would have to be commutative).

Non-commutative probability spaces

DEFINITION 1.1. 1) A non-commutative probability space
(A, @) consists of a unital algebra A over C and a unital linear func-
tional

p:A—=C;  p(la) =1
The elements a € A are called non-commutative random variables
in (A, ¢). Usually, we will skip the adjective “non-commutative” and
just talk about “random variables a € A”.

An additional property which we will sometimes impose on the
linear functional ¢ is that it is a trace, i.e. it has the property that

p(ab) = p(ba), Y a,be A

When this happens, we say that the non-commutative probability space
(A, p) is tracial.
2) In the framework of the part 1 of the definition, suppose that A is
a x-algebra, i.e. that A is also endowed with an antilinear x-operation
A>3 ar— a* € A, such that (a*)* = a and (ab)* = b*a* for all a,b € A.
If we have that
p(a*a) > 0 for all a € A,

15
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then we say that the functional ¢ is positive and we will call (A4, ¢) a
x-probability space.

3) In the framework of a x-probability space we can talk about:
e selfadjoint random variables, i.e elements a € A such that a = a*;
e unitary random variables, i.e. elements u € A such that u*u =
uu* = 1;
e normal random variables, i.e. elements a € A with the property
that a*a = aa™.

In these lectures we will be mostly interested in x-probability spaces,
since this is the framework which provides us with a multitude of excit-
ing examples. However, plain non-commutative probability spaces are
also useful, because sometimes we encounter arguments relying solely
on the linear and multiplicative structure of the algebra involved —
these arguments are more easily understood when the x-operation is
ignored (even if it happened that the algebra had a s-operation on it).

REMARKS 1.2. Let (A, ¢) be a s-probability space.
1) The functional ¢ is selfadjoint, i.e. it has the property that

o(a*) = ¢(a), Vae A

Indeed, since every a € A can be written uniquely in the form a = x+1iy
where z,y € A are selfadjoint, the latter equation is immediately seen
to be equivalent to the fact that p(z) € R for every selfadjoint element
x € A. This in turn is implied by the positivity of ¢ and the fact that
every selfadjoint element = € A can be written in the form z = a*a—b*b
for some a,b € A (take e.g. a = (z+1)/2, b= (z —1)/2).

2) Another consequence of the positivity of ¢ is that we have:

(1.1) lp(b*a)|* < (a*a)p(b*b), V a,b e A.

The inequality (1.1) is commonly called the Cauchy-Schwarz in-
equality for the functional ¢. It is proved in exactly the same way as
the usual Cauchy-Schwarz inequality (see Exercise 1.21 at the end of
the lecture).

3) If an element a € A is such that p(a*a) = 0, then the Cauchy-
Schwarz inequality (1.1) implies that ¢(ba) = 0 for all b € A (hence
a is in a certain sense a degenerate element for the functional ¢). We
will use the term “faithful” for the situation when no such degener-
ate elements exist, except for a = 0. That is, we make the following
definition.

DEFINITION 1.3. Let (A, p) be a x-probability space. If we have
the implication:

ac€ A, pla*a) =0 = a=0,
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then we say that the functional ¢ is faithful.

ExXAMPLES 1.4. 1) Let (€2, Q, P) be a probability space in the clas-
sical sense, i.e., 2 is a set, Q is a o-field of measurable subsets of €}
and P : Q@ — [0,1] is a probability measure. Let A = L*>(Q, P), and
let ¢ be defined by

ola) = /Qa(w)dp(w), aeA

Then (A, ) is a *-probability space (the *-operation on A is the oper-
ation of complex-conjugating a complex-valued function). The random
variables appearing in this example are thus genuine random variables
in the sense of “usual” probability theory.

The reader could object at this point that the example presented in
the preceding paragraph only deals with genuine random variables that
are bounded, and thus misses for instance the most important random
variables from usual probability — those having a Gaussian distribution.
We can overcome this problem by replacing the algebra L>(€2, P) with:

L*7(Q,P):= () L(,P).

1<p<oo

That is, we can make A become the algebra of genuine random variables
which have finite moments of all orders. (The fact that L>~(Q, P) is
indeed closed under multiplication follows by an immediate application
of the Cauchy-Schwarz inequality in L?(Q, P) — cf. Exercise 1.22 at
the end of the lecture.) In this enlarged version, our algebra of random
variables will then contain the Gaussian ones.

Of course, one could also point out that in classical probability there
are important cases of random variables which do not have moments
of all orders. These ones, unfortunately, are beyond the scope of the
present set of lectures — we cannot catch them in the framework of
Definition 1.1.

2) Let d be a positive integer, let M;(C) be the algebra of d x d com-
plex matrices with usual matrix multiplication, and let tr : My(C) — C
be the normalized trace,

d
1
(1.2) tr(a) = h Y ai fora=(ay)l_, € My(C).
i=1

Then (My(C),tr) is a *-probability space (where the x-operation is
given by taking both the transpose of the matrix and the complex
conjugate of the entries).
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3) The above examples 1 and 2 can be “put together” into one exam-
ple where the algebra consists of all the d x d matrices over L>~ (2, P) :

A= Md(LOO_(Q7P) )7

and the functional ¢ on it is

p(a) = /tr(a(w))dP(w), ac A

The non-commutative random variables obtained here are thus ran-
dom matrices over (2, Q, P). (Observe that this example is obtained
by starting with the space in Example 1.4.1 and by performing the dxd
matrix construction described in the Exercise 1.23.) We will elaborate
more on random matrix examples later in the notes (cf. Lectures 22
and 23).

4) Let G be a group, and let CG denote its group algebra. That
is, CG is a complex vector space having a basis indexed by the elements
of G, and where the operations of multiplication and *-operation are
defined in the natural way:

CG = {Z ay9 | oy € C, only finitely many «, # 0},

with
(B asg) - (o) =D agbhl(oh) =3 > ash)k,
and | ) |
(Zagg) ::ngg_l.

Let e be the unit element of G. The functional 7 : CG — C defined

by the formula
Tg(z Qayg) =

is called the canonical trace on CG. Then (CG,7¢) is a *-probability
space. It is easily verified that 74 is indeed a trace (in the sense of
Definition 1.1.1) and is faithful (in the sense of Definition 1.3).

5) Let H be a Hilbert space and let B(H) be the algebra of all
bounded linear operators on H. This is a x-algebra, where the adjoint
a* of an operator a € B(H) is uniquely determined by the fact that

(ag,m) = (& a™n), V&neH.

Suppose that A is a unital x-subalgebra of B(H) and that &, € H is
a vector of norm one (||&,|| := (&, &,)'/? = 1). Then we get an example
of x-probability space (A, ¢), where ¢ : A — C is defined by:

(1.3) ola) == (a&,, &), a€ A.
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A linear functional as defined in (1.3) is usually called a vector-state
(on the algebra of operators A).

EXERCISE 1.5. 1) Verify that in each of the examples described
in 1.4, the functional considered as part of the definition of the *-
probability space is indeed positive.

2) Show that in the Examples 1.4.1-1.4.4, the functional considered
as part of the definition of the x-probability space is a faithful trace.

DEFINITION 1.6. 1) A morphism between two *-probability spaces
(A, ) and (B, 1) is a unital *-algebra homomorphism ® : A — B with
the property that ¢ o ® = .

2) In the case when (B,1) is a #-probability space of the special
kind discussed in the Example 1.4.5, we will refer to a morphism &
from (A, ¢) to (B,1) by using the name of representation of (A, ¢).
So, to be precise: giving a representation of (A, ¢) amounts to giving
a triple (H,®,&,) where H is a Hilbert space, ® : A — B(H) is a
unital x-homomorphism, and &, € H is a vector of norm one, such that
ola) = (P(a),, &) for all a € A.

REMARK 1.7. The *-probability spaces appearing in the examples
1, 2 and 4 of 1.4 have natural representations, on Hilbert spaces related
to how the algebras of random variables were constructed — see the
Exercise 1.25 at the end of the lecture.

x-distributions (case of normal elements)

A fundamental concept in the statistical study of random variables
is the one of distribution of a random variable. In the framework of a
«-probability space (A, ), the appropriate concept to consider is the
one of x-distribution of an element a € A. Roughly speaking, the *-
distribution of a has to be some “standardized” way of reading the
values of ¢ on the unital x-subalgebra generated by a.

We start the discussion of #-distributions with the simpler case
when a € A is normal (i.e. is such that a*a = aa*). In this case the
unital x-algebra generated by a is

(1.4) A = span{d®(a*)" | k,1 > 0};

the job of the x-distribution of a must thus be to keep track of the
values ¢(a*(a*)!), where k and [ run in N U {0}. The kind of object
which does this job and which we prefer to have whenever possible is
a compactly supported probability measure on C.
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DEFINITION 1.8. Let (A, ¢) be a x-probability space and let a be a
normal element of A. If there exists a compactly supported probability
measure g on C such that

(1.5) /zk 2hdu(2) = p(a®(a)), for every k,l € N,

then this g is uniquely determined and we will call the probability
measure 4 the x-distribution of a.

REMARKS 1.9. 1) The fact that a compactly supported probability
measure p on C is uniquely determined by how it integrates func-
tions of the form z — 2*z! with k,! € N is an immediate consequence
of the Stone-Weierstrass theorem. Or more precisely: due to Stone-
Weierstrass, 4 is determined as a linear functional on the space C(K)
of complex-valued continuous functions on K, where K is the support
of p; it is then well-known that this in turn determines g uniquely.

2) It is not said that every normal element in a x-probability space
has to have a #-distribution in the sense defined above. But this turns
out to be true in a good number of important examples. Actually,
this is always true when we look at x-probability spaces which have a
representation on a Hilbert space, in the sense of the above Definition
1.6 (see the Corollary 3.14 in Lecture 3); and civilized examples do
have representations on Hilbert spaces — see Lecture 7.

REMARK 1.10. (The case of a selfadjoint element.)
Let (A, ¢) be a x-probability space, and let a be a selfadjoint element
of A (that is, we have a = a*, which implies in particular that a is
normal). Suppose that a has *-distribution y, in the sense of Definition
1.8. Then p is supported in R. Indeed, we have

Jla=zPane) = [=2)E =) duta)

= / 227 — 2% — 22 du(z)
c

= 2¢(aa”) — p(a®) = ¢((a")*) = 0.
Since z +— | z — z |* is a continuous non-negative function, we must
have that z — Z vanishes on the support supp(u) of our measure, and
hence:
supp(u) C{z€C|z=z} =R.
So in this case p is really a measure on R, and the Equation (1.5) is
better written in this case as

(1.6) /tp du(t) = ¢(a?), VpeN.
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Conversely, suppose that we have a compactly supported measure p
on R such that (1.6) holds. Then clearly u is the *-distribution of a in
the sense of Definition 1.8 (because [ zFz' du(z) becomes [ " dpu(t),
while ¢(a*(a*)!) becomes @(a**?)).

The conclusion of this discussion is thus: For a selfadjoint element
a € A it would be more appropriate to talk about the distribution
of a (rather than talking about its *-distribution); this is defined as a
compactly supported measure on R such that (1.6) holds. But there
is actually no harm in treating a as a general normal element, and in
looking for its *-distribution, since in the end we arrive at the same
result.

ExampLES 1.11. 1) Consider the framework of Example 1.4.1,
where the algebra of random variables is L>°(£2, P). Let a be an element
in A; in other words, a is a bounded measurable function, a : Q2 — C.
Let us consider the probability measure v on C which is called “the
distribution of ¢” in usual probability; this is defined by

(1.7) v(E) = P({weQ:a(w) € E}), E C C Borel set.

Note that v is compactly supported. More precisely, if we choose a
positive r such that |a(w)| < 7, ¥V w € Q, then it is clear that v is
supported in the closed disc centered at 0 and of radius r.

Now, a is a normal element of A (all the elements of A are normal,
since A is commutative). So it makes sense to place a in the framework
of Definition 1.8. We will show that the above measure v is exactly the
x-distribution of a in this framework.

Indeed, the Equation (1.7) can be read as

(18) / f(2) dv(z) = / f(aw)) dP(w),

where f is the characteristic function of the set E. By going through the
usual process of taking linear combinations of characteristic functions,
and then of doing approximations of a bounded measurable function
by step functions, we see that the Equation (1.8) is actually holding for
every bounded measurable function f : C — C. (The details of this are
left to the reader.) Finally, let k,[ be arbitrary non-negative integers,
and let r > 0 be such that |a(w)| < r for every w € €. Consider a
bounded measurable function f : C — C such that f(z) = z*z! for
every z € C having |z| < r. Since v is supported in the closed disc of
radius r centered at 0, it follows that

/C £(2) dv(z) — /C 5 (),
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and, consequently, that

/Q f(aw)) dP(w) = / a(w) a(@)' dPw) = p(a(a)').

Thus for this particular choice of f, the Equation (1.8) gives us that
[ ave) = e
C

and this is precisely (1.5), implying that v is the x-distribution of @ in
the sense of Definition 1.8.

2) Consider the framework of Example 1.4.2, and let a € My(C) be
a normal matrix. Let A{,..., A\; be the eigenvalues of a, counted with
multiplicities. By diagonalizing a we find that

17

d
1 _
tr(a¥(a")') = = ) AN k,leN.
r(a”(a™)") 12 e
The latter quantity can obviously be written as [ 2*z" du(z), where

d
1
(1.9) po= aizlé,\i.

(0, stands here for the Dirac mass at A € C.) Thus it follows that a has
a -distribution g, which is described by the Equation (1.9). Usually
this p is called the eigenvalue distribution of the matrix a.

One can consider the question of how to generalize the above fact
to the framework of random matrices (as in Example 1.4.3). In can be
shown that the formula which appears in place of (1.9) in this case is

d
1
(1.10) = E;/Qaw)dp(w),

where a = a* € My(L*~ (£, P)), and where A\(w) < -+ < \j(w) are
the eigenvalues of a(w), w € 2. (Strictly speaking, the Equation (1.10)
requires an extension of the framework used in Definition 1.8, since
the resulting averaged eigenvalue distribution p will generally not have
compact support. See the Lecture 22 for more details about this.)

Our next example will be in connection to a special kind of element
in a x-probability space, called a Haar unitary.

DEFINITION 1.12. Let (A, ¢) be a s-probability space.
1) An element u € A is said to be a Haar unitary if it is a unitary
(i.e. if wu* = w*u = 1) and if

(1.11) o(uf) =0, YkeZ\{0}.
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2) Let p be a positive integer. An element u € A is said to be a
p—Haar unitary if it is a unitary, if u? = 1, and if

(1.12)  p(u*) =0, for all £ € Z such that p does not divide k.

REMARKS 1.13. 1) The name “Haar unitary” comes from the fact
that if u is a Haar unitary in a s-probability space, then the normalized
Lebesgue measure (also called “Haar measure”) on the circle serves as
«-distribution for u. Indeed, for every k,l € NU {0} we have

AN N k—ty )0, iLkF#I
Pl () = ol >—{1’ i

and the computation of the integral

27
/Zkzl dz:/ ei(kfl)tﬂ
T 0 2w

(where T = {z € C | |z| = 1} and dz is the normalized Haar measure
on T) gives exactly the same thing.

2) Haar unitaries appear naturally in the framework of Example
1.4.4. Indeed, if g is any element of infinite order in the group G,
then one can verify immediately that g viewed as an element of the
«-probability space (CG, 7¢) is a Haar unitary.

3) The p—Haar unitaries also appear naturally in the framework of
Example 1.4.4 — an element of order p in G becomes a p—Haar unitary
when viewed in (CG,7¢). It is immediately verified that a p-Haar
unitary has x-distribution

1 p
(113) lu:]_)zé)\ja
j=1
where A\, ..., A, € C are the roots of order p of unity.

EXAMPLE 1.14. Let (A, ) be a x-probability space, and let u € A
be a Haar unitary. We consider the selfadjoint element v 4+ u* € A,
and we would like to answer the following questions:

1) Does u + u* have a *-distribution?

2) Suppose that u + u* does have a x-distribution pu. Then, as
observed in the Remark 1.10, p is a probability measure on R, and
satisfies the Equation (1.6). Do we have some “nice” formula for the
moments [ t* du(t) which appear in the Equation (1.6)7

Let us note that the second question is actually very easy. Indeed,
this question really asks for the values ( (u+ u*)*), k € N, which are
easily derived from the Equation (1.11). We argue like this: due to the
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fact that v and ©* commute, we can expand
o\ k NOw *\k—j
(u+u")® = u? (u)
=0 \J
1

Then we use the fact that u* = u~
the latter equation, to obtain:

At =3 (5)et s,

J=0

and we apply ¢ to both sides of

It only remains to take (1.11) into account, in order to get that:

k/2>’ if k is even.

This is the answer to the second question.

Now we could treat the first question as the problem of finding a
compactly supported probability measure ;1 on R which has moments
as described by Equation (1.14). This is feasible, but somewhat cum-
bersome. It is more convenient to forget for the moment the calculation
done in the preceding paragraph, and attack the question 1) directly,
by only using the fact that we know the *-distribution of w. (The dis-
tribution of u 4+ u* has to be obtainable from the *-distribution of u!)
We go like this:

At =3 (5ot

Jj=0 J
Lk
= Z ( > /zjzk_j dz (by Remark 1.13)
o \J/ Jr

(2cost)® dt + / (2cost)* dt)
0

1 ™
= —/ (2cost)" dt.
T Jo
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For the last integral obtained above, our goal is not to compute it ex-
plicitly (this would only yield a more complicated derivation of Equa-
tion (1.14)), but to rewrite it in the form [ ¢*p(¢)dt, where p is an
appropriate density. This is achieved by the change of variable

2cost =, dt = d(arccos(r/2)) = —dr/vV4 —r?,

which gives us that

e

In this way we obtain that

(1.15) e((u+u)k) = /tkp(t) dt, k>0,

where p(t) is the so-called “arcsine density on [—2,2]”:

— . ifft <2
1.16 t) = { Ve
(1.16) P {o, if |t > 2.

So, as a solution to the first question of this example, we find that
the distribution of u + u* is the arcsine law.

x-distributions (general case)

Let us now consider the concept of x-distribution for an arbitrary
(not necessarily normal) element a in a x-probability space (A, ¢). The
unital x-subalgebra of A generated by a is

(1.17) A, =span{a® - a*® | k>0, £(1),...,e(k) € {1,%} },

i.e. it is the linear span of all the “words” that one can make by using
the “letters” a and a*. The values of ¢ on such words are usually
referred to under the name of x-moments:

DEFINITION 1.15. Let a be a random variable in a *-probability
space (A, ¢). An expression of the form

(1.18)  @(a®™...as®) with k > 0 and (1),...,e(k) € {1, %},
is called a *-moment of a.

So in this case the *-distribution of @ must be a device which keeps
track of its x-moments. Unlike what we saw in the case of normal
elements, there is no handy analytic structure which does this. As a
consequence, we will have to define the x-distribution of a as a purely
algebraic object.
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NOTATION 1.16. We denote by C(X, X*) the unital algebra which
is freely generated by two non-commuting indeterminates X and X*.
More concretely, C(X, X*) can be described as follows: The monomials
of the form X*W ... X where k > 0 and £(1),...,e(k) € {1, %}, give
a linear basis for C(X, X*), and the multiplication of two such mono-
mials is done by juxtaposition. C(X, X*) has a natural x-operation,
determined by the requirement that the x-operation applied to X gives
X*.

DEFINITION 1.17. Let a be a random variable in a s-probability
space (A, ¢). The #-distribution of a is the linear functional

w:C(X, X*) - C
determined by the fact that:
(1.19) u(XE(l) . .Xf(k)) — go(ag(l) . af(’f))7
for every k > 0 and all £(1),...,e(k) € {1, *}.

REMARKS 1.18. 1) The advantage of the formal definition made
above is that even when we consider random variables which live in
different *-probability spaces, the corresponding *-distributions are all
defined on the same space C(X, X*) (and hence can be more easily
compared against each other).

2) The Definition 1.17 will apply to a even if a happens to be normal.
In this case the functional u of (1.19) could actually be factored through
the more familiar commutative algebra C[X, X*] of polynomials in two
commuting indeterminates. But this would not bring much benefit to
the subsequent presentation. (In fact there are places where we will
have to consider all the possible words in a and a* despite knowing
a to be normal — see e.g. the computations shown in the section on
Haar unitaries of Lecture 15.) So it will be easier to consistently use
C(X, X*) throughout these notes.

3) If a is a normal element of a #-probability space, then the x-
distribution of a is now defined twice, in Definition 1.8 and in Definition
1.17. When there is a risk of ambiguity, we will distinguish between
the two versions of the definition by calling them “k-distribution in
analytic sense” and respectively “c-distribution in algebraic sense”.

DEFINITION 1.19. Let (A, ¢) be a *-probability space, and let a be
a selfadjoint element of A. In this case, the *-moments from (1.18) are
just the numbers ¢(a*), k > 0, and they are simply called moments of
a. Following the standard terminology from classical probability, the
first moment ¢(a) is also called the mean of a, while the quantity

Var(a) := p(a®) — p(a)”
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is called the variance of a.

REMARK 1.20. We would like next to introduce an important exam-
ple of x-distribution, which is in some sense a non-normal counterpart
of the Haar unitary; and moreover, we would like to show how the
analogue of the questions treated in the Example 1.14 can be pursued
for this non-normal example. The discussion will be longer than the
one for the Haar unitary (precisely because we don’t have an analytic
x-distribution to start from), and will be the object of the next lecture.

Exercises

EXERCISE 1.21. 1) Let (A, ¢) be a x-probability space, and let a, b
be elements of A. By examining the quadratic function
t— o((a—1th)*(a—1tb)), teR,
prove that
(Ree(v'a))’ < pla’a)p(v).

2) Prove the Cauchy-Schwarz inequality which was stated in the
Remark 1.2.2.

EXERCISE 1.22. Let (€2, Q, P) be a probability space, and consider
the space of functions
L (Q,P):= (] L(Q,P)
1<p<oo
(as in Example 1.4.1).

1) Prove that the spaces intersected on the right-hand side of the
above equation form a decreasing family (that is, LP(Q2, P) D L4(Q, P)
for p < q).

2) Observe that L™~ (9, P) could also be defined as N,LP(Q2, P)
with p running in N\ {0}. Or equivalently, observe that L>~(2, P)
could be defined as the algebra of complex random variables on §2 which

have finite moments of all orders.
3) Prove that L~ (€, P) is closed under multiplication.

[Hint for part 3: use the Cauchy-Schwarz inequality in L?($2, P).]

EXERCISE 1.23. Let (A, ) be a x-probability space and let d be a
positive integer. Let M;(A) be the space of d x d matrices over A,

Ma(A) = {(aij){,—y | aiy € Afor 1 <i,j <d}.
On My(A) we can define canonically a s-operation by

((aij)fimr)* = (big) i1,
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where by; == aj; for 1 < i,j < d; thus My(A) becomes a *-algebra.
Then consider the linear functional ¢4 : My(A) — C defined by

d
1
pa(d) = 5 > plan), for A= (ay)i;_, € Ma(A).
i=1

Note that M;(A) is canonically isomorphic to My(C) ® A, and that
under this isomorphism ¢4 corresponds to tr ® ¢.

1) Verify that (My(A), ¢q) is a x-probability space.

2) Show that if the x-probability space (A, ¢) is tracial, then so is
(Mo A), 00).

3) Show that if the functional ¢ is faithful, then so is 4.

In the next two exercises, the terms “morphism” and “representa-
tion” are used in the sense of the Definition 1.6.

EXERCISE 1.24. Let (A, ¢) and (B, 1) be x-probability spaces, and
suppose that ¢ is faithful. Let ® be a morphism between (A, ¢) and
(B, ). Prove that & is one-to-one.

EXERCISE 1.25. 1) Consider the x-probability space discussed in
the Example 1.4.1. Write a representation of this x-probability space,
living on the Hilbert space L?(2, Q, P).

2) Consider the *-probability space discussed in the Example 1.4.2.
Write a representation of this x-probability space, living on the Hilbert
space C%.

3) Consider the s-probability space discussed in the Example 1.4.4.
Write a representation of this x-probability space, living on the Hilbert

space *(G) :={§: G — C| Y 4&[° < oo}

EXERCISE 1.26. Let (A, ¢) be a x-probability space, let a be a nor-
mal element of A, and suppose that a has x-distribution p in analytic
sense (i.e. in the sense of Definition 1.8).

1) Let P : C — C be a polynomial in z and z, and let v be the
probability measure on C defined by:

v(E) = u(P7Y(E)), for E C C Borel set.

Show that v is compactly supported and that the normal element b :=
P(a,a*) € A has x-distribution v.

2) By using the result in part 1), describe the x-distributions of the
following elements: i) a*; ii) a + «, where « is an arbitrary complex
number; iii) ra, where r is an arbitrary positive number.

EXERCISE 1.27. Do the analogue of the first question treated in
Example 1.14 for a p—Haar unitary.



LECTURE 2

A case study of non-normal distribution

In this lecture we study the example of the so-called “vacuum-state”
on the x-algebra generated by the one-sided shift operator, and see how
the important concept of semicircular random variable is connected to
it.

Description of the example

NOTATIONS 2.1. Throughout the lecture we fix a *-probability
space (A, ¢) and an element a € A, such that:
(i) a*a = 14 # aa™;
(ii) a generates A as a x-algebra.

One refers to the condition a*a = 14 by saying that a is an isom-
etry; since the above assumption (i) also requires that aa* # 14, one
can re-phrase it by saying that “a is a non-unitary isometry”.

Some more assumptions made on a and (A, ¢) will be stated after
we observe the following simple consequence of (i) and (ii):

LEMMA 2.2. A = span{a™(a*)" | m,n > 0}.

PRroOOF. The condition a*a = 14 immediately implies that for every
m,n,p,q > 0 we have:

a™ P (@)1 ifn<p
(2.1) <am(a*)”> : (ap<a*)q) = am(a*)e, ifn=p

a™(a*)"PTe if n > p.

Since the family {a™(a*)" | m,n > 0} is, clearly, also closed under
x-operation, it follows that its linear span has to be equal to the unital
x-subalgebra of A generated by a. But this is all of A, by (ii) of
Notations 2.1. U

NoTATIONS 2.3. In addition to what was stated in 2.1, we will make
the following assumptions on a and (A, ¢) :
(iii) The elements {a™(a*)" | m,n > 0} are linearly independent;

29
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(iv) The functional ¢ : A — C satisfies (and is determined by) the
equation:

1, ifm=n=0

0, otherwise,

(22) pla™(a)") = {

for m,n € NU{0}.

REMARK 2.4. As the reader may recognize, the Equation 2.1 is con-

nected to a semigroup structure on (NU{0})?, where the multiplication
is defined by

(m+p—mn,q), ifn<p
(23) (man) ’ (p7 q) = (m7Q>7 if n =Pp

This is called the bicyclic semigroup, and is a fundamental example in a
class of semigroups with a well-developed theory, which are called “in-
verse semigroups”. So from this perspective, the algebra A appearing
in this example could be called “the semigroup algebra of the bicyclic
semigroup”.

REMARK 2.5. From another perspective, the algebra A is related to
an important example from the theory of C*-algebras, which is called
the Toeplitz algebra, and is obtained by completing A with respect to a
suitable norm. Equivalently, the Toeplitz algebra can be defined as the
closure in the norm-topology of 7(A) C B(I?), where 7 : A — B(I?) is
the natural representation described in what follows.

Consider the Hilbert space I? := [?(NU {0} ). The vectors of [? are
thus of the form & = (a)k>0, where the ay’s are from C and have
> reo lak|* < co. The inner product of & = (ay)k>0 With n = (B)k>0 1s

<€7 77) = Z akBk:'
k=0

For every n > 0 we denote:
(2.4) ¢, :=1(0,0,...,0,1,0,...,0,...),

with the 1 occurring on component n. Then &y, &1, ...,&,, ... form an
orthonormal basis for /2.
Let S € B(I?) be the one-sided shift operator, determined by
the fact that
S, =&, Y 2>0.

Its adjoint S* is determined by
S* =0 and S =61, Yn > 1.
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It is immediate that S*S = 1pg2) (the identity operator on [*), but
SS* # 1.

Since (@™ (a*)"™ )mn>o form a linear basis in A, we can define a linear
map 7 : A — B(I?) by asking that:

w(a™(a*)") = S™(S")", Vm,n >0.

It is easily verified that 7 is a unital *-homomorphism. (The mul-
tiplicativity of 7 follows from the fact that, as a consequence of the
relation S*S = 1p(2), the product of two members of the family
(S™(S*)™ )mnzo is described by the same rules as in Equation (2.1).)

Now, it is also easy to see that the operators (S™(S*)™ ) n>0 are
linearly independent (see Exercise 2.22 at the end of the lecture). This
implies that the *-homomorphism 7 defined above is one-to-one, hence
it actually gives us an identification between the algebra A fixed in
Notations 2.1 and an algebra of operators on 2.

Let ¢o : B(I*) — C be the functional defined by

(2.5) wo(T) = (Té. &), T € B(P?),

where & is the first vector of the canonical orthonormal basis considered
in (2.4). If m,n € NU{0} and (m,n) # (0,0) then

po((S™(ST)") = (S™(57) €0, &0) = ((57)"C0, (57)"C0),
which is equal to 0 because at least one of (S*)™¢, and (S*)", is the
zero-vector. Comparing this against (2.2) makes it clear that 7 is a
morphism between (A, ) and (B(I?), ¢o), in the sense discussed in the
Definition 1.6 of Lecture 1. Or, in the sense of the same definition,
(12,7, &) is a representation of (A, ) on the Hilbert space [2.

As mentioned above, the closure 7 of 7(.A) in the norm-topology of
B(I?) is called the Toeplitz algebra. Moreover, the restriction to 7 of
the functional ¢g defined by Equation (2.5) is called “the vacuum-state
on the Toeplitz algebra” (which is why, by a slight abuse of terminology,
the x-algebraic example discussed throughout the lecture is also termed
in that way).

REMARK 2.6. Our goal in this lecture is to look at the x-distribution
of the non-normal element a which was fixed in the Notations 2.1. But
as the reader has surely noticed, the equation describing A in Lemma
2.2 is a repeat of the Equation (1.4) from the discussion on normal
elements, in Lecture 1. Shouldn’t this indicate that we could treat a as
if it was normal? It is instructive to take a second to notice that this
is not the case. Indeed, the unique compactly supported probability
measure on C which fits the sx-moments in (2.2) is the Dirac mass dy —
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so we would come to the unconvincing conclusion that a has the same
x-distribution as the zero-element of A.

The point here is that, besides the information given in (2.2), one
must also understand the process (quite different from the case of nor-
mal elements) of reducing a word @) - - - a*®) to the form a™(a*)". Or
at least, one should be able to understand how to distinguish the words
a®M ... a#*) which reduce to 14 from those which reduce to something
else. The latter question is best clarified by using a class of combina-
torial objects called Dyck paths.

Dyck paths

DEFINITION 2.7. 1) We will use the term NE-SE path for a path
in the lattice Z? which starts at (0,0) and makes steps either of the
form (1,1) (“North-East steps”) or of the form (1,—1) (“South-East
steps”).

2) A Dyck path is a NE-SE path  which ends on the z-axis, and
never goes strictly below the z-axis. (That is: all the lattice points
visited by v are of the form (7, j) with j > 0, and the last of them is of
the form (k,0).)

REMARKS 2.8. 1) For a given positive integer k, the set of NE-SE
paths with k steps is naturally identified with {—1, 1}* by identifying
a path v with the sequence of +1s which appear as second components
for the k steps of .

Concrete example: here is the NE-SE path of length 6 which cor-
responds to the 6-tuple (1,—1,—1,1,—1,1).

This path is not a Dyck path, because it goes twice under the x-axis.

2) Let k be a positive integer, and consider the identification de-
scribed above between the NE-SE paths with k steps and {—1,1}*. It
is immediately seen that a k-tuple (\;,..., \x) corresponds to a Dyck
path if and only if

A4+ A >0, V1IZ)<Kk,
(2.6)
M4+ A =0.

From the equality stated in (2.6) it is clear that Dyck paths with &
steps can only exist when £ is even.
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Concrete examples: there are 5 Dyck paths with 6 steps. We draw
them in the pictures below, and for each of them we indicate the corre-
sponding tuple in {—1,1}% (thus listing the 5 tuples in {—1,1}° which
satisty (2.6)).

(+1,+1,+1,—-1,—-1,-1)

(+1,+1,-1,+1,—-1,-1)

(+1,+1,—-1,—-1,+1,—-1)

(+1,—-1,4+1,+1,—-1,—-1)

(+1,—1,+1,-1,+1,-1)

The Dyck paths can be enumerated by using a celebrated “reflection
trick” of Desiré André, and turn out to be counted by the (even more
celebrated) Catalan numbers.
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NoOTATION 2.9. For every integer n > 0 we will denote by C), the
nth Catalan number,

1 [2n (2n)!
2.7 C, = _ @)t
(2.7) n—i—l(n) nl(n + 1)!
(with the convention that Cy = 1).

REMARK 2.10. An equivalent (and often used) way of introducing
the Catalan numbers is via the following recurrence relation:

Co=C1 =1
(2.8)
Cp = Z?:l Cj—lcp—ja p Z 2.

It is not hard to see that the numbers defined by (2.7) do indeed satisfy
the recurrence (2.8). One way of proving this fact can actually be read
from the following discussion about the enumeration of Dyck paths (see
the last paragraph in Remark 2.12).

PROPOSITION 2.11. For every positive integer p, the number of
Dyck paths with 2p steps is equal to the pth Catalan number C,,.

PROOF. Let us first count all the NE-SE paths which end at a given
point (m,n) € Z*. A NE-SE path with v NE-steps and v SE-steps ends
at (u+v,u—wv), so there are NE-SE paths arriving at (m,n) if and only
if (m,n) = (u+ v,u — v) for some u,v € NU {0} with v + v > 0; this
happens if and only if m > 0, |n| < m, and m,n have the same parity.
If the latter conditions are satisfied, then the NE-SE paths arriving at
(m, n) are precisely those which have (m+n)/2 NE-steps and (m—n)/2
SE-steps. These paths are hence counted by the binomial coefficient

( (mf;) /2), because the Remark 2.8.1 identifies them with the m-tuples

in {—1, 1}™ which have precisely (m + n)/2 components equal to 1.

In particular, it follows that the total number of NE-SE paths ar-
riving at (2p,0) is (2;’).

We now look at the NE-SE paths arriving at (2p,0) which are not
Dyck paths. Let us fix for the moment such a path, ~, and let j €
{1,...,2p — 1} be minimal with the property that v goes under the
xr-axis after j steps. Then ~ is written as a juxtaposition of two paths,
v = ' V4", where 7/ goes from (0,0) to (j,—1), and " goes from
(j,—1) to (2p,0). Let 7" be the reflection of 4" in the horizontal line
of equation y = —1; thus VA” is a path from (j,—1) to (2p, —2). Then
let us define F(7) :=+' V4", a NE-SE path from (0,0) to (2p, —2).

[Concrete example: suppose that p = 10 and that « is the NE-SE
path from (0,0) to (20,0) which appears drawn in bold-face fonts in
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the following picture. It is not a Dyck path, and the first time when
it goes under the z-axis is after 5 steps. Thus for this example, the
decomposition 7 = 'V 4" described above looks as follows: 7' has
5 steps, going from (0,0) to (5,—1), and 4" has 15 steps, going from
(5,—1) to (20,0).

0
-2
The reflection of v in the horizontal line of equation x = —1 is shown

in the above picture as a thinner line, going from (5, —1) to (20, —2).
The path F(v) goes from (0,0) to (20, —2); it is obtained by pursuing
the first five steps of 7, and then by continuing along the thinner line.]

So, the construction described in the preceding paragraph gives a
map F from the set of NE-SE paths ending at (2p,0) and which are
not Dyck paths, to the set of all NE-SE paths ending at (2p, —2). The
map F is a bijection. Indeed, if § is a NE-SE path ending at (2p, —2),
then there has to be a minimal j € {1,...,2p — 1} such that (3 is at
height y = —1 after j steps. Write g = 'V " with 3’ from (0,0)
to (j,—1) and 8" from (j,—1) to (2p, —2), and let 3 be the reflection
of #” in the line y = —1; then v := ' Vv Bﬁ is the unique path in the
domain of I’ which has F(v) = (.

It follows that the number of NE-SE paths which end at (2p, 0) but
are not Dyck paths is equal to the total number of NE-SE paths ending
at (2p, —2), which is (pQ_pl). Finally, the number of Dyck paths with 2p

steps is
() -6 -7 0)
— = — = Cp.
p p—1/) p+1\p

REMARK 2.12. Another approach to the enumeration of Dyck paths
is obtained by making some simple remarks about the structure of such
a path, which yield a recurrence relation. Let us call a Dyck path ~
irreducible if it only touches the z-axis at its starting and ending points
(but never in between them). For instance, out of the 5 Dyck paths
pictured in Remark 2.8.2; 2 paths are irreducible and 3 are reducible.

Given an even integer k > 2. If 7y is an irreducible Dyck path with &
steps, then it is immediate that the k-tuple in {—1, 1}* associated to
is of the form (1,\,..., A\_2,—1), where (A1,..., \p_o) € {—1,1}F2

O
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corresponds to a Dyck path with k& — 2 steps. Conversely, it is also
immediate that if (Ay,...,\—2) € {—1,1}¥72 corresponds to a Dyck
path, then (1,\;,..., A9, —1) € {—1,1}* will correspond to an irre-
ducible Dyck path with k steps. Thus the irreducible Dyck paths with
k steps are in natural bijection with the set of all Dyck paths with k£ —2
steps.

On the other hand, suppose that ~ is a reducible Dyck path with
k steps, and that the first time when v touches the z-axis following
to its starting point is after j steps (1 < j < k). Then v splits as
a juxtaposition v = + V +”, where 4 is an irreducible Dyck path
with j steps and +” is a Dyck path with k& — j steps. Moreover, this
decomposition is unique, if we insist that its first piece, 7/, is irreducible.

For every p > 1, let then D, denote the number of Dyck paths with
2p steps, and let D), be the number of irreducible Dyck paths with 2p
steps. The observation made in the preceding paragraph gives us that

(2.9) D, = DiDpfl + D/ZDpﬂ tet D;71D1 + D;;; p=2

(Every term D} D,,_; on the right-hand side of (2.9) counts the reducible
Dyck paths with 2p steps which touch for the first time the x-axis after
27 steps.) The observation made one paragraph before the preceding
one says that D, = D, 1, V p > 2. This equality is also true for p = 1,
if we make the convention to set Dy := 1. So we get the recurrence

DO f— Dl ey 1
(2.10)
Dp = Z?:l Dj_le—j7 p Z 2.

This is exactly (2.8), and shows that D, = C,, V p > 1.

The argument presented above can be viewed as an alternative proof
of Proposition 2.11. On the other hand, since the derivation of (2.10)
was made independently from Proposition 2.11, a reader who wasn’t
already familiar with Catalan numbers can view the above argument
as a proof of the fact that the numbers introduced in Notation 2.9 do
indeed satisfy the recurrence (2.8).

The distribution of a + a*

We now return to the example of (A, ) and a € A introduced in
the Notations 2.1, 2.3. The connection between the x-distribution of a
and Dyck paths appears as follows:
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PROPOSITION 2.13. Let k be a positive integer, let (1), ... ,e(k) be
in {1,*}, and consider the monomial a*V) ---a**) € A. Let us set

. 1 ifé(j):* ]
(2.11) Aj = {_1 if () = 1. for1<j <k,

and let us denote by v the NE-SE path which corresponds to the tuple
(A1, .oy Ap) € {—=1,1}*. Then

(2.12)

(p(aa(l) . ag(k)) _ 1 if v 1s a Dyck path
0 otherwise.

PROOF. It is convenient to use the representation of (A,¢) dis-
cussed in Remark 2.5. With notations as in that remark, we write:

o(atW . @ty = (gL g=Re e
(2.13) = (€, (50)7 (57)6).

Applying successively the operators (S5(M))*, ... (SE0)* to &, takes us
either to a vector of the orthonormal basis {&, | n > 0} of [?, or to the
zero-vector. More precisely: by keeping track of how Ay, ..., A\, were
defined in Equation (2.11) in terms of (1), ...,e(k), the reader should
have no difficulty to verify by induction on j, 1 < 5 < k, that

Sty AL >0,A + A >0,
(2.14) (SEU)* ... (S5 Wy*g, = Mt A >0

0 otherwise.

If we make j = k in (2.14) and substitute this expression into (2.13),
then we obtain:

(@ ey = | o burnd) L A 20, 1< <k
0 otherwise.
1 ity Nn>0for1<j<k
= and if Y8 A\ =0
0 otherwise
{1 if v is a Dyck path

0 otherwise

(where at the last equality sign we used the Equation (2.6) of Remark
2.8). 0

Let us next consider the selfadjoint element a + a* € A, and ask
the following two questions (identical to those asked in the Example
1.14 of Lecture 1, in connection to Haar unitaries).
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1) Does a + a* have a x-distribution in analytic sense (as discussed
in Definition 1.8) ?

2) Suppose that a + a* does have a *-distribution p. Then (as ob-
served in Remark 1.8) p is a compactly supported probability measure
on R, determined by the fact that

/t'~C du(t) = o((a+a*)*), Vk>0.

Do we have some “nice” formula for the moments of p (or in other
words, for the values of o((a +a*)¥), k> 0) ?

We can derive the answer to the second question as an immediate
consequence of Proposition 2.13.

COROLLARY 2.14. If k is an odd positive integer, then
o((a+a")*)=0.
If k = 2p is an even positive integer, then

p((a+a")t) =Gy,
where Cy, is the pth Catalan number.

PROOF.

plla+ay)=o( > @0 )

e(1),e(k)e{1,%}

- ¥ o(aW .. q=®)

(1),e(k)e{l,x}

= > 1 (by Prop. 2.13) .

Dyck paths
with k steps

So ¢((a + a*)*) is equal to the number of Dyck paths with k steps,
and the result follows from Proposition 2.11. O

It remains that we look at the first question asked above about
a+a*, the one of finding (if it exists) a compactly supported probability
measure £ on R which has moment of order k equal to ¢( (a + a*)*),
k > 0. The answer to this question turns out to be the following:

PROPOSITION 2.15. The distribution of a+a* in (A, p) is the mea-
sure du(t) = 5=v/4 — t2dt on the interval [-2,2].
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Proor. By taking into account the Corollary 2.14, what we have
to show is that

(2.15) /2 th"V4 —t2dt = {OQ_W(QP

p+1\p

if k£ is odd
) if k is even, k = 2p.

The case of odd k is obvious, because in that case ¢ — t*v/4 — {2 is an
odd function. When k is even, kK = 2p, we use the change of variable
t = 2cosf, dt = —2sinfdf, with 6 running from 7 to 0. We obtain
that:

2 ™
/ t*P\V4 — 12 dt = / 2212 cos? ) sin? 0 df) = 47T (1, — I,41),
2

0

where

I, = / cos?§db, p>0.
0

The integral I, has already appeared in the Example 1.14 of Lecture

1; in fact, if we combine the Equation (1.14) of that example with the

calculations following to it (in the same example), we clearly obtain

that
T (2p >0
]p—4p p , P =Y,

and (2.15) quickly follows. O

The Proposition 2.15 can be rephrased by saying that a + a* is a
semicircular element of radius 2, in the sense of the next definition.

DEFINITION 2.16. Let (A, ) be a x-probability space, let = be
a selfadjoint element of A and let r be a positive number. If x has
distribution (in analytical sense, as in Remark 1.10 of Lecture 1) equal
to —23v/r2 — t2dt on the interval [—r,7], then we will say that z is a
semicircular element of radius r.

REMARKS 2.17. 1) It is customary to talk about semicircular el-
ements, despite the fact that the graph of a function of the form
[—r,7] 3 t — 25v/r? — 12 is not exactly a semicircle (but rather a
semi-ellipse). Semicircular elements will play an important role in the
subsequent lectures — see e.g. Lecture 8. The semicircular distribution
is also a fundamental object in random matrix theory; we will address
this relation in Lecture 22.

2) The semicircular elements of radius 2 are also called standard
semicircular, due to the fact that they are normalized by the variance.
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Indeed, it is immediate that a semicircular element x of radius r has
its variance Var(z) := p(z?) — p(z)? given by

Var(z) = r*/4.

(It is in fact more customary to talk about semicircular elements in
terms of their variance, rather than radius. Of course, the above equa-
tion shows that either radius or variance can be used, depending on
what is the user’s preference.)

3) Strictly speaking, the above definition has only introduced the
concept of a centered semicircular element; it is quite straightforward
how to adjust it in order to define a notion of “semicircular element
of mean m € R and radius » > 0”7, but this will not be needed in the
sequel.

4) The proof shown above for Proposition 2.15 was immediate, but
not too illuminating, as it does not show how one arrives to consider
the semicircular density in the first place. (It is easier to just verify that
the given density has the right moments, rather than deriving what the
density should be!) We will conclude the lecture by elaborating a bit
on this point. The object which we will use as an intermediate in order
to derive p from the knowledge of its moments is an analytic function
in the upper half plane called “the Cauchy transform”.

Using the Cauchy transform

DEFINITION 2.18. Let pu be a probability measure on R. The
Cauchy transform of p is the function G, defined on the upper half
plane Ct ={s+ it |s,t € R, t > 0} by the formula:

1
G,(2) :/Rz_tdu(t), zec

REMARKS 2.19. 1) It is easily verified that G, is analytic on C*
and that it takes values in C™ := {s + it | s,t € R, ¢t < 0}.

2) Suppose that p is compactly supported, and let us denote r :=
sup{|t| | t € supp(p)}. We then have the power series expansion:

[e9]

an
(2.16) Gu(z) = Z ot 2| >,

n=0

where v, := [, t" dpu(t) is the nth moment of p, for n > 0. Indeed, for
|z| > r we can expand:
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The convergence of the latter series is uniform in ¢ € supp(u); hence
we can integrate the series term by term against du(t), and (2.16) is
obtained.

Note that the expansion (2.16) of G, around the point at infinity
has as an obvious consequence the fact that
(2.17) zE(CJfl,H\I;|—>oo 2Gu(z) = 1.

REMARK 2.20. The property of the Cauchy transform that we want
to use is the following: there is an effective way of recovering the prob-
ability measure p from its Cauchy transform G, via the Stieltjes in-
version formula. If we denote

1
(2.18) he(t) := —;%Gu(t +ig), Ye>0, VteR

(where “J” stands for the operation of taking the imaginary part of a

complex number), then the Stieltjes inversion formula says that
(2.19) du(t) = lir% he(t) dt.

The latter limit is considered in the weak topology on the space of
probability measures on R, and thus amounts to the fact that

(2.20) / 70y d(t) = lim / FOhe(t) dt.

for every bounded continuous function f : R — C.

The fact that (2.19) holds is a consequence of the connection be-
tween the Cauchy transform and the family of functions (P.).~o defined
by
1 ¢
T2 +e?’
which forms the so-called “Poisson kernel on the upper half plane”. For
every € > 0 and t € R we have that

het) = — 23 / L )

T t+ic—s

P.(t) :== fore >0and t € R,

o~ t—s—ue

- _%\S/R (t—s)%+ 52d'u(5)

- %/R (t — s; + 52du<s)
- / P.(t = s)du(s).

The last expression in the above sequence of equalities is called a con-
volution integral, and one of the fundamental properties of the Poisson
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kernel is that the h.’s given by such an integral will converge weakly
to u for e — 0.

Let us record explicitly how the Stieltjes inversion formula looks in
the case when the Cauchy transform G, happens to have a continuous
extension to CT UR. The values on R of this extension must of course
be given by the function g obtained as

(2.21) g(t) =lm G, (t +iz), tER.

It is immediate that in this case the measures h.(t) dt converge weakly
to —1Qg(t)dt. Hence in this case the Stieltjes inversion formula is
simply telling us that:

(2.92) du(t) — —%%g(t) dt,

with ¢g defined as in (2.21).

Let us now look once more at the random variable a fixed at the
beginning of the lecture, and see how we can use the Cauchy transform
in order to derive the distribution of a 4+ a* from the knowledge of its
moments.

LEMMA 2.21. Suppose that p is a probability measure with compact
support on R such that

0 if k is odd
thdu(t) = DU
/R Q {Iﬁ(?) if k is even, k = 2p.

Then the Cauchy transform of p is

V21
(2.23) Gu(2) = % zeCt

(Note: On the right-hand side of (2.23) we can view
V2 —4:=2-2-Vz2+2,

where z +— /z + 2 is analytic on C\ {F2 — it | t > 0} D C*, and is
defined such that it gives the usual square root for z € R, z > 2.)

PrROOF. We know that for |z| sufficiently large we have the series
expansion (2.16), which becomes here

= C
G“<Z> - Z ZQpil’

p=0
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with C, = the pth Catalan number. The recurrence relation (2.8) of the
Catalan numbers and some elementary manipulations of power series
then give us that:

[e.9]

1 1/
G#(z) = ; + Z S2p+1 <Z Cj—lcp—j>
- _Zzzzg 1 Z2ppj)J+1
p=1 j=1

00 oy
- o Z 223 ’ <Z Z2(p;ij)1+1>
p=J

1
= ; . Z sz ’ GH(Z)
1

1.1 2
_z+zG“(Z)'

It follows that G, satisfies the quadratic equation
G.(2)> —2Gu(2) +1=0, 2€C".

(The above computations only obtain this for a z such that |z| is large
enough, but after that the fulfilling of the quadratic equation is ex-
tended to all of C* by analyticity.) By solving this quadratic equa-
tion we find that G,(2) = (2 £ V22 —4)/2, and from the condition
lim,| 0o 2G(2) = 1 we see that the “—" sign has to be chosen in the
“+” of the quadratic formula. O

Finally, let us remark that the analytic function found in the Equa-
tion (2.23) has a continuous extension to C*™ UR, where the extension
acts on R by:

(t—iva—12)/2 if t| <2
t—g(t) := :
(t—Vt2—4)/2 if|t] > 2.
By taking the imaginary part of g, and by using the observation made

at the end of the Remark 2.20, we see why the semicircular density is
the appropriate choice in the statement of Proposition 2.15.

Exercises

EXERCISE 2.22. Let S € B(I?) be the shift operator considered in
the Remark 2.5, and let {&, | n > 0} be the orthonormal basis of [
considered in the same remark.
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1) Let (m,n) # (0,0) be in (NU {0})2. Based on the fact that
(S™(S*)", , &m) = 1, show that

S™(S*)™ & span{S*(S*)" | either k > m, or k =mand [ >n }.

2) By using the result in part 1 and the lexicographic order on
(Nu {0})2, prove that the operators (.S™(S*)" ) n>0 form a linearly
independent family in B(I?).

EXERCISE 2.23. Write a proof of Proposition 2.13 which only uses

the framework introduced in the Notations 2.1, 2.3, and does not appeal
to the representation of a as a shift operator.

EXERCISE 2.24. Re-derive the formula (1.16) from Example 1.14
in Lecture 1 by starting from the Equation (1.14) of the same example
and by using the Stieltjes inversion formula.



LECTURE 3
C*-probability spaces

C*-algebras provide a natural environment where non-commutative
probabilistic ideas can be seen at work. In this lecture we provide some
basic background for our readers who are not familiar with them. The
emphasis will be on the concept of C*-probability space and on the
relations between spectrum and *-distribution for a normal element in
a C*-probability space.

The line followed by our sequence of lectures does not require any
substantial C*-algebra apparatus, and we hope it will be comprehensi-
ble to present the fairly few and elementary C*-algebra facts which are
needed, at the places where they appear. Whenever possible, we will
minimize the number of statements which have to be accepted without
proof — for instance in the present lecture the only such statement is
the one of Theorem 3.1, which collects some fundamental facts about
the spectral theory of normal elements.

Functional calculus in a C*-algebra

A C*-probability space is a x-probability space (A, ) where
the x-algebra A is required to be a unital C*-algebra. Being a unital
C*-algebra means that (in addition to being a unital x-algebra) A is
endowed with a norm || - || : A — [0,00) which makes it a complete
normed vector space, and such that we have:

(3.1) [labl| < llal[ - [|o]], V a,be€ A;

(3:2) la*al] =1lall*, ¥ a€A.

Out of the very extensive theory of C*-algebras we will only need some
basic facts of spectral theory, which are reviewed in a concentrated way
in the following theorem. Recall that if A is a unital C*-algebra and if
a € A, then the spectrum of a is the set

Sp(a) = {2z € C| z14 — ais not invertible}.

THEOREM 3.1. Let A be a unital C*-algebra.
45
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1) For every a € A, Sp(a) is a non-empty compact subset of C,
contained in the disc {z € C | |z] < ||a||}.

2) Let a be a normal element of A, and consider the algebra
C(Sp(a)) of complex-valued continuous functions on Sp(a). There ex-
ists a map ® : C(Sp(a)) — A which has the following properties:

(i) ® is a unital x-algebra homomorphism .

(1) | (NI = [|f]lec; V f € C(Spla)) (where for f € C(Sp(a)) we
define || f||o == sup{[f(2)| | 2z € Sp(a)}).

(111) Denoting by id : Sp(a) — C the identity function (id(z) = z
for every z € Sp(a)), we have that ®(id) = a.

REMARKS 3.2. Let A be a unital C*-algebra, let a be a normal
element of A, and let ® : C(Sp(a)) — A have the properties (i), (ii)
and (iii) listed in the Theorem 3.1.2.

1) The condition (ii) (together with the linearity part of (i)) implies
that ¢ is one-to-one. Hence in a certain sense, ¢ provides us with a
copy of the algebra C'(Sp(a)) which sits inside A.

2) Suppose that p : Sp(a) — C is a polynomial in z and Z, i.e. it is
of the form

(3.3) p(z) = Z aj,kzjik, z € Sp(a);

J,k=0

then the properties (i) and (iii) of ® immediately imply that

(3.4) d(p) = Z i pa (a*)".

7,k=0

3) The preceding remark shows that the values of ® on polynomi-
als in z and Zz are uniquely determined. Since these polynomials are
dense in C'(Sp(a) ) with respect to uniform convergence, and since (by
(i)+(ii)) @ is continuous with respect to uniform convergence, it follows
that the properties (i), (ii) and (iii) determine ® uniquely.

4) The name commonly used for ® is functional calculus with
continuous functions for the element a. A justification for this name
is seen by looking at polynomials p as the one appearing in Equation
(3.3): for such a p, the corresponding element ®(p) € A (appearing
in (3.4)) is what one naturally tends to denote as “p(a)”. It is in fact
customary to use the notation

(3.5) “f(a)” instead of “®@(f)”

when f is an arbitrary continuous function on Sp(a) (not necessarily a
polynomial in z and z). The notation (3.5) will be consistently used in
the remainder of this lecture.
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REMARKS 3.3. Let A be a unital C*-algebra. The Theorem 3.1.2
contains in a concentrated way a good amount of information about
the spectra of the normal elements of A. We record here a few facts
which are immediately implied by it. (Note: it comes handy to record
these facts as consequences of the Theorem 3.1; but the reader should
be warned that in a detailed development of basic C*-algebra theory,
some of these facts would be proved directly from the axioms, preceding
the discussion about functional calculus.)

1) If @ is a normal element of A, then

(3.6) llall = [la”|| = sup{|z[ | = € Sp(a)}.
This is seen by using (ii) of Theorem 3.1.2 for the functions id and id
on Sp(a).

2) If  is a selfadjoint element of A then Sp(z) C R. Indeed, when
we apply (ii) of Theorem 3.1.2 to the function id — id on Sp(z), we
get that

(3.7) ||z — ™[] = sup{|z — z[ | = € Sp(x)}.

The left-hand side of (3.7) is 0; hence so must be the right-hand side
of (3.7), and this implies that Sp(z) C{z € C:z—-2z =0} =R.

Conversely, if z € A is normal and has Sp(z) C R, then it follows
that x = x*; this is again by (3.7), where now we know that the right-
hand side vanishes.

3) If w is a unitary element of A, then Sp(u) CT={z€ C: |z| =
1}. And conversely, if u € A is normal and has Sp C T then u has to
be a unitary. The argument is the same as in the part 2 of this remark,
where now we use the equation:

11— wull = sup{| 1 — |2*| | = € Sp(u)}.

The following statement is known under the name of “spectral map-
ping theorem”.

THEOREM 3.4. Let A be a unital C*-algebra, let a be a normal
element of A, and let f : Sp(a) — C be a continuous function. Then
the element f(a) € A (defined by functional calculus) has

(3.8) Sp( f(a)) = f(Sp(a)).

PROOF. By considering functions of the form z — f(z) — A on
Sp(a) (where A € C), one immediately sees that it suffices to prove the
following statement: Let A and a be as above, and let g : Sp(a) — C
be a continuous function. Then:

(3.9) g(a) is invertible in A < 0 & g(Sp(a)).
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The implication “<” in (3.9) is immediate: if 0 € g(Sp(a) ), then
one can define the continuous function h = 1/g : Sp(a) — C, and the
properties of functional calculus imply that the element h(a) € A is an
inverse for g(a).

In order to prove the implication “=" in (3.9), we proceed by con-
tradiction. Assume that g(a) is invertible in A, but that nevertheless
there exists z, € Sp(a) such that g(z,) = 0. Let us pick a positive num-
ber a > ||g(a)~t||. Because of the fact that g(z,) = 0, one can construct
a function h € C(Sp(a)) such that h(z,) = « while at the same time
g - hlloo < 1. (Indeed, there exists € > 0 such that |g(z)| < 1/« for
all z € Sp(a) with |z — z,| < €, and one can construct h with values in
[0, ] and supported inside the disc of radius /2 centered at z,. For
instance h(z) := a-max(0,1—2|z—2z,|/¢) will do.) From the properties
of functional calculus it follows that the element h(a) € A is such that
its norm equals

(@)l = [lAllee = o

while at the same time we have:
lg(a) - h(a)|| = ||g - hlloo < 1.
We then get that
a < ||h(a)|] = llg(a)~" - (g(a) - R(a))]] < llg(a)” ] - Ilg(a) - h(a)]] < e,
a contradiction. O

REMARK 3.5. Let A be a unital C*-algebra. It is customary to
define the set of positive elements of A as

(3.10) At :={pe A| p=p" and Sp(p) C [0,00)}.
It is fairly easy to show that
(3.11) p,g€ AT, a,f€[0,00) = ap+ Bqe AT,

i.e. that A" is a convex cone in the real vector space of selfadjoint
elements of A — see Exercise 3.18 at the end of the lecture. Moreover,
the cone A" is “pointed”, in the sense that AT N (—=A") = {0}. (Or
in other words: if a selfadjoint element x € A is such that both x and
—x are in A", then = 0. This is indeed so, because z, —z € AT =
Sp(z) € [0,00) N (=00,0] = {0} = [|z|| = sup{|z| | z € Sp(z)} = 0.)

Note also that the spectral mapping theorem provides us with a rich
supply of positive elements in A. Indeed, if a is an arbitrary normal
element of A and if f : Sp(a) — [0,00) is a continuous function, then
the element f(a) is in A% (it is selfadjoint because f = f, and has
spectrum in [0, c0) by Theorem 3.4).
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Recall from Lecture 1 that a linear functional ¢ : A — C is declared
to be positive when it satisfies the condition ¢(a*a) > 0,V a € A. This
brings up the question of whether there is any relation between A* and
the set {a*a | a € A}. It is quite convenient that these two sets actually
coincide:

PROPOSITION 3.6. Let A be a unital C*-algebra, and consider the
set AT of positive elements of A (defined as in Equation (3.10) of the
preceding remark). Then

(3.12) A" ={a*a | a € A}.

PROOF. “C” Let p be in A", and define a = f(p) (functional cal-
culus) where f is the square root function on the spectrum of p. Then
the properties of functional calculus immediately give us that a = a*

(coming from f = f) and that a*a = a* = (f?)(p) = p.
“>” Fix an a € A, for which we want to prove that a*a € A". It is
clear that a*a is selfadjoint, the issue is to prove that Sp(a*a) C [0, 00).
Consider the functions f, g : Sp(a*a) — [0, 00) defined by

f(t) :=max(0,t), ¢g(t):=max(0,—t), ¢t € Sp(a“a),

and denote f(a*a) =: x, g(a*a) =: y. We have that z,y € A" (cf. the
second paragraph of Remark 3.5). The properties of functional calculus
also give us that

(3.13) r—y=aa, xy=yxr=0>0.
Consider now the element b := ay € A. We have (by direct calcu-
lation and by using (3.13)) that

b*'b =ya“ay = y(x —y)y = —yS.

Since y € AT, it is immediate by functional calculus that y3 € AT;
hence it follows that b*b € —AT. We leave it as an exercise to the
meticulous reader to go through the details of why “b*b € —A™” implies
“b = 0" — cf. Exercise 3.20 at the end of the lecture. Here we will
assume that this is proved, and will finish the argument as follows:

v =-bb=0 = {f|teSpy)}=Sp(y”) = {0}
= Sp(y) = {0}
= l|ly|| = sup{|t| | t € Sp(y)} = 0.

So we found that y = 0, and therefore a*a =z —y =2 € A*. O
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C*-probability spaces

DEFINITION 3.7. A C*-probability space is a x-probability space
(A, ¢) where A is a unital C*-algebra.

Let us note that in the C*-framework, the expectation functional
is automatically continuous. More precisely, we have:

PROPOSITION 3.8. Let (A, ) be a C*-probability space. We have
that

(3.14) lo(a)| < lal|, ¥V ae€ A

PRrROOF. We first pick an arbitrary element p € AT. We know that
©(p) € [0,00) (by Proposition 3.6 and the positivity of ¢). We claim
that:

(3.15) e(p) <|lpll-

Indeed, we have (by Theorem 3.1.1 and Equation (3.10) of Remark 3.5)
that

Sp(p) C {z € C | |z[ < pl[} N[0,00) = [0, ||p[ ]
As a consequence, we can use functional calculus to define the ele-
ment b := (||p|| — p)/? € A (or more precisely, b := f(p) where
f € C(Sp(p)) is defined by f(t) = (l]pl] —¢)"* t € Sp(p)). It is
immediate that b = b* and that p + b? = ||p|| - 1.4; therefore

[Ipl] = ¢(p) = @ (b"b) = 0,
and (3.15) is obtained.
Now for an arbitrary a € A we have
[p(a)] = [e(1 - a)l
< ¢(a*a)**  (by Cauchy-Schwarz — cf. Lecture 1)
< ||a*al|*/? (by (3.15), where we take p = a*a)
= |lal| (by (3.2)).
O
REMARK 3.9. The following partial converse of Proposition 3.8 is
also true: Let A be a unital C*-algebra. Let ¢ : A — C be a linear
functional such that |p(a)| <||al|, V a € A, and such that p(14) =1

(where 14 is the unit of A). Then ¢ is positive, and hence (A4, ¢) is a
C*-probability space. See Exercise 3.21 at the end of the lecture.

ExaAMPLE 3.10. Let €2 be a compact Hausdorff topological space,
and let ;1 be a Radon probability measure on the Borel g-algebra of €.
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(Asking the probability measure p to be “a Radon measure” amounts
to requesting that for every Borel set A C {2 one has

pu(A) =sup{u(K) | K C A, compact} =inf{u(D) | D D A, open}.

In many natural situations — when € is a compact metric space, for
instance — one has that every probability measure on the Borel o-
algebra of (2 is actually a Radon measure.)

Consider the algebra A = C(Q2) of complex-valued continuous func-
tions on €2, and let ¢ : A — C be defined by

(3.16) o(f) = /Q fdu feA

Then (A, ) is a C*-probability space. All the elements of A are nor-
mal. The functional calculus with continuous functions for an element
a € A is reduced in this case to performing a functional composition —
see Exercise 3.22 below.

There are two important theorems in functional analysis which are
worth being reminded in connection to this example. First, a basic the-
orem of Riesz states that every positive linear functional on C(2) can
be put in the form (3.16) for an appropriate Radon probability mea-
sure u. Secondly, a theorem of Gelfand states that every commutative
unital C*-algebra A can be identified as C'(€2) for a suitable compact
Hausdorff space ). Hence the example presented here is the “generic”
one, as far as commutative C*-probability spaces are concerned.

In non-commutative examples, C*-algebras appear most frequently
as *-subalgebras A C B(H) (H Hilbert space), such that A is closed in
the norm-topology of B(H). We present here the example of this kind
which is the C*-counterpart of Example 1.4.4 from Lecture 1.

ExAMPLE 3.11. Let G be a discrete group, and let A : G —
B(I*(G)) be its left regular representation. This is defined by
the formula

(317) )\(g)gh = fg}u v ga h € G7

where {&, : h € G} is the canonical orthonormal basis of [?(G). (That
is: every A(g) is a unitary operator on [*(G), which permutes the or-
thonormal basis {¢, : h € G} according to the formula (3.17).) It is not
hard to show that the operators (A(g) )4ec are linearly independent,
and that their linear span is a unital *-algebra of B(I*(G)), isomor-
phic to the group algebra CG from Example 1.4.4 of Lecture 1. (See
Exercise 3.24 below.) The closure in the norm-topology:

@) =l span{A(g) : g € G} )
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is then a unital C*-algebra of operators on [?(G); it is called the re-
duced C*-algebra of the group G.

Let e be the unit of G and let & be the corresponding vector in
the canonical basis of [>(G). Let 7 be the vector-state defined by &, on

C:ed<G):
(3.18) T(T) =(T&, &), T € Cry(G).
Then (C?,,(G), 7) is an example of C*-probability space.

Let us observe that when 7' is the image of » s @99 € CG via the
canonical isomorphism CG ~ span{\(g) | g € G} C C* (@), then we
get

7(T) = <(Z ag)‘(g))éeuge> = <Z@g€gufe> = Q.

So, via natural identifications, 7 extends the trace 7 on CG which
appeared in Example 1.4.4 of Lecture 1. Thus, in a certain sense,
(Cr4(G),7) is an upgrade of (CG, 7¢) from the *-algebraic framework
to the C*-algebraic one.

Moreover, the C*-probability space (C¥,,(G), T) turns out to keep
the pleasing features which we trust that the reader has verified (in the
course of solving the Exercise 1.5 of Lecture 1) for the canonical trace

on CG. That is, we have:

PROPOSITION 3.12. In the framework of the preceding example, the
functional T is a faithful trace on C* ,(G).

red
PRrOOF. The traciality of 7 is immediate. Indeed, since 7 is con-
tinuous (by Proposition 3.8) and since the linear span of the operators
{\(g) : g € G} is dense in C, ,(G), it suffices to check that

(3.19) T(A(g1) - AMg2) ) = 7(M(g2) - A(g1) ), Y g1,92 € G.

But (3.19) is obviously true — both its sides are equal to 1 when g; =
gy "', and are equal to 0 otherwise.

In order to prove that 7 is faithful on C* ,(G), it is convenient that
(in addition to the left-translation operators A(g)) we look at right-
translation operators on I*(G). So, for every g € G let us consider
the unitary operator p(g) on [*(G) which permutes the canonical basis

(&1)neq according to the formula:

p(9)én = &ng-1, h € G.

Then p : G — B([*(G)) is a unitary representation, called the right
regular representation of G. It is immediately verified that the left and
the right translation operators commute with each other:

(3.20) p(9)AMg) = AMd')plg), V9,9 €G.
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If in (3.20) we fix an element g € G and make linear combinations
of the operators A(g’), followed by approximations in norm, we obtain
that

(3.21) p(g)T =Tp(g), VgeG, VT € CruyQ).
Now, let T' € C*_,(G) be such that 7(T*T") = 0. Since

red
7(T*T) = (T*TE, &) = |ITE|)%,
we thus have that T¢, = 0. But then for every g € G we find that

T& =T(plg ")) = plg™NTE) = p(g™") - 0=0.

(The second equality follows by Eqn.(3.21).) So T vanishes on the
orthonormal basis (§,),ec¢ of [*(G), and this implies that T = 0. O

x-distribution, norm and spectrum for a normal element

PROPOSITION 3.13. Let (A, @) be a C*-probability space, and let a
be a normal element of A Then a has a x-distribution p in analytic
sense (as described in Definition 1.8 of Lecture 1). Moreover:

1) The support of p is contained in the spectrum of a.
2) For f € C(Sp(a)) we have the formula

(3.22) /fdu w(f(a)),

where on the right-hand side f(a) € A is obtained by functional calcu-
lus, and on the left-hand side p is viewed as a probability measure on

Sp(a).

PrOOF. Let @ : C(Sp(a)) — A be the functional calculus for a,
as in Theorem 3.1.2 (®(f) = f(a), for f € C(Sp(a))). Then g o & :
C(Sp(a)) — C is a positive linear functional, so by the theorem of
Riesz mentioned in Example 3.10 there exists a probability measure u
on the Borel o-algebra of Sp(a) such that

(3.23) (0o ®)(f) = / fdu, ¥ feC(Spla)).

If we set f in (3.23) to be of the form f(z) = 22" for some m,n > 0,
then ®(f) = a™(a*)" (cf. Remark 3.2.2), and (3.23) gives us that

(3.24) e(a™(a)") = / 2MZ" du(z), ¥ m,n>0.
Sp(a)

Of course, the measure p of (3.23), (3.24) can also be viewed as a
compactly supported measure on C, with supp(u) C Sp(a). In this in-
terpretation, (3.24) tells us that u is the x-distribution of a, in analytic
sense, while (3.23) becomes (3.22). O
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COROLLARY 3.14. Let (A, @) be a x-probability space. If (A, )
admits a representation on a Hilbert space (in the sense of Definition
1.6 of Lecture 1), then every normal element of A has a *-distribution
i analytic sense.

ProOOF. The existence of representations means in particular that
we can find a C*-probability space (B, 1) and a unital x-homomorphism
® : A — B such that 1 o ® = . For every normal element a € A, it
is clear that b := ®(a) is a normal element of B; hence, by Proposition
3.13, b has a x-distribution g in analytic sense. But then for every
m,n > 0 we can write:

p(a™(@)") = p(@(a™(a")")) = p(b™(b")") = /ZmZ" dp(z),
which shows that p is the *-distribution of a as well. U

In the rest of this section we look at some additional facts which can
be derived for a C*-probability space where the expectation is faithful.

PROPOSITION 3.15. Let (A, ) be a C*-probability space such that
@ is faithful. Let a be a normal element of A, and let u be the *-
distribution of a in analytic sense. Then the support of i is equal to

Sp(a).

PrOOF. The inclusion “C” was observed in Proposition 3.13, so we
only have to prove “2”. Let us fix an element A € Sp(a), and assume
by contradiction that A ¢ supp(p). Since C\ supp(p) is an open set of
p-measure 0, it follows that we can find » > 0 such that u( B(\;7)) =0,
where B(A\;r) :={z € C| |z — Al <r}. Let f:Sp(a) — [0,1] be a
continuous function such that f(A) = 1 and such that f(z) = 0 for all
z € Sp(a) with |z — A| > r (e.g. f(2) = max(0,1 — |A — z|/r) will do);
and let us define b := f(a) € A, by functional calculus. The property

(i) appearing in Theorem 3.1.2 gives us that ||b|| = 1, so in particular
we know that b # 0. On the other hand we have that
©0(b*b) = p(b?) (since f = f, which implies b = b*)

/f2 du (since b* = f*(a), and by Prop. 3.13)

< / L dp,
B(\;r)

with the last inequality holding because f? is bounded above by the
characteristic function of B(\;r). We thus get

p(b"b) < u(B(A;r)) =0,
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and this contradicts the faithfulness of . U

REMARK 3.16. The above proposition can be read as follows: if
(A, p) is a C*-probability space such that ¢ is faithful, and if a is a
normal element of A, then the knowledge of the *-distribution u of a
allows us to compute the spectrum of a, via the formula

(3.25) Sp(a) = supp(n).

Note that the knowledge of p will then also give us the norm of a —
indeed, from (3.25) and the Equation (3.6) of Remark 3.3.1 it follows
that

(3.26) lal] = sup{[2| | = € supp(p)}-

The following proposition indicates another (more direct) way of com-
puting the norm of a from combinatorial information on *-moments.

PROPOSITION 3.17. Let (A, ) be a C*-probability space such that
@ 1is faithful. For every a € A (normal or not) we have that

(3.27) lall = lim o (a"a)" )2
ProOOF. Equivalently, we have to show that
(3.28) [Ipll = lim o(p™)"/",
where p := a*a € A" and where we used the C*-axiom (3.2). An

immediate application of functional calculus shows that p" € A",V n >
1; so the sequence appearing on the right-hand side of Equation (3.28)
consists of non-negative numbers. Note also that for every n > 1 we
have:

(P < (J]p")M" (by Proposition 3.8)
< (Ilpl[™ )" (by Equation (3.1))
= [pl]-

So what we actually have to do is to fix an a € (0, ||p||), and show that
o(p™)Y™ > a if n is sufficiently large.

Now, we have that Sp(p) C [0, ||p||] (same argument as in the proof
of Proposition 3.8). Moreover, from the Remark 3.3.1 we infer that
llp|| € Sp(p). Let p be the *-distribution of p, in analytic sense. Then
l|p|| € supp(i) (by Proposition 3.15), and it follows that we have

(3.29) u(18,[lpll) >0, v 0 <8 <|lpll.

For the number a € (0,||p||) which was fixed above, let us choose
a (€ (o,]|p||) (for instance 8 = (a + ||p||)/2 will do). Then we can
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write, for every n > 1:

) = " du(t) > " du(t) > g™ u([B, .
o) /Sp(p) () /SPW,H,,] u(t) > 6" - (16, 1p11])

(The first equality follows by Proposition 3.13.2).) Hence

(3.30) P > 8- u( 18, (Il V=1,

and the right-hand side of (3.30) exceeds o when n is sufficiently large

(since (3.29) implies that u([3, ||p|]])"/™ — 1 as n — o0). O
Exercises

The Exercises 3.18 — 3.20 are filling in the details left during the
discussion on positive elements of a C*-algebra (cf. Remark 3.5, proof
of the Proposition 3.6).

EXERCISE 3.18. Let A be a unital C*-algebra.
1) By using functional calculus, prove that if x is a selfadjoint ele-
ment of A and if a € R is such that o > ||z||, then we have

lla — 2| = a — inf(Sp(z) ).

2) By using the formula found in part 1 of the exercise, prove that
if x,y are selfadjoint elements of A, then

inf(Sp(z +y)) = inf(Sp(z) ) + inf(Sp(y) ).

3) Consider the set A" of positive elements of A (defined as in
Equation (3.10) of Remark 3.5). Prove that if p,q € AT and if o, 3 €
[0,00), then ap + g € A*.

EXERCISE 3.19. Let A be a unital C*-algebra and let a,b be ele-
ments of A. Prove that Sp(ab) U {0} = Sp(ba) U {0}.
[This exercise is a version of the exercise, usually given in a basic algebra
course, which goes as follows: for a,b elements of a unital ring, prove
that 1 — ab is invertible if and only if 1 — ba is invertible.]

EXERCISE 3.20. Let A be a unital C*-algebra, and let b € A be
such that Sp(b*b) C (—o0,0]. The goal of this exercise is to draw the
conclusion that b = 0.

1) Prove that b*b+bb* € — A" (where AT is defined as in Equation
(3.10) of Remark 3.5).

[Hint: One has —b*b € A" by hypothesis and —bb* € AT due to the
Exercise 3.19. Then use Exercise 3.18.]

2) Let x := (b+b*)/2 and y := (b — b*)/2i be the real and the
imaginary part of b. Verify that b*b + bb* = 2(2? + 4?), and conclude
from there that 2% + y*> € AT N (—A").
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3) Prove that b = 0.

EXERCISE 3.21. 1) Let K be a non-empty compact subset of [0, o),
and consider the algebra C'(K') of complex-valued continuous functions
on K. Suppose that ¢ : C(K) — C is a linear functional such that
(NI < (| flles, ¥ f € C(K), and such that ¢(1c)) =1 (where 1k,
is the function constantly equal to 1). Let h be the function in C'(K)
defined by h(t) =t, for t € K. Prove that ¢(h) > 0.

[Hint: In order to verify that ¢(h) € R look at functions of the form
h +ialek), @ € R. Then in order to verify that ¢(h) > 0 look at
functions of the form h — aleky, o € [0,00) ]

2) Let A be a unital C*-algebra. Let ¢ : A — C be a linear
functional such that |p(a)| < ||a]|, V a € A, and such that ¢(14) = 1.
Prove that ¢ is a positive functional, and hence that (A, ) is a C*-
probability space.

[Hint: Given p € A", observe that the inequality ¢(p) > 0 can be
reduced to the statement of part 1, by using functional calculus for the
element p.|

EXERCISE 3.22. Consider the framework of Example 3.10 (A =
C(€2), where Q is a compact Hausdorff space).

1) Show that for every a € A we have that Sp(a) = {a(w) | w € Q}
(i.e, it is the range of a when a is a viewed as a function from (2 to C).

2) Let a be an element in A, and let f be a function in C'(Sp(a) ).
Note that, due to the part 1 of this exercise, it makes sense to define
the composition foa:Q — C, by (foa)(w) = f(a(w)), w € Q. Prove
that the functional calculus with continuous functions for a € A gives
the equality f(a) = foa.

EXERCISE 3.23. Let A and B be unital C*-algebras, and let ¥ :
A — B be a unital *-homomorphism. Let a be a normal element of A,
and denote W(a) =: b (so b is a normal element of B).
1) Observe that Sp(b) C Sp(a).
2) Let f be a function in C'(Sp(a)), and denote the restriction of f
to Sp(b) by f,. Prove that U(f(a)) = f,(b). [In other words: prove the
“commutation relation ¥(f(a)) = f(\I/( )", for f € C(Sp(a).]

EXERCISE 3.24. Consider the framework of Example 3.11 (where A
is the left regular representation of a discrete group G).

1) Let ¢1,..., g, be some distinct elements of G, let a1, ..., a, be
in C, and consider the operator T'= Y"" | a;A(g;) € B(I*(G) ). Verify
the equality ||T¢|* = >0, il

2) By using the part 1 of the exercise, prove that the family of
operators (\(g))yec is linearly independent in B(1*(G)).






LECTURE 4

Non-commutative joint distributions

The discussion of the concept of joint distribution is a point where
things really start to have a different flavor in non-commutative prob-
ability, compared to their classical counterparts. To exemplify this,
let us look for instance at the situation of selfadjoint elements in *-
probability spaces. During the discussion made in Lecture 1 the reader
has probably sensed the fact that, when taken in isolation, such an
element is more or less the same thing as a classical real random vari-
able — it is only that we allow this real random variable to live in a
fancier (non-commutative) environment. Thus studying the distribu-
tion of one selfadjoint element in a *-probability space is not much of
a departure from what one does in classical probability. In this lec-
ture we will observe that the situation really becomes different when
we want to study at the same time two or more selfadjoint elements
which do not commute, and we look at the joint distribution of these
elements.

Besides introducing the relevant definitions and some examples, the
present lecture brings up only one (simple, but important) fact: the
class of isomorphism of a x-algebra/C*-algebra A is determined by
the knowledge of the joint *-distribution of a family of generators,
with respect to a faithful expectation functional ¢ : A — C. This is
significant because it opens the way, at least in principle, to studying
isomorphisms of C*-algebras by starting from combinatorial data on
x-moments of generators.

Joint distributions

NOTATIONS 4.1. Let s be a positive integer.

1) We denote by C(Xj,...,X,) the unital algebra freely gener-
ated by s non-commuting indeterminates X, ..., X,;. More concretely,
C(Xjy,...,X) can be described as follows: The monomials of the form
X Xpy oo+ X, wheren > 0and 1 < 7rq,...,7, < s give a linear ba-
sis for C(X7, ..., X;), and the multiplication of two such monomials is
done by juxtaposition.

59
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2) Let A be a unital algebra, and let a;,...,as be elements of
A. For every P € C(Xy,...,X,) we will denote by P(ay,...,as) the
element of A which is obtained by replacing X1, ..., X, with aq, ..., as,
respectively, in the explicit writing of P. Equivalently,

(41) (C<X1,...,XS>9P|—>P(a1,...,a5>€./4

is the homomorphism of unital algebras uniquely determined by the
fact that it maps X, to a,, for 1 <r <.

DEFINITION 4.2. Let (A,¢) be a non-commutative probability

space, and let aq, ..., as be elements of A.
1) The family
(4.2) {p(ap, -+a,):n>1,1<r;....r <s}
is called the family of joint moments of a4, ..., as.
2) The linear functional p : C(X7, ..., X,) — C defined by
(4.3) w(P) :=p(Play,...,a5) ), PeC(Xy,...,X;)

is called the joint distribution of ay,...,a, in (A, ).

The joint distribution of aq, ..., as is thus determined by the fact
that it maps every monomial X,, --- X, into the corresponding joint
moment, ¢(a,, -+-a., ), of a, ..., as.

REMARK 4.3. It is clear that the above definitions can, without
any problems, be extended to the case of an arbitrary family (a;);es
of random variables. (I is here an index set which might be infinite,
even uncountable.) The joint distribution of (a;);cs is then a linear
functional on the unital algebra C(X; |7 € I), which is freely generated
by non-commuting indeterminates X; (i € I). We leave it to the reader
to write down the exact wording of Definition 4.2 for this case.

ExXAMPLES 4.4. 1) Let (2, Q, P) be a probability space, and let
fi,.., fs : & — R be bounded random variables. Then fi,..., f;
are at the same time elements of the non-commutative probabil-
ity space LOO(Q P) appearing in Example 1.4.1 of Lecture 1 (with

= [palw ) for a € L*>(, P)). The joint distribution pu
of fl, .o, fsin LOO(Q P) is determined by the formula:

(44) :U’( ry " rn /fm frn ) (w)7

holding for every n > 1 and 1 < ry,...,7, < s.
In this particular example, there exists a parallel concept of joint
distribution of fi,..., f; coming from classical probability: this is the
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probability measure v on the Borel o-algebra of R® which has, for every
Borel set £ C R*:

(45)  v(E)=P({w e Q: (AW)..... fw) € E}).

(Note that the assumption that fi,..., fs are bounded makes v be
compactly supported.) The functional p of Equation (4.4) is closely
related to this probability measure. Indeed, an argument very similar

to the one shown in Example 1.11.1 of Lecture 1 gives us that for every
ki,...,ks > 0 we have:

/st’fl- thdu(ty, ... t) /fl o folw)*dP(w);

this implies that the above Equation (4.4) can be written as

(4.6) M(XTI---XTH):/ ty ot dulty, ... ty)

(form>1and 1 <ry,...,r, <s).

It is clear that the probability measure v is better suited for study-
ing the s-tuple (fi, ..., fs) than the functional g on C(X7, ..., X,); this
is not surprising, since the concept of non-commutative joint distribu-
tion is not meant to be particularly useful in commutative situations.
However, what one should keep in mind in this example is that the
non-commutative joint distribution for fi,..., fs is an algebraic (albeit
clumsy) incarnation of its classical counterpart.

2) Let d be a positive integer, and consider the *-probability space
(M4(C), tr) from Example 1.4.2 (the normalized trace on complex d x d
matrices). Let Ay, Ay € M4(C) be Hermitian matrices. Their joint
distribution p : C(Xy, X3) — C is determined by the formula

(X - X ) =tr(A, - A), Vn>1, V1<r,...,r, <2

Unless A; and A, happen to commute, the functional p cannot be
replaced by a simpler object (like a probability measure on R?) which
records the same information.

EXAMPLE 4.5. Let (A, ¢) be a x-probability space, and let =,y be
selfadjoint elements of A. For every n > 1 one can expand (z + y)" as
a sum of 2" non-commutative monomials in x and y (even though, of
course, the usual binomial formula doesn’t generally apply). As a con-
sequence, the moments ¢( (x+y)™ ), n > 1 (and hence the distribution
of z + y) are determined by the knowledge of the joint distribution of
x and y.

On the other hand it is quite clear that, for x and y as above,
just the knowledge of what are the individual distributions of x and
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of y will not generally suffice in order to determine the distribution of
x 4+ y. In the remaining of this example we point out how this can be
nicely illustrated in the situation of the group algebra (Example 1.4.4
of Lecture 1).

Let G be a group and let g,h € G be two elements of infinite
order. Consider the %-probability space (CG,7¢), as in Example 1.4.4
of Lecture 1. Recall that CG has a canonical linear basis indexed by G;
the elements of this basis are denoted by the same letters as the group
elements themselves, and they are unitaries in CG. Thus we have in
particular that g, h € CG, and that ¢g* = g%, h* = h™L.

As observed in Lecture 1 (cf. Remark 1.13) each of g and h be-
comes a Haar unitary in (CG, 74); as a consequence of that, each of
the selfadjoint elements « := g + ¢~ and y := h + h~! has an arcsine
distribution (cf. Lecture 1, Example 1.14).

So, if in the framework of the preceding paragraph, we look at the
element

(4.7) A=r+y=g+g ' +h+h'eCaq,

then A will always be a sum of two selfadjoint elements with arcsine
distributions. Nevertheless, the distribution of A is not uniquely de-
termined, but will rather depend on what group G and what elements
g, h € G we started with. A way of understanding how the distribution
of A relates to the geometry of the group G goes by considering the
subgroup of G generated by ¢ and h, and by looking at closed walks in
the corresponding Cayley graph — see Exercise 4.15 below (which also
contains the relevant definitions). In order to try one’s hand at how
this works in concrete situations, the reader could consider for instance
the situations when

(1) G =72 with g = (1,0) and h = (0,1), or

(2) G is the non-commutative free group on two generators, G = F,
and g, h are two free generators of .

In the situation (1) the corresponding Cayley graph is the lattice
72, and the counting of closed walks which yields the moments of A is
quite straightforward (see Exercise 4.16 at the end of the lecture). The
formula which is obtained is

0 ifnisodd
(4.8) TZQ(A”)_{ 2 o0

(2;’) if n is even, n = 2p.

In the situation (2), the Cayley graph which appears is a tree (i.e.
a graph without circuits), and the counting of closed walks which gives
the moments of A is a well-known result of Kesten. One obtains a
recurrence relation between moments, which can be expressed concisely
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as a formula giving the moment generating series:

> 2v/1—1222 — 1
(4.9) S 7, (A" = -
n=0

e L TAF 28 23220 4
Among the several possible derivations of the formula (4.9), there is one
which illustrates the methods of free probability — this is because in the
situation (2) the elements x = u + u* and y = v + v* of CFy will turn
out to be freely independent (in a sense to be defined precisely in the
next Lecture 5), and consequently one can put to use the technology for
computing the distribution of a sum of two freely independent elements
— see Example 12.8 in Lecture 12.

Joint *-distributions

REMARK 4.6. Let (A, ¢) be a x-probability space and let a be an
element of A. By looking at what is the *-distribution of a in algebraic
sense (Definition 1.17 in Lecture 1), we see that this really is the same
thing as the joint distribution of a and a*, with the only difference
that we re-denoted the indeterminate X, of C(Xy, X5) by X7, and we
used this notation to introduce a *-operation on C(X;, X5). It will be
convenient to have this formalism set up for tuples of elements as well.
We thus introduce the following notations.

NOTATIONS 4.7. Let s be a positive integer.

1) We denote by C(X;, X7,..., X, X7) the unital algebra freely
generated by 2s non-commuting indeterminates Xi, X7,..., X, X}
(this is the same thing as C(Xj,..., Xys) but where we re-denoted
Xoi1,---,Xos as X7, ..., X7, respectively). C(Xy, X7, ..., X, X?) has
a natural x-operation, determined by the requirement that the x-
operation applied to X, gives X, for 1 <r <s.

2) Let A be a unital *-algebra and let aq,...,as be elements of A.
For every @ € C(X;y, X7,..., X, XJ) we will denote by Q(ay,...,as)
the element of A which is obtained by replacing X; with a;, X} with
ai, ..., Xswith ag, X7 with a? in the explicit writing of (). Equivalently,
(4.10) C(X1,X],..., X, X)) 2Q — Q(ay,...,as) € A
is the unital x-homomorphism uniquely determined by the fact that it
maps X, to a,, for 1 <r <s.

DEFINITION 4.8. Let (A, p) be a #-probability space, and let

ai,...,as be elements of A.
1) The family

€1, .. 4En) . nzl lsm,...,mss }
(4.11) {w(am a) €1,...,6n € {1, %}
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is called the family of joint *-moments of a4, ..., as.
2) The linear functional p : C(X1, X7, ..., X5, X)) — C defined by

(4.12) w(@Q) = e(Qa,...,as)), Q€ C(Xy,X],..., X, X))
is called the joint #-distribution of ay,...,as in (A, ¢).

In a certain sense, the main goal of this monograph is to study
joint x-distributions which appear in connection to the framework of
free independence. This means in particular that many interesting ex-
amples will come into play once we arrive to discuss free independence
(starting with the next lecture, and going throughout the rest of the
book). For the time being let us have a quick look at an example which
(by adjusting the corresponding name from C*-theory) could be called
“the x-algebra of the rotation by 6”.

EXAMPLE 4.9. Let 6 be a number in [0, 27]. Suppose that (A, ¢)
is a x-probability space where the x-algebra A is generated by two
unitaries uy, up which satisfy
(4.13) uiug = euguy,

and where ¢ : 4 — C is a faithful positive functional such that

419 ot = {

We will discuss later in this lecture about why such a x-probability
space does indeed exist; right now let us assume it does, and let us
make some straightforward remarks about it. Observe that from (4.13)
we get

1 ifm=n=0

0 otherwise, for m,n € Z.

(4 15) (uTug) ) (uzljug) = e—z:npa(u?%tpugﬂ) m.n €7
' (wirug) = e (uy M), '

This in turn implies that
(4.16) A = span{uf*ul : m,n € Z}

(since the right-hand side of (4.16) is, as a consequence of (4.15), a
unital x-algebra which contains u; and wug). In particular this shows
that the linear functional ¢ is completely described by the Equation
(4.14). Another fact which quickly follows is that ¢ is a trace. Indeed,
the verification of this fact reduces to checking that for every m,n,p,q €
7 we have

p((uf'ug) - (uyu3) ) = @( (uiu3) - (ui'uy) );
but (from (4.14) and (4.15)) both sides of this equation are equal to

e~™"% when (p,q) = —(m,n), and are equal to 0 in all the other cases.
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Let p @ C(X1, X7, Xo, X3) — C be the joint *-distribution of the
unitaries u; and up. Then for every n > 1 and rq,...,7, € {1,2},
€1,...,6n € {1, %}, the value of  on the monomial X7!--- X" is ei-
ther 0 or of the form e*’ for some k € Z. More precisely: an im-
mediate computation (left to the reader) shows that p(X;!--- X;") is
non-zero precisely when the number of X;’s appearing in the sequence
X;1, ..., Ximis equal to the number of X{’s appearing in the sequence,
and same when counting X»’s and X;’s. In the case when the latter
conditions are fulfilled, we get that

5 enY _ ik6
(417) M(Xrll T Xrn) =,

where £ € 7Z can be interpreted as the oriented area enclosed by a
suitably traced walk on the lattice Z? — see Exercise 4.17 at the end of
the lecture.

Joint x-distributions and isomorphism

THEOREM 4.10. Let (A, ) and (B,1) be x-probability spaces such
that ¢ and v are faithful. We denote the units of A and of B by 14
and lg, respectively. Suppose that aq,...,as € A and by,...,by € B
are such that:

(i) ay,...,as and 14 generate A as a *x-algebra.

(i) by, ..., bs and 1g generate B as a *-algebra.

(i1i) The joint x-distribution of ai,...,as in (A, p) is equal to the
joint x-distribution of by, ..., bs in (B,1)).

Then there exists a *-isomorphism ® : A — B, uniquely deter-
mined, such that ®(ay) = by, ..., ®(as) = bs. This O is also an isomor-
phism between (A, @) and (B,1), i.e. it has the property that od® = .

PROOF. Observe that the hypotheses (i) and (ii) amount to

A={P(a1,...,a5) : P € C(Xy, X],..., X, X}
(4.18)
B={P(by,...,bs) : P e C(Xy,X7,..., X, X])}

(since on the right-hand sides of the Equations (4.18) we have unital

x-subalgebras of A and of B which contain aq,...,as and by, ..., b;,
respectively).

Let p @ C(Xy,X{,..., X5, X}) — C be the common joint x-
distribution of ay,...,as and of by,...,bs. From the definition of u

and the fact that the functionals ¢ and ¢ are faithful, it is immediate
that for P,Q € C(X;, X7, ..., X, XZ) we have:

Play,...,a) = Q(ar,...,a5) &  p((P-Q)(P-Q))=0
& Pb,....b) =Q(by,....b).
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As a consequence, it makes sense to define a function ® : A — B by
the formula

O( Plar,...,a5) ) = P(bi,...,b)), PeC(Xy, X5 .. X, X7,

and moreover this function is bijective. Indeed, from the equivalences
observed above it follows that the definition of ® is coherent and that
® is injective, whereas the Equations (4.18) imply that ® is defined on
all of A and it is surjective.

The formula defining ® clearly implies that & is a unital *-
homomorphism and that ®(a,) = b,, 1 < r < s. Moreover, we have
that ¢ o ® = ¢ — indeed this amounts to the equality

( P(br,...,b) ) = o( Plar,...,a5) ), ¥ PeC(X,X5,... X, X5,

which is true, since both its sides are equal to u(P). The uniqueness
of ® with the above properties is clear. U

We now upgrade the preceding theorem to the framework of a
C*-probability space. What is different in this framework is that, if
ai,...,as generate A as a unital C*-algebra, then the polynomials
P(ay,...,as) (with P € C(Xy, XT,..., X5, X})) do not necessarily ex-
haust A, they will only give us a dense unital x-subalgebra of A. But
this issue can be easily handled by using a norm-preservation argument.

THEOREM 4.11. Let (A, @) and (B,1) be C*-probability spaces such
that ¢ and v are faithful. We denote the units of A and of B by 14
and lg, respectively. Suppose that aq,...,as € A and by,...,by € B
are such that:

(i) ai,...,as and 14 generate A as a C*-algebra.

(11) by, ..., bs and 1 generate B as a C*-algebra.

(111) The joint *-distribution of ay,...,as in (A, ) is equal to the
joint x-distribution of by, ..., bs in (B,1).

Then there exists an isometric x-isomorphism ® : A — B, uniquely
determined, such that ®(a1) = by,...,P(as) = bs. This ® is also an
isomorphism between (A, ) and (B,1), i.e. it has the property that

Yod=p.
PROOF. Let us denote
Ao :={P(ay,...,as): P € C(X1,X],..., X5, X1},

and

By :={P(by,...,bs) : P e C(Xy,X],..., X, X))}
It is clear that Ajp is a unital *-subalgebra of A, and the hypothesis (i)
of the theorem gives us that 4, is dense in A in the norm topology.
(Indeed, it is immediate that the closure of Ay in the norm topology
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is the smallest unital C*-subalgebra of A which contains ay, ..., as.)
Likewise, we have that By is a dense unital x-subalgebra of B.

The s-probability spaces (Ao, ¢|A¢) and (By,1|By) satisfy the hy-
potheses of Theorem 4.10 (with respect to the given ay,...,as and
bi,...,bs). So from that theorem and its proof we know that the map
dy : Ay — By defined by

Oo( Pay,...,a5)) = P(by,...,b,)

(where P runs in C(Xy, X7,..., X, X¥)) is an isomorphism of -
probability spaces between (A, ¢|.Ag) and (Bo, 1|By).

The point of the proof is to observe that the map & is isometric
on Ay, i.e. that for every P € C(X1, X7, ..., X, XI) we have

(4.19) 1P(ar, ... as)|[a = [|P(b1, ..., bs)][5.
Indeed, given a polynomial P € C(Xy, X7,..., X, X[), we compute:
[|P(a,...,as)||la= nh—{EO o( (P(ay,...,as)" Play, ... a))" )Y
= nh_}n(glo o( (P*P)"(ay,...,a,) )/
— lim u( (PP) )V,

n—oo
where g denotes the common joint *-distribution of a4,...,as and of
bi,...,bs, and where at the first equality sign we used the Proposition

3.17 from the preceding lecture. Clearly, the same kind of calculation
can be done for the norm ||P(by,...,bs)||s, and (4.19) follows.

Now, a standard argument of extension by continuity shows that
there exists a unique continuous function ® : A — B such that
®| Ay = ®g. The properties of &y of being a *-homomorphism and
of being isometric are immediately passed on to ®, by continuity. We
have that ® is one-to-one because it is isometric. The range of ® is com-
plete (being an isometric image of A), hence closed in B; since ran(®)
contains the dense *-subalgebra By of B, it follows that ran(®) = B,
hence that ® is onto. Thus ® has all the properties appearing in the
statement of the theorem. The uniqueness of ® follows from the fact
that, in general, a unital *-homomorphism defined on A is determined
by its values on ag, ..., as. O

REMARKS 4.12. 1) The kind of isomorphism which appeared in
Theorem 4.11 is the suitable one for the category of unital C*-algebras,
i.e. it includes the appropriate metric property of being isometric
(||®(a)||s = ||a|| 4, for every a € A). It is worth mentioning here that in
fact a bijective unital *-homomorphism between unital C*-algebras is
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always isometric (i.e. the metric property is an automatic consequence
of the algebraic ones). See Exercise 4.18 at the end of the lecture.

2) The Theorem 4.11 has a version where the families ay, .. ., as and
bi,...,bs consist of selfadjoint elements (of A and of B, respectively),
and where the hypothesis (iii) in the theorem is adjusted to require
that the joint distribution of aq,...,as in (A, ) is equal to the joint
distribution of by,...,bs in (B,%). In order to obtain this version of
the theorem one can either repeat (with trivial adjustments) the proof
shown above, or one can invoke the actual statement of Theorem 4.11
in conjunction with the (trivial) trick described in Exercise 4.19

3) Another possible generalization of the Theorem 4.11 is in the
direction of allowing the families of generators considered for A and B
to be infinite. The precise statement appears in the Exercise 4.20 at
the end of the lecture.

ExaAMPLE 4.13. We look again at the situation of Example 4.9,
but now considered in the C*-framework. So let 6 be a fixed number
in [0, 27]. Suppose that (A, ¢) is a C*-probability space where the C*-
algebra A is generated by two unitaries uy, us which satisfy Equation
(4.13), and where ¢ : A — C is a faithful positive functional satisfy-
ing Equation (4.14). Then exactly as in Example 4.9 we see that the
relations (4.15) hold, and imply that

(i) A = cl span{uf*ul | m,n € Z}

(where “cl span” stands for “norm-closure of linear span”), and

(ii) ¢ is a trace.

Now, the Theorem 4.11 implies that a C*-probability space (A, ¢)
as described in the preceding paragraph is uniquely determined up to
isomorphism. In particular, the isomorphism class of the C*-algebra
A involved in the example is uniquely determined; it therefore makes
sense (and it is customary) to refer to such an A by calling it the
C*-algebra of rotation by 6.

Of course, in order to talk about the C*-algebra of rotation by 6 one
must also show that it exists — i.e. one must construct an example of
C*-probability space (A, ¢) where ¢ is faithful and where the Equations
(4.13) and (4.14) are satisfied. In the remaining of this example we
show how this can be done.

Consider the Hilbert space [*(Z?), and denote its canonical or-
thonormal basis by {{mmn) : m,n € Z}. It is immediate that one
can define two unitary operators Uy, Uy on [2(Z?*) by prescribing their
action on the canonical orthonormal basis to be as follows:

Ulé.(m n) — f(m+1 n)
4.20 ’ —im ’ m,n € 2.
(4:20) { Usbmm) = € Emnt1);
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Let A be the C*-subalgebra of B(I?(Z?*)) which is generated by U; and
Us, and let ¢ : A — C be the vector-state defined by the vector £ );
that is,

(4.21) (1) = (T€o0 Eo00), T €A

From (4.20) it is immediate that U,Us = ¢?UsU; (indeed, both U U,
and €?UyU; send &gy t0 €70 (011 n11), for every m,n € Z). So in
order for the C*-probability space (A, ¢) to have the required proper-
ties, we are only left to check that ¢ is faithful.

Observe that even without knowing that ¢ is faithful, we can see
that it is a trace. This is checked exactly as in the Example 4.9,
where the Equation (4.16) is now replaced by the fact that A equals
cl span{U"Uy : m,n € Z}; the details of this are left to the reader.

Now suppose that 7" € A is such that p(7*71) = 0. Since (T*T) =
T 0,0)||?, we thus have that T¢( o) = 0. But then for every m,n,p,q €
Z we can write:

(T mm): Eg)) = (T(UT"UZ)E0,0), (UTUS)E0,0))
<(Ung)*T(U1mU2n)€(O,0)75(0,0)>

= o((UTU)" T(U7"U3))

= p((U"UN)(UTUS)T) (since ¢ is a trace)
= <(U{nU2n)(UfU§)*T5(O,0),f(o,o)>

=0 (because T¢,0) = 0).

Hence (T'¢(mn),&(pq)) = 0 for all m,n,p, q € Z, and this clearly implies
that 7' = 0 (thus completing the verification of the faithfulness of ).

Without going into any details, we mention here that the univer-
sality and uniqueness properties of the C*-algebra A of rotation by 6
can be obtained without taking the canonical trace ¢ : A — C as part
of our initial data (but then the arguments aren’t so simple as shown
above).

Exercises

The Exercises 4.14-4.16 are filling in some of the details remaining
from the discussion in Example 4.5.

EXERCISE 4.14. Let G be a group which is generated by two el-
ements g,h € G, both of infinite order and such that none of them
generates G by itself. Consider the s-probability space (CG,7s) and
the element A = g+ g~ '+ h+ h™' € CG (as in Example 4.5). Ver-
ify that 7¢(A) = 0, 7¢(A?) = 4, 7¢(A3%) = 0, but that the value of
76(A%) is not uniquely determined. (If you are on a bus and don’t
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have anything else to do, determine the minimal and maximal values
which 7¢(A?*) can have under the given hypotheses.)

EXERCISE 4.15. Consider the framework of Exercise 4.14, and
consider the Cayley graph of G with respect to the set of genera-
tors {g,g ', h,h='}. (The vertices of this graph are the elements
of GG, and two vertices ¢1,92 € G are connected by an edge of the
graph precisely when g; g, € {g,g7", h,h~'} — or equivalently, when
g5'g1 € {g,g7 %, h,h71}.) Prove that for every n > 1, the moment
7¢(A™) is equal to the number of closed paths of length n in the Cay-
ley graph, which begin and end at the unit element e of G.

EXERCISE 4.16. 1) Consider the framework of Exercises 4.14 and
4.15, where we set G = Z? and g = (1,0),h = (0,1). Observe that in
this case the Cayley graph of G with respect to the set of generators
{g,97%, h, h™'} is precisely the square lattice Z>.

2) Prove that the number of closed paths in the square lattice Z>
which have length n and which begin and end at (0,0) is equal to

0 ifnisodd
(2;)2 if n is even, n = 2p.

Observe that this implies the formula (4.8) stated in Example 4.5.

EXERCISE 4.17. Refer to the notations in the last paragraph of
Example 4.9. Given a positive integer n and some values ry,...,r, €
{1,2}, €1,...,6n € {1,%}, consider the n-step walk v in the lattice Z?
which starts at (0,0) and has its jth step (1 < j < n) described as
follows:

e if 7, =1 and ¢; = 1, then the jth step of 7 is in the direction East;

eif r; =1 and e; = —1, then the jth step of 7 is in the direction West;
o if r; =2 and ¢; = 1, then the jth step of v is in the direction North;
o if r; = 2 and £; = —1, then the jth step of v is in the direction South.

1) Prove that p(X:!---X:*) is different from 0 if and only if the
path 7 is closed (that is, v ends at (0,0)).

2) Suppose that 7 is closed. Verify the formula stated in Equation
(4.17) of Example 4.9, where k € Z denotes the signed area enclosed
by the path + that is, k is given by the contour integral

k:/xdy:—/yd:v.
v v

EXERCISE 4.18. 1) (Detail left from the Remark 4.12). Let A and
B be unital C*-algebras, and let ® : A — B be a bijective unital
s-homomorphism. Prove that ||®(a)||z = ||a||4, V a € A.
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2) (A generalization of part 1, which is used in Lecture 7). Let
A and B be unital C*-algebras, and let ® : A — B be a unital *-
homomorphism which is one-to-one. Prove that ||®(a)||zg = [|a||4,
Vae A

[Hint: Tt suffices to check that ||®(p)||s = ||p||a for p € AT. In part 1
this is because Sp(p) = Sp(®(p)). In part 2, one only has Sp(®(p)) C
Sp(p); but if it happened that ||®(p)|| < ||p||, then one could use the
functional calculus of p and the Exercise 3.23 to obtain a contradiction. |

EXERCISE 4.19. 1) Let (A, p) be a x-probability space, and let
ai, . ..,as be selfadjoint elements of A. Let p: C(X;,..., X,) — C be
the joint distribution of ay,...,as and let g : C(Xy, X7 ..., X, X)) —
C be the joint x-distribution of as,...,as (in (A,¢)). Prove the
relation g = p o II, where II is the unital homomorphism from
C(X1, X7 ..., X5, XI) to C(Xy,...,X;) uniquely determined by the
condition that II(X,) = II(X}) = X, for 1 <r <s.

2) By using the first part of this exercise, give a proof of the selfad-
joint version of Theorem 4.11 which is described in the Remark 4.12.

EXERCISE 4.20. (Generalization of the Theorem 4.11 to the case of
infinite families of generators). Let (A, ¢) and (B,1)) be C*-probability
spaces such that ¢ and v are faithful. We denote the units of A and
of B by 14 and 1g, respectively. Suppose that (a;);cr and (b;);cr are
families of elements of A and respectively of B, indexed by the same
index set I, such that:

(j) {ai :i € It U {14} generate A as a C*-algebra.

(3j) {bi :i € I} U {15} generate B as a generate B as a C*-algebra.

(jjj) For every finite subset {iy,...,is} of I, the joint x-distribution
of aj,,...,a;, in (A, p) is equal to the joint *-distribution of b;,, ..., b;,
in (B,).

Prove that there exists an isometric *-isomorphism & : A — B,
uniquely determined, such that ®(a;) = b; for every i € I. Prove
moreover that this @ is also an isomorphism between (A, ¢) and (B, ),
i.e. it has the property that ¢y o ® = ¢.

S

[Hint: Reduce these statement to the one of the Theorem 4.11, by con-
sidering the unital C*-subalgebras of A and of B which are generated
by finite subfamilies of the a;’s and the b;’s.]






LECTURE 5

Definition and basic properties of free
independence

In this lecture we will introduce the basic concept which refines
“non-commutative probability theory” to “free probability theory” —
the notion of free independence. As the name indicates, this concept
should be seen as an analogue to the notion of independence from
classical probability theory. Thus, before we define free independence
we recall this classical notion. Since we are working with algebras
which might be non-commutative, it is more appropriate to formulate
the conc