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Introduction

Free Probability Theory is a quite recent theory, bringing together
many different fields of mathematics – like operator algebras, random
matrices, combinatorics, or representation theory of symmetric groups.
So it has a lot to offer to various mathematical communities and the
interest in learning about free probability has steadily increased over
the last years.

However, this diversity of the field also has the consequence that it
is considered as being hard to access for a beginner. Most of the litera-
ture on free probability consists of a mixture of operator algebraic and
probabilistic notions and arguments, interwoven with a bit of random
matrices and combinatorics.

Whereas more advanced operator algebraic or probabilistic exper-
tise might indeed be necessary for a deeper appreciation of special
applications in the respective fields, the basic core of the theory, how-
ever, can be mostly freed from this and it is possible to give a fairly
elementary introduction to the main notions, ideas and problems of
free probability theory. The present lectures are intended to provide
such an introduction.

Our main emphasis will be on the combinatorial side of free prob-
ability. Even when stripped from analytical structure, the main fea-
tures of free independence are still present; moreover, even on this more
combinatorial level it is important to organize all relevant information
about the considered variables in the right way. Someone who has tried
to perform computations of joint distributions for non-commuting vari-
ables will probably agree that they tend to be horribly messy if done in
a naive way. One of the main goals of the book is to show how such com-
putations can be vastly simplified by appropriately relying on a suitable
combinatorial structure – the lattices of non-crossing partitions. The
combinatorial development starts from the standard theory of Möbius
inversion on non-crossing partitions, but has its own specific flavor –
one arrives to a theory of free or non-crossing cumulants, or, in alter-
native approach, one talks about R-transforms for non-commutative
random variables.
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10 INTRODUCTION

While writing this book, there were two kinds of readers that we
had primarily in mind:

(a) a reader with background in operator algebras or probability
who wants to see what are the more advanced “tools of the
trade” on the combinatorial side of free probability.

(b) a reader with background from algebraic combinatorics who
wants to get acquainted to a field (and a possible source of
interesting problems) where non-trivial combinatorial tools are
used.

We wrote our lectures by trying to accommodate the readers from
both these categories. The result is a fairly elementary exposition,
which should be accessible to a beginning graduate student or even to
a strong senior undergraduate student.

Free probability also has applications outside of mathematics, in
particular in electrical engineering. Our exposition should also be use-
ful for readers with engineering background, who have seen the use of
R- or S-transform techniques in applications, e.g. to wireless commu-
nications, and who want to learn more about the underlying theory.

We emphasize that the presentation style used throughout the book
is a detailed one, making the material largely self-contained, and only
rarely requiring that other textbooks or research papers are consulted.
The basic units of this book are called “lectures”. They were written
following the idea that the material contained in one of them should be
suitable for being presented in one class of a first-year graduate course.
(We have in mind a class of 90 minutes, where the instructor presents
the essential points of the lecture, and leaves a number of things for
individual study.)

While the emphasis is on combinatorial aspects, we still felt that
we must give an introduction of how the general framework of free
probability comes about. Also, we felt that the flavor of the theory
will be better conveyed if we show, with moderation and within a self-
contained exposition, how analytical arguments can be interwoven with
the combinatorial ones. It should be however clearly understood that
in the analytical respects, this book is only an appetizer and an invi-
tation to further reading. In particular, the analytical framework used
for illustrations is exclusively the one of a C∗-probability space. The
reader should be aware that some of the most significant applications of
free probability to operator algebras take place in the more elaborate
framework of W ∗-probability spaces; but going to W ∗-structures (or
in other words, to von Neumann algebra theory) didn’t seem possible
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within the detailed, self-contained style of the book, and within the
given page limits.

A consequence of the frugality of the analytic aspects covered by
the book is that we did not get to discuss at all about free entropy and
free Fisher information, and about how free cumulants can be used in
some cases to perform free information calculations. Free entropy is
currently one of the main directions of development in free probability,
for an overview of the topic see the recent survey by Voiculescu [85].

Coming to things that are not covered by the book we must also say,
with regret, that we only consider free independence over the complex
field. The combinatorial ideas of free probability have a far-reaching
extension to the situation when free independence is considered over
an algebra B (instead of just C) – the reader interested in this direction
is referred to the memoir [73].

The references to the literature are not made in the body of the
lectures, but are collected in the section of “Notes and Comments” at
the end of the book. The literature on free probability is growing at an
explosive rate, and, with due apologies, we felt it is beyond our limits
to even try an exhaustive bibliography. We have followed the line of
only citing the research work which is presented in the lectures, or is
very directly connected to it. For a more complete image of the work
in this field, the reader can consult the survey papers indicated at the
beginning of the “Notes and Comments” section.

So, to summarize. From one point of view this is a research mono-
graph, presenting the current state of the combinatorial facet of free
probability. On the other hand this is at the same time an introduc-
tion to the field – one which is, we hope, friendly and self-contained.
Finally, the book is written with the specific purpose of being used for
teaching a course. We hope this will be a contribution towards making
free probability appear more often as a topic for a graduate course,
and we look forward to hearing from other people how following these
lectures has worked for them.

Finally we would like to mention that the idea of writing this book
came from a sequence of lectures which we gave at the Henri Poincaré
Institute in Paris, during a special semester on free probability and
operator spaces hosted by the institute in Fall 1999. Time has flown
quickly since then, but we hope it is not too late to thank the Poincaré
Institute, and particularly the organizers of that special semester –
Philippe Biane, Gilles Pisier, and Dan Voiculescu – for the great envi-
ronment they offered us, and for the opportunity of getting started on
this project.
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Basic Concepts





LECTURE 1

Non-commutative probability spaces and
distributions

Since we are interested in the combinatorial aspects of free proba-
bility, we will focus on a framework which is stripped of its analytical
structure (i.e., where we ignore the metric or topological structure of
the spaces involved). The reason for the existence of this monograph
is that even so (without analytical structure), the phenomenon of free
independence is rich enough to be worth studying. The interesting
combinatorial features of this phenomenon come from the fact that
we will allow the algebras of random variables to be non-commutative.
This certainly means that we have to consider a generalized concept of
“random variable” (since in the usual meaning of the concept, where
a random variable is a function on a probability space, the algebras of
random variables would have to be commutative).

Non-commutative probability spaces

Definition 1.1. 1) A non-commutative probability space
(A, ϕ) consists of a unital algebra A over C and a unital linear func-
tional

ϕ : A → C; ϕ(1A) = 1.

The elements a ∈ A are called non-commutative random variables
in (A, ϕ). Usually, we will skip the adjective “non-commutative” and
just talk about “random variables a ∈ A”.

An additional property which we will sometimes impose on the
linear functional ϕ is that it is a trace, i.e. it has the property that

ϕ(ab) = ϕ(ba), ∀ a, b ∈ A.

When this happens, we say that the non-commutative probability space
(A, ϕ) is tracial.

2) In the framework of the part 1 of the definition, suppose that A is
a ∗-algebra, i.e. that A is also endowed with an antilinear ∗-operation
A 3 a 7→ a∗ ∈ A, such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.
If we have that

ϕ(a∗a) ≥ 0 for all a ∈ A,

15
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then we say that the functional ϕ is positive and we will call (A, ϕ) a
∗-probability space.

3) In the framework of a ∗-probability space we can talk about:
• selfadjoint random variables, i.e elements a ∈ A such that a = a∗;
• unitary random variables, i.e. elements u ∈ A such that u∗u =
uu∗ = 1;
• normal random variables, i.e. elements a ∈ A with the property
that a∗a = aa∗.

In these lectures we will be mostly interested in ∗-probability spaces,
since this is the framework which provides us with a multitude of excit-
ing examples. However, plain non-commutative probability spaces are
also useful, because sometimes we encounter arguments relying solely
on the linear and multiplicative structure of the algebra involved –
these arguments are more easily understood when the ∗-operation is
ignored (even if it happened that the algebra had a ∗-operation on it).

Remarks 1.2. Let (A, ϕ) be a ∗-probability space.
1) The functional ϕ is selfadjoint, i.e. it has the property that

ϕ(a∗) = ϕ(a), ∀a ∈ A.

Indeed, since every a ∈ A can be written uniquely in the form a = x+iy
where x, y ∈ A are selfadjoint, the latter equation is immediately seen
to be equivalent to the fact that ϕ(x) ∈ R for every selfadjoint element
x ∈ A. This in turn is implied by the positivity of ϕ and the fact that
every selfadjoint element x ∈ A can be written in the form x = a∗a−b∗b
for some a, b ∈ A (take e.g. a = (x + 1)/2, b = (x− 1)/2).

2) Another consequence of the positivity of ϕ is that we have:

(1.1) |ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b), ∀ a, b ∈ A.

The inequality (1.1) is commonly called the Cauchy-Schwarz in-
equality for the functional ϕ. It is proved in exactly the same way as
the usual Cauchy-Schwarz inequality (see Exercise 1.21 at the end of
the lecture).

3) If an element a ∈ A is such that ϕ(a∗a) = 0, then the Cauchy-
Schwarz inequality (1.1) implies that ϕ(ba) = 0 for all b ∈ A (hence
a is in a certain sense a degenerate element for the functional ϕ). We
will use the term “faithful” for the situation when no such degener-
ate elements exist, except for a = 0. That is, we make the following
definition.

Definition 1.3. Let (A, ϕ) be a ∗-probability space. If we have
the implication:

a ∈ A, ϕ(a∗a) = 0 ⇒ a = 0,
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then we say that the functional ϕ is faithful.

Examples 1.4. 1) Let (Ω,Q, P ) be a probability space in the clas-
sical sense, i.e., Ω is a set, Q is a σ-field of measurable subsets of Ω
and P : Q → [0, 1] is a probability measure. Let A = L∞(Ω, P ), and
let ϕ be defined by

ϕ(a) =

∫

Ω

a(ω)dP (ω), a ∈ A.

Then (A, ϕ) is a ∗-probability space (the ∗-operation on A is the oper-
ation of complex-conjugating a complex-valued function). The random
variables appearing in this example are thus genuine random variables
in the sense of “usual” probability theory.

The reader could object at this point that the example presented in
the preceding paragraph only deals with genuine random variables that
are bounded, and thus misses for instance the most important random
variables from usual probability – those having a Gaussian distribution.
We can overcome this problem by replacing the algebra L∞(Ω, P ) with:

L∞−(Ω, P ) :=
⋂

1≤p<∞
Lp(Ω, P ).

That is, we can makeA become the algebra of genuine random variables
which have finite moments of all orders. (The fact that L∞−(Ω, P ) is
indeed closed under multiplication follows by an immediate application
of the Cauchy-Schwarz inequality in L2(Ω, P ) – cf. Exercise 1.22 at
the end of the lecture.) In this enlarged version, our algebra of random
variables will then contain the Gaussian ones.

Of course, one could also point out that in classical probability there
are important cases of random variables which do not have moments
of all orders. These ones, unfortunately, are beyond the scope of the
present set of lectures – we cannot catch them in the framework of
Definition 1.1.

2) Let d be a positive integer, let Md(C) be the algebra of d×d com-
plex matrices with usual matrix multiplication, and let tr : Md(C) → C
be the normalized trace,

(1.2) tr(a) =
1

d
·

d∑
i=1

αii for a = (αij)
d
i,j=1 ∈ Md(C).

Then (Md(C), tr) is a ∗-probability space (where the ∗-operation is
given by taking both the transpose of the matrix and the complex
conjugate of the entries).
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3) The above examples 1 and 2 can be “put together” into one exam-
ple where the algebra consists of all the d×d matrices over L∞−(Ω, P ) :

A = Md( L∞−(Ω, P ) ),

and the functional ϕ on it is

ϕ(a) :=

∫
tr(a(ω))dP (ω), a ∈ A.

The non-commutative random variables obtained here are thus ran-
dom matrices over (Ω,Q, P ). (Observe that this example is obtained
by starting with the space in Example 1.4.1 and by performing the d×d
matrix construction described in the Exercise 1.23.) We will elaborate
more on random matrix examples later in the notes (cf. Lectures 22
and 23).

4) Let G be a group, and let CG denote its group algebra. That
is, CG is a complex vector space having a basis indexed by the elements
of G, and where the operations of multiplication and ∗-operation are
defined in the natural way:

CG := {
∑
g∈G

αgg | αg ∈ C, only finitely many αg 6= 0},

with (∑
αgg

) · (
∑

βhh
)

:=
∑

g,h

αgβh(gh) =
∑

k∈G

( ∑

g,h: gh=k

αgβh

)
k,

and (∑
αgg

)∗
:=

∑
ᾱgg

−1.

Let e be the unit element of G. The functional τG : CG → C defined
by the formula

τG(
∑

αgg) := αe

is called the canonical trace on CG. Then (CG, τG) is a ∗-probability
space. It is easily verified that τG is indeed a trace (in the sense of
Definition 1.1.1) and is faithful (in the sense of Definition 1.3).

5) Let H be a Hilbert space and let B(H) be the algebra of all
bounded linear operators on H. This is a ∗-algebra, where the adjoint
a∗ of an operator a ∈ B(H) is uniquely determined by the fact that

〈aξ, η〉 = 〈ξ, a∗η〉, ∀ ξ, η ∈ H.

Suppose that A is a unital ∗-subalgebra of B(H) and that ξo ∈ H is
a vector of norm one (||ξo|| := 〈ξo, ξo〉1/2 = 1). Then we get an example
of ∗-probability space (A, ϕ), where ϕ : A → C is defined by:

(1.3) ϕ(a) := 〈aξo, ξo〉, a ∈ A.
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A linear functional as defined in (1.3) is usually called a vector-state
(on the algebra of operators A).

Exercise 1.5. 1) Verify that in each of the examples described
in 1.4, the functional considered as part of the definition of the ∗-
probability space is indeed positive.

2) Show that in the Examples 1.4.1–1.4.4, the functional considered
as part of the definition of the ∗-probability space is a faithful trace.

Definition 1.6. 1) A morphism between two ∗-probability spaces
(A, ϕ) and (B, ψ) is a unital ∗-algebra homomorphism Φ : A → B with
the property that ψ ◦ Φ = ϕ.

2) In the case when (B, ψ) is a ∗-probability space of the special
kind discussed in the Example 1.4.5, we will refer to a morphism Φ
from (A, ϕ) to (B, ψ) by using the name of representation of (A, ϕ).
So, to be precise: giving a representation of (A, ϕ) amounts to giving
a triple (H, Φ, ξo) where H is a Hilbert space, Φ : A → B(H) is a
unital ∗-homomorphism, and ξo ∈ H is a vector of norm one, such that
ϕ(a) = 〈Φ(a)ξo, ξo〉 for all a ∈ A.

Remark 1.7. The ∗-probability spaces appearing in the examples
1, 2 and 4 of 1.4 have natural representations, on Hilbert spaces related
to how the algebras of random variables were constructed – see the
Exercise 1.25 at the end of the lecture.

∗-distributions (case of normal elements)

A fundamental concept in the statistical study of random variables
is the one of distribution of a random variable. In the framework of a
∗-probability space (A, ϕ), the appropriate concept to consider is the
one of ∗-distribution of an element a ∈ A. Roughly speaking, the ∗-
distribution of a has to be some “standardized” way of reading the
values of ϕ on the unital ∗-subalgebra generated by a.

We start the discussion of ∗-distributions with the simpler case
when a ∈ A is normal (i.e. is such that a∗a = aa∗). In this case the
unital ∗-algebra generated by a is

(1.4) A := span{ak(a∗)l | k, l ≥ 0};
the job of the ∗-distribution of a must thus be to keep track of the
values ϕ( ak(a∗)l ), where k and l run in N ∪ {0}. The kind of object
which does this job and which we prefer to have whenever possible is
a compactly supported probability measure on C.
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Definition 1.8. Let (A, ϕ) be a ∗-probability space and let a be a
normal element of A. If there exists a compactly supported probability
measure µ on C such that

(1.5)

∫
zk z̄l dµ(z) = ϕ(ak(a∗)l), for every k, l ∈ N,

then this µ is uniquely determined and we will call the probability
measure µ the ∗-distribution of a.

Remarks 1.9. 1) The fact that a compactly supported probability
measure µ on C is uniquely determined by how it integrates func-
tions of the form z 7→ zkz̄l with k, l ∈ N is an immediate consequence
of the Stone-Weierstrass theorem. Or more precisely: due to Stone-
Weierstrass, µ is determined as a linear functional on the space C(K)
of complex-valued continuous functions on K, where K is the support
of µ; it is then well-known that this in turn determines µ uniquely.

2) It is not said that every normal element in a ∗-probability space
has to have a ∗-distribution in the sense defined above. But this turns
out to be true in a good number of important examples. Actually,
this is always true when we look at ∗-probability spaces which have a
representation on a Hilbert space, in the sense of the above Definition
1.6 (see the Corollary 3.14 in Lecture 3); and civilized examples do
have representations on Hilbert spaces – see Lecture 7.

Remark 1.10. (The case of a selfadjoint element.)
Let (A, ϕ) be a ∗-probability space, and let a be a selfadjoint element
of A (that is, we have a = a∗, which implies in particular that a is
normal). Suppose that a has ∗-distribution µ, in the sense of Definition
1.8. Then µ is supported in R. Indeed, we have∫

C
| z − z̄ |2 dµ(z) =

∫

C
(z − z̄ )(z̄ − z) dµ(z)

=

∫

C
2zz̄ − z2 − z̄2 dµ(z)

= 2ϕ(aa∗)− ϕ(a2)− ϕ( (a∗)2 ) = 0.

Since z 7→ | z − z̄ |2 is a continuous non-negative function, we must
have that z − z̄ vanishes on the support supp(µ) of our measure, and
hence:

supp(µ) ⊂ {z ∈ C | z = z̄} = R.

So in this case µ is really a measure on R, and the Equation (1.5) is
better written in this case as

(1.6)

∫
tp dµ(t) = ϕ(ap), ∀ p ∈ N.
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Conversely, suppose that we have a compactly supported measure µ
on R such that (1.6) holds. Then clearly µ is the ∗-distribution of a in
the sense of Definition 1.8 (because

∫
zkz̄l dµ(z) becomes

∫
tk+l dµ(t),

while ϕ( ak(a∗)l ) becomes ϕ(ak+l)).
The conclusion of this discussion is thus: For a selfadjoint element

a ∈ A it would be more appropriate to talk about the distribution
of a (rather than talking about its ∗-distribution); this is defined as a
compactly supported measure on R such that (1.6) holds. But there
is actually no harm in treating a as a general normal element, and in
looking for its ∗-distribution, since in the end we arrive at the same
result.

Examples 1.11. 1) Consider the framework of Example 1.4.1,
where the algebra of random variables is L∞(Ω, P ). Let a be an element
in A; in other words, a is a bounded measurable function, a : Ω → C.
Let us consider the probability measure ν on C which is called “the
distribution of a” in usual probability; this is defined by

(1.7) ν(E) = P ( {ω ∈ Ω : a(ω) ∈ E} ), E ⊂ C Borel set.

Note that ν is compactly supported. More precisely, if we choose a
positive r such that |a(ω)| ≤ r, ∀ ω ∈ Ω, then it is clear that ν is
supported in the closed disc centered at 0 and of radius r.

Now, a is a normal element of A (all the elements of A are normal,
since A is commutative). So it makes sense to place a in the framework
of Definition 1.8. We will show that the above measure ν is exactly the
∗-distribution of a in this framework.

Indeed, the Equation (1.7) can be read as

(1.8)

∫

C
f(z) dν(z) =

∫

Ω

f( a(ω) ) dP (ω),

where f is the characteristic function of the set E. By going through the
usual process of taking linear combinations of characteristic functions,
and then of doing approximations of a bounded measurable function
by step functions, we see that the Equation (1.8) is actually holding for
every bounded measurable function f : C→ C. (The details of this are
left to the reader.) Finally, let k, l be arbitrary non-negative integers,
and let r > 0 be such that |a(ω)| ≤ r for every ω ∈ Ω. Consider a
bounded measurable function f : C → C such that f(z) = zkz̄l for
every z ∈ C having |z| ≤ r. Since ν is supported in the closed disc of
radius r centered at 0, it follows that

∫

C
f(z) dν(z) =

∫

C
zkz̄l dν(z),
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and, consequently, that∫

Ω

f( a(ω) ) dP (ω) =

∫

Ω

a(ω)k a(ω)
l
dP (ω) = ϕ( ak(a∗)l ).

Thus for this particular choice of f , the Equation (1.8) gives us that∫

C
zkz̄l dν(z) = ϕ( ak(a∗)l ),

and this is precisely (1.5), implying that ν is the ∗-distribution of a in
the sense of Definition 1.8.

2) Consider the framework of Example 1.4.2, and let a ∈ Md(C) be
a normal matrix. Let λ1, . . . , λd be the eigenvalues of a, counted with
multiplicities. By diagonalizing a we find that

tr(ak(a∗)l) =
1

d

d∑
i=1

λk
i λ̄

l
i, k, l ∈ N.

The latter quantity can obviously be written as
∫

zkz̄l dµ(z), where

(1.9) µ :=
1

d

d∑
i=1

δλi
.

(δλ stands here for the Dirac mass at λ ∈ C.) Thus it follows that a has
a ∗-distribution µ, which is described by the Equation (1.9). Usually
this µ is called the eigenvalue distribution of the matrix a.

One can consider the question of how to generalize the above fact
to the framework of random matrices (as in Example 1.4.3). In can be
shown that the formula which appears in place of (1.9) in this case is

(1.10) µ :=
1

d

d∑
i=1

∫

Ω

δλi(ω)dP (ω),

where a = a∗ ∈ Md(L
∞−(Ω, P )), and where λ1(ω) ≤ · · · ≤ λd(ω) are

the eigenvalues of a(ω), ω ∈ Ω. (Strictly speaking, the Equation (1.10)
requires an extension of the framework used in Definition 1.8, since
the resulting averaged eigenvalue distribution µ will generally not have
compact support. See the Lecture 22 for more details about this.)

Our next example will be in connection to a special kind of element
in a ∗-probability space, called a Haar unitary.

Definition 1.12. Let (A, ϕ) be a ∗-probability space.
1) An element u ∈ A is said to be a Haar unitary if it is a unitary

(i.e. if uu∗ = u∗u = 1) and if

(1.11) ϕ(uk) = 0, ∀ k ∈ Z \ {0}.
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2) Let p be a positive integer. An element u ∈ A is said to be a
p–Haar unitary if it is a unitary, if up = 1, and if

(1.12) ϕ(uk) = 0, for all k ∈ Z such that p does not divide k.

Remarks 1.13. 1) The name “Haar unitary” comes from the fact
that if u is a Haar unitary in a ∗-probability space, then the normalized
Lebesgue measure (also called “Haar measure”) on the circle serves as
∗-distribution for u. Indeed, for every k, l ∈ N ∪ {0} we have

ϕ(uk(u∗)l) = ϕ(uk−l) =

{
0, if k 6= l

1, if k = l,

and the computation of the integral
∫

T
zkz̄l dz =

∫ 2π

0

ei(k−l)t dt

2π

(where T = {z ∈ C | |z| = 1} and dz is the normalized Haar measure
on T) gives exactly the same thing.

2) Haar unitaries appear naturally in the framework of Example
1.4.4. Indeed, if g is any element of infinite order in the group G,
then one can verify immediately that g viewed as an element of the
∗-probability space (CG, τG) is a Haar unitary.

3) The p–Haar unitaries also appear naturally in the framework of
Example 1.4.4 – an element of order p in G becomes a p–Haar unitary
when viewed in (CG, τG). It is immediately verified that a p–Haar
unitary has ∗-distribution

(1.13) µ =
1

p

p∑
j=1

δλj
,

where λ1, . . . , λp ∈ C are the roots of order p of unity.

Example 1.14. Let (A, ϕ) be a ∗-probability space, and let u ∈ A
be a Haar unitary. We consider the selfadjoint element u + u∗ ∈ A,
and we would like to answer the following questions:

1) Does u + u∗ have a ∗-distribution?
2) Suppose that u + u∗ does have a ∗-distribution µ. Then, as

observed in the Remark 1.10, µ is a probability measure on R, and
satisfies the Equation (1.6). Do we have some “nice” formula for the
moments

∫
tk dµ(t) which appear in the Equation (1.6)?

Let us note that the second question is actually very easy. Indeed,
this question really asks for the values ϕ( (u + u∗)k ), k ∈ N, which are
easily derived from the Equation (1.11). We argue like this: due to the
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fact that u and u∗ commute, we can expand

(u + u∗)k =
k∑

j=0

(
k

j

)
uj(u∗)k−j.

Then we use the fact that u∗ = u−1 and we apply ϕ to both sides of
the latter equation, to obtain:

ϕ((u + u∗)k) =
k∑

j=0

(
k

j

)
ϕ(u2j−k).

It only remains to take (1.11) into account, in order to get that:

(1.14)

∫
tk dµ(t) =

{
0, if k is odd(

k
k/2

)
, if k is even.

This is the answer to the second question.
Now we could treat the first question as the problem of finding a

compactly supported probability measure µ on R which has moments
as described by Equation (1.14). This is feasible, but somewhat cum-
bersome. It is more convenient to forget for the moment the calculation
done in the preceding paragraph, and attack the question 1) directly,
by only using the fact that we know the ∗-distribution of u. (The dis-
tribution of u + u∗ has to be obtainable from the ∗-distribution of u!)
We go like this:

ϕ((u + u∗)k) =
k∑

j=0

(
k

j

)
ϕ(uj(u∗)k−j)

=
k∑

j=0

(
k

j

) ∫

T
zj z̄k−j dz (by Remark 1.13)

=

∫

T

(
z + z̄

)k
dz

=
1

2π

∫ π

−π

(
eit + e−it

)k
dt

=
1

2π

∫ π

−π

(2 cos t)k dt

=
1

2π

(∫ 0

−π

(2 cos t)k dt +

∫ π

0

(2 cos t)k dt
)

=
1

π

∫ π

0

(2 cos t)k dt.
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For the last integral obtained above, our goal is not to compute it ex-
plicitly (this would only yield a more complicated derivation of Equa-
tion (1.14)), but to rewrite it in the form

∫
tkρ(t)dt, where ρ is an

appropriate density. This is achieved by the change of variable

2 cos t = r, dt = d(arccos(r/2)) = −dr/
√

4− r2,

which gives us that

1

π

∫ π

0

(2 cos t)k dt =
1

π

∫ 2

−2

rk · dr√
4− r2

.

In this way we obtain that

(1.15) ϕ
(
(u + u∗)k

)
=

∫

R
tkρ(t) dt, k ≥ 0,

where ρ(t) is the so-called “arcsine density on [−2, 2]”:

(1.16) ρ(t) =

{
1

π
√

4−t2
, if |t| < 2

0, if |t| ≥ 2.

So, as a solution to the first question of this example, we find that
the distribution of u + u∗ is the arcsine law.

∗-distributions (general case)

Let us now consider the concept of ∗-distribution for an arbitrary
(not necessarily normal) element a in a ∗-probability space (A, ϕ). The
unital ∗-subalgebra of A generated by a is

(1.17) Ao = span{aε(1) · · · aε(k) | k ≥ 0, ε(1), . . . , ε(k) ∈ {1, ∗} },
i.e. it is the linear span of all the “words” that one can make by using
the “letters” a and a∗. The values of ϕ on such words are usually
referred to under the name of ∗-moments:

Definition 1.15. Let a be a random variable in a ∗-probability
space (A, ϕ). An expression of the form

(1.18) ϕ(aε(1) · · · aε(k)), with k ≥ 0 and ε(1), . . . , ε(k) ∈ {1, ∗},
is called a ∗-moment of a.

So in this case the ∗-distribution of a must be a device which keeps
track of its ∗-moments. Unlike what we saw in the case of normal
elements, there is no handy analytic structure which does this. As a
consequence, we will have to define the ∗-distribution of a as a purely
algebraic object.
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Notation 1.16. We denote by C〈X, X∗〉 the unital algebra which
is freely generated by two non-commuting indeterminates X and X∗.
More concretely, C〈X, X∗〉 can be described as follows: The monomials
of the form Xε(1) · · ·Xε(k), where k ≥ 0 and ε(1), . . . , ε(k) ∈ {1, ∗}, give
a linear basis for C〈X, X∗〉, and the multiplication of two such mono-
mials is done by juxtaposition. C〈X, X∗〉 has a natural ∗-operation,
determined by the requirement that the ∗-operation applied to X gives
X∗.

Definition 1.17. Let a be a random variable in a ∗-probability
space (A, ϕ). The ∗-distribution of a is the linear functional

µ : C〈X,X∗〉 → C
determined by the fact that:

(1.19) µ(Xε(1) · · ·Xε(k)) = ϕ(aε(1) · · · aε(k)),

for every k ≥ 0 and all ε(1), . . . , ε(k) ∈ {1, ∗}.
Remarks 1.18. 1) The advantage of the formal definition made

above is that even when we consider random variables which live in
different ∗-probability spaces, the corresponding ∗-distributions are all
defined on the same space C〈X, X∗〉 (and hence can be more easily
compared against each other).

2) The Definition 1.17 will apply to a even if a happens to be normal.
In this case the functional µ of (1.19) could actually be factored through
the more familiar commutative algebra C[X, X∗] of polynomials in two
commuting indeterminates. But this would not bring much benefit to
the subsequent presentation. (In fact there are places where we will
have to consider all the possible words in a and a∗ despite knowing
a to be normal – see e.g. the computations shown in the section on
Haar unitaries of Lecture 15.) So it will be easier to consistently use
C〈X, X∗〉 throughout these notes.

3) If a is a normal element of a ∗-probability space, then the ∗-
distribution of a is now defined twice, in Definition 1.8 and in Definition
1.17. When there is a risk of ambiguity, we will distinguish between
the two versions of the definition by calling them “∗-distribution in
analytic sense” and respectively “∗-distribution in algebraic sense”.

Definition 1.19. Let (A, ϕ) be a ∗-probability space, and let a be
a selfadjoint element of A. In this case, the ∗-moments from (1.18) are
just the numbers ϕ(ak), k ≥ 0, and they are simply called moments of
a. Following the standard terminology from classical probability, the
first moment ϕ(a) is also called the mean of a, while the quantity

Var(a) := ϕ(a2)− ϕ(a)2
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is called the variance of a.

Remark 1.20. We would like next to introduce an important exam-
ple of ∗-distribution, which is in some sense a non-normal counterpart
of the Haar unitary; and moreover, we would like to show how the
analogue of the questions treated in the Example 1.14 can be pursued
for this non-normal example. The discussion will be longer than the
one for the Haar unitary (precisely because we don’t have an analytic
∗-distribution to start from), and will be the object of the next lecture.

Exercises

Exercise 1.21. 1) Let (A, ϕ) be a ∗-probability space, and let a, b
be elements of A. By examining the quadratic function

t 7→ ϕ( (a− tb)∗(a− tb) ), t ∈ R,

prove that (
Reϕ(b∗a)

)2

≤ ϕ(a∗a)ϕ(b∗b).

2) Prove the Cauchy-Schwarz inequality which was stated in the
Remark 1.2.2.

Exercise 1.22. Let (Ω,Q, P ) be a probability space, and consider
the space of functions

L∞−(Ω, P ) :=
⋂

1≤p<∞
Lp(Ω, P )

(as in Example 1.4.1).
1) Prove that the spaces intersected on the right-hand side of the

above equation form a decreasing family (that is, Lp(Ω, P ) ⊃ Lq(Ω, P )
for p ≤ q).

2) Observe that L∞−(Ω, P ) could also be defined as ∩pL
p(Ω, P )

with p running in N \ {0}. Or equivalently, observe that L∞−(Ω, P )
could be defined as the algebra of complex random variables on Ω which
have finite moments of all orders.

3) Prove that L∞−(Ω, P ) is closed under multiplication.

[Hint for part 3: use the Cauchy-Schwarz inequality in L2(Ω, P ).]

Exercise 1.23. Let (A, ϕ) be a ∗-probability space and let d be a
positive integer. Let Md(A) be the space of d× d matrices over A,

Md(A) := {(aij)
d
i,j=1 | aij ∈ A for 1 ≤ i, j ≤ d}.

On Md(A) we can define canonically a ∗-operation by

( (aij)
d
i,j=1 )∗ =: (bij)

d
i,j=1,
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where bij := a∗ji for 1 ≤ i, j ≤ d; thus Md(A) becomes a ∗-algebra.
Then consider the linear functional ϕd : Md(A) → C defined by

ϕd(A) =
1

d

d∑
i=1

ϕ(aii), for A = (aij)
d
i,j=1 ∈ Md(A).

Note that Md(A) is canonically isomorphic to Md(C) ⊗ A, and that
under this isomorphism ϕd corresponds to tr⊗ ϕ.

1) Verify that (Md(A), ϕd) is a ∗-probability space.
2) Show that if the ∗-probability space (A, ϕ) is tracial, then so is

(Md(A), ϕd).
3) Show that if the functional ϕ is faithful, then so is ϕd.

In the next two exercises, the terms “morphism” and “representa-
tion” are used in the sense of the Definition 1.6.

Exercise 1.24. Let (A, ϕ) and (B, ψ) be ∗-probability spaces, and
suppose that ϕ is faithful. Let Φ be a morphism between (A, ϕ) and
(B, ψ). Prove that Φ is one-to-one.

Exercise 1.25. 1) Consider the ∗-probability space discussed in
the Example 1.4.1. Write a representation of this ∗-probability space,
living on the Hilbert space L2(Ω,Q, P ).
2) Consider the ∗-probability space discussed in the Example 1.4.2.
Write a representation of this ∗-probability space, living on the Hilbert
space Cd2

.
3) Consider the ∗-probability space discussed in the Example 1.4.4.
Write a representation of this ∗-probability space, living on the Hilbert
space l2(G) := {ξ : G → C | ∑g∈G |ξg|2 < ∞}.

Exercise 1.26. Let (A, ϕ) be a ∗-probability space, let a be a nor-
mal element of A, and suppose that a has ∗-distribution µ in analytic
sense (i.e. in the sense of Definition 1.8).
1) Let P : C → C be a polynomial in z and z̄, and let ν be the
probability measure on C defined by:

ν(E) := µ( P−1(E) ), for E ⊂ C Borel set.

Show that ν is compactly supported and that the normal element b :=
P (a, a∗) ∈ A has ∗-distribution ν.
2) By using the result in part 1), describe the ∗-distributions of the
following elements: i) a∗; ii) a + α, where α is an arbitrary complex
number; iii) ra, where r is an arbitrary positive number.

Exercise 1.27. Do the analogue of the first question treated in
Example 1.14 for a p–Haar unitary.



LECTURE 2

A case study of non-normal distribution

In this lecture we study the example of the so-called “vacuum-state”
on the ∗-algebra generated by the one-sided shift operator, and see how
the important concept of semicircular random variable is connected to
it.

Description of the example

Notations 2.1. Throughout the lecture we fix a ∗-probability
space (A, ϕ) and an element a ∈ A, such that:
(i) a∗a = 1A 6= aa∗;
(ii) a generates A as a ∗-algebra.

One refers to the condition a∗a = 1A by saying that a is an isom-
etry; since the above assumption (i) also requires that aa∗ 6= 1A, one
can re-phrase it by saying that “a is a non-unitary isometry”.

Some more assumptions made on a and (A, ϕ) will be stated after
we observe the following simple consequence of (i) and (ii):

Lemma 2.2. A = span{am(a∗)n | m,n ≥ 0}.
Proof. The condition a∗a = 1A immediately implies that for every

m,n, p, q ≥ 0 we have:

(2.1)
(
am(a∗)n

)
·
(
ap(a∗)q

)
=





am+p−n(a∗)q, if n < p

am(a∗)q, if n = p

am(a∗)n−p+q, if n > p.

Since the family {am(a∗)n | m,n ≥ 0} is, clearly, also closed under
∗-operation, it follows that its linear span has to be equal to the unital
∗-subalgebra of A generated by a. But this is all of A, by (ii) of
Notations 2.1. ¤

Notations 2.3. In addition to what was stated in 2.1, we will make
the following assumptions on a and (A, ϕ) :
(iii) The elements {am(a∗)n | m,n ≥ 0} are linearly independent;

29
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(iv) The functional ϕ : A → C satisfies (and is determined by) the
equation:

(2.2) ϕ( am(a∗)n ) =

{
1, if m = n = 0

0, otherwise,

for m,n ∈ N ∪ {0}.
Remark 2.4. As the reader may recognize, the Equation 2.1 is con-

nected to a semigroup structure on (N∪{0})2, where the multiplication
is defined by

(2.3) (m,n) · (p, q) =





(m + p− n, q), if n < p

(m, q), if n = p

(m,n− p + q), if n > p.

This is called the bicyclic semigroup, and is a fundamental example in a
class of semigroups with a well-developed theory, which are called “in-
verse semigroups”. So from this perspective, the algebra A appearing
in this example could be called “the semigroup algebra of the bicyclic
semigroup”.

Remark 2.5. From another perspective, the algebra A is related to
an important example from the theory of C∗-algebras, which is called
the Toeplitz algebra, and is obtained by completing A with respect to a
suitable norm. Equivalently, the Toeplitz algebra can be defined as the
closure in the norm-topology of π(A) ⊂ B(l2), where π : A → B(l2) is
the natural representation described in what follows.

Consider the Hilbert space l2 := l2(N ∪ {0} ). The vectors of l2 are
thus of the form ξ = (αk)k≥0, where the αk’s are from C and have∑∞

k=0 |αk|2 < ∞. The inner product of ξ = (αk)k≥0 with η = (βk)k≥0 is

〈ξ, η〉 :=
∞∑

k=0

αkβ̄k.

For every n ≥ 0 we denote:

(2.4) ξn := (0, 0, . . . , 0, 1, 0, . . . , 0, . . .),

with the 1 occurring on component n. Then ξ0, ξ1, . . . , ξn, . . . form an
orthonormal basis for l2.

Let S ∈ B(l2) be the one-sided shift operator, determined by
the fact that

Sξn = ξn+1, ∀ n ≥ 0.

Its adjoint S∗ is determined by

S∗ξ0 = 0 and S∗ξn = ξn−1, ∀ n ≥ 1.
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It is immediate that S∗S = 1B(l2) (the identity operator on l2), but
SS∗ 6= 1B(l2).

Since ( am(a∗)n )m,n≥0 form a linear basis inA, we can define a linear
map π : A → B(l2) by asking that:

π(am(a∗)n) = Sm(S∗)n, ∀ m,n ≥ 0.

It is easily verified that π is a unital ∗-homomorphism. (The mul-
tiplicativity of π follows from the fact that, as a consequence of the
relation S∗S = 1B(l2), the product of two members of the family
( Sm(S∗)n )m,n≥0 is described by the same rules as in Equation (2.1).)

Now, it is also easy to see that the operators ( Sm(S∗)n )m,n≥0 are
linearly independent (see Exercise 2.22 at the end of the lecture). This
implies that the ∗-homomorphism π defined above is one-to-one, hence
it actually gives us an identification between the algebra A fixed in
Notations 2.1 and an algebra of operators on l2.

Let ϕ0 : B(l2) → C be the functional defined by

(2.5) ϕ0(T ) = 〈Tξ0, ξ0〉, T ∈ B(l2),

where ξ0 is the first vector of the canonical orthonormal basis considered
in (2.4). If m,n ∈ N ∪ {0} and (m,n) 6= (0, 0) then

ϕ0( Sm(S∗)n ) = 〈Sm(S∗)nξ0, ξ0〉 = 〈(S∗)nξ0, (S
∗)mξ0〉,

which is equal to 0 because at least one of (S∗)mξ0 and (S∗)nξ0 is the
zero-vector. Comparing this against (2.2) makes it clear that π is a
morphism between (A, ϕ) and (B(l2), ϕ0), in the sense discussed in the
Definition 1.6 of Lecture 1. Or, in the sense of the same definition,
(l2, π, ξ0) is a representation of (A, ϕ) on the Hilbert space l2.

As mentioned above, the closure T of π(A) in the norm-topology of
B(l2) is called the Toeplitz algebra. Moreover, the restriction to T of
the functional ϕ0 defined by Equation (2.5) is called “the vacuum-state
on the Toeplitz algebra” (which is why, by a slight abuse of terminology,
the ∗-algebraic example discussed throughout the lecture is also termed
in that way).

Remark 2.6. Our goal in this lecture is to look at the ∗-distribution
of the non-normal element a which was fixed in the Notations 2.1. But
as the reader has surely noticed, the equation describing A in Lemma
2.2 is a repeat of the Equation (1.4) from the discussion on normal
elements, in Lecture 1. Shouldn’t this indicate that we could treat a as
if it was normal? It is instructive to take a second to notice that this
is not the case. Indeed, the unique compactly supported probability
measure on C which fits the ∗-moments in (2.2) is the Dirac mass δ0 –
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so we would come to the unconvincing conclusion that a has the same
∗-distribution as the zero-element of A.

The point here is that, besides the information given in (2.2), one
must also understand the process (quite different from the case of nor-
mal elements) of reducing a word aε(1) · · · aε(k) to the form am(a∗)n. Or
at least, one should be able to understand how to distinguish the words
aε(1) · · · aε(k) which reduce to 1A from those which reduce to something
else. The latter question is best clarified by using a class of combina-
torial objects called Dyck paths.

Dyck paths

Definition 2.7. 1) We will use the term NE-SE path for a path
in the lattice Z2 which starts at (0, 0) and makes steps either of the
form (1, 1) (“North-East steps”) or of the form (1,−1) (“South-East
steps”).

2) A Dyck path is a NE-SE path γ which ends on the x-axis, and
never goes strictly below the x-axis. (That is: all the lattice points
visited by γ are of the form (i, j) with j ≥ 0, and the last of them is of
the form (k, 0).)

Remarks 2.8. 1) For a given positive integer k, the set of NE-SE
paths with k steps is naturally identified with {−1, 1}k, by identifying
a path γ with the sequence of ±1s which appear as second components
for the k steps of γ.

Concrete example: here is the NE-SE path of length 6 which cor-
responds to the 6-tuple (1,−1,−1, 1,−1, 1).

¡¡µ@@R
@@R¡¡µ@@R¡¡µ

This path is not a Dyck path, because it goes twice under the x-axis.
2) Let k be a positive integer, and consider the identification de-

scribed above between the NE-SE paths with k steps and {−1, 1}k. It
is immediately seen that a k-tuple (λ1, . . . , λk) corresponds to a Dyck
path if and only if

(2.6)





λ1 + · · ·+ λj ≥ 0, ∀ 1 ≤ j < k,

λ1 + · · ·+ λk = 0.

From the equality stated in (2.6) it is clear that Dyck paths with k
steps can only exist when k is even.
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Concrete examples: there are 5 Dyck paths with 6 steps. We draw
them in the pictures below, and for each of them we indicate the corre-
sponding tuple in {−1, 1}6 (thus listing the 5 tuples in {−1, 1}6 which
satisfy (2.6)).

(+1, +1, +1,−1,−1,−1) ¡¡µ
¡¡µ

¡¡µ@@R
@@R

@@R

(+1, +1,−1, +1,−1,−1) ¡¡µ
¡¡µ@@R¡¡µ@@R

@@R

(+1, +1,−1,−1, +1,−1) ¡¡µ
¡¡µ@@R

@@R¡¡µ@@R

(+1,−1, +1, +1,−1,−1) ¡¡µ@@R¡¡µ
¡¡µ@@R

@@R

(+1,−1, +1,−1, +1,−1) ¡¡µ@@R¡¡µ@@R¡¡µ@@R

The Dyck paths can be enumerated by using a celebrated “reflection
trick” of Desiré André, and turn out to be counted by the (even more
celebrated) Catalan numbers.
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Notation 2.9. For every integer n ≥ 0 we will denote by Cn the
nth Catalan number,

(2.7) Cn :=
1

n + 1

(
2n

n

)
=

(2n)!

n!(n + 1)!

(with the convention that C0 = 1).

Remark 2.10. An equivalent (and often used) way of introducing
the Catalan numbers is via the following recurrence relation:

(2.8)





C0 = C1 = 1

Cp =
∑p

j=1 Cj−1Cp−j, p ≥ 2.

It is not hard to see that the numbers defined by (2.7) do indeed satisfy
the recurrence (2.8). One way of proving this fact can actually be read
from the following discussion about the enumeration of Dyck paths (see
the last paragraph in Remark 2.12).

Proposition 2.11. For every positive integer p, the number of
Dyck paths with 2p steps is equal to the pth Catalan number Cp.

Proof. Let us first count all the NE-SE paths which end at a given
point (m,n) ∈ Z2. A NE-SE path with u NE-steps and v SE-steps ends
at (u+v, u−v), so there are NE-SE paths arriving at (m, n) if and only
if (m,n) = (u + v, u− v) for some u, v ∈ N ∪ {0} with u + v > 0; this
happens if and only if m > 0, |n| ≤ m, and m,n have the same parity.
If the latter conditions are satisfied, then the NE-SE paths arriving at
(m,n) are precisely those which have (m+n)/2 NE-steps and (m−n)/2
SE-steps. These paths are hence counted by the binomial coefficient(

m
(m+n)/2

)
, because the Remark 2.8.1 identifies them with the m-tuples

in {−1, 1}m which have precisely (m + n)/2 components equal to 1.
In particular, it follows that the total number of NE-SE paths ar-

riving at (2p, 0) is
(
2p
p

)
.

We now look at the NE-SE paths arriving at (2p, 0) which are not
Dyck paths. Let us fix for the moment such a path, γ, and let j ∈
{1, . . . , 2p − 1} be minimal with the property that γ goes under the
x-axis after j steps. Then γ is written as a juxtaposition of two paths,
γ = γ′ ∨ γ′′, where γ′ goes from (0, 0) to (j,−1), and γ′′ goes from

(j,−1) to (2p, 0). Let γ̂′′ be the reflection of γ′′ in the horizontal line

of equation y = −1; thus γ̂′′ is a path from (j,−1) to (2p,−2). Then

let us define F (γ) := γ′ ∨ γ̂′′, a NE-SE path from (0, 0) to (2p,−2).

[Concrete example: suppose that p = 10 and that γ is the NE-SE
path from (0, 0) to (20, 0) which appears drawn in bold-face fonts in
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the following picture. It is not a Dyck path, and the first time when
it goes under the x-axis is after 5 steps. Thus for this example, the
decomposition γ = γ′ ∨ γ′′ described above looks as follows: γ′ has
5 steps, going from (0, 0) to (5,−1), and γ′′ has 15 steps, going from
(5,−1) to (20, 0).

-1
0

-2

¡¡µ
¡¡µ@@R

@@R
@@R

@@R¡¡µ
¡¡µ

¡¡µ@@R
@@R

@@R
@@R¡¡µ

¡¡µ
¡¡µ

¡¡µ
¡¡µ@@R

@@R
¡¡µ@@R

@@R
@@R¡¡µ

¡¡µ
¡¡µ

¡¡µ@@R
@@R

@@R
@@R

@@R¡¡µ
¡¡µ

The reflection of γ′′ in the horizontal line of equation x = −1 is shown
in the above picture as a thinner line, going from (5,−1) to (20,−2).
The path F (γ) goes from (0, 0) to (20,−2); it is obtained by pursuing
the first five steps of γ, and then by continuing along the thinner line.]

So, the construction described in the preceding paragraph gives a
map F from the set of NE-SE paths ending at (2p, 0) and which are
not Dyck paths, to the set of all NE-SE paths ending at (2p,−2). The
map F is a bijection. Indeed, if β is a NE-SE path ending at (2p,−2),
then there has to be a minimal j ∈ {1, . . . , 2p − 1} such that β is at
height y = −1 after j steps. Write β = β′ ∨ β′′ with β′ from (0, 0)

to (j,−1) and β′′ from (j,−1) to (2p,−2), and let β̂′′ be the reflection

of β′′ in the line y = −1; then γ := β′ ∨ β̂′′ is the unique path in the
domain of F which has F (γ) = β.

It follows that the number of NE-SE paths which end at (2p, 0) but
are not Dyck paths is equal to the total number of NE-SE paths ending
at (2p,−2), which is

(
2p

p−1

)
. Finally, the number of Dyck paths with 2p

steps is (
2p

p

)
−

(
2p

p− 1

)
=

1

p + 1

(
2p

p

)
= Cp.

¤
Remark 2.12. Another approach to the enumeration of Dyck paths

is obtained by making some simple remarks about the structure of such
a path, which yield a recurrence relation. Let us call a Dyck path γ
irreducible if it only touches the x-axis at its starting and ending points
(but never in between them). For instance, out of the 5 Dyck paths
pictured in Remark 2.8.2, 2 paths are irreducible and 3 are reducible.

Given an even integer k ≥ 2. If γ is an irreducible Dyck path with k
steps, then it is immediate that the k-tuple in {−1, 1}k associated to γ
is of the form (1, λ1, . . . , λk−2,−1), where (λ1, . . . , λk−2) ∈ {−1, 1}k−2
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corresponds to a Dyck path with k − 2 steps. Conversely, it is also
immediate that if (λ1, . . . , λk−2) ∈ {−1, 1}k−2 corresponds to a Dyck
path, then (1, λ1, . . . , λk−2,−1) ∈ {−1, 1}k will correspond to an irre-
ducible Dyck path with k steps. Thus the irreducible Dyck paths with
k steps are in natural bijection with the set of all Dyck paths with k−2
steps.

On the other hand, suppose that γ is a reducible Dyck path with
k steps, and that the first time when γ touches the x-axis following
to its starting point is after j steps (1 < j < k). Then γ splits as
a juxtaposition γ = γ′ ∨ γ′′, where γ′ is an irreducible Dyck path
with j steps and γ′′ is a Dyck path with k − j steps. Moreover, this
decomposition is unique, if we insist that its first piece, γ′, is irreducible.

For every p ≥ 1, let then Dp denote the number of Dyck paths with
2p steps, and let D′

p be the number of irreducible Dyck paths with 2p
steps. The observation made in the preceding paragraph gives us that

(2.9) Dp = D′
1Dp−1 + D′

2Dp−2 + · · ·+ D′
p−1D1 + D′

p, p ≥ 2.

(Every term D′
jDp−j on the right-hand side of (2.9) counts the reducible

Dyck paths with 2p steps which touch for the first time the x-axis after
2j steps.) The observation made one paragraph before the preceding
one says that D′

p = Dp−1, ∀ p ≥ 2. This equality is also true for p = 1,
if we make the convention to set D0 := 1. So we get the recurrence

(2.10)





D0 = D1 = 1

Dp =
∑p

j=1 Dj−1Dp−j, p ≥ 2.

This is exactly (2.8), and shows that Dp = Cp, ∀ p ≥ 1.
The argument presented above can be viewed as an alternative proof

of Proposition 2.11. On the other hand, since the derivation of (2.10)
was made independently from Proposition 2.11, a reader who wasn’t
already familiar with Catalan numbers can view the above argument
as a proof of the fact that the numbers introduced in Notation 2.9 do
indeed satisfy the recurrence (2.8).

The distribution of a + a∗

We now return to the example of (A, ϕ) and a ∈ A introduced in
the Notations 2.1, 2.3. The connection between the ∗-distribution of a
and Dyck paths appears as follows:
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Proposition 2.13. Let k be a positive integer, let ε(1), . . . , ε(k) be
in {1, ∗}, and consider the monomial aε(1) · · · aε(k) ∈ A. Let us set

(2.11) λj :=

{
1 if ε(j) = ∗
−1 if ε(j) = 1,

for 1 ≤ j ≤ k,

and let us denote by γ the NE-SE path which corresponds to the tuple
(λ1, . . . , λk) ∈ {−1, 1}k. Then

(2.12) ϕ(aε(1) · · · aε(k)) =

{
1 if γ is a Dyck path

0 otherwise.

Proof. It is convenient to use the representation of (A, ϕ) dis-
cussed in Remark 2.5. With notations as in that remark, we write:

ϕ(aε(1) · · · aε(k)) = 〈Sε(1) · · ·Sε(k)ξ0 , ξ0〉
= 〈ξ0 , (Sε(k))∗ · · · (Sε(1))∗ξ0〉.(2.13)

Applying successively the operators (Sε(1))∗, . . . , (Sε(k))∗ to ξ0 takes us
either to a vector of the orthonormal basis {ξn | n ≥ 0} of l2, or to the
zero-vector. More precisely: by keeping track of how λ1, . . . , λk were
defined in Equation (2.11) in terms of ε(1), . . . , ε(k), the reader should
have no difficulty to verify by induction on j, 1 ≤ j ≤ k, that

(2.14) (Sε(j))∗ · · · (Sε(1))∗ξ0 =





ξλ1+···+λj
if λ1 ≥ 0, λ1 + λ2 ≥ 0,
. . . , λ1 + · · ·+ λj ≥ 0

0 otherwise.

If we make j = k in (2.14) and substitute this expression into (2.13),
then we obtain:

ϕ(aε(1) · · · aε(k)) =

{
〈ξ0, ξλ1+···+λk

〉 if
∑j

i=1 λi ≥ 0, 1 ≤ j ≤ k

0 otherwise.

=





1 if
∑j

i=1 λi ≥ 0 for 1 ≤ j < k

and if
∑k

i=1 λi = 0
0 otherwise

=

{
1 if γ is a Dyck path

0 otherwise

(where at the last equality sign we used the Equation (2.6) of Remark
2.8). ¤

Let us next consider the selfadjoint element a + a∗ ∈ A, and ask
the following two questions (identical to those asked in the Example
1.14 of Lecture 1, in connection to Haar unitaries).
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1) Does a + a∗ have a ∗-distribution in analytic sense (as discussed
in Definition 1.8) ?

2) Suppose that a + a∗ does have a ∗-distribution µ. Then (as ob-
served in Remark 1.8) µ is a compactly supported probability measure
on R, determined by the fact that

∫

R
tk dµ(t) = ϕ( (a + a∗)k ), ∀ k ≥ 0.

Do we have some “nice” formula for the moments of µ (or in other
words, for the values of ϕ( (a + a∗)k ), k ≥ 0) ?

We can derive the answer to the second question as an immediate
consequence of Proposition 2.13.

Corollary 2.14. If k is an odd positive integer, then

ϕ( (a + a∗)k ) = 0.

If k = 2p is an even positive integer, then

ϕ( (a + a∗)k ) = Cp,

where Cp is the pth Catalan number.

Proof.

ϕ( (a + a∗)k ) = ϕ
( ∑

ε(1),...,ε(k)∈{1,∗}
aε(1) · · · aε(k)

)

=
∑

ε(1),...,ε(k)∈{1,∗}
ϕ( aε(1) · · · aε(k) )

=
∑

Dyck paths

with k steps

1 (by Prop. 2.13) .

So ϕ( (a + a∗)k ) is equal to the number of Dyck paths with k steps,
and the result follows from Proposition 2.11. ¤

It remains that we look at the first question asked above about
a+a∗, the one of finding (if it exists) a compactly supported probability
measure µ on R which has moment of order k equal to ϕ( (a + a∗)k ),
k ≥ 0. The answer to this question turns out to be the following:

Proposition 2.15. The distribution of a+a∗ in (A, ϕ) is the mea-
sure dµ(t) = 1

2π

√
4− t2 dt on the interval [−2, 2].
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Proof. By taking into account the Corollary 2.14, what we have
to show is that

(2.15)

∫ 2

−2

tk
√

4− t2 dt =

{
0 if k is odd
2π

p+1

(
2p
p

)
if k is even, k = 2p.

The case of odd k is obvious, because in that case t 7→ tk
√

4− t2 is an
odd function. When k is even, k = 2p, we use the change of variable
t = 2 cos θ, dt = −2 sin θ dθ, with θ running from π to 0. We obtain
that:

∫ 2

−2

t2p
√

4− t2 dt =

∫ π

0

22p+2 cos2p θ sin2 θ dθ = 4p+1(Ip − Ip+1),

where

Ip :=

∫ π

0

cos2p θ dθ, p ≥ 0.

The integral Ip has already appeared in the Example 1.14 of Lecture
1; in fact, if we combine the Equation (1.14) of that example with the
calculations following to it (in the same example), we clearly obtain
that

Ip =
π

4p

(
2p

p

)
, p ≥ 0,

and (2.15) quickly follows. ¤

The Proposition 2.15 can be rephrased by saying that a + a∗ is a
semicircular element of radius 2, in the sense of the next definition.

Definition 2.16. Let (A, ϕ) be a ∗-probability space, let x be
a selfadjoint element of A and let r be a positive number. If x has
distribution (in analytical sense, as in Remark 1.10 of Lecture 1) equal
to 2

πr2

√
r2 − t2dt on the interval [−r, r], then we will say that x is a

semicircular element of radius r.

Remarks 2.17. 1) It is customary to talk about semicircular el-
ements, despite the fact that the graph of a function of the form
[−r, r] 3 t 7→ 2

πr2

√
r2 − t2 is not exactly a semicircle (but rather a

semi-ellipse). Semicircular elements will play an important role in the
subsequent lectures – see e.g. Lecture 8. The semicircular distribution
is also a fundamental object in random matrix theory; we will address
this relation in Lecture 22.

2) The semicircular elements of radius 2 are also called standard
semicircular, due to the fact that they are normalized by the variance.
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Indeed, it is immediate that a semicircular element x of radius r has
its variance Var(x) := ϕ(x2)− ϕ(x)2 given by

Var(x) = r2/4.

(It is in fact more customary to talk about semicircular elements in
terms of their variance, rather than radius. Of course, the above equa-
tion shows that either radius or variance can be used, depending on
what is the user’s preference.)

3) Strictly speaking, the above definition has only introduced the
concept of a centered semicircular element; it is quite straightforward
how to adjust it in order to define a notion of “semicircular element
of mean m ∈ R and radius r > 0”, but this will not be needed in the
sequel.

4) The proof shown above for Proposition 2.15 was immediate, but
not too illuminating, as it does not show how one arrives to consider
the semicircular density in the first place. (It is easier to just verify that
the given density has the right moments, rather than deriving what the
density should be!) We will conclude the lecture by elaborating a bit
on this point. The object which we will use as an intermediate in order
to derive µ from the knowledge of its moments is an analytic function
in the upper half plane called “the Cauchy transform”.

Using the Cauchy transform

Definition 2.18. Let µ be a probability measure on R. The
Cauchy transform of µ is the function Gµ defined on the upper half
plane C+ = {s + it | s, t ∈ R, t > 0} by the formula:

Gµ(z) =

∫

R

1

z − t
dµ(t), z ∈ C+.

Remarks 2.19. 1) It is easily verified that Gµ is analytic on C+

and that it takes values in C− := {s + it | s, t ∈ R, t < 0}.
2) Suppose that µ is compactly supported, and let us denote r :=

sup{|t| | t ∈ supp(µ)}. We then have the power series expansion:

(2.16) Gµ(z) =
∞∑

n=0

αn

zn+1
, |z| > r,

where αn :=
∫
R tn dµ(t) is the nth moment of µ, for n ≥ 0. Indeed, for

|z| > r we can expand:

1

z − t
=

∞∑
n=0

tn

zn+1
, ∀ t ∈ supp(µ).
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The convergence of the latter series is uniform in t ∈ supp(µ); hence
we can integrate the series term by term against dµ(t), and (2.16) is
obtained.

Note that the expansion (2.16) of Gµ around the point at infinity
has as an obvious consequence the fact that

(2.17) lim
z∈C+, |z|→∞

zGµ(z) = 1.

Remark 2.20. The property of the Cauchy transform that we want
to use is the following: there is an effective way of recovering the prob-
ability measure µ from its Cauchy transform Gµ, via the Stieltjes in-
version formula. If we denote

(2.18) hε(t) := − 1

π
=Gµ(t + iε), ∀ε > 0, ∀ t ∈ R

(where “=” stands for the operation of taking the imaginary part of a
complex number), then the Stieltjes inversion formula says that

(2.19) dµ(t) = lim
ε→0

hε(t) dt.

The latter limit is considered in the weak topology on the space of
probability measures on R, and thus amounts to the fact that

(2.20)

∫

R
f(t) dµ(t) = lim

ε→0

∫

R
f(t)hε(t) dt,

for every bounded continuous function f : R→ C.
The fact that (2.19) holds is a consequence of the connection be-

tween the Cauchy transform and the family of functions (Pε)ε>0 defined
by

Pε(t) :=
1

π

ε

t2 + ε2
, for ε > 0 and t ∈ R,

which forms the so-called “Poisson kernel on the upper half plane”. For
every ε > 0 and t ∈ R we have that

hε(t) = − 1

π
=

∫

R

1

t + iε− s
dµ(s)

= − 1

π
=

∫

R

t− s− iε

(t− s)2 + ε2
dµ(s)

=
1

π

∫

R

ε

(t− s)2 + ε2
dµ(s)

=

∫

R
Pε(t− s)dµ(s).

The last expression in the above sequence of equalities is called a con-
volution integral, and one of the fundamental properties of the Poisson
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kernel is that the hε’s given by such an integral will converge weakly
to µ for ε → 0.

Let us record explicitly how the Stieltjes inversion formula looks in
the case when the Cauchy transform Gµ happens to have a continuous
extension to C+ ∪R. The values on R of this extension must of course
be given by the function g obtained as

(2.21) g(t) = lim
ε→0

Gµ(t + iε), t ∈ R.

It is immediate that in this case the measures hε(t) dt converge weakly
to − 1

π
=g(t) dt. Hence in this case the Stieltjes inversion formula is

simply telling us that:

(2.22) dµ(t) = − 1

π
=g(t) dt,

with g defined as in (2.21).

Let us now look once more at the random variable a fixed at the
beginning of the lecture, and see how we can use the Cauchy transform
in order to derive the distribution of a + a∗ from the knowledge of its
moments.

Lemma 2.21. Suppose that µ is a probability measure with compact
support on R such that

∫

R
tk dµ(t) =

{
0 if k is odd

1
p+1

(
2p
p

)
if k is even, k = 2p.

Then the Cauchy transform of µ is

(2.23) Gµ(z) =
z −√z2 − 4

2
, z ∈ C+.

(Note: On the right-hand side of (2.23) we can view
√

z2 − 4 :=
√

z − 2 · √z + 2,

where z 7→ √
z ± 2 is analytic on C \ {∓2 − it | t > 0} ⊃ C+, and is

defined such that it gives the usual square root for z ∈ R, z > 2.)

Proof. We know that for |z| sufficiently large we have the series
expansion (2.16), which becomes here

Gµ(z) =
∞∑

p=0

Cp

z2p+1
,
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with Cp = the pth Catalan number. The recurrence relation (2.8) of the
Catalan numbers and some elementary manipulations of power series
then give us that:

Gµ(z) =
1

z
+

∞∑
p=1

1

z2p+1

( p∑
j=1

Cj−1Cp−j

)

=
1

z
+

1

z

∞∑
p=1

p∑
j=1

Cj−1

z2j−1
· Cp−j

z2(p−j)+1

=
1

z
+

1

z

∞∑
j=1

Cj−1

z2j−1
·
( ∞∑

p=j

Cp−j

z2(p−j)+1

)

=
1

z
+

1

z

∞∑
j=1

Cj−1

z2j−1
·Gµ(z)

=
1

z
+

1

z
Gµ(z)2.

It follows that Gµ satisfies the quadratic equation

Gµ(z)2 − zGµ(z) + 1 = 0, z ∈ C+.

(The above computations only obtain this for a z such that |z| is large
enough, but after that the fulfilling of the quadratic equation is ex-
tended to all of C+ by analyticity.) By solving this quadratic equa-
tion we find that Gµ(z) = (z ± √

z2 − 4)/2, and from the condition
lim|z|→∞ zGµ(z) = 1 we see that the “−” sign has to be chosen in the
“±” of the quadratic formula. ¤

Finally, let us remark that the analytic function found in the Equa-
tion (2.23) has a continuous extension to C+ ∪R, where the extension
acts on R by:

t 7→ g(t) :=

{
(t− i

√
4− t2)/2 if |t| ≤ 2

(t−√t2 − 4)/2 if |t| > 2.

By taking the imaginary part of g, and by using the observation made
at the end of the Remark 2.20, we see why the semicircular density is
the appropriate choice in the statement of Proposition 2.15.

Exercises

Exercise 2.22. Let S ∈ B(l2) be the shift operator considered in
the Remark 2.5, and let {ξn | n ≥ 0} be the orthonormal basis of l2

considered in the same remark.
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1) Let (m, n) 6= (0, 0) be in
(
N ∪ {0})2

. Based on the fact that
〈Sm(S∗)nξn , ξm〉 = 1, show that

Sm(S∗)n 6∈ span{Sk(S∗)l | either k > m, or k = m and l > n }.
2) By using the result in part 1 and the lexicographic order on(

N ∪ {0})2
, prove that the operators ( Sm(S∗)n )m,n≥0 form a linearly

independent family in B(l2).

Exercise 2.23. Write a proof of Proposition 2.13 which only uses
the framework introduced in the Notations 2.1, 2.3, and does not appeal
to the representation of a as a shift operator.

Exercise 2.24. Re-derive the formula (1.16) from Example 1.14
in Lecture 1 by starting from the Equation (1.14) of the same example
and by using the Stieltjes inversion formula.



LECTURE 3

C*-probability spaces

C∗-algebras provide a natural environment where non-commutative
probabilistic ideas can be seen at work. In this lecture we provide some
basic background for our readers who are not familiar with them. The
emphasis will be on the concept of C∗-probability space and on the
relations between spectrum and ∗-distribution for a normal element in
a C∗-probability space.

The line followed by our sequence of lectures does not require any
substantial C∗-algebra apparatus, and we hope it will be comprehensi-
ble to present the fairly few and elementary C∗-algebra facts which are
needed, at the places where they appear. Whenever possible, we will
minimize the number of statements which have to be accepted without
proof – for instance in the present lecture the only such statement is
the one of Theorem 3.1, which collects some fundamental facts about
the spectral theory of normal elements.

Functional calculus in a C*-algebra

A C*-probability space is a ∗-probability space (A, ϕ) where
the ∗-algebra A is required to be a unital C∗-algebra. Being a unital
C*-algebra means that (in addition to being a unital ∗-algebra) A is
endowed with a norm || · || : A → [0,∞) which makes it a complete
normed vector space, and such that we have:

(3.1) ||ab|| ≤ ||a|| · ||b||, ∀ a, b ∈ A;

(3.2) ||a∗a|| = ||a||2, ∀ a ∈ A.

Out of the very extensive theory of C∗-algebras we will only need some
basic facts of spectral theory, which are reviewed in a concentrated way
in the following theorem. Recall that if A is a unital C∗-algebra and if
a ∈ A, then the spectrum of a is the set

Sp(a) = {z ∈ C | z1A − a is not invertible}.
Theorem 3.1. Let A be a unital C∗-algebra.

45
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1) For every a ∈ A, Sp(a) is a non-empty compact subset of C,
contained in the disc {z ∈ C | |z| ≤ ||a||}.

2) Let a be a normal element of A, and consider the algebra
C( Sp(a) ) of complex-valued continuous functions on Sp(a). There ex-
ists a map Φ : C( Sp(a) ) → A which has the following properties:

(i) Φ is a unital ∗-algebra homomorphism .
(ii) ||Φ(f)|| = ||f ||∞, ∀ f ∈ C( Sp(a) ) (where for f ∈ C( Sp(a) ) we

define ||f ||∞ := sup{|f(z)| | z ∈ Sp(a)}).
(iii) Denoting by id : Sp(a) → C the identity function (id(z) = z

for every z ∈ Sp(a)), we have that Φ(id) = a.

Remarks 3.2. Let A be a unital C∗-algebra, let a be a normal
element of A, and let Φ : C( Sp(a) ) → A have the properties (i), (ii)
and (iii) listed in the Theorem 3.1.2.

1) The condition (ii) (together with the linearity part of (i)) implies
that Φ is one-to-one. Hence in a certain sense, Φ provides us with a
copy of the algebra C( Sp(a) ) which sits inside A.

2) Suppose that p : Sp(a) → C is a polynomial in z and z̄, i.e. it is
of the form

(3.3) p(z) =
n∑

j,k=0

αj,kz
j z̄k, z ∈ Sp(a);

then the properties (i) and (iii) of Φ immediately imply that

(3.4) Φ(p) =
n∑

j,k=0

αj,ka
j(a∗)k.

3) The preceding remark shows that the values of Φ on polynomi-
als in z and z̄ are uniquely determined. Since these polynomials are
dense in C( Sp(a) ) with respect to uniform convergence, and since (by
(i)+(ii)) Φ is continuous with respect to uniform convergence, it follows
that the properties (i), (ii) and (iii) determine Φ uniquely.

4) The name commonly used for Φ is functional calculus with
continuous functions for the element a. A justification for this name
is seen by looking at polynomials p as the one appearing in Equation
(3.3): for such a p, the corresponding element Φ(p) ∈ A (appearing
in (3.4)) is what one naturally tends to denote as “p(a)”. It is in fact
customary to use the notation

(3.5) “f(a)” instead of “Φ(f)”

when f is an arbitrary continuous function on Sp(a) (not necessarily a
polynomial in z and z̄). The notation (3.5) will be consistently used in
the remainder of this lecture.
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Remarks 3.3. Let A be a unital C∗-algebra. The Theorem 3.1.2
contains in a concentrated way a good amount of information about
the spectra of the normal elements of A. We record here a few facts
which are immediately implied by it. (Note: it comes handy to record
these facts as consequences of the Theorem 3.1; but the reader should
be warned that in a detailed development of basic C∗-algebra theory,
some of these facts would be proved directly from the axioms, preceding
the discussion about functional calculus.)

1) If a is a normal element of A, then

(3.6) ||a|| = ||a∗|| = sup{|z| | z ∈ Sp(a)}.
This is seen by using (ii) of Theorem 3.1.2 for the functions id and id
on Sp(a).

2) If x is a selfadjoint element of A then Sp(x) ⊂ R. Indeed, when
we apply (ii) of Theorem 3.1.2 to the function id − id on Sp(x), we
get that

(3.7) ||x− x∗|| = sup{|z − z̄| | z ∈ Sp(x)}.
The left-hand side of (3.7) is 0; hence so must be the right-hand side
of (3.7), and this implies that Sp(x) ⊂ {z ∈ C : z − z̄ = 0} = R.

Conversely, if x ∈ A is normal and has Sp(x) ⊂ R, then it follows
that x = x∗; this is again by (3.7), where now we know that the right-
hand side vanishes.

3) If u is a unitary element of A, then Sp(u) ⊂ T = {z ∈ C : |z| =
1}. And conversely, if u ∈ A is normal and has Sp ⊂ T then u has to
be a unitary. The argument is the same as in the part 2 of this remark,
where now we use the equation:

||1− u∗u|| = sup{| 1− |z|2 | | z ∈ Sp(u)}.
The following statement is known under the name of “spectral map-

ping theorem”.

Theorem 3.4. Let A be a unital C∗-algebra, let a be a normal
element of A, and let f : Sp(a) → C be a continuous function. Then
the element f(a) ∈ A (defined by functional calculus) has

(3.8) Sp( f(a) ) = f( Sp(a) ).

Proof. By considering functions of the form z 7→ f(z) − λ on
Sp(a) (where λ ∈ C), one immediately sees that it suffices to prove the
following statement: Let A and a be as above, and let g : Sp(a) → C
be a continuous function. Then:

(3.9) g(a) is invertible in A ⇔ 0 6∈ g( Sp(a) ).
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The implication “⇐” in (3.9) is immediate: if 0 6∈ g( Sp(a) ), then
one can define the continuous function h = 1/g : Sp(a) → C, and the
properties of functional calculus imply that the element h(a) ∈ A is an
inverse for g(a).

In order to prove the implication “⇒” in (3.9), we proceed by con-
tradiction. Assume that g(a) is invertible in A, but that nevertheless
there exists zo ∈ Sp(a) such that g(zo) = 0. Let us pick a positive num-
ber α > ||g(a)−1||. Because of the fact that g(zo) = 0, one can construct
a function h ∈ C(Sp(a)) such that h(zo) = α while at the same time
||g · h||∞ ≤ 1. (Indeed, there exists ε > 0 such that |g(z)| < 1/α for
all z ∈ Sp(a) with |z − zo| < ε, and one can construct h with values in
[0, α] and supported inside the disc of radius ε/2 centered at zo. For
instance h(z) := α ·max(0, 1−2|z−zo|/ε) will do.) From the properties
of functional calculus it follows that the element h(a) ∈ A is such that
its norm equals

||h(a)|| = ||h||∞ ≥ α

while at the same time we have:

||g(a) · h(a)|| = ||g · h||∞ ≤ 1.

We then get that

α ≤ ||h(a)|| = ||g(a)−1 · (g(a) · h(a))|| ≤ ||g(a)−1|| · ||g(a) · h(a))|| < α,

a contradiction. ¤

Remark 3.5. Let A be a unital C∗-algebra. It is customary to
define the set of positive elements of A as

(3.10) A+ := {p ∈ A | p = p∗ and Sp(p) ⊂ [0,∞)}.
It is fairly easy to show that

(3.11) p, q ∈ A+, α, β ∈ [0,∞) ⇒ αp + βq ∈ A+,

i.e. that A+ is a convex cone in the real vector space of selfadjoint
elements of A – see Exercise 3.18 at the end of the lecture. Moreover,
the cone A+ is “pointed”, in the sense that A+ ∩ (−A+) = {0}. (Or
in other words: if a selfadjoint element x ∈ A is such that both x and
−x are in A+, then x = 0. This is indeed so, because x,−x ∈ A+ ⇒
Sp(x) ⊂ [0,∞) ∩ (−∞, 0] = {0} ⇒ ||x|| = sup{|z| | z ∈ Sp(x)} = 0.)

Note also that the spectral mapping theorem provides us with a rich
supply of positive elements in A. Indeed, if a is an arbitrary normal
element of A and if f : Sp(a) → [0,∞) is a continuous function, then
the element f(a) is in A+ (it is selfadjoint because f = f , and has
spectrum in [0,∞) by Theorem 3.4).
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Recall from Lecture 1 that a linear functional ϕ : A → C is declared
to be positive when it satisfies the condition ϕ(a∗a) ≥ 0, ∀ a ∈ A. This
brings up the question of whether there is any relation between A+ and
the set {a∗a | a ∈ A}. It is quite convenient that these two sets actually
coincide:

Proposition 3.6. Let A be a unital C∗-algebra, and consider the
set A+ of positive elements of A (defined as in Equation (3.10) of the
preceding remark). Then

(3.12) A+ = {a∗a | a ∈ A}.
Proof. “⊂” Let p be in A+, and define a = f(p) (functional cal-

culus) where f is the square root function on the spectrum of p. Then
the properties of functional calculus immediately give us that a = a∗

(coming from f = f̄) and that a∗a = a2 = (f 2)(p) = p.
“⊃” Fix an a ∈ A, for which we want to prove that a∗a ∈ A+. It is

clear that a∗a is selfadjoint, the issue is to prove that Sp(a∗a) ⊂ [0,∞).
Consider the functions f, g : Sp(a∗a) → [0,∞) defined by

f(t) := max(0, t), g(t) := max(0,−t), t ∈ Sp(a∗a),

and denote f(a∗a) =: x, g(a∗a) =: y. We have that x, y ∈ A+ (cf. the
second paragraph of Remark 3.5). The properties of functional calculus
also give us that

(3.13) x− y = a∗a, xy = yx = 0.

Consider now the element b := ay ∈ A. We have (by direct calcu-
lation and by using (3.13)) that

b∗b = ya∗ay = y(x− y)y = −y3.

Since y ∈ A+, it is immediate by functional calculus that y3 ∈ A+;
hence it follows that b∗b ∈ −A+. We leave it as an exercise to the
meticulous reader to go through the details of why “b∗b ∈ −A+” implies
“b = 0” – cf. Exercise 3.20 at the end of the lecture. Here we will
assume that this is proved, and will finish the argument as follows:

y3 = −b∗b = 0 ⇒ {t3 | t ∈ Sp(y)} = Sp(y3) = {0}
⇒ Sp(y) = {0}
⇒ ||y|| = sup{|t| | t ∈ Sp(y)} = 0.

So we found that y = 0, and therefore a∗a = x− y = x ∈ A+. ¤
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C*-probability spaces

Definition 3.7. A C∗-probability space is a ∗-probability space
(A, ϕ) where A is a unital C∗-algebra.

Let us note that in the C∗-framework, the expectation functional
is automatically continuous. More precisely, we have:

Proposition 3.8. Let (A, ϕ) be a C∗-probability space. We have
that

(3.14) |ϕ(a)| ≤ ||a||, ∀ a ∈ A.

Proof. We first pick an arbitrary element p ∈ A+. We know that
ϕ(p) ∈ [0,∞) (by Proposition 3.6 and the positivity of ϕ). We claim
that:

(3.15) ϕ(p) ≤ ||p||.
Indeed, we have (by Theorem 3.1.1 and Equation (3.10) of Remark 3.5)
that

Sp(p) ⊂ {z ∈ C | |z| ≤ ||p||} ∩ [0,∞) = [ 0, ||p|| ].
As a consequence, we can use functional calculus to define the ele-
ment b := ( ||p|| − p )1/2 ∈ A (or more precisely, b := f(p) where
f ∈ C( Sp(p) ) is defined by f(t) = ( ||p|| − t )1/2, t ∈ Sp(p)). It is
immediate that b = b∗ and that p + b2 = ||p|| · 1A; therefore

||p|| − ϕ(p) = ϕ(b∗b) ≥ 0,

and (3.15) is obtained.
Now for an arbitrary a ∈ A we have

|ϕ(a)| = |ϕ(1∗A · a)|
≤ ϕ(a∗a)1/2 (by Cauchy-Schwarz – cf. Lecture 1)

≤ ||a∗a||1/2 (by (3.15), where we take p = a∗a)

= ||a|| (by (3.2)).

¤
Remark 3.9. The following partial converse of Proposition 3.8 is

also true: Let A be a unital C∗-algebra. Let ϕ : A → C be a linear
functional such that |ϕ(a)| ≤ ||a||, ∀ a ∈ A, and such that ϕ(1A) = 1
(where 1A is the unit of A). Then ϕ is positive, and hence (A, ϕ) is a
C∗-probability space. See Exercise 3.21 at the end of the lecture.

Example 3.10. Let Ω be a compact Hausdorff topological space,
and let µ be a Radon probability measure on the Borel σ-algebra of Ω.
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(Asking the probability measure µ to be “a Radon measure” amounts
to requesting that for every Borel set A ⊂ Ω one has

µ(A) = sup{µ(K) | K ⊂ A, compact} = inf{µ(D) | D ⊃ A, open}.
In many natural situations – when Ω is a compact metric space, for
instance – one has that every probability measure on the Borel σ-
algebra of Ω is actually a Radon measure.)

Consider the algebra A = C(Ω) of complex-valued continuous func-
tions on Ω, and let ϕ : A → C be defined by

(3.16) ϕ(f) =

∫

Ω

f dµ, f ∈ A.

Then (A, ϕ) is a C∗-probability space. All the elements of A are nor-
mal. The functional calculus with continuous functions for an element
a ∈ A is reduced in this case to performing a functional composition –
see Exercise 3.22 below.

There are two important theorems in functional analysis which are
worth being reminded in connection to this example. First, a basic the-
orem of Riesz states that every positive linear functional on C(Ω) can
be put in the form (3.16) for an appropriate Radon probability mea-
sure µ. Secondly, a theorem of Gelfand states that every commutative
unital C∗-algebra A can be identified as C(Ω) for a suitable compact
Hausdorff space Ω. Hence the example presented here is the “generic”
one, as far as commutative C∗-probability spaces are concerned.

In non-commutative examples, C∗-algebras appear most frequently
as ∗-subalgebras A ⊂ B(H) (H Hilbert space), such that A is closed in
the norm-topology of B(H). We present here the example of this kind
which is the C∗-counterpart of Example 1.4.4 from Lecture 1.

Example 3.11. Let G be a discrete group, and let λ : G →
B( l2(G) ) be its left regular representation. This is defined by
the formula

(3.17) λ(g)ξh = ξgh, ∀ g, h ∈ G,

where {ξh : h ∈ G} is the canonical orthonormal basis of l2(G). (That
is: every λ(g) is a unitary operator on l2(G), which permutes the or-
thonormal basis {ξh : h ∈ G} according to the formula (3.17).) It is not
hard to show that the operators ( λ(g) )g∈G are linearly independent,
and that their linear span is a unital ∗-algebra of B( l2(G) ), isomor-
phic to the group algebra CG from Example 1.4.4 of Lecture 1. (See
Exercise 3.24 below.) The closure in the norm-topology:

C∗
red(G) := cl

(
span{λ(g) : g ∈ G}

)
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is then a unital C∗-algebra of operators on l2(G); it is called the re-
duced C∗-algebra of the group G.

Let e be the unit of G and let ξe be the corresponding vector in
the canonical basis of l2(G). Let τ be the vector-state defined by ξe on
C∗

red(G):

(3.18) τ(T ) = 〈Tξe, ξe〉, T ∈ C∗
red(G).

Then (C∗
red(G), τ) is an example of C∗-probability space.

Let us observe that when T is the image of
∑

g αgg ∈ CG via the

canonical isomorphism CG ' span{λ(g) | g ∈ G} ⊂ C∗
red(G), then we

get

τ(T ) =
〈
(
∑

g

αgλ(g))ξe, ξe

〉
=

〈∑
g

αgξg, ξe

〉
= αe.

So, via natural identifications, τ extends the trace τG on CG which
appeared in Example 1.4.4 of Lecture 1. Thus, in a certain sense,
(C∗

red(G), τ) is an upgrade of (CG, τG) from the ∗-algebraic framework
to the C∗-algebraic one.

Moreover, the C∗-probability space (C∗
red(G), τ) turns out to keep

the pleasing features which we trust that the reader has verified (in the
course of solving the Exercise 1.5 of Lecture 1) for the canonical trace
on CG. That is, we have:

Proposition 3.12. In the framework of the preceding example, the
functional τ is a faithful trace on C∗

red(G).

Proof. The traciality of τ is immediate. Indeed, since τ is con-
tinuous (by Proposition 3.8) and since the linear span of the operators
{λ(g) : g ∈ G} is dense in C∗

red(G), it suffices to check that

(3.19) τ( λ(g1) · λ(g2) ) = τ( λ(g2) · λ(g1) ), ∀ g1, g2 ∈ G.

But (3.19) is obviously true – both its sides are equal to 1 when g1 =
g−1
2 , and are equal to 0 otherwise.

In order to prove that τ is faithful on C∗
red(G), it is convenient that

(in addition to the left-translation operators λ(g)) we look at right-
translation operators on l2(G). So, for every g ∈ G let us consider
the unitary operator ρ(g) on l2(G) which permutes the canonical basis
(ξh)h∈G according to the formula:

ρ(g)ξh = ξhg−1 , h ∈ G.

Then ρ : G → B( l2(G) ) is a unitary representation, called the right
regular representation of G. It is immediately verified that the left and
the right translation operators commute with each other:

(3.20) ρ(g)λ(g′) = λ(g′)ρ(g), ∀ g, g′ ∈ G.
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If in (3.20) we fix an element g ∈ G and make linear combinations
of the operators λ(g′), followed by approximations in norm, we obtain
that

(3.21) ρ(g)T = Tρ(g), ∀ g ∈ G, ∀ T ∈ C∗
red(G).

Now, let T ∈ C∗
red(G) be such that τ(T ∗T ) = 0. Since

τ(T ∗T ) = 〈T ∗Tξe, ξe〉 = ||Tξe||2,
we thus have that Tξe = 0. But then for every g ∈ G we find that

Tξg = T ( ρ(g−1)ξe ) = ρ(g−1)(Tξe) = ρ(g−1) · 0 = 0.

(The second equality follows by Eqn.(3.21).) So T vanishes on the
orthonormal basis (ξg)g∈G of l2(G), and this implies that T = 0. ¤

∗-distribution, norm and spectrum for a normal element

Proposition 3.13. Let (A, ϕ) be a C∗-probability space, and let a
be a normal element of A Then a has a ∗-distribution µ in analytic
sense (as described in Definition 1.8 of Lecture 1). Moreover:

1) The support of µ is contained in the spectrum of a.
2) For f ∈ C( Sp(a) ) we have the formula

(3.22)

∫
f dµ = ϕ(f(a)),

where on the right-hand side f(a) ∈ A is obtained by functional calcu-
lus, and on the left-hand side µ is viewed as a probability measure on
Sp(a).

Proof. Let Φ : C( Sp(a) ) → A be the functional calculus for a,
as in Theorem 3.1.2 (Φ(f) = f(a), for f ∈ C( Sp(a) )). Then ϕ ◦ Φ :
C( Sp(a) ) → C is a positive linear functional, so by the theorem of
Riesz mentioned in Example 3.10 there exists a probability measure µ
on the Borel σ-algebra of Sp(a) such that

(3.23) (ϕ ◦ Φ)(f) =

∫
f dµ, ∀ f ∈ C( Sp(a) ).

If we set f in (3.23) to be of the form f(z) = zmz̄n for some m,n ≥ 0,
then Φ(f) = am(a∗)n (cf. Remark 3.2.2), and (3.23) gives us that

(3.24) ϕ( am(a∗)n ) =

∫

Sp(a)

zmz̄n dµ(z), ∀ m, n ≥ 0.

Of course, the measure µ of (3.23), (3.24) can also be viewed as a
compactly supported measure on C, with supp(µ) ⊂ Sp(a). In this in-
terpretation, (3.24) tells us that µ is the ∗-distribution of a, in analytic
sense, while (3.23) becomes (3.22). ¤
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Corollary 3.14. Let (A, ϕ) be a ∗-probability space. If (A, ϕ)
admits a representation on a Hilbert space (in the sense of Definition
1.6 of Lecture 1), then every normal element of A has a ∗-distribution
in analytic sense.

Proof. The existence of representations means in particular that
we can find a C∗-probability space (B, ψ) and a unital ∗-homomorphism
Φ : A → B such that ψ ◦ Φ = ϕ. For every normal element a ∈ A, it
is clear that b := Φ(a) is a normal element of B; hence, by Proposition
3.13, b has a ∗-distribution µ in analytic sense. But then for every
m,n ≥ 0 we can write:

ϕ( am(a∗)n ) = ψ(Φ( am(a∗)n )) = ψ( bm(b∗)n ) =

∫
zmz̄n dµ(z),

which shows that µ is the ∗-distribution of a as well. ¤
In the rest of this section we look at some additional facts which can

be derived for a C∗-probability space where the expectation is faithful.

Proposition 3.15. Let (A, ϕ) be a C∗-probability space such that
ϕ is faithful. Let a be a normal element of A, and let µ be the ∗-
distribution of a in analytic sense. Then the support of µ is equal to
Sp(a).

Proof. The inclusion “⊂” was observed in Proposition 3.13, so we
only have to prove “⊃”. Let us fix an element λ ∈ Sp(a), and assume
by contradiction that λ 6∈ supp(µ). Since C \ supp(µ) is an open set of
µ-measure 0, it follows that we can find r > 0 such that µ( B(λ; r) ) = 0,
where B(λ; r) := {z ∈ C | |z − λ| < r}. Let f : Sp(a) → [0, 1] be a
continuous function such that f(λ) = 1 and such that f(z) = 0 for all
z ∈ Sp(a) with |z − λ| ≥ r (e.g. f(z) = max(0, 1− |λ− z|/r) will do);
and let us define b := f(a) ∈ A, by functional calculus. The property
(ii) appearing in Theorem 3.1.2 gives us that ||b|| = 1, so in particular
we know that b 6= 0. On the other hand we have that

ϕ(b∗b) = ϕ(b2) (since f = f̄ , which implies b = b∗)

=

∫
f 2 dµ (since b2 = f 2(a), and by Prop. 3.13)

≤
∫

B(λ;r)

1 dµ,

with the last inequality holding because f 2 is bounded above by the
characteristic function of B(λ; r). We thus get

ϕ(b∗b) ≤ µ( B(λ; r) ) = 0,
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and this contradicts the faithfulness of ϕ. ¤
Remark 3.16. The above proposition can be read as follows: if

(A, ϕ) is a C∗-probability space such that ϕ is faithful, and if a is a
normal element of A, then the knowledge of the ∗-distribution µ of a
allows us to compute the spectrum of a, via the formula

(3.25) Sp(a) = supp(µ).

Note that the knowledge of µ will then also give us the norm of a –
indeed, from (3.25) and the Equation (3.6) of Remark 3.3.1 it follows
that

(3.26) ||a|| = sup{|z| | z ∈ supp(µ)}.
The following proposition indicates another (more direct) way of com-
puting the norm of a from combinatorial information on ∗-moments.

Proposition 3.17. Let (A, ϕ) be a C∗-probability space such that
ϕ is faithful. For every a ∈ A (normal or not) we have that

(3.27) ||a|| = lim
n→∞

ϕ( (a∗a)n )1/2n.

Proof. Equivalently, we have to show that

(3.28) ||p|| = lim
n→∞

ϕ(pn)1/n,

where p := a∗a ∈ A+ and where we used the C∗-axiom (3.2). An
immediate application of functional calculus shows that pn ∈ A+, ∀ n ≥
1; so the sequence appearing on the right-hand side of Equation (3.28)
consists of non-negative numbers. Note also that for every n ≥ 1 we
have:

ϕ(pn)1/n ≤ ( ||pn|| )1/n (by Proposition 3.8)

≤ ( ||p||n )1/n (by Equation (3.1))

= ||p||.
So what we actually have to do is to fix an α ∈ (0, ||p||), and show that
ϕ(pn)1/n > α if n is sufficiently large.

Now, we have that Sp(p) ⊂ [0, ||p||] (same argument as in the proof
of Proposition 3.8). Moreover, from the Remark 3.3.1 we infer that
||p|| ∈ Sp(p). Let µ be the ∗-distribution of p, in analytic sense. Then
||p|| ∈ supp(µ) (by Proposition 3.15), and it follows that we have

(3.29) µ( [β, ||p||] ) > 0, ∀ 0 < β < ||p||.
For the number α ∈ (0, ||p||) which was fixed above, let us choose

a β ∈ (α, ||p||) (for instance β = (α + ||p||)/2 will do). Then we can
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write, for every n ≥ 1:

ϕ(pn) =

∫

Sp(p)

tn dµ(t) ≥
∫

Sp(p)∩[β,||p||]
tn dµ(t) ≥ βn · µ( [β, ||p||] ).

(The first equality follows by Proposition 3.13.2).) Hence

(3.30) ϕ(pn)1/n ≥ β · µ( [β, ||p||] )1/n, ∀ n ≥ 1,

and the right-hand side of (3.30) exceeds α when n is sufficiently large
(since (3.29) implies that µ( [β, ||p||] )1/n → 1 as n →∞). ¤

Exercises

The Exercises 3.18 – 3.20 are filling in the details left during the
discussion on positive elements of a C∗-algebra (cf. Remark 3.5, proof
of the Proposition 3.6).

Exercise 3.18. Let A be a unital C∗-algebra.
1) By using functional calculus, prove that if x is a selfadjoint ele-

ment of A and if α ∈ R is such that α ≥ ||x||, then we have

||α− x|| = α− inf( Sp(x) ).

2) By using the formula found in part 1 of the exercise, prove that
if x, y are selfadjoint elements of A, then

inf( Sp(x + y) ) ≥ inf( Sp(x) ) + inf( Sp(y) ).

3) Consider the set A+ of positive elements of A (defined as in
Equation (3.10) of Remark 3.5). Prove that if p, q ∈ A+ and if α, β ∈
[0,∞), then αp + βq ∈ A+.

Exercise 3.19. Let A be a unital C∗-algebra and let a, b be ele-
ments of A. Prove that Sp(ab) ∪ {0} = Sp(ba) ∪ {0}.
[This exercise is a version of the exercise, usually given in a basic algebra
course, which goes as follows: for a, b elements of a unital ring, prove
that 1− ab is invertible if and only if 1− ba is invertible.]

Exercise 3.20. Let A be a unital C∗-algebra, and let b ∈ A be
such that Sp(b∗b) ⊂ (−∞, 0]. The goal of this exercise is to draw the
conclusion that b = 0.

1) Prove that b∗b+ bb∗ ∈ −A+ (where A+ is defined as in Equation
(3.10) of Remark 3.5).
[Hint: One has −b∗b ∈ A+ by hypothesis and −bb∗ ∈ A+ due to the
Exercise 3.19. Then use Exercise 3.18.]

2) Let x := (b + b∗)/2 and y := (b − b∗)/2i be the real and the
imaginary part of b. Verify that b∗b + bb∗ = 2(x2 + y2), and conclude
from there that x2 + y2 ∈ A+ ∩ (−A+).
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3) Prove that b = 0.

Exercise 3.21. 1) Let K be a non-empty compact subset of [0,∞),
and consider the algebra C(K) of complex-valued continuous functions
on K. Suppose that ϕ : C(K) → C is a linear functional such that
|ϕ(f)| ≤ ||f ||∞, ∀ f ∈ C(K), and such that ϕ(1C(K)) = 1 (where 1C(K)

is the function constantly equal to 1). Let h be the function in C(K)
defined by h(t) = t, for t ∈ K. Prove that ϕ(h) ≥ 0.
[Hint: In order to verify that ϕ(h) ∈ R look at functions of the form
h + iα1C(K), α ∈ R. Then in order to verify that ϕ(h) ≥ 0 look at
functions of the form h− α1C(K), α ∈ [0,∞).]

2) Let A be a unital C∗-algebra. Let ϕ : A → C be a linear
functional such that |ϕ(a)| ≤ ||a||, ∀ a ∈ A, and such that ϕ(1A) = 1.
Prove that ϕ is a positive functional, and hence that (A, ϕ) is a C∗-
probability space.
[Hint: Given p ∈ A+, observe that the inequality ϕ(p) ≥ 0 can be
reduced to the statement of part 1, by using functional calculus for the
element p.]

Exercise 3.22. Consider the framework of Example 3.10 (A =
C(Ω), where Ω is a compact Hausdorff space).

1) Show that for every a ∈ A we have that Sp(a) = {a(ω) | ω ∈ Ω}
(i.e, it is the range of a when a is a viewed as a function from Ω to C).

2) Let a be an element in A, and let f be a function in C( Sp(a) ).
Note that, due to the part 1 of this exercise, it makes sense to define
the composition f ◦ a : Ω → C, by (f ◦ a)(ω) = f(a(ω)), ω ∈ Ω. Prove
that the functional calculus with continuous functions for a ∈ A gives
the equality f(a) = f ◦ a.

Exercise 3.23. Let A and B be unital C∗-algebras, and let Ψ :
A → B be a unital ∗-homomorphism. Let a be a normal element of A,
and denote Ψ(a) =: b (so b is a normal element of B).

1) Observe that Sp(b) ⊂ Sp(a).
2) Let f be a function in C(Sp(a)), and denote the restriction of f

to Sp(b) by fo. Prove that Ψ(f(a)) = fo(b). [In other words: prove the
“commutation relation Ψ(f(a)) = f(Ψ(a))”, for f ∈ C(Sp(a).]

Exercise 3.24. Consider the framework of Example 3.11 (where λ
is the left regular representation of a discrete group G).

1) Let g1, . . . , gn be some distinct elements of G, let α1, . . . , αn be
in C, and consider the operator T =

∑n
i=1 αiλ(gi) ∈ B( l2(G) ). Verify

the equality ||Tξe||2 =
∑n

i=1 |αi|2.
2) By using the part 1 of the exercise, prove that the family of

operators (λ(g))g∈G is linearly independent in B( l2(G) ).





LECTURE 4

Non-commutative joint distributions

The discussion of the concept of joint distribution is a point where
things really start to have a different flavor in non-commutative prob-
ability, compared to their classical counterparts. To exemplify this,
let us look for instance at the situation of selfadjoint elements in ∗-
probability spaces. During the discussion made in Lecture 1 the reader
has probably sensed the fact that, when taken in isolation, such an
element is more or less the same thing as a classical real random vari-
able – it is only that we allow this real random variable to live in a
fancier (non-commutative) environment. Thus studying the distribu-
tion of one selfadjoint element in a ∗-probability space is not much of
a departure from what one does in classical probability. In this lec-
ture we will observe that the situation really becomes different when
we want to study at the same time two or more selfadjoint elements
which do not commute, and we look at the joint distribution of these
elements.

Besides introducing the relevant definitions and some examples, the
present lecture brings up only one (simple, but important) fact: the
class of isomorphism of a ∗-algebra/C∗-algebra A is determined by
the knowledge of the joint ∗-distribution of a family of generators,
with respect to a faithful expectation functional ϕ : A → C. This is
significant because it opens the way, at least in principle, to studying
isomorphisms of C∗-algebras by starting from combinatorial data on
∗-moments of generators.

Joint distributions

Notations 4.1. Let s be a positive integer.
1) We denote by C〈X1, . . . , Xs〉 the unital algebra freely gener-

ated by s non-commuting indeterminates X1, . . . , Xs. More concretely,
C〈X1, . . . , Xs〉 can be described as follows: The monomials of the form
Xr1Xr2 · · ·Xrn where n ≥ 0 and 1 ≤ r1, . . . , rn ≤ s give a linear ba-
sis for C〈X1, . . . , Xs〉, and the multiplication of two such monomials is
done by juxtaposition.

59
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2) Let A be a unital algebra, and let a1, . . . , as be elements of
A. For every P ∈ C〈X1, . . . , Xs〉 we will denote by P (a1, . . . , as) the
element of A which is obtained by replacing X1, . . . , Xs with a1, . . . , as,
respectively, in the explicit writing of P . Equivalently,

(4.1) C〈X1, . . . , Xs〉 3 P 7→ P (a1, . . . , as) ∈ A
is the homomorphism of unital algebras uniquely determined by the
fact that it maps Xr to ar, for 1 ≤ r ≤ s.

Definition 4.2. Let (A, ϕ) be a non-commutative probability
space, and let a1, . . . , as be elements of A.

1) The family

(4.2) {ϕ(ar1 · · · arn) : n ≥ 1, 1 ≤ r1, . . . , rn ≤ s}
is called the family of joint moments of a1, . . . , as.

2) The linear functional µ : C〈X1, . . . , Xs〉 → C defined by

(4.3) µ(P ) := ϕ( P (a1, . . . , as) ), P ∈ C〈X1, . . . , Xs〉
is called the joint distribution of a1, . . . , as in (A, ϕ).

The joint distribution of a1, . . . , as is thus determined by the fact
that it maps every monomial Xr1 · · ·Xrn into the corresponding joint
moment, ϕ(ar1 · · · arn), of a1, . . . , as.

Remark 4.3. It is clear that the above definitions can, without
any problems, be extended to the case of an arbitrary family (ai)i∈I

of random variables. (I is here an index set which might be infinite,
even uncountable.) The joint distribution of (ai)i∈I is then a linear
functional on the unital algebra C〈Xi | i ∈ I〉, which is freely generated
by non-commuting indeterminates Xi (i ∈ I). We leave it to the reader
to write down the exact wording of Definition 4.2 for this case.

Examples 4.4. 1) Let (Ω,Q, P ) be a probability space, and let
f1, . . . , fs : Ω → R be bounded random variables. Then f1, . . . , fs

are at the same time elements of the non-commutative probabil-
ity space L∞(Ω, P ) appearing in Example 1.4.1 of Lecture 1 (with
ϕ(a) =

∫
Ω

a(ω) dP (ω) for a ∈ L∞(Ω, P )). The joint distribution µ
of f1, . . . , fs in L∞(Ω, P ) is determined by the formula:

(4.4) µ(Xr1 · · ·Xrn) =

∫

Ω

fr1(ω) · · · frn(ω) dP (ω),

holding for every n ≥ 1 and 1 ≤ r1, . . . , rn ≤ s.
In this particular example, there exists a parallel concept of joint

distribution of f1, . . . , fs coming from classical probability: this is the



JOINT DISTRIBUTIONS 61

probability measure ν on the Borel σ-algebra of Rs which has, for every
Borel set E ⊂ Rs:

(4.5) ν(E) = P ( {ω ∈ Ω : (f1(ω), . . . , fs(ω)) ∈ E} ).

(Note that the assumption that f1, . . . , fs are bounded makes ν be
compactly supported.) The functional µ of Equation (4.4) is closely
related to this probability measure. Indeed, an argument very similar
to the one shown in Example 1.11.1 of Lecture 1 gives us that for every
k1, . . . , ks ≥ 0 we have:∫

Rs

tk1
1 · · · tks

s dν(t1, . . . , ts) =

∫

Ω

f1(ω)k1 · · · fs(ω)ksdP (ω);

this implies that the above Equation (4.4) can be written as

(4.6) µ(Xr1 · · ·Xrn) =

∫

Rs

tr1 · · · trn dν(t1, . . . , ts)

(for n ≥ 1 and 1 ≤ r1, . . . , rn ≤ s).
It is clear that the probability measure ν is better suited for study-

ing the s-tuple (f1, . . . , fs) than the functional µ on C〈X1, . . . , Xs〉; this
is not surprising, since the concept of non-commutative joint distribu-
tion is not meant to be particularly useful in commutative situations.
However, what one should keep in mind in this example is that the
non-commutative joint distribution for f1, . . . , fs is an algebraic (albeit
clumsy) incarnation of its classical counterpart.

2) Let d be a positive integer, and consider the ∗-probability space
(Md(C), tr) from Example 1.4.2 (the normalized trace on complex d×d
matrices). Let A1, A2 ∈ Md(C) be Hermitian matrices. Their joint
distribution µ : C〈X1, X2〉 → C is determined by the formula

µ(Xr1 · · ·Xrn) = tr(Ar1 · · ·Arn), ∀ n ≥ 1, ∀ 1 ≤ r1, . . . , rn ≤ 2.

Unless A1 and A2 happen to commute, the functional µ cannot be
replaced by a simpler object (like a probability measure on R2) which
records the same information.

Example 4.5. Let (A, ϕ) be a ∗-probability space, and let x, y be
selfadjoint elements of A. For every n ≥ 1 one can expand (x + y)n as
a sum of 2n non-commutative monomials in x and y (even though, of
course, the usual binomial formula doesn’t generally apply). As a con-
sequence, the moments ϕ( (x+y)n ), n ≥ 1 (and hence the distribution
of x + y) are determined by the knowledge of the joint distribution of
x and y.

On the other hand it is quite clear that, for x and y as above,
just the knowledge of what are the individual distributions of x and
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of y will not generally suffice in order to determine the distribution of
x + y. In the remaining of this example we point out how this can be
nicely illustrated in the situation of the group algebra (Example 1.4.4
of Lecture 1).

Let G be a group and let g, h ∈ G be two elements of infinite
order. Consider the ∗-probability space (CG, τG), as in Example 1.4.4
of Lecture 1. Recall that CG has a canonical linear basis indexed by G;
the elements of this basis are denoted by the same letters as the group
elements themselves, and they are unitaries in CG. Thus we have in
particular that g, h ∈ CG, and that g∗ = g−1, h∗ = h−1.

As observed in Lecture 1 (cf. Remark 1.13) each of g and h be-
comes a Haar unitary in (CG, τG); as a consequence of that, each of
the selfadjoint elements x := g + g−1 and y := h + h−1 has an arcsine
distribution (cf. Lecture 1, Example 1.14).

So, if in the framework of the preceding paragraph, we look at the
element

(4.7) ∆ := x + y = g + g−1 + h + h−1 ∈ CG,

then ∆ will always be a sum of two selfadjoint elements with arcsine
distributions. Nevertheless, the distribution of ∆ is not uniquely de-
termined, but will rather depend on what group G and what elements
g, h ∈ G we started with. A way of understanding how the distribution
of ∆ relates to the geometry of the group G goes by considering the
subgroup of G generated by g and h, and by looking at closed walks in
the corresponding Cayley graph – see Exercise 4.15 below (which also
contains the relevant definitions). In order to try one’s hand at how
this works in concrete situations, the reader could consider for instance
the situations when

(1) G = Z2, with g = (1, 0) and h = (0, 1), or
(2) G is the non-commutative free group on two generators, G = F2,

and g, h are two free generators of F2.
In the situation (1) the corresponding Cayley graph is the lattice

Z2, and the counting of closed walks which yields the moments of ∆ is
quite straightforward (see Exercise 4.16 at the end of the lecture). The
formula which is obtained is

(4.8) τZ2(∆n) =

{
0 if n is odd(

2p
p

)2
if n is even, n = 2p.

In the situation (2), the Cayley graph which appears is a tree (i.e.
a graph without circuits), and the counting of closed walks which gives
the moments of ∆ is a well-known result of Kesten. One obtains a
recurrence relation between moments, which can be expressed concisely
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as a formula giving the moment generating series:

(4.9)
∞∑

n=0

τF2(∆
n)zn =

2
√

1− 12z2 − 1

1− 16z2
= 1 + 4z2 + 28z4 + 232z6 + · · ·

Among the several possible derivations of the formula (4.9), there is one
which illustrates the methods of free probability – this is because in the
situation (2) the elements x = u + u∗ and y = v + v∗ of CF2 will turn
out to be freely independent (in a sense to be defined precisely in the
next Lecture 5), and consequently one can put to use the technology for
computing the distribution of a sum of two freely independent elements
– see Example 12.8 in Lecture 12.

Joint ∗-distributions

Remark 4.6. Let (A, ϕ) be a ∗-probability space and let a be an
element of A. By looking at what is the ∗-distribution of a in algebraic
sense (Definition 1.17 in Lecture 1), we see that this really is the same
thing as the joint distribution of a and a∗, with the only difference
that we re-denoted the indeterminate X2 of C〈X1, X2〉 by X∗

1 , and we
used this notation to introduce a ∗-operation on C〈X1, X2〉. It will be
convenient to have this formalism set up for tuples of elements as well.
We thus introduce the following notations.

Notations 4.7. Let s be a positive integer.
1) We denote by C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉 the unital algebra freely

generated by 2s non-commuting indeterminates X1, X
∗
1 , . . . , Xs, X

∗
s

(this is the same thing as C〈X1, . . . , X2s〉 but where we re-denoted
Xs+1, . . . , X2s as X∗

1 , . . . , X∗
s , respectively). C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉 has

a natural ∗-operation, determined by the requirement that the ∗-
operation applied to Xr gives X∗

r , for 1 ≤ r ≤ s.
2) Let A be a unital ∗-algebra and let a1, . . . , as be elements of A.

For every Q ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉 we will denote by Q(a1, . . . , as)

the element of A which is obtained by replacing X1 with a1, X∗
1 with

a∗1, . . . , Xs with as, X∗
s with a∗s in the explicit writing of Q. Equivalently,

(4.10) C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉 3 Q 7→ Q(a1, . . . , as) ∈ A

is the unital ∗-homomorphism uniquely determined by the fact that it
maps Xr to ar, for 1 ≤ r ≤ s.

Definition 4.8. Let (A, ϕ) be a ∗-probability space, and let
a1, . . . , as be elements of A.

1) The family

(4.11)
{

ϕ(aε1
r1
· · · aεn

rn
) :

n ≥ 1, 1 ≤ r1, . . . , rn ≤ s
ε1, . . . , εn ∈ {1, ∗}

}
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is called the family of joint ∗-moments of a1, . . . , as.
2) The linear functional µ : C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉 → C defined by

(4.12) µ(Q) := ϕ( Q(a1, . . . , as) ), Q ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉

is called the joint ∗-distribution of a1, . . . , as in (A, ϕ).

In a certain sense, the main goal of this monograph is to study
joint ∗-distributions which appear in connection to the framework of
free independence. This means in particular that many interesting ex-
amples will come into play once we arrive to discuss free independence
(starting with the next lecture, and going throughout the rest of the
book). For the time being let us have a quick look at an example which
(by adjusting the corresponding name from C∗-theory) could be called
“the ∗-algebra of the rotation by θ”.

Example 4.9. Let θ be a number in [0, 2π]. Suppose that (A, ϕ)
is a ∗-probability space where the ∗-algebra A is generated by two
unitaries u1, u2 which satisfy

(4.13) u1u2 = eiθu2u1,

and where ϕ : A → C is a faithful positive functional such that

(4.14) ϕ(um
1 un

2 ) =

{
1 if m = n = 0
0 otherwise,

for m, n ∈ Z.

We will discuss later in this lecture about why such a ∗-probability
space does indeed exist; right now let us assume it does, and let us
make some straightforward remarks about it. Observe that from (4.13)
we get

(4.15)

{
(um

1 un
2 ) · (up

1u
q
2) = e−inpθ(um+p

1 un+q
2 )

(um
1 un

2 )∗ = e−imnθ(u−m
1 u−n

2 ),
m, n ∈ Z.

This in turn implies that

(4.16) A = span{um
1 un

2 : m,n ∈ Z}
(since the right-hand side of (4.16) is, as a consequence of (4.15), a
unital ∗-algebra which contains u1 and u2). In particular this shows
that the linear functional ϕ is completely described by the Equation
(4.14). Another fact which quickly follows is that ϕ is a trace. Indeed,
the verification of this fact reduces to checking that for every m,n, p, q ∈
Z we have

ϕ( (um
1 un

2 ) · (up
1u

q
2) ) = ϕ( (up

1u
q
2) · (um

1 un
2 ) );

but (from (4.14) and (4.15)) both sides of this equation are equal to
e−imnθ when (p, q) = −(m,n), and are equal to 0 in all the other cases.
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Let µ : C〈X1, X
∗
1 , X2, X

∗
2 〉 → C be the joint ∗-distribution of the

unitaries u1 and u2. Then for every n ≥ 1 and r1, . . . , rn ∈ {1, 2},
ε1, . . . , εn ∈ {1, ∗}, the value of µ on the monomial Xε1

r1
· · ·Xεn

rn
is ei-

ther 0 or of the form eikθ for some k ∈ Z. More precisely: an im-
mediate computation (left to the reader) shows that µ(Xε1

r1
· · ·Xεn

rn
) is

non-zero precisely when the number of X1’s appearing in the sequence
Xε1

r1
, . . . , Xεn

rn
is equal to the number of X∗

1 ’s appearing in the sequence,
and same when counting X2’s and X∗

2 ’s. In the case when the latter
conditions are fulfilled, we get that

(4.17) µ(Xε1
r1
· · ·Xεn

rn
) = eikθ,

where k ∈ Z can be interpreted as the oriented area enclosed by a
suitably traced walk on the lattice Z2 – see Exercise 4.17 at the end of
the lecture.

Joint ∗-distributions and isomorphism

Theorem 4.10. Let (A, ϕ) and (B, ψ) be ∗-probability spaces such
that ϕ and ψ are faithful. We denote the units of A and of B by 1A
and 1B, respectively. Suppose that a1, . . . , as ∈ A and b1, . . . , bs ∈ B
are such that:

(i) a1, . . . , as and 1A generate A as a ∗-algebra.
(ii) b1, . . . , bs and 1B generate B as a ∗-algebra.
(iii) The joint ∗-distribution of a1, . . . , as in (A, ϕ) is equal to the

joint ∗-distribution of b1, . . . , bs in (B, ψ).
Then there exists a ∗-isomorphism Φ : A → B, uniquely deter-

mined, such that Φ(a1) = b1, . . . , Φ(as) = bs. This Φ is also an isomor-
phism between (A, ϕ) and (B, ψ), i.e. it has the property that ψ◦Φ = ϕ.

Proof. Observe that the hypotheses (i) and (ii) amount to

(4.18)




A = {P (a1, . . . , as) : P ∈ C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉}

B = {P (b1, . . . , bs) : P ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉}

(since on the right-hand sides of the Equations (4.18) we have unital
∗-subalgebras of A and of B which contain a1, . . . , as and b1, . . . , bs,
respectively).

Let µ : C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉 → C be the common joint ∗-

distribution of a1, . . . , as and of b1, . . . , bs. From the definition of µ
and the fact that the functionals ϕ and ψ are faithful, it is immediate
that for P, Q ∈ C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉 we have:

P (a1, . . . , as) = Q(a1, . . . , as) ⇔ µ( (P −Q)∗(P −Q) ) = 0

⇔ P (b1, . . . , bs) = Q(b1, . . . , bs).
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As a consequence, it makes sense to define a function Φ : A → B by
the formula

Φ( P (a1, . . . , as) ) = P (b1, . . . , bs), P ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉,

and moreover this function is bijective. Indeed, from the equivalences
observed above it follows that the definition of Φ is coherent and that
Φ is injective, whereas the Equations (4.18) imply that Φ is defined on
all of A and it is surjective.

The formula defining Φ clearly implies that Φ is a unital ∗-
homomorphism and that Φ(ar) = br, 1 ≤ r ≤ s. Moreover, we have
that ψ ◦ Φ = ϕ – indeed this amounts to the equality

ψ( P (b1, . . . , bs) ) = ϕ( P (a1, . . . , as) ), ∀ P ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉,

which is true, since both its sides are equal to µ(P ). The uniqueness
of Φ with the above properties is clear. ¤

We now upgrade the preceding theorem to the framework of a
C∗-probability space. What is different in this framework is that, if
a1, . . . , as generate A as a unital C∗-algebra, then the polynomials
P (a1, . . . , as) (with P ∈ C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉) do not necessarily ex-

haust A, they will only give us a dense unital ∗-subalgebra of A. But
this issue can be easily handled by using a norm-preservation argument.

Theorem 4.11. Let (A, ϕ) and (B, ψ) be C∗-probability spaces such
that ϕ and ψ are faithful. We denote the units of A and of B by 1A
and 1B, respectively. Suppose that a1, . . . , as ∈ A and b1, . . . , bs ∈ B
are such that:

(i) a1, . . . , as and 1A generate A as a C∗-algebra.
(ii) b1, . . . , bs and 1B generate B as a C∗-algebra.
(iii) The joint ∗-distribution of a1, . . . , as in (A, ϕ) is equal to the

joint ∗-distribution of b1, . . . , bs in (B, ψ).
Then there exists an isometric ∗-isomorphism Φ : A → B, uniquely

determined, such that Φ(a1) = b1, . . . , Φ(as) = bs. This Φ is also an
isomorphism between (A, ϕ) and (B, ψ), i.e. it has the property that
ψ ◦ Φ = ϕ.

Proof. Let us denote

A0 := {P (a1, . . . , as) : P ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉},

and
B0 := {P (b1, . . . , bs) : P ∈ C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉}.

It is clear that A0 is a unital ∗-subalgebra of A, and the hypothesis (i)
of the theorem gives us that A0 is dense in A in the norm topology.
(Indeed, it is immediate that the closure of A0 in the norm topology
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is the smallest unital C∗-subalgebra of A which contains a1, . . . , as.)
Likewise, we have that B0 is a dense unital ∗-subalgebra of B.

The ∗-probability spaces (A0, ϕ|A0) and (B0, ψ|B0) satisfy the hy-
potheses of Theorem 4.10 (with respect to the given a1, . . . , as and
b1, . . . , bs). So from that theorem and its proof we know that the map
Φ0 : A0 → B0 defined by

Φ0( P (a1, . . . , as) ) = P (b1, . . . , bs)

(where P runs in C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉) is an isomorphism of ∗-

probability spaces between (A0, ϕ|A0) and (B0, ψ|B0).
The point of the proof is to observe that the map Φ0 is isometric

on A0, i.e. that for every P ∈ C〈X1, X
∗
1 , . . . , Xs, X

∗
s 〉 we have

(4.19) ||P (a1, . . . , as)||A = ||P (b1, . . . , bs)||B.
Indeed, given a polynomial P ∈ C〈X1, X

∗
1 , . . . , Xs, X

∗
s 〉, we compute:

||P (a1, . . . , as)||A = lim
n→∞

ϕ( (P (a1, . . . , as)
∗P (a1, . . . , as))

n )1/2n

= lim
n→∞

ϕ( (P ∗P )n(a1, . . . , as) )1/2n

= lim
n→∞

µ( (P ∗P )n )1/2n,

where µ denotes the common joint ∗-distribution of a1, . . . , as and of
b1, . . . , bs, and where at the first equality sign we used the Proposition
3.17 from the preceding lecture. Clearly, the same kind of calculation
can be done for the norm ||P (b1, . . . , bs)||B, and (4.19) follows.

Now, a standard argument of extension by continuity shows that
there exists a unique continuous function Φ : A → B such that
Φ|A0 = Φ0. The properties of Φ0 of being a ∗-homomorphism and
of being isometric are immediately passed on to Φ, by continuity. We
have that Φ is one-to-one because it is isometric. The range of Φ is com-
plete (being an isometric image of A), hence closed in B; since ran(Φ)
contains the dense ∗-subalgebra B0 of B, it follows that ran(Φ) = B,
hence that Φ is onto. Thus Φ has all the properties appearing in the
statement of the theorem. The uniqueness of Φ follows from the fact
that, in general, a unital ∗-homomorphism defined on A is determined
by its values on a1, . . . , as. ¤

Remarks 4.12. 1) The kind of isomorphism which appeared in
Theorem 4.11 is the suitable one for the category of unital C∗-algebras,
i.e. it includes the appropriate metric property of being isometric
(||Φ(a)||B = ||a||A, for every a ∈ A). It is worth mentioning here that in
fact a bijective unital ∗-homomorphism between unital C∗-algebras is
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always isometric (i.e. the metric property is an automatic consequence
of the algebraic ones). See Exercise 4.18 at the end of the lecture.

2) The Theorem 4.11 has a version where the families a1, . . . , as and
b1, . . . , bs consist of selfadjoint elements (of A and of B, respectively),
and where the hypothesis (iii) in the theorem is adjusted to require
that the joint distribution of a1, . . . , as in (A, ϕ) is equal to the joint
distribution of b1, . . . , bs in (B, ψ). In order to obtain this version of
the theorem one can either repeat (with trivial adjustments) the proof
shown above, or one can invoke the actual statement of Theorem 4.11
in conjunction with the (trivial) trick described in Exercise 4.19

3) Another possible generalization of the Theorem 4.11 is in the
direction of allowing the families of generators considered for A and B
to be infinite. The precise statement appears in the Exercise 4.20 at
the end of the lecture.

Example 4.13. We look again at the situation of Example 4.9,
but now considered in the C∗-framework. So let θ be a fixed number
in [0, 2π]. Suppose that (A, ϕ) is a C∗-probability space where the C∗-
algebra A is generated by two unitaries u1, u2 which satisfy Equation
(4.13), and where ϕ : A → C is a faithful positive functional satisfy-
ing Equation (4.14). Then exactly as in Example 4.9 we see that the
relations (4.15) hold, and imply that

(i) A = cl span{um
1 un

2 | m,n ∈ Z}
(where “cl span” stands for “norm-closure of linear span”), and

(ii) ϕ is a trace.
Now, the Theorem 4.11 implies that a C∗-probability space (A, ϕ)

as described in the preceding paragraph is uniquely determined up to
isomorphism. In particular, the isomorphism class of the C∗-algebra
A involved in the example is uniquely determined; it therefore makes
sense (and it is customary) to refer to such an A by calling it the
C∗-algebra of rotation by θ.

Of course, in order to talk about the C∗-algebra of rotation by θ one
must also show that it exists – i.e. one must construct an example of
C∗-probability space (A, ϕ) where ϕ is faithful and where the Equations
(4.13) and (4.14) are satisfied. In the remaining of this example we
show how this can be done.

Consider the Hilbert space l2(Z2), and denote its canonical or-
thonormal basis by {ξ(m,n) : m,n ∈ Z}. It is immediate that one
can define two unitary operators U1, U2 on l2(Z2) by prescribing their
action on the canonical orthonormal basis to be as follows:

(4.20)

{
U1ξ(m,n) = ξ(m+1,n)

U2ξ(m,n) = e−imθξ(m,n+1),
m, n ∈ Z.
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Let A be the C∗-subalgebra of B(l2(Z2)) which is generated by U1 and
U2, and let ϕ : A → C be the vector-state defined by the vector ξ(0,0);
that is,

(4.21) ϕ(T ) = 〈Tξ(0,0), ξ(0,0)〉, T ∈ A.

From (4.20) it is immediate that U1U2 = eiθU2U1 (indeed, both U1U2

and eiθU2U1 send ξ(m,n) to e−imθξ(m+1,n+1), for every m,n ∈ Z). So in
order for the C∗-probability space (A, ϕ) to have the required proper-
ties, we are only left to check that ϕ is faithful.

Observe that even without knowing that ϕ is faithful, we can see
that it is a trace. This is checked exactly as in the Example 4.9,
where the Equation (4.16) is now replaced by the fact that A equals
cl span{Um

1 Un
2 : m,n ∈ Z}; the details of this are left to the reader.

Now suppose that T ∈ A is such that ϕ(T ∗T ) = 0. Since ϕ(T ∗T ) =
||Tξ(0,0)||2, we thus have that Tξ(0,0) = 0. But then for every m,n, p, q ∈
Z we can write:

〈Tξ(m,n), ξ(p,q)〉 = 〈T (Um
1 Un

2 )ξ(0,0), (U
p
1 U q

2 )ξ(0,0)〉
= 〈(Up

1 U q
2 )∗T (Um

1 Un
2 )ξ(0,0), ξ(0,0)〉

= ϕ( (Up
1 U q

2 )∗T (Um
1 Un

2 ) )

= ϕ( (Um
1 Un

2 )(Up
1 U q

2 )∗T ) (since ϕ is a trace)

= 〈(Um
1 Un

2 )(Up
1 U q

2 )∗Tξ(0,0), ξ(0,0)〉
= 0 (because Tξ(0,0) = 0).

Hence 〈Tξ(m,n), ξ(p,q)〉 = 0 for all m,n, p, q ∈ Z, and this clearly implies
that T = 0 (thus completing the verification of the faithfulness of ϕ).

Without going into any details, we mention here that the univer-
sality and uniqueness properties of the C∗-algebra A of rotation by θ
can be obtained without taking the canonical trace ϕ : A → C as part
of our initial data (but then the arguments aren’t so simple as shown
above).

Exercises

The Exercises 4.14–4.16 are filling in some of the details remaining
from the discussion in Example 4.5.

Exercise 4.14. Let G be a group which is generated by two el-
ements g, h ∈ G, both of infinite order and such that none of them
generates G by itself. Consider the ∗-probability space (CG, τG) and
the element ∆ = g + g−1 + h + h−1 ∈ CG (as in Example 4.5). Ver-
ify that τG(∆) = 0, τG(∆2) = 4, τG(∆3) = 0, but that the value of
τG(∆4) is not uniquely determined. (If you are on a bus and don’t
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have anything else to do, determine the minimal and maximal values
which τG(∆4) can have under the given hypotheses.)

Exercise 4.15. Consider the framework of Exercise 4.14, and
consider the Cayley graph of G with respect to the set of genera-
tors {g, g−1, h, h−1}. (The vertices of this graph are the elements
of G, and two vertices g1, g2 ∈ G are connected by an edge of the
graph precisely when g−1

1 g2 ∈ {g, g−1, h, h−1} – or equivalently, when
g−1
2 g1 ∈ {g, g−1, h, h−1}.) Prove that for every n ≥ 1, the moment

τG(∆n) is equal to the number of closed paths of length n in the Cay-
ley graph, which begin and end at the unit element e of G.

Exercise 4.16. 1) Consider the framework of Exercises 4.14 and
4.15, where we set G = Z2 and g = (1, 0), h = (0, 1). Observe that in
this case the Cayley graph of G with respect to the set of generators
{g, g−1, h, h−1} is precisely the square lattice Z2.

2) Prove that the number of closed paths in the square lattice Z2

which have length n and which begin and end at (0, 0) is equal to
{

0 if n is odd(
2p
p

)2
if n is even, n = 2p.

Observe that this implies the formula (4.8) stated in Example 4.5.

Exercise 4.17. Refer to the notations in the last paragraph of
Example 4.9. Given a positive integer n and some values r1, . . . , rn ∈
{1, 2}, ε1, . . . , εn ∈ {1, ∗}, consider the n-step walk γ in the lattice Z2

which starts at (0, 0) and has its jth step (1 ≤ j ≤ n) described as
follows:
• if rj = 1 and εj = 1, then the jth step of γ is in the direction East;
• if rj = 1 and εj = −1, then the jth step of γ is in the direction West;
• if rj = 2 and εj = 1, then the jth step of γ is in the direction North;
• if rj = 2 and εj = −1, then the jth step of γ is in the direction South.

1) Prove that µ(Xε1
r1
· · ·Xεn

rn
) is different from 0 if and only if the

path γ is closed (that is, γ ends at (0, 0)).
2) Suppose that γ is closed. Verify the formula stated in Equation

(4.17) of Example 4.9, where k ∈ Z denotes the signed area enclosed
by the path γ that is, k is given by the contour integral

k =

∫

γ

x dy = −
∫

γ

y dx.

Exercise 4.18. 1) (Detail left from the Remark 4.12). Let A and
B be unital C∗-algebras, and let Φ : A → B be a bijective unital
∗-homomorphism. Prove that ||Φ(a)||B = ||a||A, ∀ a ∈ A.
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2) (A generalization of part 1, which is used in Lecture 7). Let
A and B be unital C∗-algebras, and let Φ : A → B be a unital ∗-
homomorphism which is one-to-one. Prove that ||Φ(a)||B = ||a||A,
∀ a ∈ A.

[Hint: It suffices to check that ||Φ(p)||B = ||p||A for p ∈ A+. In part 1
this is because Sp(p) = Sp(Φ(p)). In part 2, one only has Sp(Φ(p)) ⊂
Sp(p); but if it happened that ||Φ(p)|| < ||p||, then one could use the
functional calculus of p and the Exercise 3.23 to obtain a contradiction.]

Exercise 4.19. 1) Let (A, ϕ) be a ∗-probability space, and let
a1, . . . , as be selfadjoint elements of A. Let µ : C〈X1, . . . , Xs〉 → C be
the joint distribution of a1, . . . , as and let µ̃ : C〈X1, X

∗
1 . . . , Xs, X

∗
s 〉 →

C be the joint ∗-distribution of a1, . . . , as (in (A, ϕ)). Prove the
relation µ̃ = µ ◦ Π, where Π is the unital homomorphism from
C〈X1, X

∗
1 . . . , Xs, X

∗
s 〉 to C〈X1, . . . , Xs〉 uniquely determined by the

condition that Π(Xr) = Π(X∗
r ) = Xr, for 1 ≤ r ≤ s.

2) By using the first part of this exercise, give a proof of the selfad-
joint version of Theorem 4.11 which is described in the Remark 4.12.

Exercise 4.20. (Generalization of the Theorem 4.11 to the case of
infinite families of generators). Let (A, ϕ) and (B, ψ) be C∗-probability
spaces such that ϕ and ψ are faithful. We denote the units of A and
of B by 1A and 1B, respectively. Suppose that (ai)i∈I and (bi)i∈I are
families of elements of A and respectively of B, indexed by the same
index set I, such that:

(j) {ai : i ∈ I} ∪ {1A} generate A as a C∗-algebra.
(jj) {bi : i ∈ I} ∪ {1B} generate B as a generate B as a C∗-algebra.
(jjj) For every finite subset {i1, . . . , is} of I, the joint ∗-distribution

of ai1 , . . . , ais in (A, ϕ) is equal to the joint ∗-distribution of bi1 , . . . , bis

in (B, ψ).
Prove that there exists an isometric ∗-isomorphism Φ : A → B,

uniquely determined, such that Φ(ai) = bi for every i ∈ I. Prove
moreover that this Φ is also an isomorphism between (A, ϕ) and (B, ψ),
i.e. it has the property that ψ ◦ Φ = ϕ.

[Hint: Reduce these statement to the one of the Theorem 4.11, by con-
sidering the unital C∗-subalgebras of A and of B which are generated
by finite subfamilies of the ai’s and the bi’s.]





LECTURE 5

Definition and basic properties of free
independence

In this lecture we will introduce the basic concept which refines
“non-commutative probability theory” to “free probability theory” –
the notion of free independence. As the name indicates, this concept
should be seen as an analogue to the notion of independence from
classical probability theory. Thus, before we define free independence
we recall this classical notion. Since we are working with algebras
which might be non-commutative, it is more appropriate to formulate
the concept of classical independence on this more general level, where
it corresponds to the notion of a tensor product.

We will also derive some very basic properties of free independence
in this lecture. A more systematic theory, however, will be deferred to
Part 2.

The classical situation: tensor independence

Definition 5.1. Let (A, ϕ) be a non-commutative probability
space and let I be a fixed index set.

1) Unital subalgebras (Ai)i∈I are called tensor independent, if
the subalgebras Ai commute – i.e., ab = ba for all a ∈ Ai and all b ∈ Aj

and all i, j ∈ I with i 6= j – and ϕ factorizes in the following way:

(5.1) ϕ(
∏
j∈J

aj) =
∏
j∈J

ϕ(aj)

for all finite subsets J ⊂ I and all aj ∈ Aj (j ∈ J).
2) Tensor (or classical) independence of random variables is defined

by tensor independence of the generated unital algebras; hence “a and
b tensor independent” means nothing but a and b commute and mixed
moments factorize, i.e.,

(5.2) ab = ba and ϕ(anbm) = ϕ(an)ϕ(bm) for all n,m ≥ 0.

From a combinatorial point of view one can consider tensor inde-
pendence as a special rule, namely (5.2), for calculating mixed moments

73
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of independent random variables from the moments of the single vari-
ables. Free independence will just be another such specific rule.

Remark 5.2. Note that in the non-commutative context we have to
specify many more mixed moments than in the commutative case. If a
and b commute then every mixed moment in a and b can be reduced to
a moment of the form ϕ(anbm) and thus the factorization rule in (5.2)
for those contains the full information about the joint distribution of
a and b, provided we know the distribution of a and the distribution
of b. If, on the other hand, a and b do not commute then ϕ(anbm) is
only a very small part of the joint distribution of a and b, because we
have to consider moments like ϕ(an1bm1an2bm2 · · · ankbmk), and those
cannot be reduced in general to just ϕ(anbm). As first guess for a
factorization rule for non-commutative situations one might think of a
direct extension of the classical one, namely

(5.3) ϕ(an1bm1 · · · ankbmk) = ϕ(an1) · ϕ(bm2) · · ·ϕ(ank) · ϕ(bmk).

This, however, is not the rule of free independence. One sees easily
that (5.3) is not consistent in general if one puts, e.g., some of the mi

or some of the ni equal to 0. If one is willing to accept this deficiency
then the rule (5.3) can be used to define the so-called “boolean inde-
pendence”. One can develop elements of a boolean probability theory,
however, its structure is quite trivial compared to the depth of free
probability theory. We will not elaborate more on this boolean factor-
ization rule, but want to present now the more interesting rule for free
independence. As the reader might have guessed from the preceding
remarks, the rule for free independence is not as straightforward as the
above factorization rules. Actually, the definition of free independence
might look somewhat artificial at first, but we will see throughout the
rest of the book that this is a very important concept and deserves spe-
cial attention. In the last section of this lecture we will also comment
on the way in which free independence is, despite the more compli-
cated nature of its rule for calculating mixed moments, a very natural
concept.

Definition of free independence

Definition 5.3. Let (A, ϕ) be a non-commutative probability
space and let I be a fixed index set.

1) Let, for each i ∈ I, Ai ⊂ A be a unital subalgebra. The subal-
gebras (Ai)i∈I are called freely independent, if

ϕ(a1 · · · ak) = 0

whenever we have:
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• k is a positive integer;
• aj ∈ Ai(j) (i(j) ∈ I) for all j = 1, . . . , k;
• ϕ(aj) = 0 for all j = 1, . . . , k;
• and neighboring elements are from different subalgebras, i.e.,

i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

2) Let Xi ⊂ A (i ∈ I) be subsets of A. Then (Xi)i∈I are called
freely independent, if (Ai)i∈I are freely independent, where, for i ∈ I,
Ai := alg(1,Xi) is the unital algebra generated by Xi.

3) In particular, if the unital algebras Ai := alg(1, ai) generated by
elements ai ∈ A (i ∈ I) are freely independent, then (ai)i∈I are called
freely independent random variables.

4) If, in the context of a ∗-probability space, the unital ∗-algebras
Ai := alg(1, ai, a

∗
i ) generated by the random variables ai (i ∈ I) are

freely independent, then we call (ai)i∈I ∗-freely independent.

Remarks 5.4. 1) Clearly, free independence is a concept with re-
spect to a linear functional ϕ; random variables which are freely in-
dependent with respect to some functional ϕ are in general not freely
independent with respect to some other functional ψ. So a more pre-
cise name would be “freely independent with respect to ϕ”. However,
usually it is clear to which ϕ we refer. In particular, it is understood
that if we are working in a non-commutative probability space (A, ϕ),
then our free independence is with respect to this ϕ.

2) Note: the condition on the indices in the definition of free in-
dependence is only on consecutive ones; i(1) = i(3), for example, is
allowed. We also do not require that the first and the last element are
from different subalgebras, thus i(1) = i(k) is in general allowed.

3) Let us state more explicitly the requirement for freely inde-
pendent random variables: (ai)i∈I are freely independent if we have
ϕ
(
P1(ai(1)) . . . Pk(ai(k))

)
= 0 for all polynomials P1, . . . , Pk ∈ C〈X〉

in one indeterminate X and all i(1) 6= i(2) 6= · · · 6= i(k), such that
ϕ(Pj(ai(j))) = 0 for all j = 1, . . . , k.

4) Note that the index set I might be infinite, even uncountable;
but this is not really an issue. Free independence of (Ai)i∈I is the same
as free independence of (Aj)j∈J for all finite subsets J of I.

5) Free independence of random variables is defined in terms of the
generated algebras, but one should note that it extends also to the
generated C∗-algebras; see Exercise 5.23.

6) Sometimes we will have free independence between sets of ran-
dom variables where some of the sets consist only of one element. Usu-
ally, we will replace then these sets just by the random variables. So
free independence between {a1, a2} and b (for some random variables
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in a non-commutative probability space) means of course free indepen-
dence between {a1, a2} and {b}, which is by definition the same as free
independence between the unital algebra generated by a1 and a2 and
the unital algebra generated by b.

Notation 5.5. Instead of saying that algebras, sets, or random
variables are “freely independent” we will often just say that they are
free. In the same way, ∗-free means the same as “∗-freely indepen-
dent”. Instead of “free independence” one often also uses freeness.

The example of a free product of groups

Before we start to take a closer look on the structure of our defini-
tion, we want to present one basic model for freely independent random
variables. Indeed, this example was the starting point of Voiculescu
and motivated the above definition of free independence. This exam-
ple takes place in the probability space (CG, τG) of the group algebra of
a group G, in the special situation where the group G is the free prod-
uct of subgroups Gi. Let us first recall what it means that subgroups
are free. Freeness in the context of groups is a purely algebraic con-
dition (i.e., does not depend on any linear functional) and means that
we do not have non-trivial relations between elements from different
subgroups.

Definition 5.6. Let G be a group and (Gi)i∈I subgroups of G. By
e we will denote the common neutral element of all these groups. The
subgroups (Gi)i∈I are free if for all k ≥ 1, all i(1), . . . , i(k) ∈ I with
i(1) 6= i(2) 6= · · · 6= i(k) and all g1 ∈ Gi(1)\{e}, . . . , gk ∈ Gi(k)\{e} we
have that g1 · · · gk 6= e.

Example 5.7. Let Fn be the free group with n generators, i.e.,
Fn is generated by n elements f1, . . . , fn, which fulfill no other relations
apart from the group axioms. Then we have F1 = Z and within

Fn+m = group generated by f1, . . . , fm+n

the groups
Fm = group generated by f1, . . . , fm

and
Fn = group generated by fm+1, . . . , fm+n

are free.

If one has the notion that groups are free then a canonical question
is whether for any given collection (Gi)i∈I of groups (not necessarily
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subgroups of a bigger group) one can construct some group G such that
the Gi are (isomorphic to) subgroups of this G and that, in addition,
they are free in G. The affirmative answer to this is given by the free
product construction.

Definition 5.8. Let Gi (i ∈ I) be groups with identity elements
ei (i ∈ I), respectively. The free product G := ∗i∈IGi is the group
which is generated by all elements from all Gi (i ∈ I) subject to the
following relations:

(1) the relations within each Gi (i ∈ I)
(2) the identity element ei of Gi, for each i ∈ I, is identified with

the identity element e of G:

e = ei for all i ∈ I.

Example 5.9. With the notion of the free product we can rephrase
the content of Example 5.7 also as

Fm+n = Fm ∗ Fn.

Remarks 5.10. 1) An important property of the free product of
groups is its universality property: Whenever we have a group F and
group homomorphisms ηi : Gi → F for all i ∈ I, then there exists a
unique homomorphism η : ∗i∈IGi → F , which extends the given ηi,
i.e., η|Gi

= ηi, where we, of course, identify Gi with a subgroup of the
free product. This universality property determines the free product
uniquely (up to group isomorphism), the only non-trivial point is to see
that such an object indeed exists. The above, more explicit definition,
can be used to show this existence.

2) Even more explicitly, we can describe the free product G = ∗i∈IGi

as follows.

G = {e}∪{g1 . . . gk | gj ∈ Gi(j), i(1) 6= i(2) 6= · · · 6= i(k), gj 6= ei(j)},
and multiplication in G is given by juxtaposition and reduction to
the above form by multiplication of neighboring terms from the same
group.

3) In particular, for gj ∈ Gi(j) such that gj 6= e (j = 1, . . . , k) and
i(1) 6= · · · 6= i(k) we have g1 · · · gk 6= e; i.e., the Gi (i ∈ I) are indeed
free in ∗i∈IGi.

The relation between the group algebra of the free product of groups
and the concept of free independence is given in the following proposi-
tion. Of course, this relation is the reason for calling this concept “free”
independence. Let us emphasize again, that whereas “free” in an al-
gebraic context (like for groups or algebras) just means the absence
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of non-trivial algebraic relations, in our context of non-commutative
probability spaces “free” is a very specific requirement for a fixed lin-
ear functional.

Proposition 5.11. Let Gi (i ∈ I) be subgroups of a group G. Then
the following are equivalent.

(1) The groups (Gi)i∈I are free.
(2) The algebras (CGi)i∈I (considered as subalgebras of CG) are

freely independent in the non-commutative probability space
(CG, τG).

Proof. First, we prove the implication (1) ⇒ (2). Consider

aj =
∑

g∈Gi(j)

α(j)
g g ∈ CGi(j) (1 ≤ j ≤ k)

such that i(1) 6= i(2) 6= · · · 6= i(k) and τG(aj) = 0 (i.e. α
(j)
e = 0) for all

1 ≤ j ≤ k. Then we have

τG(a1 · · · ak) = τG

(
(

∑
g1∈Gi(1)

α(1)
g1

g1) · · · (
∑

gk∈Gi(k)

α(k)
gk

gk)
)

=
∑

g1∈Gi(1),...,gk∈Gi(k)

α(1)
g1
· · ·α(k)

gk
τG(g1 · · · gk).

For all g1, . . . , gk with α
(1)
g1 . . . α

(k)
gk 6= 0 we have gj 6= e for all j =

1, . . . , k and i(1) 6= i(2) 6= · · · 6= i(k), and thus, by Definition 5.6, that
g1 . . . gk 6= e. This implies τG(a1 · · · ak) = 0, and thus the assertion.

Now let us prove (2) ⇒ (1). Consider k ∈ N, i(1), . . . , i(k) ∈ I
with i(1) 6= i(2) 6= · · · 6= i(k) and g1 ∈ Gi(1)\{e}, . . . , gk ∈ Gi(k)\{e}.
The latter means that τG(gj) = 0 for all j = 1, . . . , k and thus, by the
definition of free independence we also have τG(g1 · · · gk) = 0, which is
exactly our assertion that g1 · · · gk 6= e. ¤

Remarks 5.12. 1) The group algebra CG can be extended in a
canonical way to the so-called group von Neumann algebra L(G). We
will not address von Neumann algebras and the corresponding W ∗-
probability spaces in this book, but let us make at least some remarks
about this on an informal level. In Example 3.11, we saw how one
can extend the group algebra CG of a discrete group to a C∗-algebra
C∗

red(G) by taking the norm closure of CG in the left regular represen-
tation. If one takes instead a closure in a weaker topology, then one
gets a bigger object which is the so-called group von Neumann algebra
L(G). To understand the structure of such von Neumann algebras is
a driving force for investigations in operator algebras. In particular,
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Voiculescu’s motivation for starting free probability theory was to un-
derstand the structure of such L(G) in the case where G = G1 ∗G2 is
a free product group. Similarly, as G1 ∗ G2 is built out of G1 and G2

and C(G1 ∗ G2) is built out of CG1 and CG2, one would hope to un-
derstand L(G1 ∗G2) by building it out of L(G1) and L(G2). However,
this cannot be a purely algebraic operation. There is no useful way
of saying that L(G1) and L(G2) are algebraically free in L(G). (Note
that by completing the group algebra in some topology we necessarily
have to go over from finite sums over group elements to infinite sums.)
What, however, can be extended from the level of group algebras to
the level of von Neumann algebras is the characterization in terms of
τG. τG extends to a faithful state (even trace) on L(G) (in the same
way as it extends to C∗

red(G), see Example 3.11) and we still have that
L(G1) and L(G2) are freely independent in (L(G1 ∗G2), τG). Thus un-
derstanding free independence might shed some light on the structure
of L(G1 ∗G2).

2) In particular we have that L(Fn) and L(Fm) are freely indepen-
dent in (L(Fn+m), τFn+m). This was the starting point of Voiculescu;
in particular he wanted to attack the (still open) problem of the iso-
morphism of the free group factors, which asks the following: Is it true
that L(Fn) and L(Fm) are isomorphic as von Neumann algebras for all
n,m ≥ 2.

3) Free independence has in the mean time provided a lot of infor-
mation about the structure of L(Fn). The general philosophy is that
these so-called free group factors are one of the most interesting class of
von Neumann algebras after the well-understood hyperfinite ones and
that free probability theory provides the right tools for studying this
class.

Free independence and joint moments

Let us now start to examine the concept of free independence a bit
closer. Although not as obvious as in the case of tensor independence,
free independence is from a combinatorial point of view nothing but
a very special rule for calculating joint moments of freely independent
variables out of the moments of the single variables. Or in other words,
we have the following important fact:

If a family of random variables is freely independent, then the joint
distribution of the family is completely determined by the knowledge of
the individual distributions of the variables.

The proof of the following lemma shows how this calculation can
be done in principle.
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Lemma 5.13. Let (A, ϕ) be a non-commutative probability space
and let the unital subalgebras Ai (i ∈ I) be freely independent. Denote
by B the algebra which is generated by all Ai, B := alg(Ai | i ∈ I).
Then ϕ|B is uniquely determined by ϕ|Ai

for all i ∈ I and by the free
independence condition.

Proof. Each element of B can be written as a linear combination
of elements of the form a1 · · · ak where aj ∈ Ai(j) (i(j) ∈ I). We can
assume that i(1) 6= i(2) 6= · · · 6= i(k). (Otherwise, we just multiply
some neighbors together to a new element.) Let a1 · · · ak ∈ B be such
an element. We have to show that ϕ(a1 . . . ak) is uniquely determined
by the ϕ|Ai

(i ∈ I).
We prove this by induction on k. The case k = 1 is clear because
a1 ∈ Ai(1). In the general case we put

ao
j := aj − ϕ(aj)1 ∈ Ai(j) (j = 1, . . . , k).

Then we have

ϕ(a1 · · · ak) = ϕ
(
(ao

1 + ϕ(a1)1) · · · (ao
k + ϕ(ak)1)

)

= ϕ(ao
1 · · · ao

k) + rest,

where

rest =
∑
...

ϕ(ao
p(1) · · · ao

p(s)) · ϕ(aq(1)) · · ·ϕ(aq(k−s)),

and the sum runs over all disjoint decompositions
(
(p(1) < · · · < p(s)

) ∪̇ (
q(1) < · · · < q(k− s)

)
= (1, . . . , k) (s < k).

Since ϕ(ao
j) = 0 for all j it follows, by the definition of free indepen-

dence, that ϕ(ao
1 · · · ao

k) = 0. On the other hand, all terms in rest are of
length smaller than k, and thus are uniquely determined by induction
hypothesis. ¤

Notation 5.14. The operation of going over from some random
variable a to

ao := a− ϕ(a)1

is usually called the centering of a.

Examples 5.15. Let us look at some concrete examples. In the
following we fix a non-commutative probability space (A, ϕ) and con-
sider two free subalgebras Ã and B̃. For elements a, a1, a2 ∈ Ã and
b, b1, b2 ∈ B̃ we want to calculate concretely some mixed moments of
small length. The main trick is to reduce a general mixed moment to
the special ones considered in the definition of free independence by
centering the involved variables.
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1) According to the definition of free independence we have directly
ϕ(ab) = 0 if ϕ(a) = 0 and ϕ(b) = 0. To calculate ϕ(ab) in general we
center our variables as in the proof of the lemma:

0 = ϕ
(
(a− ϕ(a)1)(b− ϕ(b)1)

)

= ϕ(ab)− ϕ(a1)ϕ(b)− ϕ(a)ϕ(1b) + ϕ(a)ϕ(b)ϕ(1)

= ϕ(ab)− ϕ(a)ϕ(b)

which implies

(5.4) ϕ(ab) = ϕ(a)ϕ(b) if a and b are free.

2) In the same way we write

ϕ
(
(a1 − ϕ(a1)1)(b− ϕ(b)1)(a2 − ϕ(a2)1)

)
= 0

implying

(5.5) ϕ(a1ba2) = ϕ(a1a2)ϕ(b) if {a1, a2} and b are free.

3) All the examples up to now yielded the same result as we would
get for tensor independent random variables. To see the difference
between “free independence” and “tensor independence” we consider
now ϕ(a1b1a2b2). Starting from

ϕ
(
(a1 − ϕ(a1)1)(b1 − ϕ(b1)1)(a2 − ϕ(a2)1)(b2 − ϕ(b2)1)

)
= 0

one arrives after some calculations at

(5.6) ϕ(a1b2a2b2) = ϕ(a1a2)ϕ(b1)ϕ(b2) + ϕ(a1)ϕ(a2)ϕ(b1b2)

− ϕ(a1)ϕ(b1)ϕ(a2)ϕ(b2),

if {a1, a2} and {b1, b2} are free.

Some basic properties of free independence

Although the above examples are only the tip of an iceberg they
allow us to infer some general statements about freely independent
random variables. In particular, one can see that the concept of free
independence is a genuine non-commutative one and only trivial shad-
ows of it can be seen in the commutative world.

Remarks 5.16. 1) When can commuting random variables a and b
be freely independent? We claim that this can only happen if at least
one of them has vanishing variance, i.e., if

ϕ
(
(a− ϕ(a)1)2

)
= 0 or ϕ

(
(b− ϕ(b)1)2

)
= 0.
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Indeed, let a and b be free and ab = ba. Then, by combining Equations
(5.4) (for a2 and b2 instead of a and b) and (5.6) (for the case that
a1 = a2 = a and b1 = b2 = b), we have

ϕ(a2)ϕ(b2) = ϕ(a2b2)

= ϕ(abab)

= ϕ(a2)ϕ(b)2 + ϕ(a)2ϕ(b2)− ϕ(a)2ϕ(b)2,

and hence

0 =
(
ϕ(a2)− ϕ(a)2

)(
ϕ(b2)− ϕ(b)2

)

= ϕ
(
(a− ϕ(a)1)2

) · ϕ(
(b− ϕ(b)1)2

)
,

which implies that at least one of the two factors has to vanish.
2) In particular, if a and b are classical random variables then

they can only be freely independent if at least one of them is almost
surely constant. This shows that free independence is really a non-
commutative concept and cannot be considered as a special kind of
dependence between classical random variables.

3) A special case of the above is the following: If a is freely indepen-
dent from itself then we have ϕ(a2) = ϕ(a)2. If we are in a ∗-probability
space (A, ϕ) where ϕ is faithful, and if a = a∗, then this implies that
a is a constant: a = ϕ(a)1. Another way of putting this is as follows.
If the algebras A1 and A2 are ∗-free in the ∗-probability space (A, ϕ)
and if ϕ is faithful then

A1 ∩ A2 = C1.

Another general statement about freely independent random vari-
ables which can be inferred directly from the definition is that constant
random variables are freely independent from everything. Because of
its importance we state this observation as a lemma.

Lemma 5.17. Let (A, ϕ) be a non-commutative probability space
and B ⊂ A a unital subalgebra. Then the subalgebras C1 and B are
freely independent.

Proof. Consider a1 · · · ak as in the definition of free independence
and k ≥ 2. (k = 1 is clear.) Then we have at least one aj ∈ C1
with ϕ(aj) = 0. But this means aj = 0, hence a1 · · · ak = 0 and thus
ϕ(a1 · · · ak) = 0. ¤

In the next proposition we observe the fact that free independence
behaves nicely with respect to the tracial property. To prove this we
need a bit of information on how to calculate special mixed moments
of freely independent random variables.
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Lemma 5.18. Let (A, ϕ) be a non-commutative probability space,
and let (Ai)i∈I be a freely independent family of unital subalgebras of A.
Let a1, . . . , ak be elements of the algebras Ai(1), . . . ,Ai(k), respectively,
where the indices i(1), . . . , i(k) ∈ I are such that

i(1) 6= i(2), . . . , i(k − 1) 6= i(k),

and where we have ϕ(a1) = · · · = ϕ(ak) = 0. Likewise, let b1, . . . , bl be
elements of Aj(1), . . . ,Aj(l), respectively, such that

j(1) 6= j(2), . . . , j(l − 1) 6= j(l),

and such that ϕ(b1) = · · · = ϕ(bl) = 0. Then we have

(5.7) ϕ(a1 · · · akbl · · · b1)

=

{
ϕ(a1b1) · · ·ϕ(akbk), if k = l, i(1) = j(1),. . . ,i(k) = j(k).

0, otherwise

Proof. One has to iterate the following observation: Either we
have i(k) 6= j(l), in which case

ϕ(a1 · · · akbl · · · b1) = 0,

or we have i(k) = j(l), which gives

ϕ(a1 · · · akbl · · · b1) = ϕ
(
a1 . . . ak−1 ·

(
(akbl)

o + ϕ(akbl)1
) · bl−1 . . . b1

)

= 0 + ϕ(akbl) · ϕ(a1 . . . ak−1bl−1 . . . b1).

¤
Proposition 5.19. Let (A, ϕ) be a non-commutative probability

space, let (Ai)i∈I be a freely independent family of unital subalgebras of
A, and let B be the subalgebra of A generated by ∪i∈IAi. If ϕ|Ai

is a
trace for every i ∈ I, then ϕ|B is a trace.

Proof. We have to prove that ϕ(ab) = ϕ(ba) for all a, b ∈ B.
Since every element a from B can be written as a linear combination
of 1 and elements of the form a1 · · · ak (for k ≥ 1, ap ∈ Ai(p) such that
i(1) 6= i(2) 6= . . . 6= i(k) and ϕ(a1) = · · · = ϕ(ak) = 0), it suffices to
prove the assertion for a and b of the special form a = a1 · · · ak and b =
bl · · · b1 with ap ∈ Ai(p) and bq ∈ Aj(q) where i(1) 6= i(2) 6= . . . 6= i(k)
and j(1) 6= j(2) 6= . . . 6= j(l), and such that ϕ(a1) = · · · = ϕ(ak) = 0
and ϕ(b1) = · · · = ϕ(bl) = 0. But in this situation we can apply the
previous Lemma 5.18 and get

ϕ(a1 · · · akbl · · · b1) = δkl · δi(k)j(k) · · · δi(1)j(1) · ϕ(a1b1) · · ·ϕ(akbk)

and

ϕ(bl · · · b1a1 · · · ak) = δlk · δj(1)i(1) · · · δj(l)i(l) · ϕ(blal) · · ·ϕ(b1a1).
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The assertion follows now from the assumption that ϕ is a trace on
each Ai, since this means that ϕ(apbp) = ϕ(bpap) for all p. ¤

For some more general observations which one can derive directly
from the definition of free independence, see Exercises 5.22-5.25.

Remark 5.20. One general observation which is worth to be spelled
out explicitly is that free independence is (in the same way as classical
independence) commutative and associative, in the sense that

A1,A2 free ⇐⇒ A2,A1 free

and

X1,X2 ∪ X3 free
X2,X3 free

}
⇐⇒

{ X1 ∪ X2,X3 free
X1,X2 free

}
⇐⇒ X1,X2,X3 free

The commutativity is obvious from the definition, associativity will be
addressed in Exercise 5.25.

Remark 5.21. The fact that the joint distribution of a free family
is determined by the individual distributions can be combined with
the Theorem 4.11 of the preceding lecture – this will enable us to talk
about C∗-algebras defined by a family of ∗-free generators with given
∗-distributions. (At least it will be clear that the class of isomorphism
of such a C∗-algebra is uniquely determined. The issue of why the
C∗-algebra in question does indeed exist will be discussed separately
in the next two lectures.)

For instance one can talk about

(5.8)





“the unital C∗-algebra generated by 3 free

selfadjoint elements with arcsine distributions”.

This means: a unital C∗-algebra A endowed with a faithful posi-
tive functional ϕ, and generated by 3 free selfadjoint elements x1, x2, x3,
where each of x1, x2, x3 has arcsine distribution with respect to ϕ. (Re-
call that the arcsine distribution was discussed in Exercise 1.14.) The
C∗-algebra A is, up to isomorphism, uniquely determined, by the fact
that the above conditions determine the joint distribution of x1, x2, x3,
and by Theorem 4.11 (see also Remark 4.12.1).

Of course, whenever referring to a C∗-algebra introduced as in (5.8),
one must also make sure that a C∗-algebra satisfying the required con-
ditions does indeed exist. For the example at hand, this is (inciden-
tally) very easy – we can just take A to be the unital C∗-subalgebra
of C∗

red(F3) which is generated by the real parts of the 3 canonical uni-
tary generators of C∗

red(F3). In general, this kind of approach does not
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necessarily take us to look at the reduced C∗-algebra of a free group,
but rather to a more general type of free product construction, which
is discussed in the next two lectures.

Are there other universal product constructions?

Before we continue our investigation of the structure of free inde-
pendence we want to pause for a moment and consider the question
how special free independence is. Has it some very special properties
or is it just one of many examples of other forms of independence? We
know that we have free independence and tensor independence. What
are other examples?

Let us formalize a bit what we mean by a concept of independence.
Independence of subalgebras Ai (i ∈ I) should give us a prescription for
calculating a linear functional on the algebra generated by all Ai if we
know the value of the functional on each of the subalgebras (as Lemma
5.13 assures us for the case of free independence). This prescription
should be universal in the sense that it does not depend on the actual
choice of subalgebras, but works in the same way for all situations.

So what we are looking for are universal product constructions in
the following sense: given any pair of non-commutative probability
spaces (A1, ϕ1) and (A2, ϕ2), we would like to construct in a universal
way a new non-commutative probability space (A, ϕ), where A consists
of all linear combinations of possible words made of letters from A1 and
from A2 (Thus, A := A1 ∗ A2 is the so-called algebraic free product of
A1 and A2. We will say more about this in the next lecture.)

One can formulate this in an abstract way by using the language
of category theory (one is looking for a construction which is natu-
ral, i.e., commutes with homomorphisms), but it can be shown that
in the end this comes down to having formulas for mixed moments
ϕ(a1b1a2b2 · · · anbn) (where ai ∈ A1 and bi ∈ A2) which involve only
products of moments of the ai and moments of the bi, such that in each
such product all ai and all bi appear exactly once and in their original
order.

Let us make the type of formulas a bit clearer by writing down some
examples for small n. The case n = 1 yields only one possibility for
such a product, thus

(5.9) ϕ(a1b1) = εϕ1(a1)ϕ2(b1),

whereas n = 2 gives rise to four possible contributions:

ϕ(a1b1a2b2) =αϕ1(a1a2)ϕ2(b1b2) + βϕ1(a1)ϕ1(a2)ϕ2(b1b2)

+ γϕ1(a1a2)ϕ2(b1)ϕ2(b2) + δϕ1(a1)ϕ1(a2)ϕ2(b1)ϕ2(b2).(5.10)
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Universality of the construction means that the coefficients ε, α, β, γ, δ
do not depend on the special choice of the non-commutative probability
spaces (A1, ϕ1), (A2, ϕ2), nor the special choice of the elements ai, bi,
but that these coefficients are just some fixed numbers.

The question is now: How much freedom do we have to choose the
coefficients ε, α, β, γ, δ in the above formulas. Of course, the coefficients
cannot be totally arbitrary, because we clearly want to impose the
following consistency requirements:

(1) the formulas must be consistent if we put some of the ai or bi

equal to 1
(2) the formulas must respect associativity, i.e., in the iterated

case of three or more algebras the resulting formula must be
independent of the order in which we iterate

The first requirement, for example, gives us directly

1 = ϕ(1 · 1) = εϕ1(1)ϕ2(1) = ε,

so for n = 1 we have no choice but

(5.11) ϕ(ab) = ϕ1(a)ϕ2(b).

This means in particular that

(5.12) ϕ(a) = ϕ1(a) for all a ∈ A1,

(5.13) ϕ(b) = ϕ2(b) for all b ∈ A2,

which agrees with our expectation that such an universal product con-
struction should be an extension of given states to the free product of
the involved algebras.

For n = 2, we get, by putting a1 = a2 = 1 in (5.10):

ϕ2(b1b2) = ϕ(b1b2)

= αϕ1(1 · 1)ϕ2(b1b2) + βϕ1(1)ϕ1(1)ϕ2(b1b2)

+ γϕ1(1 · 1)ϕ2(b1)ϕ2(b2) + δϕ1(1)ϕ1(1)ϕ2(b1)ϕ2(b2)

= (α + β)ϕ2(b1b2) + (γ + δ)ϕ2(b1)ϕ2(b2).

Since we can choose any probability space (A2, ϕ2) and arbitrary el-
ements b1, b2 ∈ A2, the above equality has to be true for arbitrary
ϕ2(b1b2) and arbitrary ϕ2(b1)ϕ2(b2), which implies that

(5.14) α + β = 1 and γ + δ = 0.

Similarly, by putting b1 = b2 = 1 in (5.10), we obtain

(5.15) α + γ = 1 and β + γ = 0.
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Note that these relations imply in particular (by putting b2 = 1 in
(5.10)) that

ϕ(a1b1a2) = ϕ(a1a2)ϕ(b1).

The relations (5.14) and (5.15) give us quite a bit of restrictions for
our allowed coefficients in (5.10), but still it looks as if we could find a
1-parameter family of such formulas for n = 2.

However, associativity will put some more restrictions: Let us con-
sider three probability spaces (A1, ϕ1), (A2, ϕ2), (A3, ϕ3) with elements
a1, a2 ∈ A1, b1, b2 ∈ A2, c1, c2 ∈ A3 and let us calculate ϕ(a1c1b1c2a2b2).
We can do this in two different ways. Either we can read it as
ϕ(a1(c1b1c2)a2b2) or as ϕ((a1c1)b1(c2a2)b2). In the first case we cal-
culate

ϕ(a1(c1b1c2)a2b2) = αϕ(a1a2)ϕ(c1b1c2b2) + βϕ(a1)ϕ(a2)ϕ(c1b1c2b2)

+ γϕ(a1a2)ϕ(c1b1c2)ϕ(b2) + δϕ(a1)ϕ(a2)ϕ(c1b1c2)ϕ(b2),

and reformulate this further by using

ϕ(c1b1c2b2) = αϕ(c1c2)ϕ(b1b2) + βϕ(c1)ϕ(c2)ϕ(b1b2)

+ γϕ(c1c2)ϕ(b1)ϕ(b2) + δϕ(c1)ϕ(c2)ϕ(b1)ϕ(b2).

and
ϕ(c1b1c2) = ϕ(c1c2)ϕ(b1).

This leads to a final expression where the term ϕ(a1a2)ϕ(b1b2)ϕ(c1c2)
appears with coefficient α2, i.e.,

ϕ(a1(c1b1c2)a2b2) = α2ϕ(a1a2)ϕ(b1b2)ϕ(c1c2) + · · · .

On the other hand, in the second case we calculate

ϕ((a1c1)b1(c2a2)b2) = αϕ(a1c1c2a2)ϕ(b1b2) + βϕ(a1c1)ϕ(c2a2)ϕ(b1b2)

+ γϕ(a1c1c2a2)ϕ(b1)ϕ(b2) + δϕ(a1c1)ϕ(c2a2)ϕ(b1)ϕ(b2).

By using

ϕ(a1c1c2a2) = ϕ(a1(c1c2)a2) = ϕ(a1a2)ϕ(c1c2)

and
ϕ(a1c1) = ϕ(a1)ϕ(c1), ϕ(c2a2) = ϕ(c2)ϕ(a2)

we finally get an expression in which the term ϕ(a1a2)ϕ(b1b2)ϕ(c1c2)
appears with coefficient α,

ϕ((a1c1)b1(c2a2)b2) = αϕ(a1a2)ϕ(b1b2)ϕ(c1c2) + · · · .

Since the other appearing moments can be chosen independently
from ϕ(a1a2)ϕ(b1b2)ϕ(c1c2), comparison of both calculations yields that
α2 = α. Thus we only remain with the two possibilities α = 1 or α = 0.



88 5. DEFINITION AND BASIC PROPERTIES OF FREE INDEPENDENCE

By (5.14) and (5.15), the value of α determines the other coefficients
and finally we arrive at the conclusion that, for n = 2, we only have
the two possibilities that either α = 1 and β = γ = δ = 0, which means

ϕ(a1b1a2b2) = ϕ(a1a2)ϕ(b1b2),

or that α = 0, β = γ = 1, δ = −1, which means

ϕ(a1b1a1b2) = ϕ(a1a2)ϕ(b1)ϕ(b2) + ϕ(a1)ϕ(a2)ϕ(b1b2)

− ϕ(a1)ϕ(a2)ϕ(b1)ϕ(b2).

But the first case is the formula which we get for tensor independent
variables (see Equation (5.2)), whereas the second case, is exactly the
formula (5.6), which describes freely independent random variables.
Thus we see from these considerations that on the level of words of
length 4 there are only two possibilities for having universal product
constructions. It can be shown, that this is also true for greater lengths:
although the number of coefficients in universal formulas for expressions
ϕ(a1b1a2b2 · · · anbn) grows very fast with n, the consistency conditions
(in particular, associativity) give so strong relations between the al-
lowed coefficients that in the end only two possibilities survive – either
one has tensor independence or one has free independence.

This shows that free independence, which might appear somewhat
artificial on first look, is a very fundamental concept – it is the only
other possibility for a universal product construction.

Exercises

Exercise 5.22. 1) Prove that functions of freely independent ran-
dom variables are freely independent: if a and b are freely independent
and f and g polynomials, then f(a) and g(b) are freely independent,
too.

2) Make the following statement precise and prove it: free indepen-
dence is preserved via taking homomorphic images of algebras.

Exercise 5.23. Let (A, ϕ) be a C∗-probability space, and let
(Ai)i∈I be a freely independent family of unital ∗-subalgebras of A.
For every i ∈ I, let Bi be the closure of Ai in the norm topology. Prove
that the algebras (Bi)i∈I are freely independent.

Exercise 5.24. Let (A, ϕ) be a ∗-probability space. Consider a
unital subalgebra B ⊂ A and a Haar unitary u ∈ A such that {u, u∗}
and B are free. Show that then also B and u∗Bu are free. (The algebra
u∗Bu is of course

u∗Bu := {u∗bu | b ∈ B} ⊂ A.
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Exercise 5.25. In this exercise we prove that free independence
behaves well under successive decompositions and thus is associative.
Let (Ai)i∈I be unital subalgebras of A and, for each i ∈ I, (Bj

i )j∈J(i)

unital subalgebras of Ai. Then we have:
i) If (Ai)i∈I are freely independent in A and, for each i ∈ I,

(Bj
i )j∈J(i) are freely independent in Ai, then all (Bj

i )i∈I;j∈J(i) are freely
independent in A.

ii) If all (Bj
i )i∈I;j∈J(i) are freely independent in A and if, for each

i ∈ I, Ai is as algebra generated by all Bj
i for j ∈ J(i), then (Ai)i∈I

are freely independent in A.

Exercise 5.26. If we consider, instead of unital algebras and unital
linear functionals, just algebras and linear functionals, then we might
also ask about the existence of universal product constructions in this
frame. We have to give up the first consistency requirement about set-
ting some of the random variables equal to 1, and we can only require
associativity of the universal product construction. Of course, the ten-
sor product and the free product are still examples of such products.
Show that in such a frame there exists exactly one additional example
of a universal product if we also require the natural extension properties
(5.12), (5.13) and the factorization property (5.11) to hold. Describe
this additional example.





LECTURE 6

Free product of ∗-probability spaces

In order to use free independence we have to be able to find suf-
ficiently many situations where freely independent random variables
arise. In particular, given a family of non-commutative probability
spaces (Ai, ϕi), i ∈ I, we should be able to find “models” of the
(Ai, ϕi)’s sitting inside some bigger non-commutative probability space
(A, ϕ), such that the Ai’s are freely independent in (A, ϕ). To put it
in other words: If free independence is to be a structure as powerful
as classical independence, it should better allow us make assumptions
like “let xi be freely independent and identically distributed random
variables” (with a given distribution). In classical probability theory it
is of course the existence of product measures (or of tensor products in
the more general algebraic frame) which ensures this. In this lecture
we discuss the free counterpart of this construction – free products of
non-commutative probability spaces.

Free product of unital algebras

Similarly to the free product of groups discussed in the preceding
lecture, the free product of a family {Ai | i ∈ I} of unital algebras will
be a unital algebra A whose elements are words made with “letters”
from the Ai’s. Before going to the description of how exactly we make
words with letters from the Ai’s, let us state the formal definition of
the free product in terms of its universality property (this is analogous
to the universality property stated for free products of groups in the
Remark 5.10.1 of the preceding lecture).

Definition 6.1. Let (Ai)i∈I be a family of unital algebras over C.
The (algebraic) free product of the Ai’s, with identification of units
is a unital algebra A, given together with a family of unital homomor-
phisms (Vi : Ai → A)i∈I , such that the following universality property
holds: whenever B is a unital algebra over C and (Φi : Ai → B)i∈I is
a family of unital homomorphisms, there exists a unique unital homo-
morphism Φ : A → B such that Φ ◦ Vi = Φi, ∀ i ∈ I.

91



92 6. FREE PRODUCT OF ∗-PROBABILITY SPACES

Notations 6.2. We now make some clarifying comments related
to the preceding definition (and also introduce at the same time a num-
ber of useful notations). So let us consider the setting of the Definition
6.1. Quite clearly, the free product algebra A is determined up to iso-
morphism (in the obvious way, common to all situations when objects
are defined by universality properties). On the other hand, the homo-
morphisms Vi : Ai → A turn out to be one-to-one (see the discussion
in the next Remark 6.3); so by a slight notational abuse we can assume
that A contains every Ai as a unital subalgebra. This makes the map
Vi disappear (or rather, Vi simply becomes the inclusion of Ai into A).
This version of the free product algebra (which contains the Ai’s as
unital subalgebras) is somewhat more “canonical”; it is the one which
is usually considered, and is denoted as

(6.1) A = ∗i∈IAi.

We should warn the reader here that the simplified notation in Equation
(6.1) comes together with the following convention: by relabeling the
Ai’s if necessary, we assume that they all share the same unit, while
on the other hand an intersection Ai1 ∩Ai2 for i1 6= i2 does not contain
any element which is not a scalar multiple of the unit. (This is the case
even if we are looking at a free product of the form, say, A = B ∗B ∗B,
for some given unital algebra B. Before being embedded inside A, the 3
copies of B that we are dealing with have to be relabeled as B1,B2,B3,
with Bi ∩ Bj = C1 for i 6= j.)

The structure of the free product A = ∗i∈IAi is better understood if
one identifies A as being spanned by certain sets of “words” made with
“letters” from the algebras Ai. In order to describe how this goes, let
us choose inside every Ai a subspace Ao

i of codimension 1 which gives a
complement for the scalar multiples of the unit of Ai. (A way of finding
such a subspace Ao

i which fits very well the spirit of these lectures is
by setting Ao

i := ker(ϕi), where ϕi : Ai → C is a linear functional such
that ϕi(1Ai

) = 1.) Once the subspaces Ao
i are chosen, we get a direct

sum decomposition for the free product algebra A = ∗i∈IAi, as follows:

(6.2) A = C1⊕
( ∞⊕

n=1

⊕

i1,...,in∈I

i1 6=i2,...,in−1 6=in

Wi1,...,in

)
,

where for every n ≥ 1 and every i1, . . . , in ∈ I such that i1 6=
i2, . . . , in−1 6= in we set

(6.3) Wi1,...,in := span{a1 · · · an : a1 ∈ Ao
i1
, . . . , an ∈ Ao

in}.
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Thus every Wi1,...,in is a set of “words” of a specified type, and the free
product ∗i∈IAi can be understood in terms of such linear subspaces of
words via the Equation (6.2). It is also worth recording that for every
n ≥ 1 and every i1, . . . , in ∈ I such that i1 6= i2, . . . , in−1 6= in, the
space Wi1,...,in of Equation (6.3) is canonically isomorphic to the tensor
product Ao

i1
⊗ · · · ⊗ Ao

in , via the linear map determined by

(6.4) Ao
i1
⊗ · · · ⊗ Ao

in 3 a1 ⊗ · · · ⊗ an 7→ a1 · · · an ∈ Wi1,...,in ,

for a1 ∈ Ao
i1
, . . . , an ∈ Ao

in .

Remark 6.3. One might object at this point that our presentation
of the free product A = ∗i∈IAi lacks in the following respects: first we
did not give a proof that an algebra A with the universality property
stated in Definition 6.1 does indeed exist, and then in Notations 6.2
we presented some properties of this hypothetical algebra A which
again we gave without proof. For the reader interested in filling in
these gaps, let us make the observation that the two shortcomings
mentioned above can be made to cancel each other, by reasoning in
the following way: Let (Ai)i∈I be a family of unital algebras for which
we want to construct the free product. For every i ∈ I consider a
linear functional ϕi : Ai → C such that ϕi(1Ai

) = 1, and the subspace
Ao

i := ker(ϕi) ⊂ Ai. Then consider the vector space

(6.5) A = C1⊕
( ∞⊕

n=1

⊕
i1,...,in∈I

i1 6=i2,...,in−1 6=in

Ao
i1
⊗ · · · ⊗ Ao

in

)
.

The point to observe is that on this vector space A one can rigorously
define a multiplication which reflects the intuitive idea of how “words”
can be multiplied by concatenation. Thus A becomes a unital algebra
over C, and the algebras Ai are naturally embedded inside it (via Ai '
C1 ⊕ Ao

i , i ∈ I); finally, the universality properties known for tensor
products and direct sums can be used in order to derive that A has
indeed the universality property required by Definition 6.1.

In this approach, the tedious details which have to be verified are
then concentrated in the process of making sure that the “natural”
definition of the multiplication on A indeed makes sense, and gives
us an algebra. We will leave it as an exercise to the conscientious
reader to work out the formula for how to multiply two general tensors
a′1 ⊗ · · · ⊗ a′m and a′′1 ⊗ · · · ⊗ a′′n – see Exercise 6.15. Here we will only
discuss, for illustration, one simple example of such a multiplication.

Say for instance that we have chosen two distinct indices i1 6= i2 in I
and some elements a1, b1 ∈ Ao

i1
, a2, b2 ∈ Ao

i2
, and that we want to figure

out the formula for multiplying the elements a1 ⊗ a2 and b2 ⊗ b1 of A.
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The first candidate which comes to mind as result of this multiplication
is a1 ⊗ (a2b2) ⊗ b1 (obtained by concatenating the two given tensors
and by using the multiplication of Ai2). But a1 ⊗ (a2b2)⊗ b1 does not
necessarily belong to any of the summands in the direct sum in (6.5),
as a2b2 may not belong to Ao

i2
. In order to fix this, we thus consider

(similarly to the pattern of notation used in the Lecture 5) the centering
of a2b2,

(a2b2)
o := a2b2 − ϕi2(a2b2) · 1Ai2

∈ Ao
i2
.

Then the candidate for the product of a1 ⊗ a2 and b2 ⊗ b1 becomes:

a1 ⊗ (a2b2)
o ⊗ a1 + ϕi2(a2b2) · (a1b1).

This is closer to what we need, but still requires the centering of a1b1,

(a1b1)
o := a1b1 − ϕi1(a1b1) · 1Ai1

∈ Ao
i1
.

By replacing a1b1 by (a1b1)
o +ϕi1(a1b1) · 1 in the preceding form of the

candidate for the product, we arrive at the correct definition:

(a1 ⊗ a2) · (b2 ⊗ b1) =
(
ϕi1(a1b1)ϕi2(a2b2)

) · 1
+ ϕi2(a2b2) · (a1b1)

o + a1 ⊗ (a2b2)
o ⊗ b1.

(Thus (a1⊗a2)·(b2⊗b1) is an element of C1⊕Ao
i1
⊕(Ao

i1
⊗Ao

i2
⊗Ao

i1
) ⊂ A.)

A final point: from the approach suggested in this remark, it would
seem that the free product ∗i∈IAi is actually depending on the choice
of a family of linear functionals ϕi : Ai → C, i ∈ I. It is indeed true
that the decomposition of A appearing on the right-hand side of (6.5)
depends on the choice of ϕi’s. But the class of isomorphism of A itself
does not depend on the ϕi’s – this is immediate from the fact that A
has the universality property required in Definition 6.1.

Free product of non-commutative probability spaces

Definition 6.4. Let (Ai, ϕi)i∈I be a family of non-commutative
probability spaces. Consider the free product algebra A = ∗i∈IAi and
its direct sum decomposition as described in Equation (6.2) of Nota-
tions 6.2, where the subspaces Ao

i ⊂ Ai are defined as Ao
i := ker(ϕi),

i ∈ I. The free product of the functionals (ϕi)i∈I is defined as the
unique linear functional ϕ : A → C such that ϕ(1A) = 1 and such
that ϕ|Wi1,...,in = 0 for every n ≥ 1 and every i1, . . . , in ∈ I with
i1 6= i2, i2 6= i3, . . . , in−1 6= in The notation used for this functional
ϕ : A → C is ∗i∈Iϕi. The corresponding non-commutative probability
space (A, ϕ) is called the free product of the non-commutative
probability spaces (Ai, ϕi) for i ∈ I, and one writes sometimes

(A, ϕ) = ∗i∈I (Ai, ϕi)
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(instead of (A, ϕ) = ( ∗i∈IAi, ∗i∈Iϕi )).

Remark 6.5. In the situation of Definition 6.4, the restriction of
the free product functional ϕ to an Ai is equal to the original ϕi :
Ai → C which we started with. Indeed, ϕ is defined such that ker(ϕ) ⊃
Ao

i = ker(ϕi); hence the functionals ϕ|Ai
and ϕi coincide on Ao

i and
on C1, and must be therefore equal to each other. Thus: if (A, ϕ) =
∗i∈I(Ai, ϕi), then every (Ai, ϕi) is indeed “a subspace” of (A, ϕ).

Proposition 6.6. Let (Ai, ϕi)i∈I be a family of non-commutative
probability spaces, and let (A, ϕ) be their free product. Then:

1) The subalgebras Ai, i ∈ I, are freely independent in (A, ϕ).
2) (A, ϕ) has a universality property, described as follows: Let

(B, ψ) be a non-commutative probability space, suppose that for ev-
ery i ∈ I we have a homomorphism Φi between (Ai, ϕi) and (B, ψ)
(in the sense that Φi : Ai → B is a unital homomorphism such that
ψ ◦ Φi = ϕi), and suppose moreover that the images ( Φi(Ai) )i∈I are
freely independent in (B, ψ). Then there exists a homomorphism Φ be-
tween (A, ϕ) and (B, ψ), uniquely determined, such that Φ|Ai = Φi for
every i ∈ I.

Proof. 1) Let i1, . . . , in ∈ I be such that i1 6= i2, . . . , in−1 6= in,
and let a1 ∈ Ai1 , . . . , an ∈ Ain be such that ϕ(a1) = · · · = ϕ(an) =
0. In the terminology used in the Definition 6.4 we thus have a1 ∈
Ao

i1
, . . . , an ∈ Ao

in . But then a1 · · · an ∈ Wi1,...,in ⊂ ker(ϕ), and we get
that ϕ(a1 · · · an) = 0, as required by the definition of free independence.

2) By the universality property of A (cf. Definition 6.1) we know
that there exists a unique unital homomorphism Φ : A → B such that
Φ|Ai = Φi, ∀ i ∈ I. We have to show that Φ also has the property that
ψ ◦Φ = ϕ. In view of the definition of ϕ, it suffices to check that ψ ◦Φ
vanishes on each of the linear subspaces Wi1,...,in of A, for every n ≥ 1
and every i1 6= i2, . . . , in−1 6= in in I. So in other words it suffices to
fix such n and i1, . . . , in, then to pick some elements a1 ∈ Ao

i1
, . . . , an ∈

Ao
in , and to prove that (ψ ◦ Φ)(a1 · · · an) = 0.

For the a1, . . . , an picked above, let us denote

Φ(a1) = Φi1(a1) =: b1, . . . , Φ(an) = Φin(an) =: bn.

Then for every 1 ≤ k ≤ n we have that bk ∈ Φik(Aik) and that

ψ(bk) = ψ(Φik(ak))

= ϕik(ak) (since ψ ◦ Φik = ϕik)

= 0 (since ak ∈ Ao
ik

).
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But now, since the algebras ( Φ(Ai) )i∈I are free in (B, ψ), it follows
that ψ(b1 · · · bk) = 0. Thus

(ψ ◦ Φ)(a1 · · · an) = ψ(Φ(a1) · · ·Φ(an)) = ψ(b1 · · · bn) = 0,

as desired. ¤

Exercise 6.7. Let G1, . . . , Gm be groups and G = G1 ∗ . . . ∗ Gm

the free product of these groups (as discussed in the part of lecture 5
about free products of groups). Show that

(6.6) (CG1, τG1) ∗ . . . ∗ (CGm, τGm) = (CG, τG).

We conclude this section by noting that a free product of tracial
non-commutative probability spaces is again tracial.

Proposition 6.8. Let (Ai, ϕi)i∈I , be a family of non-commutative
probability spaces, and let (A, ϕ) be their free product. If ϕi is a trace
on Ai for every i ∈ I, then ϕ is a trace on A.

Proof. This is an immediate consequence of Proposition 5.19 from
Lecture 5: the subalgebras (Ai)i∈I of A are freely independent and
ϕ|Ai = ϕi is a trace for every i ∈ I, hence ϕ is a trace on the subalgebra
generated by ∪i∈IAi (which is all of A). ¤

Free product of ∗-probability spaces

Remark 6.9. Let (Ai, ϕi)i∈I be a family of ∗-probability spaces.
One can of course view the (Ai, ϕi)’s as plain non-commutative prob-
ability spaces, and consider their free product (A, ϕ) defined in the
preceding section. It is moreover fairly easy to see that the algebra
A = ∗i∈IAi has in this case a natural ∗-operation on it, uniquely de-
termined by the fact that it extends the ∗-operations existing on the
algebras Ai, i ∈ I Referring to the direct sum decomposition

A = C1⊕
( ∞⊕

n=1

⊕
i1,...,in∈I

i1 6=i2,...,in−1 6=in

Wi1,...,in

)

discussed in the preceding sections (cf. Equations (6.2) and (6.3)
above), we have that the ∗-operation on A maps Wi1,...,in onto Win,...,i1 ,
via the formula

(a1 · · · an)∗ = a∗n · · · a∗1
(holding for a1 ∈ Ao

i1
, . . . , an ∈ Ao

in , where n ≥ 1 and where i1, . . . , in ∈
I are such that i1 6= i2, . . . , in−1 6= in). This immediately implies that
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the free product functional ϕ = ∗i∈Iϕi is selfadjoint on A, in the sense
that it satisfies the equation

ϕ(a∗) = ϕ(a), ∀ a ∈ A.

Nevertheless, it is not clear from the outset that the free product (A, ϕ)
of the (Ai, ϕi)’s is a ∗-probability space – indeed, it is not clear whether
ϕ satisfies the positivity condition ϕ(a∗a) ≥ 0, a ∈ A. The main goal
of the present section is to prove that the desired positivity of ϕ does
actually take place. The proof will rely on some basic facts about
positive matrices, which are reviewed next.

Remark 6.10. Recall that a matrix A ∈ Mn(C) is said to be pos-
itive indexpositive! matrix when it satisfies one (hence all) of the
following equivalent conditions:

(1) A is selfadjoint and all its eigenvalues are in [0,∞).
(2) A can be written in the form A = X∗X for some X ∈ Mn(C).
(3) One has 〈Aξ, ξ〉 ≥ 0 for every ξ ∈ Cn, where 〈 , 〉 is the standard

inner product on Cn.
(The equivalence between (1) and (2) above is a particular case of
Proposition 3.6 from Lecture 3, used for the C∗-algebra Mn(C). But,
of course, in this particular case we don’t really have to refer to the
Proposition 3.6, e.g. for (1) ⇒ (2) one can simply find X by diagonal-
izing the matrix A.)

A fact about positive matrices which we want to use is in connection
to the entry-wise product – also called Schur product – of matrices.
Given A = (aij)

n
i,j=1 and B = (bij)

n
i,j=1 in Mn(C), the Schur product

of A and B is the matrix S := (aijbij)
n
i,j=1.

Lemma 6.11. Let A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 be two posi-

tive matrices in Mn(C). Then the Schur product S = (aijbij)
n
i,j=1 is a

positive matrix as well.

Proof. We will show that S satisfies the condition (3) from Re-
mark 6.10. For ξ = (ξ1, . . . , ξn) ∈ Cn we clearly have:

(6.7) 〈Sξ, ξ〉 =
n∑

i,j=1

aijbijξjξi.

But then let us write A = X∗X, where X = (xij)
n
i,j=1 ∈ Mn(C). For

every 1 ≤ i, j ≤ n we have aij =
∑n

k=1 xkixkj, and substituting this in
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(6.7) we get:

〈Sξ, ξ〉 =
n∑

i,j,k=1

xkixkjbijξjξi

=
n∑

k=1

( n∑
i,j=1

bij(ξjxkj)( ξixki )
)

=
n∑

k=1

〈Bηk, ηk〉 ≥ 0,

where ηk := (ξ1xk1, . . . , ξnxkn) ∈ Cn for 1 ≤ k ≤ n. ¤

Positive matrices appear in the framework of a ∗-probability space
in the following way.

Lemma 6.12. Consider a unital ∗-algebra A equipped with a linear
functional ϕ : A → C. Then the following statements are equivalent:

(1) ϕ is positive, i.e. we have ϕ(a∗a) ≥ 0, ∀ a ∈ A.
(2) For all n ≥ 1 and all a1, . . . , an ∈ A the matrix

(
ϕ(a∗i aj)

)n

i,j=1
∈ Mn(C)

is positive.

Proof. (2) ⇒ (1) is clear ((1) is the particular case “n = 1” of
(2)).

(1) ⇒ (2): Given n ≥ 1 and a1, . . . , an ∈ A, we verify that the
matrix A =

(
ϕ(a∗i aj)

)n

i,j=1
satisfies the condition (3) of Remark 6.10.

Indeed, for every ξ = (ξ1, . . . , ξn) ∈ Cn we can write:

〈Aξ, ξ〉 =
n∑

i,j=1

ϕ(a∗i aj)ξjξi = ϕ(
n∑

i,j=1

ξjξia
∗
i aj)

= ϕ( (
n∑

i=1

ξiai)
∗ (

n∑
i=1

ξiai) ) ≥ 0.

¤

We can now give the positivity result announced at the beginning
of this section.

Theorem 6.13. Let (Ai, ϕi)i∈I be a family of ∗-probability spaces.
Then the functional ϕ := ∗i∈IAi is positive, and hence the free product
(A, ϕ) := ∗i∈I(Ai, ϕi) is a ∗-probability space.
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Proof. In order to prove the positivity of ϕ, we will rely on the
direct sum decomposition

A =
∞⊕

n=0

⊕
i1,...,in∈I

i1 6=i2,...,in−1 6=in

Wi1,...,in .

This is the same as in Equation (6.2) above, with the additional con-
vention that, for n = 0, the subspace Wi1,...,in indexed by the empty
0-tuple is C1. Observe that, as an immediate consequence of Lemma
5.18 from the preceding lecture we have that, for i1 6= i2, . . . , in−1 6= in
and j1 6= j2, . . . , jm−1 6= jm in I:

(6.8) (i1, . . . , im) 6= (j1, . . . , jm) ⇒ ϕ(a∗b) = 0, ∀ a ∈ Wi1,...,in

∀ b ∈ Wj1,...,jm

.

Consider now an element a ∈ A and write it as

a =
N∑

n=0

∑
i1,...,in∈I

i1 6=i2 6=···6=in

ai1,...,in

for some N ≥ 0 and where ai1,...,in ∈ Wi1,...,in for every 0 ≤ n ≤ N and
every i1 6= i2 6= · · · 6= in in I. Then we have

ϕ(a∗a) =
N∑

m,n=0

∑
i1,...,in∈I

i1 6=i2 6=···6=in

∑
j1,...,jm∈I

j1 6=j2 6=···6=jm

ϕ(a∗i1,...,inaj1,...,jm)

=
N∑

n=0

∑
i1,...,in∈I

i1 6=i2 6=···6=in

ϕ(a∗i1,...,inai1,...,in),(6.9)

where at the last equality sign we made use of the implication (6.8).
In view of (6.9), we are clearly reduced to proving that ϕ(b∗b) ≥ 0

when b belongs to a subspace Wi1,...,in . Fix such a b. We can write

b =

p∑

k=1

a
(k)
1 a

(k)
2 . . . a(k)

n ,

where a
(k)
m ∈ Ao

im for 1 ≤ m ≤ n, 1 ≤ k ≤ p. We thus have:

ϕ(b∗b) =

p∑

k,l=1

ϕ
(
(a

(k)
1 · · · a(k)

n )∗ · (a(l)
1 · · · a(l)

n )
)

=

p∑

k,l=1

ϕ
(
a(k)∗

n · · · a(k)∗
1 · a(l)

1 · · · a(l)
n

)
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=

p∑

k,l=1

ϕ(a
(k)∗
1 a

(l)
1 ) · · ·ϕ(a(k)∗

n a(l)
n ) (by Lemma 5.18).

Since ϕ|Ai = ϕi for all i, what we have obtained is hence that:

(6.10) ϕ(b∗b) =

p∑

k,l=1

ϕi1(a
(k)∗
1 a

(l)
1 ) · · ·ϕin(a(k)∗

n a(l)
n ).

Now for every 1 ≤ m ≤ n let us consider the matrix Bm =

( ϕim(a
(k)∗
m a

(l)
m ) )p

k,l=1 ∈ Mp(C), and let S be the Schur product of the
matrices B1, . . . Bn. Lemma 6.12 gives us that each of B1, . . . , Bn is
positive, and a repeated application of Lemma 6.11 gives us that S is
positive as well. Finally, we observe that Equation (6.10) amounts to
the fact that ϕ(b∗b) is the sum of all the entries of S; hence, by taking
ζ = (1, 1, . . . , 1) ∈ Cp, we have ϕ(b∗b) = 〈Sζ, ζ〉 ≥ 0. ¤

Finally, let us point out that the two basic properties of the expecta-
tion functional which were followed throughout the preceding lectures
– traciality and faithfulness – are being preserved when one forms free
products of ∗-free probability spaces. The statement about traciality
is a particular case of the Proposition 6.8 from the preceding section,
while the statement about faithfulness is treated in the next proposi-
tion.

Proposition 6.14. Let (Ai, ϕi)i∈I , be a family of ∗-probability
spaces, and let (A, ϕ) be their free product. If ϕi is faithful on Ai

for every i ∈ I, then ϕ is faithful on A.

Proof. Same as in the proof of Theorem 6.13, we will use the
direct sum decomposition of A into subspaces Wi1,...,in (for n ≥ 0 and
i1 6= i2 6= · · · 6= in in I). The very same calculation which led to
Equation (6.9) in the proof of Theorem 6.13 shows that it suffices to
prove the implication “ϕ(b∗b) = 0 ⇒ b = 0” for an element b which
belongs to one of the subspaces Wi1,...,in . We will prove this implication
by induction on n.

The cases n = 0 and n = 1 of our proof by induction are clear.
Indeed, in the case n = 0 we have that b ∈ C1, hence the implication
to be proved reduces to “|λ|2 = 0 ⇒ λ = 0” (for some λ ∈ C). In
the case n = 1 we have that b ∈ Wi ⊂ Ai for some i ∈ I, and the
implication “ϕ(b∗b) = 0 ⇒ b = 0” follows from the hypothesis that
ϕ|Ai (which is just ϕi) is faithful.

So it remains that we verify the induction step, n − 1 ⇒ n, for
n ≥ 2. Consider some indices i1 6= i2 6= · · · 6= in in I and an element
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b ∈ Wi1,...,in such that ϕ(b∗b) = 0. In view of how the space Wi1,...,in is
defined, we can write

(6.11) b = x1y1 + · · ·+ xpyp

for some p ≥ 1, where x1, . . . , xp ∈ Wi1 and y1, . . . , yp ∈ Wi2,...,in More-
over, by appropriately regrouping the terms and by incorporating the
necessary linear combinations, we can assume that in (6.11) the ele-
ments x1, . . . , xp are linearly independent. The fact that ϕ(b∗b) = 0
entails that:

0 = ϕ( (

p∑

k=1

xkyk)
∗(

p∑

l=1

xlyl) ) =

p∑

k,l=1

ϕ(y∗kx
∗
kxlyl).

If we also make use of the Lemma 5.18 from the preceding lecture, we
thus see that we have obtained:

(6.12)

p∑

k,l=1

ϕ(y∗kyl)ϕ(x∗kxl) = 0.

Now, the matrix
(

ϕ(y∗kyl)
)p

k,l=1
is positive (since ϕ is positive, and

by Lemma 6.12), hence we can find a matrix B = (βk,l)
p
k,l=1 such that(

ϕ(y∗kyl)
)p

k,l=1
= B∗B. Written in terms of entries, this means that

we have:

ϕ(y∗kyl) =

p∑

h=1

βhkβhl, ∀ 1 ≤ k, l ≤ p.

We substitute this in (6.12) and we get:

0 =

p∑

k,l=1

( p∑

h=1

βhkβhl

)
ϕ(x∗kxl)

=

p∑

h=1

ϕ(

p∑

k,l=1

βhkβhlx
∗
kxl)

=

p∑

h=1

ϕ
(

(

p∑

k=1

βhkxk)
∗ · (

p∑

k=1

βhkxk)
)
.

By using the positivity of ϕ, we infer that:

(6.13) ϕ
(
(

p∑

k=1

βhkxk)
∗ · (

p∑

k=1

βhkxk)
)

= 0, ∀ 1 ≤ h ≤ p.
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Moreover, since ϕ|Ai1 is ϕi1 and is thus faithful (by hypothesis) the
Equation (6.13) has as consequence that

p∑

k=1

βhkxk = 0, ∀ 1 ≤ h ≤ p.

This in turn implies that βhk = 0 for every 1 ≤ h, k ≤ p, because the
elements x1, . . . , xp ∈ Wi1 are linearly independent. As a consequence,
we obtain that

ϕ(y∗kyk) =

p∑

h=1

βhkβhk = 0, 1 ≤ k ≤ p.

But ϕ is faithful on Wi2,...,in , by the induction hypothesis; so from the
latter equalities we infer that y1 = · · · = yp = 0, and we can conclude
that b =

∑p
k=1 xkyk = 0. ¤

Exercises

Exercise 6.15. In the setting of the Remark 6.3, describe pre-
cisely the multiplication operation on the vector space A introduced in
Equation (6.5), and prove that in this way A becomes a unital algebra.

[Hint: In order to spell out the multiplication of two tensors a′1⊗· · ·⊗a′m
and a′′1⊗· · ·⊗a′′n, one can proceed by induction on m+n. If a′m ∈ Ao

im

and a′′1 ∈ Ao
j1

with im 6= j1, then the desired product is simply defined
to be a′1 ⊗ · · · ⊗ a′m ⊗ a′′1 ⊗ · · · ⊗ a′′n. If im = j1 =: i, then consider the
element

b = (a′1 ⊗ · · · ⊗ a′m−1) · (a′′2 ⊗ · · · ⊗ a′′n)

which is defined by the induction hypothesis, and define the product
of a′1 ⊗ · · · ⊗ a′m and a′′1 ⊗ · · · ⊗ a′′n to be

a′1 ⊗ · · · ⊗ a′m−1 ⊗ (a′ma′′1)
o ⊗ a′′2 ⊗ · · · ⊗ a′′n + ϕi(a

′
ma′′1) · b.]

Exercise 6.16. (f.i.d. sequences). Let µ be a probability measure
with compact support on R. Show that one can find a ∗-probability
space (A, ϕ) where ϕ is a faithful trace, and a sequence (xn)n≥1 of freely
independent selfadjoint random variables in A, such that each of the
xi’s has distribution µ.

Exercise 6.17. Let (A, ϕ) be a ∗-probability space and let a be
an element of A. Sometimes we need to make the following kind of
assumption (see e.g. Lecture 15 below): “By enlarging (A, ϕ) (if nec-
essary), we may assume that there exists a Haar unitary u ∈ A such
that a and u are ∗-free.” Explain why one can make such an assump-
tion.
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Exercise 6.18. State and prove an analogue of Proposition 6.6,
holding in the framework of ∗-probability spaces.

Exercise 6.19. Let (A, ϕ) be a ∗-probability space. Let (xi)i∈I

be a freely independent family of selfadjoint elements of A, such that
the unital ∗-algebra generated by {xi | i ∈ I} is all of A. Suppose in
addition that for every i ∈ I the element xi has distribution µi with
respect to ϕ, where µi is a compactly supported probability measure
on R (as in Remark 1.10 of Lecture 1), and such that the support of
µi is an infinite set. Prove that ϕ is a faithful trace on A.

[Hint: For faithfulness, it suffices to check that the restriction of ϕ to
{P (xi) | P ∈ C[X]} is faithful, for every i ∈ I. This happens because a
non-zero polynomial in C[X] cannot vanish everywhere on the support
of µi.]





LECTURE 7

Free product of C*–probability spaces

After discussing free products for non-commutative probability
spaces and for ∗-probability spaces in the preceding lecture, we will now
look at the corresponding concept for C∗-probability spaces. We will
restrict our attention to the technically simpler case of C∗-probability
spaces (A, ϕ) where ϕ is a faithful trace. We will show how for such
spaces the free product at the C∗-level can be obtained from the free
product as ∗-probability spaces by using the basic concept of Gelfand-
Naimark-Segal (or GNS for short) representation.

The GNS representation

In this section we consider the framework of ∗-probability spaces.
Recall from the Lecture 1 (Definition 1.6) that by a representation of
a ∗-probability space (A, ϕ) we understand a triple (H, π, ξ) where H
is a Hilbert space, π : A → B(H) is a unital ∗-homomorphism and ξ is
a vector in H, such that the relation ϕ(a) = 〈π(a)ξ, ξ〉 holds for every
a ∈ A.

Remark 7.1. (The space L2(A, ϕ).)
Let (A, ϕ) be a ∗-probability space. Consider the positive definite

sesquilinear form on A defined by:

(7.1) 〈a, b〉 := ϕ(b∗a), a, b ∈ A.

By using the Cauchy-Schwarz inequality for ϕ (Lecture 1, Eq. (1.1)),
one sees immediately that N := {a ∈ A : 〈a, a〉 = 0} can also be
described as {a ∈ A : 〈a, b〉 = 0 for all b ∈ A}, and is therefore a linear
subspace ofA. It is a standard procedure to consider the quotient space
A/N , endowed with the inner product inherited from the sesquilinear
form (7.1), and then to take the completion of A/N with respect to
this inner product. The result is a Hilbert space which is customarily
denoted as “L2(A, ϕ)”.

Rather than remembering the (somewhat uncomfortable) procedure
described above for constructing L2(A, ϕ), it is easier to remember
L2(A, ϕ) in the following way: there exists a linear map

(7.2) A 3 a 7→ â ∈ L2(A, ϕ)

105
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such that:

(7.3)

{
(i) {â : a ∈ A} is a dense subspace of L2(A, ϕ), and

(ii) 〈â, b̂〉 = ϕ(b∗a), ∀ a, b ∈ A.

Referring to the notations of the preceding paragraph, the map from
(7.2) sends an element a ∈ A to its coset in the quotient A/N ⊂
L2(A, ϕ). But in the concrete manipulations of L2(A, ϕ) this actually
never appears, it is always the combination of properties (i) + (ii) of
Equation (7.3) that is used.

The GNS representation for (A, ϕ) is defined in the way described
in the next proposition. Some comments around the condition (7.4)
imposed on A in this proposition are made in the Remark 7.4

Proposition 7.2. Let (A, ϕ) be a ∗-probability space, and let us
assume that

(7.4) A = span{u : u ∈ A, u is a unitary }.
Then for every a ∈ A there exists a unique bounded linear operator
π(a) ∈ B(L2(A, ϕ)) such that

(7.5) π(a)̂b = âb, ∀ b ∈ A.

The map π : A → B(L2(A, ϕ)) so defined is a unital ∗-homomorphism.

Moreover, the triple (L2(A, ϕ), π, 1̂ ) is a representation of (A, ϕ),

where 1̂ is defined according to the conventions of notation in (7.3),
with 1 = 1A = the unit of A.

Definition 7.3. This special representation of (A, ϕ) described in
the preceding proposition is called the GNS representation.

Proof. Most of the verifications required in order to prove this
proposition are trivial (and will be left to the reader). The only
point that we will examine here is why does the formula (7.5) define
a bounded linear operator on L2(A, ϕ). It is immediate that (given
a ∈ A) it suffices to prove the existence of a constant k(a) ≥ 0 such
that

(7.6) ||âb||L2(A,ϕ) ≤ k(a) · ||̂b||L2(A,ϕ), ∀ b ∈ A;

indeed, once this is done, a standard continuity argument will extend

the map b̂ 7→ âb from the dense subspace {b̂ : b ∈ A} to a bounded
linear operator on L2(A, ϕ).

Now, the set

(7.7) {a ∈ A : there exists k(a) ≥ 0 such that (7.6) holds}
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is a linear subspace of A. The verification of this fact is immediate (the
reader should have no difficulty to note that k(a1) + k(a2) can serve
as k(a1 + a2) and that |α|k(a) can serve as k(αa)). But on the other
hand, let us observe that the set introduced in (7.7) contains all the
unitaries of A. Indeed, if u ∈ A is a unitary then (7.6) is satisfied for
the constant k(u) = 1:

||ûb||L2(A,ϕ) = 〈ûb, ûb〉1/2 = ϕ(b∗u∗ub)1/2 = ϕ(b∗b)1/2 = ||̂b||L2(A,ϕ),

for all b ∈ A.
Consequently, the hypothesis that A is the linear span of its

unitaries implies that the set appearing in (7.7) is all of A (as we
wanted). ¤

Remark 7.4. The hypothesis (7.4) that A is the span of its uni-
taries is for instance satisfied whenever A is a unital C∗-algebra – see
Exercise 7.20 at the end of the lecture. It is fairly easy to relax this
hypothesis without changing too much the argument presented above
– see Exercise 7.22. On the other hand, one should be warned that this
hypothesis cannot be simply removed (that is, the boundedness of the

operators b̂ 7→ âb on L2(A, ϕ) cannot be obtained in the framework of
an arbitrary ∗-probability space – see Exercise 7.23).

We next point out how GNS representations can be recognized (up
to unitary equivalence) by using the concept of cyclic vector.

Definition 7.5. Let A be a unital ∗-algebra, let H be a Hilbert
space, and let π : A → B(H) be a unital ∗-homomorphism. A vector
η ∈ H is said to be cyclic for π if it satisfies:

(7.8) cl{π(a)η | a ∈ A} = H,

where “cl” denotes closure with respect to the norm-topology of H.

It is obvious that, in the notations of Proposition 7.2, the vector
1̂ is cyclic for the GNS representation π : A → B(L2(A, ϕ)) – indeed,

the subspace {π(a)1̂ | a ∈ A} is nothing but the dense subspace {â |
a ∈ A} from (i) of (7.3). On the other hand we have the following
proposition, which says that in a certain sense the GNS representation
is the “unique” representation (H, π, ξ) of (A, ϕ) such that ξ is cyclic
for π.

Proposition 7.6. Let (A, ϕ) be a ∗-probability space, and assume
that (A, ϕ) satisfies the hypothesis of Proposition 7.2 (hence that it has
a GNS representation). Let (H, ρ, ξ) be a representation of (A, ϕ) such
that ξ is cyclic for ρ. Then (H, ρ, ξ) is unitarily equivalent to the GNS
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representation (L2(A, ϕ), π, 1̂ ), in the sense that there exists a linear
operator U : L2(A, ϕ) → H which is bijective and norm-preserving,

such that U( 1̂ ) = ξ, and such that Uπ(a)U∗ = ρ(a) for every a ∈ A.

Proof. Let us observe that

(7.9) ||ρ(a)ξ||H = ||â||L2(A,ϕ), ∀ a ∈ A.

Indeed, both sides of Equation (7.9) are equal to ϕ(a∗a)1/2; for instance
for the left-hand side we compute like this:

||ρ(a)ξ||2H = 〈ρ(a)ξ, ρ(a)ξ〉H = 〈ρ(a∗a)ξ, ξ〉H = ϕ(a∗a).

Due to (7.9), it makes sense to define a function U0 : {â : a ∈ A} →
H by the formula

(7.10) U0(â) = ρ(a)ξ, a ∈ A.

Indeed, if a vector in the domain of U0 can be written both as â and

b̂ for some a, b ∈ A, then we get that ||â− b||L2(A,ϕ) = 0, hence that
||ρ(a − b)ξ||H = 0 (by (7.9)); and the latter fact implies that ρ(a)ξ =
ρ(b)ξ.

It is immediate that the map U0 defined by (7.10) is linear, and
Equation (7.9) shows that U0 is isometric. The usual argument of
extension by continuity then shows that one can extend U0 to a lin-
ear norm-preserving operator U : L2(A, ϕ) → H. The range-space
ran(U) is complete (since it is an isometric image of the complete space
L2(A, ϕ)), hence it is closed in H. But on the other hand we have that
ran(U) ⊃ ran(U0) = {ρ(a)ξ : a ∈ A}, and the latter space is dense in
H, by the hypothesis that ξ is cyclic for ρ. In this way we obtain that
U is surjective.

We have thus defined a linear operator U : L2(A, ϕ) → H which is
bijective and norm-preserving, and has the property that U(â) = ρ(a)ξ

for every a ∈ A. The latter property gives in particular that U( 1̂ ) =
ρ(1A)ξ = ξ. From the same property we also infer that

(7.11) Uπ(a)̂b = ρ(a)Ub̂, ∀ a, b ∈ A
(we leave it as an immediate exercise to the reader to check that both
sides of (7.11) are equal to ρ(ab)ξ). Equation (7.11) implies in turn that
Uπ(a) = ρ(a)U , ∀ a ∈ A, hence that Uπ(a)U∗ = ρ(a), ∀ a ∈ A. ¤

Remark 7.7. We conclude this section with an observation con-
cerning faithfulness. Let A be a unital ∗-algebra, let π : A → B(H) be
a unital ∗-homomorphism, and let η be a vector in the Hilbert space
H. It is customary to say that η is separating for π if the map
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A 3 a 7→ π(a)η ∈ H is one-to-one (equivalently, if for a ∈ A we have
the implication π(a)η = 0 ⇒ a = 0).

Now let (A, ϕ) be a ∗-probability space which satisfies the hy-
pothesis of Proposition 7.2, and consider the GNS representation
(L2(A, ϕ), π, 1̂ ). It is an immediate exercise, left to the reader, that
we have the equivalence:

(7.12) ϕ is faithful ⇔ 1̂ is a separating vector for π.

A consequence of (7.12) which is worth recording is that if ϕ is faithful,
then π : A → B(L2(A, ϕ)) is one-to-one (indeed, the injectivity of π is
clearly implied by the existence of a separating vector).

Free product of C*-probability spaces

We will restrict our attention to the main situation considered
throughout these lectures, the one when the expectation functional
is a faithful trace. The construction of a free product of C∗-probability
spaces will be obtained from the corresponding construction at the level
of ∗-probability spaces, by using GNS. Before going into the precise de-
scription of how this goes, it is useful to note the following fact.

Lemma 7.8. Let (Ao, ϕo) be a ∗-probability space such that ϕo is
a faithful trace. Suppose that Ao satisfies the hypothesis of Proposi-
tion 7.2, and consider the GNS representation (L2(Ao, ϕo), π, 1̂ ), as
described in that proposition. Let us denote

A := cl(π(Ao)) ⊂ B(L2(Ao, ϕo)).

If T ∈ A is such that T 1̂ = 0, then T = 0.

Proof. Observe that for every a, b, c ∈ Ao we have:

(7.13) 〈π(c)â, b̂〉 = 〈π(c)1̂, b̂a∗〉.
Indeed, the left-hand side of (7.13) is 〈ĉa, b̂〉 = ϕ(b∗ca), while the right-

hand side is 〈ĉ, b̂a∗〉 = ϕ(ab∗c). But ϕ(b∗ca) = ϕ(ab∗c), due to the
assumption that ϕ is a trace.

By approximating an arbitrary operator T ∈ A with operators of
the form π(c), c ∈ Ao (while a, b ∈ Ao are fixed), we immediately infer
from (7.13) that we actually have

(7.14) 〈T â, b̂〉 = 〈T 1̂, b̂a∗〉, ∀ T ∈ A, a, b ∈ Ao.

Let now T ∈ A be such that T 1̂ = 0. From (7.14) we then obtain

that 〈T â, b̂〉 = 0, ∀ a, b ∈ Ao. Since {â | a ∈ Ao} is a dense subspace
of L2(Ao, ϕo), and T is a bounded linear operator, this in turn gives us
that T = 0. ¤
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Theorem 7.9. Let (Ai, ϕi)i∈I be a family of C∗-probability spaces
such that the functionals ϕi : Ai → C, i ∈ I, are faithful traces. Then
there exists a C∗-probability space (A, ϕ) with ϕ a faithful trace, and
a family of norm-preserving unital ∗-homomorphisms Wi : Ai → A,
i ∈ I, such that:

(i) ϕ ◦Wi = ϕi, ∀ i ∈ I.
(ii) The unital C∗-subalgebras (Wi(Ai))i∈I form a free family in

(A, ϕ).
(iii) ∪i∈IWi(Ai) generates A as a C∗-algebra.
Moreover, (A, ϕ) and (Wi : Ai → A)i∈I are uniquely determined

up to isomorphism, in the sense that if (A′, ϕ′) and (W ′
i : Ai → A′)i∈I

have the same properties, then there exists a C∗-algebra isomorphism
Φ : A → A′ such that ϕ′ ◦ Φ = ϕ and such that Φ ◦Wi = W ′

i , ∀ i ∈ I.

Proof. In order to construct (A, ϕ), let us first consider the free
product of ∗-probability spaces (Ao, ϕo) = ∗i∈I(Ai, ϕi), as discussed in
the Lecture 6. Recall that in particular we have Ao = ∗i∈IAi as in
Equation (6.1) of Notations 6.2, and that every Ai is hence viewed as
a unital ∗-subalgebra of Ao. Let us also record here the fact that ϕo is
a faithful trace on Ao (by Propositions 6.8 and 6.14 in Lecture 6).

We claim that the linear span W := span{u ∈ Ao : u is unitary} is
all of Ao. Indeed, for every i ∈ I we have that

W ⊃ span{u ∈ Ai | u is unitary} = Ai

(with the latter equality holding because Ai is a C∗-algebra, and by
Exercise 7.20). Hence W ⊃ ∪i∈IAi. But W is a unital ∗-subalgebra of
Ao (immediate verification); so it follows that W contains the unital
∗-subalgebra of Ao generated by ∪i∈IAi, which is all of Ao.

We thus see that (Ao, ϕo) satisfies the hypothesis of Proposi-
tion 7.2, and we can therefore consider the GNS representation
(L2(Ao, ϕo), π, 1̂ ) for (Ao, ϕo). Since ϕo is faithful, we have that
π : Ao → B(L2(Ao, ϕo)) is one-to-one (cf. Remark 7.7).

Let us consider the unital C∗-subalgebra

A := cl(π(Ao)) ⊂ B(L2(Ao, ϕo)).

Moreover, for every i ∈ I let us denote by Wi : Ai → A the unital ∗-
homomorphism which is obtained by suitably restricting π (this makes
sense, since Ai is contained in the domain of π, while A contains its
range). We have that Wi is one-to-one (because π was like that); in
view of the fact that Ai and A are unital C∗-algebras, we can thus infer
that Wi is norm-preserving (cf. Exercise 4.18).
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Let ϕ : A → C be the positive functional defined by the vector
1̂ ∈ L2(Ao, ϕo); that is,

ϕ(T ) := 〈T 1̂, 1̂〉, T ∈ A.

Then, clearly, (A, ϕ) is a C∗-probability space. Note that Lemma 7.8
gives us the faithfulness of ϕ on A. (Indeed, for T ∈ A we have that

ϕ(T ∗T ) = ||T 1̂||2; so we get that ϕ(T ∗T ) = 0 ⇒ T 1̂ = 0 ⇒ T = 0,
with the last implication given by the Lemma 7.8).

By taking into account how the GNS representation is defined, it
is immediate that we have

(7.15) ϕ(π(a)) = ϕo(a), ∀ a ∈ Ao.

Since the Wi’s considered above are obtained by restricting π, the Equa-
tion (7.15) says in particular that ϕ ◦Wi = ϕi, for every i ∈ I.

In order to complete the required list of properties for (A, ϕ) and
for (Wi)i∈I , one is left to make the following three remarks:

(a) From (7.15) and the fact that (Ai)i∈I are freely independent in
(Ao, ϕo), it follows that the family (Wi(Ai))i∈I is freely independent in
(A, ϕ).

(b) From (7.15) and the fact that ϕo is a trace on Ao it follows (by
using the density of π(Ao) in A) that ϕ is a trace on A.

(c) From the fact that (Ai)i∈I generate Ao as a ∗-algebra and the
density of π(Ao) in A it follows that (Wi(Ai))i∈I generate A as a C∗-
algebra.

The easy verifications required in the three remarks (a), (b), (c)
listed above are left as exercise to the reader.

Finally, the uniqueness part of the theorem is a consequence of
Theorem 4.11 (in the version described in Exercise 4.20, which allows
infinite families of generators). ¤

Definition 7.10. Let (Ai, ϕi)i∈I be a family of C∗-probability
spaces such that the functionals ϕi : Ai → C, i ∈ I, are faithful
traces. A C∗-probability space (A, ϕ) together with a family of homo-
morphisms (Wi : Ai → A)i∈I as appearing in the Theorem 7.9 will be
called a free product of the C*-probability spaces (Ai, ϕi)i∈I .

It was observed in the Theorem 7.9 that, up to isomorphism, there
actually exists only one free product (A, ϕ) of the C∗-probability spaces
(Ai, ϕi)i∈I , and the corresponding homomorphisms (Wi : Ai → A)i∈I

are one-to-one and norm-preserving. Same as we proceeded in the al-
gebraic case (cf. Notations 6.2), we will make a slight notational abuse
and assume that A contains every Ai as a unital C∗-subalgebra. This
will make the Wi’s disappear out of the notations (they become the
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inclusion maps of the Ai’s into A), and will give us a more “canonical”
incarnation of (A, ϕ) which we will call the free product of the C∗-
probability spaces (Ai, ϕi)i∈I . The customary notation for this canon-
ical free product is:

(7.16) (A, ϕ) = ∗i∈I(Ai, ϕi).

(This happens to be the same notation as the one used for the free
product of ∗-probability spaces in the Lecture 6 – we will make sure
in what follows to state explicitly which of the two is meant, whenever
there can be some ambiguity about this.)

When we deal with the canonical C∗-free product of Equation
(7.16), the C∗-algebra A will be a completion of the algebraic free
product ∗i∈IAi which was described in the Notations 6.2 of Lecture 6.
In the operator algebra literature it is customary (because of reasons
that we don’t go into here) to say that A is the reduced free prod-
uct of the C∗-algebras (Ai)i∈I , with respect to the family of functionals
(ϕi : Ai → C)i∈I .

Example: semicircular systems and the full Fock space

In this section we present an important situation involving a C∗-
algebra which appears as reduced free product – the C∗-algebra gener-
ated by a semicircular system.

Definition 7.11. Let (A, ϕ) be a ∗-probability space. A semicir-
cular system in (A, ϕ) is a family x1, . . . , xk of selfadjoint elements
of A such that

(i) Each of x1, . . . , xk is a standard semicircular element in (A, ϕ)
(in the sense of Definition 2.16 and Remark 2.17 of Lecture 2); and

(ii) x1, . . . , xk are free with respect to ϕ.

Remark 7.12. (The C∗-algebra of a semicircular system.)
Let (A, ϕ) and (B, ψ) be C∗-probability spaces such that ϕ and ψ

are faithful. Let x1, . . . , xk be a semicircular system in (A, ϕ), and
let y1, . . . , yk be a semicircular system in (B, ψ). Let M ⊂ A and
N ⊂ B be the unital C∗-subalgebras generated by {x1, . . . , xk} and by
{y1, . . . , yk}, respectively. Then the C∗-probability spaces (M, ϕ|M)
and (N , ψ|N ) satisfy the hypotheses of Theorem 4.11, with respect
to their systems of generators x1, . . . , xk and y1, . . . , yk. Hence, by
Theorem 4.11, there exists a C∗-algebra isomorphism Φ : M → N
such that Φ(xi) = yi, 1 ≤ i ≤ k. (This is analogous to the discussion
in Remark 5.21.)
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Thus we see that all the semicircular systems of the kind appearing
in the preceding paragraph generate, up to isomorphism, the same C∗-
algebra Mk. This Mk is called the C*-algebra of a semicircular
system with k elements.

Of course, in order to introduce the C∗-algebra Mk, one must also
make sure that semicircular systems with k elements can indeed be
constructed in the C∗-framework. This is a direct consequence of the
fact that one can form free products of C∗-probability spaces, as ex-
plained in the preceding section. In fact, it is immediate that Mk is
nothing but the reduced free product of k copies of C[−2, 2], where
the expectation functional ϕ : C[−2, 2] → C is integration against the

semicircular density, ϕ(f) = 1
2π

∫ 2

−2
f(t)

√
4− t2dt.

On the other hand it is noteworthy that semicircular systems may
arise naturally without requiring us to manifestly perform a free prod-
uct construction. The remaining part of this lecture will be devoted to
showing how this happens in the framework of the so-called creation
and annihilation operators on the full Fock space.

Definitions 7.13. Let H be a Hilbert space.
1) The full Fock space over H is defined as

(7.17) F(H) :=
∞⊕

n=0

H⊗n.

The summand H⊗0 on the right-hand side of the last equation is a one-
dimensional Hilbert space. It is customary to write it in the form CΩ
for a distinguished vector of norm one, which is called the vacuum
vector.

2) The vector state τH on B(F(H)) given by the vacuum vector,

(7.18) τH(T ) := 〈TΩ, Ω〉, T ∈ B(F(H)),

is called vacuum expectation state.
3) For each ξ ∈ H, the operator l(ξ) ∈ B(F(H)) determined by the

formula

(7.19)





l(ξ)Ω = ξ
l(ξ)ξ1 ⊗ · · · ⊗ ξn = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn,

∀ n ≥ 1, ∀ ξ1, . . . , ξn ∈ H

is called the (left) creation operator given by the vector ξ.



114 7. FREE PRODUCT OF C*–PROBABILITY SPACES

4) As one can easily verify, the adjoint of l(ξ) is described by the
formula:

(7.20)





l(ξ)∗Ω = 0
l(ξ)∗ξ1 = 〈ξ1, ξ〉Ω, ξ1 ∈ H

l(ξ)∗ξ1 ⊗ · · · ⊗ ξn = 〈ξ1, ξ〉ξ2 ⊗ · · · ⊗ ξn,
∀ n ≥ 2, ∀ ξ1, . . . , ξn ∈ H,

and is called the (left) annihilation operator given by the vector ξ.

Remarks 7.14. Consider the framework of the preceding defini-
tions.

1) Instead of Equation (7.17), one could describe the full Fock space
F(H) by using an orthonormal basis. More precisely: if an orthonormal
basis {ξi : i ∈ I} of H is given, then (just from how tensor products
and direct sums of Hilbert spaces are formed) we get an orthonormal
basis of F(H) described as:

(7.21) {Ω} ∪ {ξi1 ⊗ · · · ⊗ ξin : n ≥ 1, i1, . . . , in ∈ I}.
2) The third part of the preceding definitions states implicitly that

the formulas (7.19) do indeed define a bounded linear operator l(ξ) on
F(H), the adjoint of which acts by the formulas (7.20). A quick proof
of the first of these two facts is obtained by considering an orthonormal
basis {ξi : i ∈ I} of H such that one of the ξi’s is a scalar multiple of
ξ, and by examining how l(ξ) acts on the corresponding basis (7.21) of
F(H). What one gets is that, more than just being a bounded linear
operator on F(H), l(ξ) is actually a scalar multiple of an isometry. The
verification that l(ξ)∗ acts indeed as stated in (7.20) is immediate, and
is left to the reader.

3) From (7.19) it is clear that the map H 3 ξ 7→ l(ξ) ∈ B(F(H)) is
linear.

4) Another important formula (also immediate to verify, and left as
exercise) is that

(7.22) l(ξ)∗l(η) = 〈η, ξ〉1F(H), ∀ ξ, η ∈ H.

As a consequence of this formula, note that a finite product of operators
from {l(ξ) : ξ ∈ H} ∪ {l(ξ)∗ : ξ ∈ H} can be always put in the form

(7.23) α · l(ξ1) · · · l(ξm)l(η1)
∗ · · · l(ηn)∗

for some α ∈ C, n,m ≥ 0, and ξ1, . . . , ξm, η1, . . . , ηn ∈ H. (We carry the
scalar α for convenience of notation – but clearly, α can be absorbed
into l(ξ1) whenever m ≥ 1, and α can be absorbed into l(η1)

∗ whenever
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n ≥ 1.) Indeed, suppose we are starting with a product

(7.24) α · l(ζ1)
ε(1) · · · l(ζp)

ε(p)

with α ∈ C, ζ1, . . . , ζp ∈ H and ε(1), . . . , ε(p) ∈ {1, ∗}. If there exists
1 ≤ k ≤ p− 1 such that ε(k) = ∗ and ε(k + 1) = 1, then:

l(ζk)
ε(k)l(ζk+1)

ε(k+1) = l(ζk)
∗l(ζk+1) = 〈ζk+1, ζk〉1F(H);

thus (at the cost of adjusting the scalar α by a factor of 〈ζk+1, ζk〉) we
can remove the k-th and the (k + 1)-th factors in the product (7.24),
and replace the monomial appearing there by one of a shorter length.
By repeating this process of shortening the length as many times as
possible, we will bring the monomial (7.24) to a stage where there is
no 1 ≤ k ≤ p− 1 such that ε(k) = ∗ and ε(k + 1) = 1; and when this
is done, the monomial (7.24) will have to look as in (7.23).

The connection between free probability and the framework intro-
duced in the Definition 7.13 comes from the fact that orthogonality of
vectors translates into free independence of the corresponding creation
and annihilation operators.

Proposition 7.15. Let H be a Hilbert space and consider the C∗-
probability space (B(F(H)), τH). Let H1, . . . ,Hk be a family of linear
subspaces of H, such that Hi ⊥ Hj for i 6= j (1 ≤ i, j ≤ k). For
every 1 ≤ i ≤ k let Ai be the unital C∗-subalgebra of B(F(H)) gen-
erated by {l(ξ) : ξ ∈ Hi}. Then A1, . . . ,Ak are freely independent in
(B(F(H)), τH).

Proof. For 1 ≤ i ≤ k let Bi ⊂ Ai be the unital ∗-algebra generated
by {l(ξ) : ξ ∈ Hi}. It will suffice to prove that B1, . . . ,Bk are freely
independent (cf. Lecture 5, Exercise 5.23).

For 1 ≤ i ≤ k, the elements of Bi are obtained as linear combina-
tions of finite products of operators from {l(ξ) : ξ ∈ Hi} ∪ {l(ξ)∗ : ξ ∈
Hi}. By taking into account the Remark 7.14.4, it then follows that
every T ∈ Bi can be put in the form:

(7.25) T = α1F(H) +

p∑
j=1

l(ξj,1) · · · l(ξj,m(j))l(ηj,1)
∗ · · · l(ηj,n(j))

∗,

where for 1 ≤ j ≤ p we have (m(j), n(j)) 6= (0, 0) and ξj,1, . . . , ξj,m(j),
ηj,1, . . . , ηj,n(j) ∈ Hi.

Note also that for T as in (7.25) we have τH(T ) = α. This is because
for every 1 ≤ j ≤ p we have:

(7.26) τH(l(ξj,1) · · · l(ξj,m(j))l(ηj,1)
∗ · · · l(ηj,n(j))

∗)

= 〈l(ηj,1)
∗ · · · l(ηj,n(j))

∗Ω, l(ξj,m(j))
∗ · · · l(ξj,1)

∗Ω〉 = 0,
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where the last equality takes place because

m(j) 6= 0 ⇒ l(ξj,m(j))
∗ · · · l(ξj,1)

∗Ω = 0,

while
n(j) 6= 0 ⇒ l(ηj,1)

∗ · · · l(ηj,n(j))
∗Ω = 0.

A moment’s thought shows that the discussion in the preceding para-
graph has the following consequence: if for 1 ≤ i ≤ k we denote

Bo
i := {T ∈ Bi : τH(T ) = 0},

then Bo
i can also be described as

(7.27) Bo
i = span

{
l(ξ1) · · · l(ξm)l(η1)

∗ · · · l(ηn)∗ :
(m,n) 6= (0, 0)
ξ1, . . . , ηn ∈ Hi

}
.

Now let us go ahead and prove the required free independence of
B1, . . . ,Bk. To this end we fix some indices i1, . . . , ip ∈ {1, . . . , k} such
that i1 6= i2, . . . , ip−1 6= ip and some elements T1 ∈ Bo

i1
, . . . , Tp ∈ Bo

ip .

Our goal is to show that τH(T1 · · ·Tp) = 0.
By taking (7.27) into account, we can assume without loss of gen-

erality that for every 1 ≤ j ≤ p the operator Tj is of the form

(7.28) Tj = l(ξj,1) · · · l(ξj,m(j))l(ηj,1)
∗ · · · l(ηj,n(j))

∗

for some (m(j), n(j)) 6= (0, 0) and some vectors ξj,1, . . . , ξj,m(j),
ηj,1, . . . , ηj,n(j) ∈ Hij . We distinguish two possible cases.

Case 1. There exists j ∈ {1, . . . , p − 1} such that n(j) 6= 0 and
m(j + 1) 6= 0.

In this case, when we replace Tj and Tj+1 from (7.28) we get a
product containing two neighboring factors l(ηj,n(j))

∗ and l(ξj+1,1). But
the product of these two factors is 〈ξj+1,1, ηj,n(j)〉1F(H), and is hence
equal to 0, due to the hypothesis that Hij ⊥ Hij+1

. So in this case we
get that TjTj+1 = 0, and the vanishing of τH(T1 · · ·Tp) follows.

Case 2. The situation of Case 1 does not hold. That is, for every
j ∈ {1, . . . , p− 1} we have that either n(j) = 0 or m(j + 1) = 0.

In this case it is immediate that when we replace each of T1, . . . , Tp

from (7.28) we get a product of the form l(ξ1) · · · l(ξm)l(η1)
∗ · · · l(ηn)∗

with m + n =
∑p

j=1(m(j) + n(j)) > 0. The vacuum expectation of this

product is 0, by exactly the same argument as in (7.26). So we obtain
that τH(T1 · · ·Tp) is equal to 0 in this case as well. ¤

Let us note, moreover, that semicircular elements also appear nat-
urally in the framework of creation and annihilation operators on the
full Fock space.
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Proposition 7.16. Let H be a Hilbert space and consider the C∗-
probability space (B(F(H)), τH). Then for every ξ 6= 0 in H, the ele-
ment l(ξ)+ l(ξ)∗ is semicircular of radius 2‖ξ‖ (in the sense of Lecture
2, Definition 2.16).

Proof. Due to the linearity of ξ 7→ l(ξ) we may assume that ||ξ|| =
1. Then we have l(ξ)∗l(ξ) = 1F(H) (by (7.22)), while l(ξ)l(ξ)∗ 6= 1F(H)

(as implied for instance by the fact that l(ξ)∗Ω = 0). Also, by exactly
the same argument as in (7.26) we see that we have

τH
(
l(ξ)m( l(ξ)∗ )n

)
=

{
1, if m = n = 0
0, otherwise.

Now, let us consider again the ∗-probability space (A, ϕ) and the
special non-unitary isometry a ∈ A which were considered (and fixed)
throughout the Lecture 2. Based on the properties of l(ξ) which were
put into evidence in the preceding paragraph, we can proceed exactly
as in the discussion of the Remark 2.5 in order to define a unital ∗-
homomorphism Φ : A → B(F(H)) such that Φ(a) = l(ξ) and such
that τH ◦ Φ = ϕ. Then we have that Φ(a + a∗) = l(ξ) + l(ξ)∗, and it
follows that the distribution of l(ξ) + l(ξ)∗ in (B(F(H)), τH) coincides
with the distribution of a + a∗ in (A, ϕ). But the latter distribution is
indeed the semicircular one of radius 2, as verified in Proposition 2.15
of Lecture 2. ¤

As a consequence of the preceding two propositions, we see that
semicircular systems do indeed arise in the framework of the full Fock
space.

Corollary 7.17. Let H be a Hilbert space and consider the C∗-
probability space (B(F(H)), τH). Let ξ1, . . . , ξk be an orthonormal sys-
tem of vectors in H. Then the elements

l(ξ1) + l(ξ1)
∗, . . . , l(ξk) + l(ξk)

∗

form a semicircular system in (B(F(H)), τH).

Proof. The free independence of l(ξ1) + l(ξ1)
∗, . . . , l(ξk) + l(ξk)

∗

follows from Proposition 7.15, and the fact that every l(ξj) + l(ξj)
∗ is

standard semicircular follows from Proposition 7.16. ¤

We will conclude this discussion by pointing out that the above con-
siderations on the full Fock space really give us a concrete realization
of the C∗-algebra Mk introduced in the Remark 7.12. The only thing
which prevents us from plainly applying the Remark 7.12 to the opera-
tors l(ξ1)+ l(ξ1)

∗, . . . , l(ξk)+ l(ξk)
∗ is that, obviously, the vacuum state
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τH is not faithful on B(F(H)). A way of circumventing this problem
is indicated by the next proposition.

Proposition 7.18. Suppose that H is a Hilbert space of dimen-
sion k, and that ξ1, . . . , ξk is an orthonormal basis of H. Consider the
C∗-probability space (B(F(H)), τH), and let M denote the unital C∗-
subalgebra of B(F(H)) generated by l(ξ1)+l(ξ1)

∗, . . . , l(ξk)+l(ξk)
∗. Let

us also make the notation τH|M =: ϕ. Then
1) The vacuum vector Ω is cyclic for M – that is, {TΩ | T ∈ M}

is a dense subspace of F(H).
2) ϕ is a trace on M.
3) ϕ is faithful on M.

Proof. Throughout the proof we will denote by Mo the unital
∗-algebra generated by l(ξ1) + l(ξ1)

∗, . . . , l(ξk) + l(ξk)
∗ (thus Mo is a

dense unital ∗-subalgebra of M).
1) Let us denote {TΩ | T ∈Mo} =: Fo (linear subspace of F(H)).

Observe that Ω ∈ Fo (since Ω = 1B(F(H))Ω), and that ξi ∈ Fo for every
1 ≤ i ≤ k (since ξi = (l(ξi) + l(ξ∗i ))Ω). Going one step further, we see
that ξi1 ⊗ ξi2 ∈ Fo, ∀ 1 ≤ i1, i2 ≤ k – indeed, we can write

ξi1 ⊗ ξi2 = (l(ξi1) + l(ξi1)
∗)ξi2 − δi1,i2Ω ∈ Fo.

In general, it is easy to prove by induction on n that

(7.29) ξi1 ⊗ · · · ⊗ ξin ∈ Fo, ∀ n ≥ 1, ∀ 1 ≤ i1, . . . in ≤ k.

The induction step “n − 1 ⇒ n” (for n ≥ 3) follows immediately by
using the identity, for all 1 ≤ i1, . . . , in ≤ k,

ξi1 ⊗ · · · ⊗ ξin = (l(ξi1 + l(ξi1)
∗)(ξi2 ⊗ · · · ⊗ ξin)− δi1,i2(ξi3 ⊗ · · · ⊗ ξin).

From (7.29) (and the fact that Fo 3 Ω) we infer that Fo contains an
orthonormal basis of F(H). This implies that Fo is a dense subspace
of F(H), and the same must then be true for {TΩ | T ∈M} ⊃ Fo.

2) The Proposition 5.19 gives us that ϕ is a trace on Mo; then a
straightforward approximation argument shows that ϕ must also be a
trace on M = clMo.

3) This is a repetition of the argument presented in Lemma 7.8.
We start by observing that

(7.30) 〈T (AΩ), BΩ〉 = 〈TΩ, BA∗Ω〉, ∀ A,B, T ∈M.

Indeed, the left-hand side of (7.30) is ϕ(B∗TA), while the right-hand
side is ϕ(AB∗T ), and these quantities are equal to each other due to
the traciality of ϕ.

Now let T ∈ M be such that ϕ(T ∗T ) = 0; this means in other
words that TΩ = 0 (since ϕ(T ∗T ) = ||TΩ||2). But then from (7.30) we



EXERCISES 119

get that 〈T (AΩ), BΩ〉 = 0, for all A,B ∈ M. Since (by the part 1 of
the proposition) AΩ and BΩ are covering a dense subspace of F(H),
we conclude that T = 0. ¤

Corollary 7.19. In the notations of the preceding proposition we
have that M ∼= Mk, the C∗-algebra of a semicircular system with k
elements.

Proof. One only has to apply the considerations from Remark
7.12 to (M, ϕ) where ϕ = τH|M. ¤

Exercises

Exercise 7.20. Let A be a unital C∗-algebra. Prove that A =
span{u ∈ A : u is unitary}.
[Hint: It suffices to take an element x ∈ A such that x = x∗ and
||x|| ≤ 1, and write it as x = (u + v)/2 with u, v unitaries. Find such
u and v by using the functional calculus of x.]

In the next exercise we will use the following definition.

Definition 7.21. Let A be a unital ∗-algebra.
1) An element p ∈ A is said to be a projection if it satisfies

p = p∗ = p2.
2) An element v ∈ A is said to be an isometry if it satisfies v∗v =

1A. In particular every unitary is an isometry.)
3) An element w ∈ A is said to be a partial isometry if both w∗w

and ww∗ are projections. (In particular every isometry is a partial
isometry, and every projection is a partial isometry.)

Exercise 7.22. Prove that the conclusion of the Proposition 7.2
still holds if the hypothesis (7.4) is replaced by the weaker condition
that A is generated (as a ∗-algebra) by the set

W = {w ∈ A | w is a partial isometry }.
[Hint: Prove that the set appearing in (7.7) during the proof of Propo-
sition 7.2 is a subalgebra of A, which contains W .]

Exercise 7.23. Let γ be the standard normal distribution on R,
that is,

dγ(t) =
1√
2π

e−t2/2 dt.

Consider the ∗-probability space (A, ϕ) where

A := L∞−(R, γ) = ∩1≤p<∞Lp(R, γ),
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and where ϕ : A → C is defined by

ϕ(f) :=

∫ ∞

−∞
f(t)dγ(t), f ∈ A.

Show that L2(A, ϕ) = L2(R, γ) and that there exists f ∈ A such that

ĝ 7→ f̂g is not a bounded operator on L2(A, ϕ).

The next two exercises take place in the framework of the full Fock
space F(H) over a Hilbert space H. In addition to creation and anni-
hilation operators, one can also consider operators on F(H) defined as
follows.

Definition 7.24. Let H be a Hilbert space, and let F(H) be the
full Fock space over H (as in Definition 7.13). For every T ∈ B(H),
the operator Λ(T ) ∈ B(F(H)) defined by the formula:

(7.31)





Λ(T )Ω = 0
Λ(T )ξ1 ⊗ · · · ⊗ ξn = (Tξ1)⊗ ξ2 ⊗ · · · ⊗ ξn,

∀ n ≥ 1, ∀ ξ1, . . . , ξn ∈ H
is called the gauge operator associated to T .

Exercise 7.25. In the framework of the preceding definition, check
the following properties of the gauge operators Λ(T ).

1) For every T ∈ B(H), the Equation (7.31) does indeed define a
bounded linear operator Λ(T ) on F(H), and we have that ‖Λ(T )‖ =
‖T‖.

2) The map T 7→ Λ(T ) is a unital ∗-homomorphism from B(H) to
B(F(H)).

3) For all ξ, η ∈ H and all T ∈ B(H) we have that

(7.32) l(ξ)∗Λ(T )l(η) = 〈Tη, ξ〉1F(H).

Exercise 7.26. Let H be a Hilbert space and consider the C∗-
probability space (B(F(H)), τH). Let H1, . . . ,Hk be a family of linear
subspaces of H, such that Hi ⊥ Hj for i 6= j (1 ≤ i, j ≤ k). For every
1 ≤ i ≤ k let Ai be the unital C∗-subalgebra of B(F(H)) generated by
{l(ξ) : ξ ∈ Hi}∪{Λ(T ) : T ∈ B(H), T (Hi) ⊂ Hi and T vanishes onHª
Hi}. Prove that A1, . . . ,Ak are freely independent in (B(F(H)), τH).

Exercise 7.27. By using the framework of the full Fock space,
prove the following statement: Let (A, ϕ) be a ∗-probability space and
let a1, a2 ∈ A be semicircular elements of radii r1 and respectively r2,
such that a1 is free from a2. Then a1 + a2 is a semicircular element of
radius

√
r2
1 + r2

2.
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Exercise 7.28. Let (A, ϕ) be a C∗-probability space such that ϕ
is faithful, and let x be a selfadjoint element of A. Suppose that the
distribution of x is of the form ρ(t) dt on an interval [a, b] ⊂ R, where

ρ : [a, b] → R is a continuous function such that
∫ b

a
ρ(t) dt = 1 and such

that ρ is not identically equal to zero on any subinterval (c, d) ⊂ [a, b]
(a ≤ c < d ≤ b). Prove that there exists an element y = y∗ ∈ A such
that:

(i) the unital C∗-subalgebra of A generated by y is equal to the
unital C∗-subalgebra generated by x,
and

(ii) the distribution of y is precisely the uniform distribution on the
interval [0, 1].

[Hint: Try y = f(x) where f : [a, b] → [0, 1] is defined by f(t) =∫ t

a
ρ(s) ds, a ≤ t ≤ b.]

Exercise 7.29. 1) Consider the unital C∗-algebra A described in
the displayed expression (5.8), in the Remarks 5.21. Prove that A is
isomorphic to the C∗-algebra (denoted in the above Remark 7.12 by
M3) of a semicircular system with 3 elements.

2) Generalize the part 1 of the exercise to the unital C∗-algebra
generated by k free selfadjoint elements x1, . . . , xk such that the distri-
bution of each of x1, . . . , xk satisfies the hypotheses of Exercise 7.28.
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LECTURE 8

Motivation: Free central limit theorem

One of the main ideas in free probability theory is to consider the
notion of free independence in analogy with the notion of classical or
tensor independence. In this spirit, the first investigations of Voiculescu
in free probability theory focused on free analogues of some of the most
fundamental statements from classical probability theory. In particu-
lar, he proved a free analogue of a central limit theorem and introduced
and described a free analogue of “convolution”. His investigations were
quite analytical and centered around the concept of the “R-transform”,
an analytic function which plays in free probability theory the same role
as the logarithm of the Fourier transform in classical probability the-
ory. However, in this analytic approach it is not so obvious why the
R-transform and the logarithm of the Fourier transform should be of
an analogous nature.

Our approach to free probability theory is much more combinato-
rial in nature and will reveal in a clearer way the parallelism between
classical and free probability theory.

In order to see what kind of combinatorial objects are relevant for
free probability theory, we will begin by giving an algebraic proof of
the free central limit theorem. This approach will show the similar
nature of classical and free probability theory very clearly, because the
same kind of proof can be given for the classical central limit theorem.
Most of the arguments will be the same, only in the very end one has
to distinguish whether one is in the classical or in the free situation.
For convenience, we will restrict to the simplest case where we have
identically distributed variables.

Convergence in distribution

Let (A, ϕ) be a ∗-probability space and a1, a2, · · · ∈ A a sequence
of identically distributed selfadjoint random variables which are either
tensor independent or freely independent. Furthermore, assume that
the variables are centered, ϕ(ar) = 0 (r ∈ N), and denote by σ2 :=
ϕ(a2

r) the common variance of the variables. (Note that ϕ(a2
r) ≥ 0

because ϕ is positive and ar selfadjoint.) A central limit theorem asks

125
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about the limit behavior of
a1 + · · ·+ aN√

N

if N tends to infinity.
Of course, one has to specify the kind of convergence, and the only

meaningful way for this is convergence of all moments or “convergence
in distribution”. So let us first define this concept.

Definition 8.1. Let (AN , ϕN) (N ∈ N) and (A, ϕ) be non-
commutative probability spaces and consider random variables aN ∈
AN for each N ∈ N, and a ∈ A. We say that aN converges in
distribution towards a for N →∞, and denote this by

aN
distr−→ a,

if we have
lim

N→∞
ϕN(an

N) = ϕ(an) for all n ∈ N.

Remarks 8.2. 1) This form of convergence seems to be weaker
than the usual form of convergence appearing in the classical central
limit theorem. There statements are usually in terms of “weak conver-
gence”. If aN and a have distributions in analytical sense µN and µ,
respectively – which are, by our Definition 1.8, compactly supported
probability measures on R – then the classical notion of “convergence
in distribution” (or “convergence in law”) of the random variables aN

to the random variable a means by definition the weak convergence of
µN towards µ, i.e.,

lim
N→∞

∫
f(t)dµN(t) =

∫
f(t)dµ(t) for all bounded continuous f .

Clearly, by an application of Stone-Weierstrass, the convergence of all
moments is enough to ensure the convergence of all continuous func-
tions f on the compact support of µ, and thus our notion of conver-
gence in distribution coincides in this situation with the corresponding
classical notion.

2) Note that the above remark applies only to situations where
the limit element a has a compactly supported distribution (as it is
required in our Definition 1.8 of “distribution in analytical sense”).
Thus this remark does not seem to be relevant for the classical central
limit theorem. Since the normal density does not have compact sup-
port, a classical normal random variable does not have a distribution
in our analytical sense and Stone-Weierstrass is not enough to ensure
that the convergence of moments in the classical central limit theorem
implies weak convergence. However, the normal distribution is still
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“nice” enough to allow this conclusion, namely it is determined by its
moments.

Definition 8.3. Let µ be a probability measure on R with mo-
ments

mn :=

∫

R
tndµ(t).

We say that µ is determined by its moments, if µ is the only prob-
ability measure on R with these moments, i.e., if for any probability
measure ν on R we have

∫

R
tndν(t) = mn ∀n ∈ N =⇒ ν = µ.

Remarks 8.4. 1) It makes sense to push our definition of distri-
bution in analytical sense a bit further and allow probability measures
which are determined by their moments as candidates for such a distri-
bution, even if they do not have compact support. This gives us a bit
more flexibility in making contact of our combinatorial considerations
with classical analytical considerations. We will point out explicitly
if we want to consider distributions in analytical sense in this more
general frame.

2) The relevance for us of probability measures determined by their
moments comes from the following two well-known facts from classical
probability theory.

(i) The normal distribution is determined by its moments.
(ii) Let probability measures µ and µN (N = 1, 2, . . . ) on R be

given such that µ is determined by its moments and that the
µN have moments of all orders. If we have

lim
N→∞

∫

R
tndµN(t) =

∫

R
tndµ(t) for all n = 1, 2, . . . ,

then µN converges weakly to µ.

These two facts imply that for the weak convergence of classical random
variables to a normal distribution it is enough to check the convergence
of all moments. Thus, in order to prove the classical central limit theo-
rem (in the case where all involved random variables possess moments
of all orders) it is enough to prove the convergence of all moments –
which is exactly what our notion of convergence in distribution asks
for.
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General central limit theorem

In order to see that we have convergence in distribution of
(a1 + · · ·+ aN)/

√
N we should calculate the limit N → ∞ of all mo-

ments of (a1 + · · ·+ aN)/
√

N . Let us first see how much we can say
about such moments for finite N . In the following we fix a positive
integer n. Then we have

ϕ
(
(a1 + · · ·+ aN)n

)
=

∑

1≤r(1),...,r(n)≤N

ϕ(ar(1) . . . ar(n)).

Since all ar have the same distribution we have

ϕ(ar(1) . . . ar(n)) = ϕ(ap(1) . . . ap(n))

whenever

r(i) = r(j) ⇐⇒ p(i) = p(j) ∀ 1 ≤ i, j ≤ n.

(This is a consequence of the fact that both tensor independence
and free independence give a rule for calculating mixed moments out
of the values of the moments of the variables.) Thus the value of
ϕ(ar(1) . . . ar(n)) depends on the tuple (r(1), . . . , r(n)) only through the
information which of the indices are the same and which are different.
We will encode this information by a partition (i.e., a decomposition
into disjoint subsets) π = {V1, . . . , Vs} of the set {1, . . . , n}. This par-
tition π is determined as follows: Two numbers p and q belong to the
same block Vm of π (for some m = 1, . . . , s) if and only if r(p) = r(q).
We will write (r(1), . . . , r(n)) =̂ π in this case,

(8.1)
[
(r(1), . . . , r(n)) =̂ π

] ⇐⇒ [
r(p) = r(q) if and only if p ∼π q

]
.

Furthermore we denote the common value of ϕ(ar(1) . . . ar(n)) for all
tuples (r(1), . . . , r(n)) with (r(1), . . . , r(n)) =̂ π by κπ.

For illustration, consider the following example: Since a1 has the
same moments as a7, since a2 has the same moments as a5, and since a3

has the same moments as a8, the free/tensor independence of a1, a2, a3

produces for ϕ(a1a2a1a1a2a3) the same result as the free/tensor inde-
pendence of a7, a5, a8 for ϕ(a7a5a7a7a5a8), and we denote the common
value of both expressions by

κ{(1,3,4),(2,5),(6)} = ϕ(a1a2a1a1a2a3) = ϕ(a7a5a7a7a5a8).

With these notations we can continue the above calculation with

ϕ
(
(a1 + · · ·+ aN)n

)
=

∑

π partition of {1, . . . , n}
κπ · AN

π ,



GENERAL CENTRAL LIMIT THEOREM 129

where AN
π is the number of tuples corresponding to π, i.e.,

AN
π := #{(r(1), . . . , r(n)) =̂ π | 1 ≤ r(1), . . . , r(n) ≤ N}.

Note that the number of terms in the above sum does not depend on
N , the only dependence on N is via the numbers AN

π . It remains to
examine the contribution of the different partitions. We will see that
most of them will give no contribution in the normalized limit, only
very special ones survive.

Firstly, we will argue that partitions with singletons do not con-
tribute: Consider a partition π = {V1, . . . , Vs} with a singleton, i.e., we
have Vm = {r} for some m and some r. Then we have

κπ = ϕ(ar(1) . . . ar . . . ar(n)) = ϕ(ar) · ϕ(ar(1) . . . ǎr . . . ar(n)),

because {ar(1), . . . , ǎr, . . . , ar(n)} is either tensor independent or freely
independent from ar. (This factorization follows from Equation (5.2)
in the tensor case, and from Equation (5.5) in the free case.) However,
since our variables are centered, we get κπ = 0. Thus only such parti-
tions π contribute which have no singletons, i.e. only π = {V1, . . . , Vs}
where each block Vm (m = 1, . . . , s) has at least two elements. Note
that this implies in particular that in our sum we can restrict to
π = {V1, . . . , Vs} for which s ≤ n/2.

Consider now a π = {V1, . . . , Vs}; then we have N possibilities for
the common index corresponding to the first block V1, N−1 possibilities
for the common index corresponding to the second block V2 (since this
index has to be different from the one of the first block), and so on.
Thus, if we denote by |π| the number of blocks of π, we have that

AN
π = N(N − 1) . . . (N − |π|+ 1),

which grows asymptotically like N |π| for large N . Thus

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= lim

N→∞

∑
π

AN
π

Nn/2
κπ

= lim
N→∞

∑
π

N |π|−(n/2)κπ.

Now note that for each appearing π the factor N |π|−(n/2) has a limit
(because only |π| ≤ n/2 appear in our sum), and that this limit is either
1 or 0, depending on whether |π| = n/2 or |π| < n/2. This means, in
the limit N → ∞ all partitions with |π| < n/2 are suppressed and we
get exactly a contribution κπ for each π which has the property that
it has no singleton and that its number of blocks is equal to n/2. This
means of course that π has to be a pair partition or pairing, i.e., a
partition where each block Vm consists of exactly two elements.
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Thus, we have now arrived at the following result:

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
=

∑
π pair partition
of {1, . . . , n}

κπ(8.2)

Up to now, there has been no difference between the case of tensor
independence and the case of free independence. The structure of the
limiting moments is in both cases the same, namely they are calculated
by summing over pair partitions. However, we still have not determined
the weighting factors κπ for these pair partitions. That is the point
where we have to distinguish the two cases.

However, before we do this, let us note that the general formula
(8.2) is enough to conclude that odd moments vanish in both cases.
This conclusion comes from the simple observation that there are no
pair partitions of a set with an odd number of elements. Thus:

(8.3) lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= 0 for n odd.

Classical central limit theorem

The actual calculation of the limit distribution will now depend
on whether we have classically independent or freely independent vari-
ables. Let us first consider the classical case. The factorization rule
(5.2) for tensor independent random variables gives directly that for
any pair partition π, the corresponding κπ factorizes into a product of
second moments, thus we have κπ = σn. So we get in this case
(8.4)

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= σn ·

(
#pair partitions of {1, . . . , n}

)
.

It is easy to see that the number of pair partitions of the set {1, . . . , n}
is, in the case n even, given by (n− 1) · (n− 3) · · · 5 · 3 · 1.

On the other hand, one can also check quite easily that these num-
bers are exactly the moments of a centered normal distribution. We
leave this as an exercise to the reader, see Exercise 8.22.

Putting all this together, we have thus proved the following version
of the classical central limit theorem.

Theorem 8.5. (Classical Central Limit Theorem)
Let (A, ϕ) be a ∗-probability space and a1, a2, · · · ∈ A a sequence of
independent and identically distributed selfadjoint random variables.
Furthermore, assume that all variables are centered, ϕ(ar) = 0 (r ∈ N),
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and denote by σ2 := ϕ(a2
r) the common variance of the variables. Then

we have
a1 + · · ·+ aN√

N

distr−→ x,

where x is a normally distributed random variable of variance σ2.

Remarks 8.6. 1) Let us recall that this statement means explicitly

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
=

1√
2πσ2

∫

R
tne−t2/2σ2

dt ∀n ∈ N.

2) According to our Remarks 8.4, the normal distribution is deter-
mined by its moments and our algebraic form of the classical central
limit theorem is equivalent to the usual formulation in terms of weak
convergence.

3) Note also that it is implicit in the definition of a ∗-probability
space (A, ϕ) that all variables have moments of all orders. In our
algebraic frame we are not able to deal with situations where some
moments do not exist.

Free central limit theorem

Now we want to switch to the free case. So we start off again at
the general formula (8.2) and it remains to specify what the weighting
factors κπ are in the case of freely independent random variables.

Since we know that the odd moments vanish in this case, too, it
suffices to consider even moments. So let n = 2k be even and consider
a pair partition π = {V1, . . . , Vk}. Let (r(1), . . . , r(n)) be an index-
tuple corresponding to this π, (r(1), . . . , r(n)) =̂ π. Then there exist
the following two possibilities:

(1) all consecutive indices are different:

r(1) 6= r(2) 6= · · · 6= r(n).

Since ϕ(ar(m)) = 0 for all m = 1, . . . , n, we have by the defini-
tion of free independence

κπ = ϕ(ar(1) · · · ar(n)) = 0.

(2) two consecutive indices coincide, i.e.,

r(m) = r(m + 1) = r for some m = 1, . . . , n− 1.

Because the index r does not appear any more among the other
indices we have that {ar(1), . . . , ar(m−1), ar(m+2), . . . , ar(n)} is
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free from ar(m)ar(m+1) = arar and we get by the factorization
property (5.5) that

κπ = ϕ(ar(1) · · · arar · · · ar(n))

= ϕ(ar(1) · · · ar(m−1)ar(m+2) · · · ar(n)) · ϕ(arar)

= ϕ(ar(1) · · · ar(m−1)ar(m+2) · · · ar(n)) · σ2.

It is clear that we can repeat the above argument in the second
case and either get zero for κπ or reduce the length of the considered
moment further. We repeat this iteration until we either get zero in one
of the steps or until we arrive at the moment ϕ(1). In the latter case,
the corresponding pairing will give a contribution σn. Thus we see that
in the free case only special pairings will make a contribution. These
special pairings are exactly those for which in each iteration step we
are in the second case, i.e., we successively can find consecutive indices
which coincide.

Let us consider a pairing π which does not have this property (i.e.,
which will contribute κπ = 0). We want to see that we can characterize
such a pairing in geometrical way. The fact κπ = 0 means that even-
tually our iterative procedure produces a pairing τ of m > 0 elements
to which case (1) applies. Thus τ does not pair any neighbors. Take
any pair a1 < a2 of τ . This does not consist of neighbors, thus there
must be some elements between a1 and a2. If we find another pair
a′1 < a′2 between a1 and a2 – i.e., a1 < a′1 < a′2 < a2 – then we rename
this pair (a′1, a

′
2) to (a1, a2). We continue in this way until we find no

other pair between a1 < a2. But there must still be at least one other
element b with a1 < b < a2 (otherwise the pair a1, a2 would consist of
neighbors), and this b must be paired with a c with either c < a1 or
c > a2. Thus we see that τ must be “crossing” in the sense that there
exist p1 < q1 < p2 < q2 such that p1 is paired with p2 and q1 is paired
with q2. Clearly, the original π must exhibit the same crossing prop-
erty. Thus we have seen that κπ = 0 implies that π must be crossing in
the above sense. On the other hand, if κπ = σn – which means that we
can reduce π by iterated application of case (1) to the empty pairing –
then π can not have this crossing property.

So we have arrived at the conclusion that in the free case exactly
those pairings contribute, which are not crossing in the above sense.
This “non-crossing” feature is the basic property on which our descrip-
tion of free probability theory will rest.

Notation 8.7. A pairing of {1, . . . , n} is called non-crossing if
there does not exist 1 ≤ p1 < q1 < p2 < q2 ≤ n such that p1 is paired
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with p2 and q1 is paired with q2. The set of non-crossing pairings of
{1, . . . , n} is denoted by NC2(n).

Thus we have shown

(8.5) lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= Dnσn,

where

Dn := #{π | π non-crossing pair partition of {1, . . . , n}}.
Examples 8.8. It is quite easy to calculate the number of non-

crossing pair partitions explicitly. Let us first count them for small n.
Of course, for odd n we have Dn = 0; thus we only have to consider
even n. In the pictures below, the geometrical meaning of the property
“non-crossing” will become obvious; namely, a pairing π of {1, . . . , n}
is non-crossing, if we can draw the connections for the pairs of π in
the half-plane below the numbers 1, . . . , n in such a way that these
connections do not cross.

• D2 = 1; there is only one pairing of 2 elements, and this is
also non-crossing:

1 2

• D4 = 2; here are the two non-crossing pairings of 4 elements:

1 2 3 4 1 2 3 4

Note that there is one additional, crossing, pairing for n = 4,
namely

1 2 3 4

• D6 = 5; here are the five non-crossing pairings of 6 elements:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

The other 10 of the 15 pairings of 6 elements are crossing.
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We see that the Catalan numbers 1, 2, 5 show up here. It is quite
easy to see that this is true in general

Lemma 8.9. The number D2k of non-crossing pair partitions of the
set {1, . . . , 2k} is given by the Catalan number Ck.

Proof. Since clearly D2 = 1 = C1, it suffices to check that the
D2k fulfill the recurrence relation of the Catalan numbers. Let π =
{V1, . . . , Vk} be a non-crossing pair partition. We denote by V1 that
block of π which contains the element 1, i.e., it has to be of the form
V1 = (1, m). Then the property “non-crossing” enforces that, for each
Vj (j 6= 1), we can not have a crossing between V1 and Vj, i.e, we have
either 1 < Vj < m or 1 < m < Vj. (In particular, this implies that m
has to be even, m = 2l.) This means that π restricted to {2, . . . , m−1}
is a non-crossing pair partition of {2, . . . , m − 1} and π restricted to
{m+1, . . . , n} is a non-crossing pair partition of {m+1, . . . , n}. There
exist Dm−2 many non-crossing pair partitions of {2, . . . , m − 1} and
Dn−m many non-crossing pair partitions of {m+1, . . . , n}, where we put
consistently D0 := 1. Both these possibilities can appear independently
from each other and m = 2l can run through all even numbers from 2
to n. Hence we get

D2k =
k∑

l=1

D2(l−1)D2(k−l).

But this is the recurrence relation for the Catalan numbers, so the
assertion follows. ¤

Another possibility for proving D2k = Ck is addressed in Exercise
8.23.

Since we know from Lecture 2 that the Catalan numbers are also the
moments of a semicircular variable, we have thus proved the following
version of a free central limit theorem.

Theorem 8.10. (Free Central Limit Theorem)
Let (A, ϕ) be a ∗-probability space and a1, a2, · · · ∈ A a sequence
of freely independent and identically distributed selfadjoint random
variables. Assume furthermore ϕ(ar) = 0 (r ∈ N) and denote by
σ2 := ϕ(a2

r) the common variance of the variables. Then we have

a1 + · · ·+ aN√
N

distr−→ s,

where s is a semicircular element of variance σ2.

Remarks 8.11. 1) According to the free central limit theorem the
semicircular distribution has to be considered as the free analogue of
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the normal distribution and is thus one of the basic distributions in
free probability theory.

2) As in the classical case, the assumptions in the free central limit
theorem can be weakened considerably. E.g., the assumption “identi-
cally distributed” is essentially chosen to simplify the argument; the
same proof works if one replaces this by

sup
i∈N

|ϕ(an
i )| < ∞ ∀ n ∈ N

and

σ2 := lim
N→∞

1

N

N∑
i=1

ϕ(a2
i ).

Our parallel treatment of the classical and the free central limit
theorem shows the similarity between these two theorems very clearly.
In particular, we have learned the simplest manifestation (on the level
of pairings) of the following basic observation: the transition from clas-
sical to free probability theory is equivalent, on a combinatorial level,
to the transition from all partitions to non-crossing partitions.

The multi-dimensional case

One of the main advantages of our combinatorial approach to free
probability theory is the fact that, in contrast to an analytical treat-
ment, a lot of arguments can be extended from one variable to several
variables without any problems. In the following we want to demon-
strate this for the free central limit theorem.

Example 8.12. To motivate the problem, let us consider the case
of two variables. So we have now two sequences a1, a2, . . . and b1, b2, . . .
of selfadjoint variables such that the sets {a1, b1}, {a2, b2}, . . . are free
and have the same joint distribution. We do not necessarily assume
that the a’s are free from the b’s. Then, under the assumption that
all our variables are centered, we get from our one-dimensional Free
Central Limit Theorem 8.10 that

a1 + · · ·+ aN√
N

distr−→ s1

for a semicircular element s1 and that

b1 + · · ·+ bN√
N

distr−→ s2

for another semicircular element s2. However, what we want to know
now in addition is the relation between s1 and s2. We will see that the
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joint distribution of the pair (s1, s2) is determined by the knowledge of
the covariance matrix (

ϕ(arar) ϕ(arbr)
ϕ(brar) ϕ(brbr)

)

of ar and br (which is independent of r by our assumption on identical
joint distribution of the families {ar, br}). Furthermore, the calculation
of the joint distribution of s1 and s2 out of this covariance matrix is
very similar to the calculation of the moments of a semicircular element
from its variance σ2. This will be the content of our multi-dimensional
Free Central Limit Theorem 8.17. We will present and prove this in the
following in full generality for arbitrarily many sequences; however, it
might be illuminating for the reader to specialize its statement to the
case of two sequences a1, a2, . . . and b1, b2, . . . , as considered in this
example.

We will now treat the general multi-dimensional case by looking
on arbitrarily many sequences, which will be indexed by a fixed index
set I (which might be infinite). So, we replace each ar from the one-

dimensional case by a family of selfadjoint random variables (a
(i)
r )i∈I

and assume that all these families are free and each of them has the
same joint distribution and that all appearing random variables are
centered. We want to investigate the convergence of the joint distribu-

tion of the random variables
(
(a

(i)
1 + · · ·+ a

(i)
N )/

√
N

)
i∈I

when N tends
to infinity. Let us first define the obvious generalization of our notion
of convergence to this multi-dimensional setting.

Definition 8.13. 1) Let (AN , ϕN) (N ∈ N) and (A, ϕ) be non-
commutative probability spaces. Let I be an index set and consider

for each i ∈ I random variables a
(i)
N ∈ AN and ai ∈ A. We say that

(a
(i)
N )i∈I converges in distribution towards (ai)i∈I and denote this

by

(a
(i)
N )i∈I

distr−→ (ai)i∈I ,

if we have that each joint moment of (a
(i)
N )i∈I converges towards the

corresponding joint moment of (ai)i∈I , i.e., if we have for all n ∈ N and
all i(1), . . . , i(n) ∈ I

(8.6) lim
N→∞

ϕN(a
(i(1))
N · · · a(i(n))

N ) = ϕ(ai(1) · · · ai(n)).

2) In the context of ∗-probability spaces we will say that (a
(i)
N )i∈I

converges in ∗-distribution towards (ai)i∈I and denote this by

(a
(i)
N )i∈I

∗-distr−→ (ai)i∈I ,
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if we have that each joint ∗-moment of (a
(i)
N )i∈I converges towards the

corresponding joint ∗-moment of (ai)i∈I , i.e., if

(
a

(i)
N , (a

(i)
N )∗

)
i∈I

distr−→ (ai, a
∗
i )i∈I .

Remark 8.14. Since free independence is equivalent to the validity
of a collection of equations between moments, it is an easy, but impor-
tant observation that free independence goes over to the limit under
convergence in distribution. Exercise 8.25 will ask for a proof of that
statement. An application of this idea will appear later in the proof of
Proposition 8.19.

Let us now look on our multi-dimensional version of the free central
limit theorem. The calculation of the joint distribution of our normal-

ized sums
(
(a

(i)
1 + · · · + a

(i)
N )/

√
N

)
i∈I

works in the same way as in the
one-dimensional case. Namely, we now have to consider for all n ∈ N
and all i(1), . . . , i(n) ∈ I

(8.7) ϕ
(
(a

(i(1))
1 + · · ·+ a

(i(1))
N ) · · · (a(i(n))

1 + · · ·+ a
(i(n))
N

)

=
∑

1≤r(1),...,r(n)≤N

ϕ(a
(i(1))
r(1) · · · a(i(n))

r(n) ).

Again, we have that the value of ϕ(a
(i(1))
r(1) · · · a(i(n))

r(n) ) depends on the tuple

(r(1), . . . , r(n)) only through the information which of the indices are
the same and which are different, which we will encode as before by

a partition π of {1, . . . , n}. The common value of ϕ(a
(i(1))
r(1) · · · a(i(n))

r(n) )

for all tuples (r(1), . . . , r(n)) =̂ π will now, in addition, also depend
on the tuple (i(1), . . . , i(n)) and we will denote it by κπ[i(1), . . . , i(n)].
The next steps are the same as before. Singletons do not contribute
because of the centeredness assumption and only pair partitions give
the leading order in N and survive in the limit. Thus we arrive at

lim
N→∞

ϕ
(a

(i(1))
1 + · · ·+ a

(i(1))
N√

N
· · · a

(i(n))
1 + · · ·+ a

(i(n))
N√

N

)

=
∑

π pair partition
of {1, . . . , n}

κπ[i(1), . . . , i(n)].

It only remains to identify the contribution κπ[i(1), . . . , i(n)] for a pair
partition π. As before, the free independence assumption implies that
κπ[i(1), . . . , i(n)] = 0 for crossing π. So consider finally a non-crossing
π. Remember that in this case we can find two consecutive indices
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which coincide, i.e., r(m) = r(m + 1) = r for some m. Then we have

κπ[i(1), . . . , i(n)] = ϕ(a
(i(1))
r(1) · · · a(i(m))

r a(i(m+1))
r · · · a(i(n))

r(n) )

= ϕ(a
(i(1))
r(1) · · · a(i(m−1))

r(m−1) a
(i(m+2))
r(m+2) · · · a(i(n))

r(n) ) · ϕ(a(i(m))
r a(i(m+1))

r )

= ϕ(a
(i(1))
r(1) · · · a(i(m−1))

r(m−1) a
(i(m+2))
r(m+2) · · · a(i(n))

r(n) ) · ci(m)i(m+1),

where (cij)i,j∈I with cij := ϕ(a
(i)
r a

(j)
r ) is the covariance matrix of

(a
(i)
r )i∈I .
Iterating this will lead to the final result that κπ[i(1), . . . , i(n)]

is, for a non-crossing pairing π, given by the product of covariances∏
(p,q)∈π ci(p)i(q) (one factor for each block (p, q) of π).
This form of the limiting moments motivates the following general-

ization of the notion of a semicircular element to the multi-dimensional
case.

Definition 8.15. Let (cij)i,j∈I be a positive definite matrix. A fam-
ily (si)i∈I of selfadjoint random variables in some ∗-probability space
is called a semicircular family of covariance (cij)i,j∈I , if its distri-
bution is of the following form: for all n ∈ N and all i(1), . . . , i(n) ∈ I
we have

(8.8) ϕ(si(1) . . . si(n)) =
∑

π non-crossing pair partition
of {1, . . . , n}

κπ[si(1), . . . , si(n)],

where

(8.9) κπ[si(1), . . . , si(n)] =
∏

(p,q)∈π

ci(p)i(q).

Examples 8.16. 1) For illustration, let us write down the formulas
(8.8) explicitly for small moments:

ϕ(sasb) = cab, ϕ(sasbscsd) = cabccd + cadcbc,

ϕ(sasbscsdsesf ) = cabccdcef + cabccfcde

+ cadcbccef + cafcbccde + cafcbeccd.

2) If I consists just of one element then the above definition reduces,
of course, to the definition of a semicircular element. More general,
each element sj from a semicircular family is a semicircular element.
Note however, that in general the si are not free. In Corollary 8.20
we will see that the free independence of the si is equivalent to the
diagonality of the covariance matrix. So in the case that the covariance
matrix is just the identity matrix, our semicircular family reduces to a
“semicircular system” in the sense of our Definition 7.11. We have to
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warn the reader that many authors mean with a “semicircular family”
the more restricted notion of a “semicircular system”.

With our notion of a semicircular family we can summarize our
calculations in the following multi-dimensional version of a free central
limit theorem.

Theorem 8.17. (Free CLT - multi-dimensional version)

Let (A, ϕ) be a ∗-probability space and {a(i)
1 }i∈I , {a(i)

2 }i∈I , · · · ⊂ A a
sequence of freely independent sets of selfadjoint random variables with

the same joint distribution of (a
(i)
r )i∈I for all r ∈ N – the latter meaning

that, for any choice of n ∈ N and i(1), . . . , i(n) ∈ I, the moment

ϕ(a
(i(1))
r · · · a(i(n))

r ) does not depend on r. Assume furthermore that all
variables are centered

ϕ(a(i)
r ) = 0 (r ∈ N, i ∈ I)

and denote the covariance of the variables by

cij := ϕ(a(i)
r a(j)

r ) (i, j ∈ I).

Then we have

(8.10)
(a

(i)
1 + · · ·+ a

(i)
N√

N

)
i∈I

distr−→ (si)i∈I ,

where (si)i∈I is a semicircular family of covariance (cij)i,j∈I .

Remarks 8.18. 1) Clearly, we can also prove a multi-dimensional
version of the classical central limit theorem in the same way. Then
the limit is a “Gaussian family” (multivariate normal distribution),
whose joint moments are given by a similar formula as for semicircular
families, the only difference is again that the summation runs over all
pairings instead of non-crossing pairings. So for a Gaussian family
(xi)i∈I of covariance (cij)i,j∈I we have

ϕ(x1x2x3x4) = c12c34 + c14c23 + c13c24

and the moment ϕ(x1x2x3x4x5x6) is given as a sum over the 15 pairings
of 6 elements. This combinatorial description of the joint moments of
Gaussian families goes usually (in particular, in the physical commu-
nity) under the name of “Wick formula”.

2) According to the previous remark, a semicircular family is to be
considered as the free analogue of a multivariate normal distribution.

A simple special case of a semicircular family is given if the covari-
ance is a diagonal matrix. We can use our free central limit theorem
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to conclude quite easily that this is equivalent to having freely inde-
pendent semicircular elements. This is a special case of the following
proposition.

Proposition 8.19. Let (si)i∈I be a semicircular family of covari-

ance (cij)i,j∈I and consider a disjoint decomposition I = ∪̇d
p=1Ip. Then

the following two statements are equivalent:

(1) The sets {si | i ∈ I1}, . . . , {si | i ∈ Id} are freely independent.
(2) We have cij = 0 whenever i ∈ Ip and j ∈ Iq with p 6= q.

Proof. Assume first that the families
({si | i ∈ Ip}

)
p=1,...,d

are free

and consider i ∈ Ip and j ∈ Iq with p 6= q. Then the free independence
of si and sj implies in particular

cij = ϕ(sisj) = ϕ(si)ϕ(sj) = 0.

If on the other side we have cij = 0 whenever i ∈ Ip and j ∈ Iq with
p 6= q, then we can use our free central limit theorem in the following
way. Choose in some ∗-probability space (B, ψ) a freely independent

sequence of sets {a(i)
1 }i∈I , {a(i)

2 }i∈I , . . . of random variables such that

(a
(i)
r )i∈I has for each r = 1, 2, . . . the same joint distribution, which is

prescribed in the following way:

• For each p = 1, . . . , d, the family (a
(i)
r )i∈Ip has the same joint

distribution as the family (si)i∈Ip .

• The sets {a(i)
r | i ∈ I1}, . . . , {a(i)

r | i ∈ Id} are free.

Note that the free product construction for ∗-probability spaces from

Lecture 6 ensure that we can find such elements a
(i)
r . Furthermore, by

the free independence between elements corresponding to different sets
Ip, we have for i ∈ Ip and j ∈ Iq with p 6= q that

ψ(a(i)
r a(j)

r ) = ψ(a(i)
r ) · ψ(a(j)

r ) = 0 = ϕ(sisj).

Thus the covariance of the family (a
(i)
r )i∈I is the same as the covariance

of our given semicircular family (si)i∈I . But now our free central limit
theorem tells us that

(8.11)
(a

(i)
1 + · · ·+ a

(i)
N√

N

)
i∈I

distr−→ (si)i∈I ,

where the limit is given exactly by the semicircular family from
which we started (because this has the right covariance). But by

our construction of the a
(i)
r we have now in addition that the sets

{(a(i)
1 + · · · + a

(i)
N )/

√
N}i∈Ip (p = 1, . . . , d) are freely independent. As

we observed in Remark 8.14 (see also Exercise 8.25), free independence
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passes over to the limit, and so we get the wanted result that the sets
{si}i∈Ip (p = 1, . . . , d) are freely independent. ¤

Note that this proposition implies that κπ[si(1), . . . , si(n)] vanishes if
the blocks of π couple elements which are free.

Corollary 8.20. Consider a semicircular family (si)i∈I of covari-
ance (cij)i,j∈I . Then the following are equivalent:

(1) The covariance matrix (cij)i,j∈I is diagonal.
(2) The random variables (si)i∈I are free.

Example 8.21. Assume s1 and s2 are two semicircular elements
which are free. Let us also assume that both have variance 1. Then
the above tells us that their mixed moments are given by counting
the non-crossing pairings which connect s1 with s1 and s2 with s2 (no
blocks connecting s1 with s2 are allowed). For example, we have in
such a situation

ϕ(s1s1s2s2s1s2s2s1) = 2,

because there are two contributing non-crossing pairings, namely

s1s1s2s2s1s2s2s1

and

s1s1s2s2s1s2s2s1

Conclusion and outlook

The general conclusion which we draw from this lecture is that non-
crossing partitions appear quite naturally in free probability. From a
combinatorial point of view, the transition from classical probability
theory to free probability theory consists of replacing all partitions by
non-crossing partitions.

But there are also more specific features shown by our treatment
of the free central limit theorem. In the next lectures we will gener-
alize to arbitrary distributions what we have learned from the case of
semicircular families, namely:

(1) it seems to be canonical to write moments as sums over non-
crossing partitions

(2) the appearing summands κ are multiplicative in the sense that
they factorize in a product according to the block structure of
π

(3) the summands κπ reflect free independence quite clearly, since
κπ[si(1), . . . , si(n)] vanishes if the blocks of π couple elements
which are freely independent
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More concretely, we will write moments of random variables as

(8.12) ϕ(a1 · · · an) =
∑

π non-crossing partition

κπ[a1, . . . , an],

where the κπ (“free cumulants”) factorize in a product according to the
block structure of π. The difference to the present case is that we do not
only have to consider non-crossing pairings, but we have to sum over
all non-crossing partitions. Before we introduce free cumulants in full
generality, we have to talk about the definition and basic properties of
non-crossing partitions. In particular, we should also understand how
to invert the relation (8.12) by so-called “Möbius inversion”. This will
be the content of the next two lectures.

Exercises

Exercise 8.22. Show that

1√
2πσ2

∫

R
tne−t2/2σ2

dt =

{
0, if n odd

σn · (n− 1) · (n− 3) · · · 5 · 3 · 1, if n even.

Exercise 8.23. Another possibility for proving D2k = Ck is to
present a bijection between non-crossing pair partitions and Dyck
paths. Here is one: We map a non-crossing pair partition π to a Dyck
path (i1, . . . , in) by

im = +1 ⇐⇒ m is the first element in some Vj ∈ π

im = −1 ⇐⇒ m is the second element in some Vj ∈ π

Here are some examples for this mapping:

• n = 2

¡¡µ@@R =̂

• n = 4

¡¡µ@@R¡¡µ@@R =̂

¡¡µ
¡¡µ@@R

@@R =̂
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• n = 6

¡¡µ@@R¡¡µ@@R¡¡µ@@R =̂

¡¡µ@@R¡¡µ
¡¡µ@@R

@@R =̂

¡¡µ
¡¡µ@@R

@@R¡¡µ@@R =̂

¡¡µ
¡¡µ@@R¡¡µ@@R

@@R =̂

¡¡µ
¡¡µ

¡¡µ@@R
@@R

@@R =̂

Prove that this mapping gives a bijection between Dyck paths and
non-crossing pair partitions.

Exercise 8.24. 1) Prove that for every positive definite matrix
(cij)i,j∈I one can find a semicircular family of covariance (cij)i,j∈I in
some ∗-probability space.
[Hint: One possibility is to use the free central limit theorem and the
fact that positivity is preserved under limit in distribution; another
possibility is to use the next part of this problem.]

2) Show that each semicircular family can be written as a linear
combination of free semicircular elements.

Exercise 8.25. Let (A, ϕ) and (AN , ϕN) (N ∈ N) be non-
commutative probability spaces, and consider random variables a, b ∈
A and aN , bN ∈ AN (N ∈ N) such that (aN , bN)

distr−→ (a, b). Assume
that for each N ∈ N the random variables aN and bN are free (with
respect to ϕN). Show that then also a and b are free (with respect to
ϕ).

Exercise 8.26. Fill in the details in the following use of the free
central limit theorem to infer that the distribution of the sum of cre-
ation and annihilation operator on a full Fock space has a semicircular
distribution.
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Consider in the non-commutative probability space (B(F(H)), τH)
for a fixed f ∈ H the variable l(f)+ l∗(f). Show that, for each natural
N , this has the same distribution as the random variable

(8.13) l
(f ⊕ · · · ⊕ f√

N

)
+ l∗

(f ⊕ · · · ⊕ f√
N

)

in the non-commutative probability space (B(F(HN)), τHN
) with

HN := H⊕ · · · ⊕ H︸ ︷︷ ︸
N times

.

Show that the random variable (8.13) is the sum of N free random
variables and apply the free central limit theorem to infer that the
random variable l(f) + l∗(f) is a semicircular element.



LECTURE 9

Basic combinatorics I: Non-crossing partitions

In the preceding lecture we saw that a special type of partitions
seems to lie underneath the structure of free probability. These are the
so-called “non-crossing” partitions. The study of the lattices of non-
crossing partitions was started by combinatorialists with quite a bit of
time before the development of free probability. In this and the next
lecture we will introduce these objects in full generality and present
their main combinatorial properties which are of relevance for us.

The preceding lecture has also told us that, from a combinatorial
point of view, classical probability and free probability should behave
like all partitions versus non-crossing partitions. Thus, we will also
keep an eye on similarities and differences between these two cases.

Non-crossing partitions of an ordered set

Definitions 9.1. Let S be a finite totally ordered set.
1) We call π = {V1, . . . , Vr} a partition of the set S if and only if

the Vi (1 ≤ i ≤ r) are pairwise disjoint, non-void subsets of S such that
V1 ∪ · · · ∪ Vr = S. We call V1, . . . , Vr the blocks of π. The number of
blocks of π is denoted by |π|. Given two elements p, q ∈ S, we write
p ∼π q if p and q belong to the same block of π.

2) The set of all partitions of S is denoted by P(S). In the special
case S = {1, . . . , n}, we denote this by P(n).

3) A partition π of the set S is called crossing if there exist p1 <
q1 < p2 < q2 in S such that p1 ∼π p2 6∼π q1 ∼π q2:

· · · p1 · · · q1 · · · p2 · · · q2 · · ·

If π is not crossing, then it is called non-crossing.
4) The set of all non-crossing partitions of S is denoted by NC(S).

In the special case S = {1, . . . , n}, we denote this by NC(n).

145
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We get a linear graphical representation of a partition π by writ-
ing all elements from S in a linear way, supplying each with a verti-
cal line under it and joining the vertical lines of the elements in the
same block with a horizontal line. For example, consider the partition
{ {1, 4, 5, 7}, {2, 3}, {6} } of the set {1, 2, 3, 4, 5, 6, 7}. Graphically this
looks as follows: 1 2 3 4 5 6 7

.

The name “non-crossing” becomes evident in such a representation.
An example for a crossing partition is π = { {1, 3, 5}, {2, 4} } which
looks like this: 1 2 3 4 5

.

Remarks 9.2. 1) Of course, NC(S) depends only on the number
of elements in S. In the following we will use the natural identification
NC(S1) ∼= NC(S2) for #S1 = #S2 without further comment.

2) In many cases the following recursive description of non-crossing
partitions is of great use: a partition π of {1, . . . , n} is non-crossing if
and only if at least one block V ∈ π is an interval and π\V is non-
crossing; i.e., V ∈ π has the form V = {k, k + 1, . . . , k + p} for some
1 ≤ k ≤ n and p ≥ 0, k + p ≤ n and we have

π\V ∈ NC( {1, . . . , k − 1, k + p + 1, . . . , n} ) ∼= NC(n− (p + 1)).

As an example consider the partition

π = { {1, 10}, {2, 5, 9}, {3, 4}, {6}, {7, 8} }
of {1, . . . , 10}.

1 2 3 4 5 6 7 8 9 10

Let us verify that π ∈ NC(10) by doing successive “interval-stripping”
operations. We first remove the intervals {3, 4}, {6}, and {7, 8}, which
reduces us to:

1 2 5 9 10

Now {2, 5, 9} is an interval and can be removed, so that we are left
with the interval {1, 10}:

1 10
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Notations 9.3. 1) If S (totally ordered) is the union of two disjoint
sets S1 and S2 then, for π1 ∈ NC(S1) and π2 ∈ NC(S2), we let π1 ∪ π2

be the partition of S which has as blocks the blocks of π1 and the blocks
of π2. Note that π1 ∪ π2 is not automatically non-crossing.

2) Let S be a totally ordered set. Let W be a non-empty subset of
S, on which we consider the order induced from S. For π ∈ NC(S) we
will denote by π|W the restriction of π to W , i.e.

(9.1) π|W := {V ∩W | V block of π}.
It is immediately verified that π|W ∈ NC(W ). Note that in the par-
ticular case when W is a union of some of the blocks of π, the above
equation reduces to just

π|W = {V ∈ π | V ⊂ W} ∈ NC(W ).

Note that for n ≤ 3 all partitions are non-crossing and accordingly
we have #NC(1) = 1, #NC(2) = 2, #NC(3) = 5. Out of the 15
partitions of 4 elements exactly one is crossing, thus we have #NC(4) =
14. We recognize here the occurrence of the first few Catalan numbers
– 1, 2, 5, 14 (cf. Notation 2.9). The next proposition shows this is not
an accident.

Proposition 9.4. The number of elements in NC(n) is equal to
the Catalan number Cn.

Proof. For n ≥ 1 let us denote #NC(n) =: Dn, and let us also
set D0 := 1. We will verify that the numbers Dn satisfy

(9.2) Dn =
n∑

i=1

Di−1Dn−i, n ≥ 1.

Since this recursion characterizes the Catalan numbers (as discussed
e.g. in Lecture 2, Remark 2.12), the verification of (9.2) will give us
the assertion.

For n ≥ 1 and 1 ≤ i ≤ n let us denote by NC(i)(n) the set of
non-crossing partitions π ∈ NC(n) for which the block containing 1
contains i as its largest element. Because of the non-crossing condition,
a partition π ∈ NC(i)(n) decomposes canonically into π = π1 ∪ π2,
where π1 ∈ NC(i)(i) and π2 ∈ NC( {i + 1, . . . , n} ); thus we have

NC(i)(n) ∼= NC(i)(i)×NC(n− i).

However, by restricting π1 to {1, . . . , i − 1} we see that NC(i)(i) is in
bijection with NC(i− 1). It follows that

NC(i)(n) ∼= NC(i− 1)×NC(n− i),
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and, by taking cardinalities, that:

(9.3) #NC(i)(n) = Di−1Dn−i, for 1 ≤ i ≤ n.

(The cases i = 1 and i = n of (9.3) involve the appropriate use of a set
NC(0) with #NC(0) = 1, or can simply be checked directly.)

Since NC(n) = ∪n
i=1NC(i)(n) and this is a disjoint union, we get

that (9.2) follows from (9.3). ¤
Remark 9.5. For n ≥ 1, let NC2(2n) denote the set of non-crossing

pair-partitions of {1, . . . , 2n}, as discussed in the preceding lecture.
Comparing the preceding proposition with Lemma 8.9 in Lecture 8, we
see that we have

(9.4) #NC(n) = #NC2(2n), n ≥ 1,

One can in fact check this equality by a direct bijective argument – see
the Exercise 9.42 at the end of the lecture.

In the remaining part of this section we will show how paths on Z2

can be used to obtain a more refined enumeration of the set NC(n).
The paths being used are the so-called Lukasiewicz paths; they provide
a generalization of the Catalan paths from the Lecture 2.

Definitions 9.6. 1) We will use the term almost-rising path
for a path in Z2 which starts at (0, 0) and makes steps of the form
(1, i) where i ∈ N ∪ {−1, 0}. (Thus an almost-rising path has “rising”
steps, except for some possible “flat” steps of the form (1, 0) and some
“falling” steps of the form (1,−1).)

2) A Lukasiewicz path is an almost-rising path γ which ends on
the x-axis, and never goes strictly below the x-axis. That is: all the
lattice points visited by γ are of the form (i, j) with j ≥ 0, and the last
of them is (n, 0), where n is the number of steps of γ.

The set of all Lukasiewicz paths with n steps will be denoted as
Luk(n).

Remarks 9.7. 1) Let γ be an almost-rising path with n steps,
and let the steps of γ be denoted (in the order they are made) as
(1, λ1), . . . , (1, λn). The information about the path is then completely
recorded by the n-tuple

(λ1, . . . , λn) ∈
(
N ∪ {−1, 0}

)n

,

which will be referred to as the rise-vector of the path γ. Indeed, if
the rise-vector (λ1, . . . , λn) of γ is given, then γ can be described as
the path which starts at (0, 0) and visits successively the lattice points
(1, λ1), (2, λ1 + λ2), . . . , (n, λ1 + · · ·+ λn).
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Concrete example: here is the almost-rising path of length 6 which
has rise-vector (2,−1, 0,−1,−1, 1).

¢
¢¢̧@@R-

@@R
@@R¡¡µ

This path ends on the x-axis, but is not a Lukasiewicz path (as it goes
under the x-axis after 5 steps).

2) Let γ be an almost-rising path with rise-vector (λ1, . . . , λn). It
is clear that the condition for γ to be a Lukasiewicz path is expressed
in terms of the rise-vector as follows:

(9.5)





λ1 + · · ·+ λj ≥ 0, ∀ 1 ≤ j < n,

λ1 + · · ·+ λn = 0.

Proposition 9.8. Let n be a positive integer.
1) Let π = {V1, . . . , Vr} be a partition in NC(n). For 1 ≤ i ≤ r

let us denote the minimal element of Vi by ai. Consider the numbers
λ1, . . . , λn ∈ N ∪ {−1, 0} defined as follows:

(9.6) λm =

{ |Vi| − 1, if m = ai, for some 1 ≤ i ≤ r
−1, otherwise.

Then (λ1, . . . , λn) is the rise-vector of a unique Lukasiewicz path with
n steps.

2) For every π ∈ NC(n), let us denote by Λ(π) the Lukasiewicz path
obtained from π in the way described in the part 1 of the proposition.
Then π 7→ Λ(π) is a bijection between NC(n) and the set Luk(n) of
Lukasiewicz paths with n steps.

Proof. 1) For 1 ≤ m ≤ n we have

(9.7) λ1 + · · ·+ λm =
∑

1≤p≤m
p∈V1

λp + · · ·+
∑

1≤p≤m
p∈Vr

λp,

where (for 1 ≤ j ≤ r) we make the convention that the sum
∑

1≤p≤m
p∈Vj

λp

is equal to 0 if {1 ≤ p ≤ m | p ∈ Vj} = ∅. From the way how λ1, . . . , λn

are defined it is clear that each of the r sums on the right-hand side
of (9.7) is non-negative, and it is equal to 0 in the case when m = n.
This implies that the n-tuple (λ1, . . . , λn) satisfies (9.5), and is thus the
rise-vector of a Lukasiewicz path.

2) We will prove that Λ is bijective by explicitly describing its in-
verse function, Π : Luk(n) → NC(n).
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So given a path γ ∈ Luk(n), we have to indicate the recipe for how
to construct the partition π = Π(γ) of {1, . . . , n}. Let r be the number
of non-falling steps of γ, and let us denote by 1 = a1 < a2 < · · · <
ar ≤ n the positions of these r steps among the n steps of γ. For every
1 ≤ i ≤ r the two lattice points connected by the aith step of γ must
be of the form

(9.8) (ai − 1, hi) and (ai, hi + ξi), with hi, ξi ≥ 0.

(That is: the aith step of the path γ is (1, ξi), and makes the path go
from (ai−1, hi) to (ai−1, hi)+(1, ξi).) In order to describe the partition
π = Π(γ), we first stipulate that π will have r blocks V1, . . . , Vr, and
that Vi 3 ai for every 1 ≤ i ≤ r. Then what is left (if we want
to determine π completely) is to take the elements from {1, . . . , n} \
{a1, . . . , ar}, and assign each of them to one of the blocks V1, . . . , Vr.
The recipe for doing this is described as follows. Let b be an element
of {1, . . . , n}\{a1, . . . , ar}. The bth step of γ is a falling one, hence the
two lattice points connected by it are of the form (b−1, l) and (b, l−1)
for some l ≥ 1. There have to exist values of i, 1 ≤ i ≤ r, such that

(9.9) ai < b and [l − 1, l] ⊂ [hi, hi + ξi]

(with hi, ξi as in (9.8)); this is clearly seen when one draws the path γ,
and observes that the first b−1 steps of γ give a piecewise linear graph
connecting (0, 0) with (b− 1, l). We assign b to the block Vi, where i is
the largest value in {1, . . . , r} for which (9.9) holds.

[Concrete example: suppose that n = 8 and that γ ∈ Luk(8) has
rise-vector (2, 1,−1,−1, 0,−1, 1,−1).

¢
¢¢̧
¡¡µ@@R

@@R-
@@R¡¡µ@@R

This path has four non-falling steps, the 1st, the 2nd, the 5th and the
7th step. Thus the partition π = Π(γ) of {1, . . . , 8} must have four
blocks V1, . . . , V4, such that V1 3 1, V2 3 2, V3 3 5, V4 3 7. In order
to complete the description of π, we have to consider the remaining
elements 3, 4, 6, 8 of {1, . . . , 8}, and assign every one of them to one of
the blocks V1, . . . , V4. By using the recipe described above we get:

(9.10) 3 ∈ V2, 4 ∈ V1, 6 ∈ V1, 8 ∈ V4,

thus arriving to π = { {1, 4, 6}, {2, 3}, {5}, {7, 8} }. Reporting to the
picture of γ, one can describe the assignments in (9.10) as “projecting
towards left”. For instance: the 6th step of γ connects the lattice
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points (5, 1) and (6, 0); if one shoots an arrow (so to speak) horizontally
towards left from this segment, then the arrow will land on the rising
step which goes from (0, 0) to (1, 2) – this leads to the assignment
“6 ∈ V1”.]

We leave it as an exercise to the reader to check that the construc-
tion described above always produces a partition π of {1, . . . , n} which
is non-crossing, and where (reporting to the notations in (9.8)) the
blocks V1, . . . , Vr of π satisfy:

(9.11) min(Vi) = ai and |Vi| = 1 + ξi, 1 ≤ i ≤ r.

Finally, it is easily verified that the map Π : Luk(n) → NC(n) obtained
from the above construction is indeed an inverse for Λ. ¤

Remark 9.9. The bijection NC(n) 3 π ↔ γ ∈ Luk(n) found in
the Proposition 9.8 has good properties when one compares the block
structure of π versus the “step-structure” of γ. Indeed, it is clear that
when π and γ correspond to each other, the number of blocks of π is
equal to the number of non-falling steps of γ. Even more precisely: for
any given k ∈ {1, . . . , n}, the number of blocks with k elements in π
can be retrieved as the number of steps of the form (1, k − 1) in γ.

Remark 9.10. An important benefit of the direct bijection between
NC(n) and Luk(n) comes from the fact that Lukasiewicz paths can
be nicely enumerated via a “cyclic permutation” trick (which is also
known as Raney’s Lemma). The idea when performing this trick goes
as follows: Take a Lukasiewicz path with n steps, add to it a falling
step (1,−1), and do a cyclic permutation of the total n+1 steps. This
results in an almost-rising path with n + 1 steps, going from (0, 0) to
(n + 1,−1).

In order to clarify what is being done, let us look at a concrete
example. Suppose that we start with the concrete example of γ ∈
Luk(8) which appeared in the proof of Proposition 9.8. We add to it
a 9th falling step (1,−1), and then we decide to read the 9 steps by
starting with the 5th of them, and by going cyclically. The result is
the following almost-rising path with 9 steps:

-
@@R¡¡µ@@R

@@R¢
¢¢̧
¡¡µ@@R

@@R

Or suppose that we start with the same γ ∈ Luk(8), add to it a 9th
falling step (1,−1), and then decide to read the 9 steps by starting
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with the 9th of them (the one we have just added). The result is the
path in the following picture:

@@R¢
¢¢̧
¡¡µ@@R

@@R-
@@R¡¡µ@@R

So to summarize: the input for performing the cyclic permutation
trick consists of a path γ ∈ Luk(n) and a number m ∈ {1, . . . , n + 1}
(the number m indicates where to start the cyclically permuted reading
of the steps). The output is an almost-rising path with n + 1 steps
γ̃, which goes from (0, 0) to (n + 1,−1). If the rise-vector of γ is
(λ1, . . . , λn), then γ̃ can be defined formally by saying that its rise-

vector (λ̃1, . . . , λ̃n+1) is:

(9.12) (λ̃1, . . . , λ̃n+1) = (λm, . . . , λn,−1, λ1, . . . , λm−1),

where the right-hand side of (9.12) is to be read as “(λ1, . . . , λn,−1)”
if m = 1 and as “(−1, λ1, . . . , λn)” if m = n + 1.

What makes the cyclic permutation trick useful is that it is bijective.

Proposition 9.11. Let n be a positive integer. The construction
formalized by the Equation (9.12) gives a bijection between Luk(n) ×
{1, . . . , n + 1} and the set of all almost-rising paths going from (0, 0)
to (n + 1,−1).

Proof. We show that the map defined by the construction in
(9.12) is one-to-one on Luk(n) × {1, . . . , n + 1}. So suppose that γ̃
is associated by this construction to (γ,m) ∈ Luk(n)× {1, . . . , n + 1};
we want to prove that γ and m can be retrieved from γ̃. Quite clearly,
we will be done if we can find m; indeed, knowing m will tell us what

component of the rise-vector (λ̃1, . . . , λ̃n+1) of γ̃ we have to delete, and
then how to cyclically permute what is left, in order to obtain the
rise-vector (λ1, . . . , λn) of γ.

Now, here is the observation which tells us how to determine m
from the knowledge of γ̃. Look at the heights (i.e. second components)
of the points in Z2 which are visited by γ̃. Let h be the smallest such
height, and suppose that the first time when γ̃ visits a point of height
h is after q steps, 1 ≤ q ≤ n + 1. (Note that h ≤ −1, since γ̃ ends at
(n + 1,−1). This explains why we cannot have q = 0 – it is because
γ̃ starts at height 0 > h.) So h and q are found by only looking at
γ̃; but on the other hand it is easily seen that they are related to the
rise-vector (λ1, . . . , λn) of γ and to m via the formulas:

h = λm + · · ·+ λn − 1, q = (n + 2)−m.



NON-CROSSING PARTITIONS OF AN ORDERED SET 153

In particular it follows that m can be retrieved from q by the formula:

(9.13) m = (n + 2)− q ∈ {1, . . . , n + 1};
this completes the proof of the injectivity of the map considered in the
proposition.

For proving surjectivity, one essentially repeats the same arguments
as above: find an m ∈ {1, . . . , n + 1} by the formula (9.13), and then
find a path γ ∈ Luk(n), all by starting from γ̃ – only that now γ̃
is allowed to be an arbitrary almost-rising path going from (0, 0) to
(n + 1,−1). We leave it as an exercise to the reader to adjust the
arguments for how m and γ are obtained, and to verify the fact that
(γ,m) is indeed mapped onto the given γ̃. ¤

Now let us show some concrete applications of the Lukasiewicz
paths to the enumeration of non-crossing partitions.

Corollary 9.12. Let n be a positive integer, and let r1, . . . , rn ∈
N ∪ {0} be such that r1 + 2r2 + · · · + nrn = n. The number of parti-
tions π ∈ NC(n) which have r1 blocks with 1 element, r2 blocks with 2
elements, . . . , rn blocks with n elements is equal to

(9.14)
n!

r1!r2! · · · rn!
(
n + 1− (r1 + r2 + · · ·+ rn)

)
!
.

Proof. The bijection observed in the part 2 of Proposition 9.8 puts
the given set of non-crossing partitions in one-to-one correspondence
with the set of paths

Lr1,...,rn :=
{

γ ∈ Luk(n)
γ has rk steps (1, k − 1), for 1 ≤ k ≤ n,
and n− (r1 + · · ·+ rn) steps (1,−1)

}
.

The bijection from Proposition 9.11 puts Lr1,...,rn × {1, . . . , n + 1} into
one-to-one correspondence with

L̃r1,...,rn :=
{

γ̃
γ̃ almost-rising path with rk steps
of the form (1, k − 1), for 1 ≤ k ≤ n,
and with (n + 1)− (r1 + · · ·+ rn) steps of (1,−1)

}
.

So the number of non-crossing partitions counted in this corollary is

equal to (#L̃r1,...,rn)/(n + 1). But on the other hand it is clear that

#L̃r1,...,rn is equal to the multinomial coefficient

(n + 1)!

r1! · · · rn!
(
(n + 1)− (r1 + · · ·+ rn)

)
!
,

and the result follows. ¤
By the same method, one can prove:
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Corollary 9.13. For 1 ≤ k ≤ n we have that

(9.15) #{π ∈ NC(n) | π has k blocks } =
1

n

(
n
k

)(
n

k − 1

)
.

The proof of this corollary is left as an exercise to the reader (cf.
Exercise 9.39 at the end of the lecture). Let us mention here that the
numbers of the form appearing on the right-hand side of (9.15) are
usually called Narayana numbers.

The lattice structure of NC(n)

NC(n) is not just a collection of partitions, but is a quite structured
set. Namely, NC(n) is a poset (short for “partially ordered set”), where
the partial order is defined as follows.

Definitions 9.14. 1) Let π, σ ∈ NC(n) be two non-crossing par-
titions. We write π ≤ σ if each block of π is completely contained in
one of the blocks of σ (that is, if π can be obtained out of σ by refining
the block structure). The partial order obtained in this way on NC(n)
is called the reversed refinement order.

2) The maximal element of NC(n) with respect to the reversed
refinement order is the partition consisting of only one block and is
denoted by 1n. The partition consisting of n blocks, each of which has
one element, is the minimal element of NC(n) and is denoted by 0n.

An important feature of the reversed refinement order on NC(n) is
that it makes NC(n) into a lattice.

Definition 9.15. Let P be a finite partially ordered set.
1) Let π, σ be in P . If the set U = {τ ∈ P | τ ≥ π and τ ≥ σ} is

non-empty and has a minimum τ0 (that is, an element τ0 ∈ U which is
smaller than all the other elements of U) then τ0 is called the join of
π and σ, and is denoted as π ∨ σ.

2) Let π, σ be in P . If the set L = {ρ ∈ P | ρ ≤ π and ρ ≤ σ} is
non-empty and has a maximum ρ0 (that is, an element ρ0 ∈ L which
is larger than all the other elements of L) then ρ0 is called the meet
of π and σ, and is denoted as π ∧ σ.

3) The poset P is said to be a lattice if every two elements π, σ ∈ P
have a join π ∨ σ and a meet π ∧ σ.

Remarks 9.16. 1) Let P be a finite lattice. An immediate induc-
tion argument shows that every finite family of elements π1, . . . , πk ∈ P
have a join ( = smallest common upper bound) π1∨· · ·∨πk and a meet
( = largest common lower bound) π1 ∧ · · · ∧ πk.
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In particular, by taking π1, . . . , πk to be a list of all the elements of
P we see that P must have a maximum element, usually denoted by
1P , and a minimum element, usually denoted by 0P . (Thus 0P and 1P

are such that 0P ≤ π ≤ 1P , ∀ π ∈ P .)
2) Let P be a finite poset. It is useful to note that if P has a

maximum element 1P and if every two elements π, σ ∈ P have a meet,
then P is a lattice. Indeed, if every two elements have a meet then it
follows by induction on k that ρ1∧· · ·∧ρk exists for every finite family
ρ1, . . . , ρk ∈ P . Now let π, σ ∈ P be arbitrary, and consider the set U
= {τ ∈ P | τ ≥ π, τ ≥ σ}. This set is non-empty (it contains e.g.
the maximum element 1P of P ), so we can list it as U = {ρ1, . . . , ρk}
and we can consider the element ρ0 = ρ1 ∧ · · · ∧ ρk. It is immediately
verified that π ∨ σ exists, and is equal to ρ0.

Of course, one could also dualize the above argument, and obtain
that if P has a minimum element 0P and if every two elements π, σ ∈ P
have a join, then P is a lattice.

Proposition 9.17. The partial order by reversed refinement in-
duces a lattice structure on NC(n).

Proof. In view of the preceding remark, and since NC(n) has a
maximum element 1n, it will suffice to show that any two partitions
π, σ ∈ NC(n) have a meet π ∧ σ. And indeed, for π = {V1, . . . , Vr}
and σ = {W1, . . . , Ws}, it is immediate that the formula

(9.16) {Vi ∩Wj | 1 ≤ i ≤ r, 1 ≤ j ≤ s, Vi ∩Wj 6= ∅}
defines a partition in NC(n) which is smaller (in the reversed refine-
ment order) than π and than σ, and is on the other hand the largest
partition in NC(n) having these properties. ¤

Example 9.18. An example for the partial order on NC(8) is

{(1, 3), (2), (4, 5), (6, 8), (7)} ≤ {(1, 3, 6, 7, 8), (2), (4, 5)},
or graphically

≤

Examples for join and meet are

∨ =
and

∧ =

Remark 9.19. The partial order by reversed refinement can also
be considered on the set P(n) of all the partitions of {1, . . . , n}, and
turns P(n) into a lattice as well.
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The formula describing the meet π∧σ of two partitions π, σ ∈ P(n)
is exactly the same as in the Equation (9.16) in the proof of Proposition
9.17. As a consequence, it follows that for π, σ ∈ NC(n) the partition
“π∧σ” is the same, no matter whether the meet is considered in NC(n)
or in P(n).

The join π ∨ σ of two partitions π, σ ∈ P(n) can be described as
follows: two elements a, b ∈ {1, . . . , n} belong to the same block of π∨σ
if and only if there exist k ≥ 1 and elements a0, a1, . . . , a2k ∈ {1, . . . , n}
such that a0 = a, a2k = b, and we have

(9.17) a0 ∼π a1 ∼σ a2 ∼π · · · ∼π a2k−1 ∼σ a2k.

(We can require the above sequence of equivalences to begin with ∼π

and end with ∼σ due to the fact that we are allowing e.g. that a0 = a1,
or that a2k−1 = a2k.)

Unlike the situation with the meet, the join of two partitions π, σ ∈
NC(n) may not be the same in P(n) as it is in NC(n). For example
in NC(4) we have

{ {1, 3}, {2}, {4} } ∨ { {1}, {2, 4}, {3} } = { {1, 2, 3, 4} } = 14;

if we would calculate the same join in the lattice of all partitions P(4)
the result would be the crossing partition { {1, 3}, {2, 4} }. In what fol-
lows our joins will be considered (unless specified otherwise) in NC(n)
rather than in P(n).

Remark 9.20. The following picture shows the partitions in the
lattice NC(4), arranged according to their number of blocks. This
arrangement corresponds to the poset structure, at least in the rough
sense that 14 is at the top, 04 is at the bottom, and in general the larger
partitions in NC(4) “tend to occupy higher positions” in the picture.
(See also the Exercise 10.30 in Lecture 10.)
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Note the up-down symmetry for the numbers of partitions sitting
at each level in the above picture. This reflects a property of NC(n)
called self-duality. Moreover, it turns out that there exists an im-
portant anti-isomorphism K : NC(n) → NC(n), called the Kreweras
complementation map, which implements this self-duality.

We should point out immediately that here the analogy with the
lattice of all partitions breaks down. The lattice P(n) is not self-dual
(as one can see by e.g. looking at the picture of P(4)) and thus cannot
have a complementation map. This combinatorial difference between
all and non-crossing partitions will result in properties of free proba-
bility theory for which there is no classical analogue (see, in particular,
the lecture on the product of freely independent random variables).

Definition 9.21. The complementation map K : NC(n) →
NC(n) is defined as follows: We consider additional numbers 1̄, . . . , n̄
and interlace them with 1, . . . , n in the following alternating way:

1 1̄ 2 2̄ . . . n n̄ .

Let π be a non-crossing partition of {1, . . . , n}. Then its Kreweras
complement K(π) ∈ NC(1̄, . . . , n̄) ∼= NC(n) is defined to be the
biggest element among those σ ∈ NC(1̄, . . . , n̄) which have the prop-
erty that

π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄) .

Example 9.22. Consider the partition

π := { {1, 2, 7}, {3}, {4, 6}, {5}, {8} } ∈ NC(8).

For the complement K(π) we get

K(π) = { {1}, {2, 3, 6}, {4, 5}, {7, 8} } ,

as can be seen from the graphical representation:

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

The following exercise contains some fundamental properties of the
complementation map K, which follow directly from its definition.

Exercise 9.23. Let K : NC(n) → NC(n) be the Kreweras com-
plementation map.

1) Give a precise formulation and a proof for the following state-
ment: “For every π ∈ NC(n), the partition K2(π) is obtained by a
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cyclic permutation of π”. Observe in particular that K2(π) always has
the same block structure as π.

2) Observe that K2n is the identity map of NC(n). As a conse-
quence show that K is a bijection. Describe the inverse K−1.

3) Show that K is a lattice anti-isomorphism, i.e. that π ≤ σ
implies that K(σ) ≤ K(π). Note in particular that K(0n) = 1n and
K(1n) = 0n.

4) Show that for any π ∈ NC(n) we have

(9.18) |π|+ |K(π)| = n + 1.

Remark 9.24. Once the Kreweras complementation map is intro-
duced, one can look at the following enumeration problem, which is an
analogue of the Corollary 9.12: Given r1, . . . , rn, q1, . . . , qn ∈ N ∪ {0},
how many partitions π ∈ NC(n) are there such that π has ri blocks
with i elements and K(π) has qi blocks with i elements, for every
1 ≤ i ≤ n? Of course, in order for any such π’s to exist, the numbers
r1, . . . , rn, q1, . . . , qn must fulfill the conditions

r1 + 2r2 + · · ·+ nrn = n = q1 + 2q2 + · · ·+ nqn

and (in view of the above relation (9.18))

r1 + · · ·+ rn + q1 + · · ·+ qn = n + 1.

If these conditions are satisfied, then it turns out that the enumera-
tion problem stated above has a nice answer, the required number of
partitions is equal to

(9.19) n · (r1 + · · ·+ rn − 1)!(q1 + · · ·+ qn − 1)!

r1! · · · rn! · q1! · · · qn!

The factorization of intervals in NC

An important property of non-crossing partitions is that intervals
in NC(n) factorize into products of other NC(k)’s.

Let us first recall what we mean by an interval in a poset.

Notation 9.25. For a poset P and π, σ ∈ P with π ≤ σ we denote
by [π, σ] the interval

[π, σ] := {τ ∈ P | π ≤ τ ≤ σ}.
Remark 9.26. Clearly, [π, σ] inherits the poset structure from P .

Note moreover that if P is a lattice then for any π ≤ τ1, τ2 ≤ σ we have
π ≤ τ1 ∨ τ2, τ1 ∧ τ2 ≤ σ and thus [π, σ] is itself a lattice.

Next we recall the notion of direct product for posets.
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Definition 9.27. Let P1, . . . , Pn be posets. The direct product
of the partial orders on P1, . . . , Pn is the partial order on P1×· · ·×Pn

defined by

(π1, . . . , πn) ≤ (σ1, . . . , σn) ⇐⇒ πi ≤ σi for all i = 1, . . . , n.

Remark 9.28. If all Pi are lattices then P1 × · · · × Pn is a lattice,
too, and the meet and the join on P are given by the componentwise
meet and join on Pi, respectively:

(π1, . . . , πn) ∨ (σ1, . . . , σn) = (π1 ∨ σ1, . . . , πn ∨ σn),

(π1, . . . , πn) ∧ (σ1, . . . , σn) = (π1 ∧ σ1, . . . , πn ∧ σn).

Now we can state the factorization property for intervals in NC.

Theorem 9.29. For any π, σ ∈ NC(n) with π ≤ σ there exists a
canonical sequence (k1, . . . , kn) of non-negative integers such that we
have the lattice-isomorphism

(9.20) [π, σ] ∼= NC(1)k1 ×NC(2)k2 × · · · ×NC(n)kn .

Proof. We clearly have

[π, σ] ∼=
∏
V ∈σ

[π|V , σ|V ].

But it is immediate that for every V ∈ σ, the order-preserving bijection
from V onto {1, . . . , |V |} will identify [π|V , σ|V ] to an interval of the
form [τ, 1|V |] for some τ ∈ NC(|V |). Thus it remains to perform the
factorization for intervals of the form [τ, 1k], k ≥ 1.

For an interval of the form [τ, 1k], we proceed as follows. By ap-
plying the complementation map K on NC(k), we see that [τ, 1k] is
anti-isomorphic to [K(1k), K(τ)] = [0k, K(τ)]. But for the latter we
know again that

[0k, K(τ)] ∼=
∏

W∈K(τ)

[0k|W , K(τ)|W ].

Since each [0k|W , K(τ)|W ] is just NC(W ) (∼= NC(|W |) ), we thus ob-
tain that [τ, 1k] is anti-isomorphic to the product

∏
W∈K(τ) NC(|W |).

Finally the latter product is anti-isomorphic to itself (by applying the
product of complementation maps), and hence it gives the desired fac-
torization of [τ, 1k]. ¤

Definition 9.30. The product decomposition observed in the
above proof will be called the canonical factorization of [π, σ].
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Example 9.31. To illustrate the above let us present the canonical
factorization for [π, σ] ⊂ NC(12), where

π = {(1, 9), (2, 5), (3), (4), (6), (7, 8), (10), (11), (12)} and

σ = {(1, 6, 9, 12), (2, 4, 5), (3), (7, 8), (10, 11)}.
First we get

[π, σ] ∼= [{(1, 9), (6), (12)}, 1{1,6,9,12}]× [{(2, 5), (4)}, 1{2,4,5}]

× [{(3)}, 1{3}]× [{(7, 8)}, 1{7,8}]× [{(10), (11)}, 1{10,11}]
∼= [{(1, 3), (2), (4)}, 14]× [{(1, 3), (2)}, 13]

× [11, 11]× [12, 12]× [02, 12].

By invoking the complement we get

[{(1, 3), (2), (4)}, 14] ∼= NC(2)2

[{(1, 3), (2)}, 13] ∼= NC(1)×NC(2)

[11, 11] ∼= NC(1)

[12, 12] ∼= NC(1)2,

which yields finally that

[π, σ] ∼= NC(1)4 ×NC(2)4.

The specifics of working with non-crossing partitions can be seen
well in the above decomposition of [{(1, 3), (2), (4)}, 14]. Since we are
not allowed to start our chain from {(1, 3), (2), (4)} to 14 by putting
together the blocks (2) and (4) (otherwise we would get a crossing
partition), this decomposition is NC(2)2, and not NC(3), as one might
expect on first glance (and as it is in the lattice of all partitions).

Remark 9.32. In the Theorem 9.29, the emphasis was on the fact
that the factorization of the interval [π, σ] is canonical, i.e. there is a
precise recipe for how to obtain the exponents k1, . . . , kn on the right-
hand side of Equation (9.20). The canonical nature of this factorization
will be discussed further in Lecture 18, in connection to the concept of
relative Kreweras complement Kσ(π) (cf. Lemma 18.6).

On the other hand, it is natural to ask: could there also exist some
“non-canonical” factorization for the interval [π, σ] ⊂ NC(n)? In other
words: is it the case that the exponents k1, . . . , kn on the right-hand
side of (9.20) are in fact uniquely determined? Phrased like this, the
question clearly has a negative answer, as the exponent k1 is not deter-
mined at all (which in turn happens because #NC(1) = 1). But it is
nevertheless interesting to observe that the other exponents k2, . . . , kn

are uniquely determined. In the remaining part of this section we will



THE FACTORIZATION OF INTERVALS IN NC 161

outline an argument which proves this via the enumeration of multi-
chains in the lattices NC(n).

Notation 9.33. Let P be a poset. For every k ≥ 1 we denote

(9.21) P (k) := {(π1, . . . , πk) ∈ P k | π1 ≤ π2 ≤ · · · ≤ πk}.
(So in particular P (1) = P , while P (2) is essentially the set of all in-
tervals of P .) The k-tuples in P (k) are called multi-chains of length
k − 1 in the poset P .

The enumeration of multi-chains in the lattices NC(n) involves a
generalization of the Catalan numbers, described as follows.

Notation 9.34. For every n, k ≥ 1 we will denote

(9.22) C(k)
n :=

1

nk + 1

(
n(k + 1)

n

)
.

The numbers of the form C
(k)
n are called Fuss-Catalan numbers.

Note that in the particular case k = 1 we get

C(1)
n =

1

n + 1

(
2n
n

)
= Cn,

the Catalan numbers which have repeatedly appeared in the preceding
lectures.

Proposition 9.35. The multi-chains of length k−1 in NC(n) are

counted by the Fuss-Catalan number C
(k)
n :

(9.23) # NC(n)(k) = C(k)
n , ∀ n, k ≥ 1.

Note that the case k = 1 of Equation (9.23) corresponds to the fact,
proved earlier in this lecture, that #NC(n) is equal to the Catalan
number Cn. We will not elaborate here on how that argument could
be extended in order to prove the general case of Equation (9.23), but
an alternative way of obtaining the Proposition 9.35 will be outlined in
the Example 10.24 of the next lecture. (Let us mention here that the
only place where we use Proposition 9.35 is in the proof of Proposition
9.38, which in turn isn’t being used anywhere else in the remainder of
the book.)

Lemma 9.36. Suppose that r, s ≥ 1 and m1, . . . , mr, n1, . . . , ns ≥ 2
are such that

(9.24) C(k)
m1
· · ·C(k)

mr
= C(k)

n1
· · ·C(k)

ns
,

for every k ≥ 1. Then max(m1, . . . , mr) = max(n1, . . . , ns).
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Proof. Assume by contradiction that the two maxima are not
equal to each other, e.g. that

m := max(m1, . . . , mr) > max(n1, . . . , ns).

Note that m ≥ 3 (since m > n1 ≥ 2). Let k be a positive integer such
that p := mk+(m−1) is a prime. (The existence of such a k is ensured
by a well-known theorem of Dirichlet, which guarantees that if a and
b are relatively prime, then the arithmetic progression {ak + b|k ≥ 1}
contains infinitely many prime numbers.) For this choice of k and p

observe that the Fuss-Catalan number C
(k)
m is divisible by p. This is

because one can write

C(k)
m =

(mk + 2) · · · (mk + (m− 1))(mk + m)

m!
,

where p divides the numerator of the fraction but does not divide the
denominator. In particular it follows that p divides the product ap-
pearing on the left-hand side of Equation (9.24).

On the other hand let us observe that (for the k and p found above)

the prime number p does not divide any Fuss-Catalan number C
(k)
n with

n < m. This is because when we write

C(k)
n =

(nk + 2) · · · (nk + (n− 1))(nk + n)

n!

we have that p is larger than any of the factors appearing in the numer-
ator of the latter fraction (indeed, it is clear that p = mk + (m− 1) >
nk + n). But then p does not divide the right-hand side of Equation
(9.24) – contradiction! ¤

Lemma 9.37. Suppose that r, s ≥ 1 and m1, . . . , mr, n1, . . . , ns ≥ 2
are such that (9.24) holds for every k ≥ 1. Then r = s, and the s-tuple
n1, . . . , ns is obtained by a permutation of m1, . . . , mr.

Proof. This is immediate, by induction on r + s and by using the
preceding lemma. ¤

We finally arrive to the following proposition, which clearly implies
that the exponents k2, . . . , kn in the canonical factorization of Theorem
9.29 are uniquely determined.

Proposition 9.38. Suppose that r, s ≥ 1 and that m1, . . . ,mr,
n1, . . . , ns ≥ 2 are such that

(9.25) NC(m1)× · · · ×NC(mr) ∼= NC(n1)× · · · ×NC(ns).

Then r = s, and the s-tuple n1, . . . , ns is obtained by a permutation of
m1, . . . ,mr.
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Proof. It is immediate that if P1, . . . , Pr are finite posets and if
P = P1 × · · · × Pr, then we have canonical identifications

P (k) ∼= P
(k)
1 × · · · × P (k)

r , k ≥ 1,

where the superscripts “(k)” are in reference to multi-chains of length
k − 1, as in the Notation 9.33. By applying this to the specific case
when P = NC(m1) × · · · × NC(mr) and by using the Proposition
9.35, we thus see that the number of multi-chains of length k − 1 in

this lattice is equal to C
(k)
m1 · · ·C(k)

mr . If we do the same for the lattice
Q = NC(n1)×· · ·×NC(ns), and if we take into account that P and Q
must have the same number of multi-chains of length k− 1, we obtain
that (9.24) holds for every k ≥ 1. The assertion then follows from
Lemma 9.37. ¤

Exercises

Exercise 9.39. Supply a proof of the Corollary 9.13.

[Hint: Use the Propositions 9.8 and 9.11, then do a direct enumeration
for the set of almost-rising paths from (0, 0) to (n + 1,−1) which have
exactly n + 1− k falling steps.]

Notation 9.40. Let n be a positive integer, and let Sn denote
the group of all permutations of {1, . . . , n}. For α ∈ Sn and π =
{V1, . . . , Vr} ∈ P(n) one can form a new partition {α(V1), . . . , α(Vr)} ∈
P(n), which will be denoted as α · π.

Exercise 9.41. Let n be a positive integer.
1) Let Φ be an automorphism of the poset NC(n) (that is,

Φ : NC(n) → NC(n) is bijective, and has the property that π ≤ σ ⇔
Φ(π) ≤ Φ(σ), for π, σ ∈ NC(n)). Prove that there exists α ∈ Sn such
that Φ(π) = α · π for every π ∈ NC(n).

2) Prove that the group of automorphisms of the poset NC(n) is
isomorphic to the dihedral group with 2n elements.

[Hint: Let γ ∈ Sn be the cyclic permutation which has γ(i) = i + 1
for 1 ≤ i ≤ n − 1, and γ(n) = 1. Let β ∈ Sn be the order-reversing
permutation which has β(i) = n + 1 − i for 1 ≤ i ≤ n. Prove that
a permutation α ∈ Sn has the property that α · π ∈ NC(n) for every
π ∈ NC(n) if and only if α belongs to the subgroup of Sn generated
by β and γ.]

Exercise 9.42. Let n be a positive integer, and let NCE(2n) be
the set of partitions π ∈ NC(2n) with the property that every block of
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π has even cardinality. Let K2n denote the Kreweras complementation
map on NC(2n).

1) Prove that

K2n(NCE(2n)) =
{

π ∈ NC(2n)
every block of π is contained
either in {1, 3, . . . , 2n− 1}
or in {2, 4, . . . , 2n}

}
.

2) Recall that NC2(2n) denotes the set of non-crossing pair-
partitions of {1, . . . , 2n}. Prove that the map

NC2(2n) 3 π 7→ (K2n(π)){1, 3, . . . , 2n− 1}
is a bijection between NC2(2n) and NC( {1, 3, . . . , 2n−1} ) ∼= NC(n).

[Hint: NC2(2n) is the set of minimal elements of NCE(2n), with re-
spect to the partial order induced from NC(2n). Hence K2n(NC2(2n))
must be the set of maximal elements of K2n(NCE(2n)).]

Exercise 9.43. Let σ ∈ NC(n) be an interval partition, which
means that all its blocks consist of consecutive numbers; i.e., all V ∈ σ
are of the form V = {p, p + 1, p + 2, . . . , p + r} for some 1 ≤ p ≤ n and
r ≥ 0 such that p + r ≤ n. Prove that in such a case the join of σ with
any element in NC(n) is the same in P(n) and in NC(n): we have for
any π ∈ NC(n) that σ ∨NC(n) π = σ ∨P(n) π.



LECTURE 10

Basic Combinatorics II: Möbius inversion

Motivated by our combinatorial description of the free central limit
theorem we will in the following use the non-crossing partitions to write
moments ϕ(a1 · · · an) of non-commutative random variables in the form

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ[a1, . . . , an],

where the κπ’s are some new quantities called free cumulants. Of
course, we should be able to invert this equation in order to define
the free cumulants in terms of the moments. This is a special case of
the general theory of Möbius inversion and Möbius function – a unify-
ing concept in modern combinatorics which provides a common frame
for a variety of situations.

We will use the framework of a finite poset P . Suppose we are given
two functions f, g : P → C which are connected as follows:

f(π) =
∑
σ∈P
σ≤π

g(σ), π ∈ P.

This is a quite common situation and it is often useful to invert the
above relation, i.e. to write an equation which expresses the values
of g in terms of those of f . This is indeed possible, by using a two-
variable function µ (which depends only on the poset P , but not on the
particular choice of the functions f and g). The function µ is called the
Möbius function of the poset P , and the formula retrieving the values
of g from those of f is called the Möbius inversion formula. In order
to present it, we will introduce a suitable concept of convolution in the
poset framework.

Convolution in the framework of a poset

Definition 10.1. Let P be a finite poset, and let us denote (same
as in Lecture 9, Notation 9.33)

(10.1) P (2) := {(π, σ) | π, σ ∈ P, π ≤ σ}.
165
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For F,G : P (2) → C, their convolution F ∗ G is the function from
P (2) to C defined by:

(10.2) (F ∗G)(π, σ) :=
∑
ρ∈P

π≤ρ≤σ

F (π, ρ)G(ρ, σ).

Moreover, we will also consider convolutions f ∗ G for f : P → C
and G : P (2) → C; the function f ∗ G is defined from P to C, and is
described by the formula

(10.3) (f ∗G)(σ) :=
∑
ρ∈P
ρ≤σ

f(ρ)G(ρ, σ).

Remark 10.2. On occasion it is useful to keep in mind that the
convolution operations defined above can be regarded as matrix multi-
plications. In order to regard them in this way, let us denote #P =: n
and let us consider a way of listing

(10.4) P = {π1, . . . , πn}
which has the following property: for every 1 ≤ i < j ≤ n, either
the elements πi and πj are incomparable or they are such that πi < πj.
(That is, the listing in (10.4) is made such that it never happens to have
i < j and πi > πj. Such listings can always be found – cf. Exercise
10.25 at the end of the lecture.) Then to every function F : P (2) → C
let us associate an upper triangular n×n matrix TF = (tij)

n
i,j=1, where

tij =





0, if i > j
F (πi, πi), if i = j
F (πi, πj), if i < j and πi < πj

0, if i < j and πi, πj not comparable.

It is immediately verified that the convolution of two functions F,G :
P (2) → C amounts to the multiplication of the corresponding upper
triangular matrices:

(10.5) TF∗G = TF TG.

Moreover, by using the same listing (10.4) let us also associate to every
function f : P → C a 1 × n matrix (or row-vector) vf which has the
i-th component equal to f(πi), for 1 ≤ i ≤ n. Then the second kind of
convolution introduced in the Definition 10.1 immediately reduces to
matrix multiplication via the formula

(10.6) vf∗G = vf TG,

holding for any f : P → C and any G : P (2) → C.
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Remark 10.3. The convolution operations defined above have the
natural properties one would expect: they are associative and they are
distributive with respect to the operation of taking linear combinations
of functions on P (2) or on P . The associativity property, for instance,
amounts to the fact that we have

(F ∗G) ∗H = F ∗ (G ∗H), (f ∗G) ∗H = f ∗ (G ∗H)

for F, G,H : P (2) → C and f : P → C. All these properties can be eas-
ily verified directly from the definitions, or by using the interpretation
via matrix multiplication described in the Remark 10.2.

Another immediate observation is that the function δ : P (2) → C
defined by

(10.7) δ(π, σ) =

{
1, if π = σ
0, if π < σ

is the unit for our convolution operations. This is because, in the inter-
pretation of Remark 10.2, the corresponding upper triangular matrix
Tδ is precisely the unit n× n matrix.

Moving one step further, let us also record what is the situation
with inverses under convolution.

Proposition 10.4. Let P be a finite poset, and consider the convo-
lution operation for functions on P (2) as in Definition 10.1. A function
F : P (2) → C is invertible with respect to convolution if and only if it
has F (π, π) 6= 0 for every π ∈ P .

Proof. “⇒” If F has an inverse under convolution G, then for
every π ∈ P we have:

1 = δ(π, π) = (F ∗G)(π, π) = F (π, π)G(π, π),

and this implies that F (π, π) 6= 0.

“⇐” Let us consider a listing of P as in the Remark 10.2, and
the relation between convolution and matrix multiplication described
there. Let us denote

T := {T ∈ Mn(C) | there exists F : P (2) → C such that T = TF}.
From the observations made in Remark 10.2 it is clear that T is closed
under addition, multiplication, and scalar multiplication. It is also
immediate that T contains all the n × n diagonal matrices. Based on
these facts, it is easy to verify that if T ∈ T is invertible, then we must
have T−1 ∈ T as well (cf. Exercise 10.26 at the end of the lecture).

But then let F : P (2) → C be such that F (π, π) 6= 0 for every π ∈ P .
Then the matrix TF ∈ T is invertible (because it is upper triangular
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with non-zero diagonal entries). As observed above, it follows that
T−1

F ∈ T , i.e. there exists a function G : P (2) → C such that T−1
F =

TG. For this G we have that TF∗G = TF TG = Tδ, which implies that
F ∗G = δ (and the relation G ∗ F = δ is obtained in exactly the same
way). ¤

It is now easy to formalize the idea about Möbius inversion which
was discussed in the introduction to this lecture.

Definition 10.5. Let P be a finite poset. The zeta function of
P is ζ : P (2) → C defined by

ζ(π, σ) = 1, ∀ (π, σ) ∈ P (2).

The inverse of ζ under convolution is called the Möbius function of
P , and is denoted by µ.

Note that the definition of the Möbius function as an inverse makes
sense due to the Proposition 10.4 and to the fact that ζ(π, π) = 1 6= 0,
for all π ∈ P .

If there is a possibility of ambiguity on what is the poset that we
are referring to, we will write ζP and respectively µP instead of just ζ
and µ.

Proposition 10.6. Let P be a finite poset, and let µ be the Möbius
function of P . For two functions f, g : P → C the statement that

(10.8) f(π) =
∑
σ∈P
σ≤π

g(σ) for all π ∈ P

is equivalent to

(10.9) g(π) =
∑
σ∈P
σ≤π

f(σ)µ(σ, π) for all π ∈ P .

Proof. The Equation (10.8) amounts to saying that f = g ∗ ζ,
while (10.9) amounts to g = f ∗ µ. But it is clear that the latter two
facts are equivalent to each other (by the associativity of convolution,
and since ζ and µ are inverse to each other). ¤

Remark 10.7. Let P be a finite poset, and let µ be the Möbius
function of P . We have that µ is uniquely determined by the relation
µ ∗ ζ = δ, which amounts to the following system of equations in the
values of µ:

(10.10)
∑
τ∈P

π≤τ≤σ

µ(π, τ) =

{
1, if π = σ

0, if π < σ.
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Equivalently, µ is determined by the relation ζ ∗µ = δ, which gives the
system of equations

(10.11)
∑
τ∈P

π≤τ≤σ

µ(τ, σ) =

{
1, if π = σ

0, if π < σ.

When computing µ in specific examples, the systems of equations in
(10.10) and/or (10.11) can be used to determine the values µ(π, σ) by
induction on the length of the interval [π, σ]. Let us briefly state here
the bits of poset terminology which are needed in order to continue the
discussion.

Definitions 10.8. Let P be a finite poset.
1) For π < σ in P , the length of the interval [π, σ] is the

largest integer l having the following property: one can find elements
ρ0, ρ1, . . . , ρl ∈ P such that π = ρ0 < ρ1 < · · · < ρl = σ. (By conven-
tion, if π = σ, then the length of [π, σ] is taken to be 0.)

2) In the particular case when the length of the interval [π, σ] is
equal to 1, we will say that σ covers π. This is clearly equivalent to
the fact that π < σ and there is no element ρ ∈ P such that π < ρ < σ.

Remark 10.9. Let us return to the framework of Remark 10.7,
let us pick one of the systems of equations (those in (10.10), say)
which appeared there, and let us explain how they can be used to
compute inductively the values of µ. We can think of these equations
like this: first we have µ(π, π) = 1 for every π ∈ P , after which we
have µ(π, σ) = −1 whenever σ covers π. (Indeed, if σ covers π then
the corresponding Equation (10.10) becomes µ(π, π)+µ(π, σ) = 0, giv-
ing µ(π, σ) = −µ(π, π) = −1.) The determination of the values of µ
can continue in this manner, by induction on the length of the interval
[π, σ]: if [π, σ] has length l and if we assume the values of µ to be known
for all the intervals of length smaller than l, then the Equation (10.10)
can be re-written as

(10.12) µ(π, σ) = −
∑
τ∈P

π≤τ<σ

µ(π, τ);

this will determine the value of µ(π, σ), since all the intervals appearing
on the right-hand side of (10.12) have length strictly smaller than l.

Example 10.10. Let us compute the Möbius function for the lat-
tice NC(3) of non-crossing partitions of {1, 2, 3}. One can write ex-
plicitly NC(3) = {03, τ1, τ2, τ3, 13}, where 03 and 13 are the minimal
and maximal partitions of {1, 2, 3} and where τ1 = { {1}, {2, 3} },
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τ2 = { {1, 3}, {2} }, τ3 = { {1, 2}, {3} }. We have that every τi covers
03 and that 13 covers every τi, hence

µ(03, τi) = µ(τi, 13) = −1, 1 ≤ i ≤ 3.

Besides this, the only value of µ which is left to be computed is µ(03, 13).
We obtain this value by using the Equation (10.12):

µ(03, 13) = −
(
µ(03, 03) + µ(03, τ1) + µ(03, τ2) + µ(03, τ3)

)

= −(1− 1− 1− 1)

= 2.

Möbius inversion in a lattice

The following proposition shows that, in the context of a lattice, one
can also write down “partial versions” of the Möbius inversion formula.
This will be of prominent importance in the next lecture where it will
yield directly an important property of free cumulants.

Proposition 10.11. Let P be a finite lattice and let µ be the Möbius
function of P . Consider two functions f, g : P → C which are related
by

f(τ) =
∑
π∈P
π≤τ

g(π) for all τ ∈ P .

Then, for all ω, τ ∈ P with ω ≤ τ , we have the relation:

(10.13)
∑
σ∈P

ω≤σ≤τ

f(σ)µ(σ, τ) =
∑
π∈P

π∨ω=τ

g(π).

Proof. We have
∑
σ∈P

ω≤σ≤τ

f(σ)µ(σ, τ) =
∑
σ∈P

ω≤σ≤τ

∑
π∈P
π≤σ

g(π)µ(σ, τ) =
∑
π∈P
π≤τ

∑
σ∈P

π∨ω≤σ≤τ

µ(σ, τ)g(π).

Consider now π ∈ P with π ≤ τ . Since also ω ≤ τ , we have π∨ω ≤ τ .
We will distinguish the two cases that either π∨ω = τ or π∨ω < τ . In
the first case, the corresponding sum over σ reduces to one term for σ =
π ∨ω = τ and gives the contribution µ(σ, τ)g(π) = µ(τ, τ)g(π) = g(π).
In the second case, the corresponding sum over σ vanishes because

∑
σ∈P

π∨ω≤σ≤τ

µ(σ, τ) = 0 if π ∨ ω < τ
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by the recursion formula (10.11) for the Möbius function. Thus our
above calculation leads finally to

∑
σ∈P

ω≤σ≤τ

f(σ)µ(σ, τ) =
∑
π∈P

π≤τ, π∨ω=τ

g(π).

Since the requirement π ∨ ω = τ includes π ≤ τ , this is exactly the
assertion. ¤

Remark 10.12. Note that in the case when ω = 0P (the minimal
element of P ) the formula (10.13) reduces to the Möbius inversion
formula of Proposition 10.6,

∑
σ∈P
σ≤τ

f(σ)µ(σ, τ) = g(τ)

(because π ∨ 0P = π for all π ∈ P ). On the other hand, if in the
Proposition 10.11 we consider the case when ω = τ , then we just get

f(τ) =
∑
π∈P
π≤τ

g(π)

(because π ∨ τ = τ is equivalent to π ≤ τ). In general, the formula
(10.13) can be viewed as a kind of a partial Möbius inversion, standing
“in between” the two equations which relate f and g in Proposition
10.6.

We now present an immediate consequence of Proposition 10.11,
which is helpful in concrete computations of Möbius functions (in par-
ticular it will help us find the Möbius function of NC(n) in the next
section). One can think of the next corollary as of a version of the
Equation (10.12) from Remark 10.9, where the following improvement
is made: if in Corollary 10.13 the element ω ∈ P is picked to be “close
to 0P ”, then the summation in (10.14) will not have too many terms,
and will give us a shot at a tractable formula for µ(0P , 1P ).

Corollary 10.13. Let P be a finite lattice and let µ be the Möbius
function of P . Then, for every ω 6= 0P we have that

(10.14)
∑
π∈P

π∨ω=1P

µ(0P , π) = 0.

Proof. Consider the function g : P → C defined by

g(π) := µ(0P , π), π ∈ P.
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Let us look at the function f := g ∗ ζ obtained from g by partial
summations: for every τ ∈ P we have

f(σ) =
∑
π∈P
π≤σ

g(π) =
∑
π∈P

0P≤π≤σ

µ(0P , π)ζ(π, σ)

= (µ ∗ ζ)(0P , σ) =

{
1, if σ = 0P

0, otherwise.

We apply the preceding proposition to these functions f and g, where
in the Equation (10.13) we pick the element ω given in the statement
of the corollary and we make τ = 1P . We obtain:

(10.15)
∑
σ∈P

ω≤σ≤1P

f(σ)µ(σ, 1P ) =
∑
π∈P

π∨ω=1P

g(π).

The left-hand side of the Equation (10.15) is equal to 0, because we
have f(σ) = 0 for all the elements σ involved in that summation. Thus
the right-hand side of (10.15) must vanish as well. ¤

The Möbius function of NC

The example which gave the name to the Möbius inversion is, nat-
urally, due to Möbius and occurred in number theory (where P is the
set of positive integers equipped with the partial order given by divis-
ibility). For the present lectures, our main interest is however in the
Möbius function of the poset P = NC(n) of non-crossing partitions of
{1, . . . , n}.

The computation of the Möbius functions of the NC(n)’s is largely
simplified by the canonical factorization of intervals observed in Lecture
9, combined with the following general fact.

Proposition 10.14. 1) Let P and Q be finite posets, and suppose
that Φ : P → Q is a poset isomorphism. Then µQ( Φ(π), Φ(σ) ) =
µP (π, σ) for every π, σ ∈ P such that π ≤ σ (and where µP and µQ are
the Möbius functions of the lattices P and Q, respectively).

2) Let P1, P2, . . . , Pk be finite posets, and consider their direct prod-
uct P = P1×P2×· · ·×Pk (with partial order as described in Definition
9.27 of Lecture 9). Then for π1 ≤ σ1 in P1, . . . , πk ≤ σk in Pk we have

(10.16) µP ( (π1, . . . , πk), (σ1, . . . , σk) ) = µP1(π1, σ1) · · ·µPk
(πk, σk).

The statements in Proposition 10.14 have routine verifications,
which are left to the reader (cf. Exercise 10.27 at the end of the lecture).

Now let us turn to the lattices of non-crossing partitions NC(n).
For every n ≥ 1 we will denote the Möbius function of NC(n) by µn.
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Moreover, let us use the notation

(10.17) sn := µn(0n, 1n), n ≥ 1,

where 0n and 1n are the minimum and maximum element of NC(n),
respectively. Due to the factorization result observed in the last section
of Lecture 9, the values of the Möbius functions of the lattices NC(n)
will be completely (and explicitly) determined as soon as we figure out
what are the numbers sn. Indeed, let π ≤ σ be in NC(n) and suppose
that the interval [π, σ] has the canonical factorization

[π, σ] ∼= NC(1)k1 ×NC(2)k2 × · · · ×NC(n)kn ;

then Proposition 10.14 clearly gives us that:

(10.18) µn(π, σ) = sk1
1 sk2

2 · · · skn
n .

The first few of the numbers sn are: s1 = 1 (since in NC(1) we have
01 = 11), s2 = −1 (because in NC(2) we have that 12 covers 02 – cf.
Remark 10.9), and s3 = 2 (see Example 10.10). The general formula
for the sn’s turns out to have again to do with the Catalan numbers.

Proposition 10.15. For every n ≥ 1, µn(0n, 1n) is a signed Cata-
lan number,

(10.19) µn(0n, 1n) = (−1)n−1Cn−1.

Proof. We will use the short-hand notation µn(0n, 1n) =: sn in-
troduced in Equation (10.17).

Let us fix for the moment an n ≥ 4. We will invoke the Corollary
10.13 in the situation when the poset P (appearing in the corollary) is
P = NC(n), and when the special element ω ∈ P is the non-crossing
partition

ω := { {1}, {2}, . . . , {n− 2}, {n− 1, n} }.
In order to more efficiently apply the Corollary 10.13 to the above

P and ω, let us observe that the set {π ∈ NC(n) | π ∨ ω = 1n}
which appears in the corollary can be listed explicitly: it is {1n} ∪
{π1, . . . , πn−1}, where π1 := { {1, . . . , n− 1}, {n} } and where for every
2 ≤ i ≤ n− 1 we set πi := { {i, . . . , n− 1}, {1, . . . , i − 1, n} }. Indeed,
let π ∈ NC(n) be such that π ∨ ω = 1n. Then π cannot have a block
which is completely contained in {1, . . . , n − 2}. (Why: suppose such
a block exists, and denote its minimal and maximal element by a and
by b, respectively. Denote {a, . . . , b} =: V and {1, . . . , n} \ V =: W .
Then the partition with two blocks ρ = {V,W} ∈ NC(n) is a common
upper bound for π and for ω, contradicting the fact that π ∨ ω = 1n.)
So every block of π either contains n− 1 or it contains n. If n− 1 and
n lie in the same block of π then it follows that π = 1n, while in the
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opposite case we get that π has exactly two blocks. In the latter case
we denote by i the minimal element of the block of π which contains
n − 1, and an immediate non-crossing argument proves that we must
have π = πi (where πi was defined above).

Now let us apply the Corollary 10.13 to the situation at hand. We
obtain that

µn(0n, 1n) +
n−1∑
i=1

µn(0n, πi) = 0.

For each 1 ≤ i ≤ n− 1 it is immediate that the canonical factorization
of the interval [0n, πi] is

[0n, πi] ∼= NC(i)×NC(n− i),

hence the formula (10.18) gives us that µn(0n, πi) = sisn−i. The equa-
tion obtained by applying the Corollary 10.13 is thus:

(10.20) sn +
n−1∑
i=1

sisn−i = 0.

The above equation was derived for n ≥ 4, but it is immediate (by
plugging in the values of s1, s2, s3 observed preceding to this proposi-
tion) that it actually holds for n ≥ 2.

If we now set cn := (−1)nsn+1, for n ≥ 0, and we rewrite the
Equation (10.20) in terms of the ck’s, we get

cn−1 −
n−1∑
i=1

ci−1cn−i−1 = 0, n ≥ 2.

This means that we have encountered again the recurrence relation

cn =
n∑

i=1

ci−1cn−i, n ≥ 1,

which determines the sequence of Catalan numbers (cf. Lecture 2,
Remark 2.12). Thus cn is equal to the nth Catalan number Cn, and
the result follows. ¤

Multiplicative functions on NC

The discussion of the preceding section suggests that the Möbius
functions of the lattices NC(n) should be looked at together (for all
values of n at the same time). Moreover the Equation (10.18) shows
that the Möbius functions on the NC(n)’s form a multiplicative family,
in the sense of the following definition.
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Definition 10.16. Let (αn)n≥1 be a sequence of complex numbers.
Define a family of functions Fn : NC(n)(2) → C, n ≥ 1, by the following
formula: if π ≤ σ in NC(n) and if the canonical factorization of the
interval [π, σ] is

[π, σ] ∼= NC(1)k1 ×NC(2)k2 × · · · ×NC(n)kn ,

then we have

(10.21) Fn(π, σ) := αk1
1 αk2

2 · · ·αkn
n .

Then (Fn)n≥1 is called the multiplicative family of functions on
NC(2) determined by the sequence (αn)n≥1.

In general, a family of functions (Fn : NC(n)(2) → C)n≥1 will be
said to be multiplicative if it arises from some sequence of αn’s in
the way described above. (The αn’s will be in this case uniquely deter-
mined, αn = Fn(0n, 1n) for n ≥ 1.)

Remark 10.17. The algorithm for determining the canonical fac-
torization of an interval [π, σ] ⊂ NC(n) is fairly straightforward, and,
as a consequence, so is the algorithm for computing a specific value
for a multiplicative family on NC(n)(2). See for instance the concrete
Example 9.31 – for the interval [π, σ] ⊂ NC(12) considered there, the
Equation (10.21) simply reduces to

F12(π, σ) = α4
1α

4
2.

A way to capture what is going on here goes by putting explicitly
into evidence the following properties of a multiplicative family (Fn)∞n=1.

(i) Let π ≤ σ be in NC(n), where σ = {V1, . . . , Vr}. For every
1 ≤ k ≤ r consider the unique order-preserving bijection from Vk

to {1, . . . , |Vk|}, and let πk ∈ NC(|Vk|) be the image of π|Vk by this
bijection. Then

(10.22) Fn(π, σ) = F|V1|(π1, 1|V1|) · · ·F|Vr|(πr, 1|Vr|).

(ii) For every n ≥ 1 and every π ∈ NC(n) we have that

(10.23) Fn(π, 1n) = Fn(0n, K(π)),

where K(π) is the Kreweras complement of π.

(iii) For π = {V1, . . . , Vr} ∈ NC(n) we have that

(10.24) Fn(0n, π) = α|V1| · · ·α|Vr|,

where the αk’s are as in Definition 10.16, that is, αk = Fk(0k, 1k) for
k ≥ 1.
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Exercise 10.18. 1) Verify the properties of a multiplicative family
on NC(2) which are stated in (i), (ii), (iii) of the preceding remark.

2) Conversely, let (αn)n≥1 be a sequence of complex numbers and
let (Fn : NC(n)(2) → C)n≥1 be a family of functions such that (i),
(ii) and (iii) of Remark 10.17 are holding. Prove that (Fn)n≥1 is the
multiplicative family of functions on NC(2) determined by the sequence
(αn)n≥1.

The solution to Exercise 10.18 is obtained by essentially copying
the proof of Theorem 9.29, and is left to the reader.

Let us now also consider the one-variable version of the concept of
a multiplicative family.

Definition 10.19. Given a sequence (αn)n≥1 of complex numbers.
Define a family of functions fn : NC(n) → C, n ≥ 1, by the following
formula: if π = {V1, . . . , Vr} in NC(n), then:

(10.25) fn(π) := α|V1| · · ·α|Vr|.

Then (fn)n≥1 is called the multiplicative family of functions on
NC determined by the sequence (αn)n≥1.

In general, a family of functions (fn : NC(n) → C)n≥1 will be said
to be multiplicative if it arises from some sequence of αn’s in the way
described above. (The αn’s will be in this case uniquely determined,
αn = fn(1n) for n ≥ 1.)

So the multiplicativity of a family (fn)n≥1 on NC means that
one has a factorization of the fn’s according to the block structure
of the non-crossing partitions that the fn’s are applied to. For ex-
ample: If (fn)n≥1 and (αn)n≥1 are as above and if we look at π =
{(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} ∈ NC(10), then we have f10(π) =
α1α

3
2α3 (which is simply because π has 1 block with 1 element, has 3

blocks with 2 elements, and has 1 block with 3 elements).
In connection to the Definition 10.19, we will also use the following

notation.

Notation 10.20. Let (αn)n≥1 be a sequence of complex numbers,
and let (fn)n≥1 be the multiplicative family of functions on NC which
is determined by (αn)n≥1. Then we will use the notation

απ := fn(π) for π ∈ NC(n),

and we will refer to the family of numbers (απ)n∈N,π∈NC(n) as the mul-
tiplicative extension of (αn)n≥1. When using the multiplicative ex-
tension (απ)n∈N,π∈NC(n) we will occasionally just say that “π 7→ απ is
multiplicative”.
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Proposition 10.21. Let (fn)n≥1 be a multiplicative family on NC,
and let (Fn)n≥1 be a multiplicative family on NC(2). Then the family
(fn ∗ Fn)n≥1 is multiplicative on NC as well.

Proof. For every n ≥ 1 we denote fn ∗Fn =: gn, and we also make
the notation

βn := gn(1n) =
∑

τ∈NC(n)

fn(τ)Fn(τ, 1n).

Let us fix for the remaining of the proof an n ≥ 1 and a partition
π = {V1, . . . , Vr} ∈ NC(n). Our goal for the proof is to verify that

gn(π) = β|V1| · · · β|Vr|.

We consider the canonical lattice isomorphism between the interval
[0n, π] ⊂ NC(n) and the direct product NC(|V1|)× · · · ×NC(|Vr|), as
discussed in Lecture 9 (cf. the proof of Theorem 9.29). This isomor-
phism is explicitly described as

[0n, π] 3 τ 7→ (τ1, . . . , τr) ∈ NC(|V1|)× · · · ×NC(|Vr|),
where τk is the image of τ |Vk under the order-preserving bijection be-
tween Vk and {1, . . . , |Vk|}, 1 ≤ k ≤ r. Note that for τ and (τ1, . . . , τr)
as above, the property (i) observed in the Remark 10.17 gives us that

(10.26) Fn(τ, π) = F|V1|(τ1, 1|V1|) · · ·F|Vr|(τr, 1|Vr|).

On the other hand, for the same τ and (τ1, . . . , τr) the multiplicativity
of fn immediately gives us that

(10.27) fn(τ) = f|V1|(τ1) · · · f|Vr|(τr).

But then we can compute:

gn(π) =
∑

τ∈[0n,π]

fn(τ)Fn(τ, π)

=
∑

τ1,...,τr

(
f|V1|(τ1) · · · f|Vr|(τr)

)
·
(
F|V1|(τ1, 1|V1|) · · ·F|Vr|(τr, 1|Vr|)

)
.

In the latter sum we have that τ1, . . . , τr run in NC(|V1|), . . . , NC(|Vr|),
respectively. This sum is obtained by performing the “change of vari-
able” τ ↔ (τ1, . . . , τr), and then by using the Equations (10.26) and
(10.27). Finally, it is clear that the last expression obtained for gn(π)
can be factored as

r∏

k=1

( ∑

τk∈NC(|Vk|)
f|Vk|(τk)F|Vk|(τk, 1|Vk|)

)
,

which is
∏r

k=1 β|Vk|, as desired. ¤
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Remark 10.22. With a bit more effort, one can prove the analo-
gous proposition involving two multiplicative families on NC(2). More
precisely, it turns out that if (Fn)n≥1 and (Gn)n≥1 are multiplicative
families of functions on NC(2) then we always have that

1) Fn ∗Gn = Gn ∗ Fn, ∀ n ≥ 1, and
2) (Fn ∗Gn)n≥1 is a multiplicative family as well.

We will discuss this in more detail in Lecture 18.

Functional equation for convolution with µn

We conclude the lecture by returning to its main theme, and by
making the Fn’s of Proposition 10.21 become the Möbius multiplicative
family (µn)n≥1. So in this case we are dealing with two multiplicative
families (fn)n≥1 and (gn)n≥1 on NC, related by

(10.28) gn = fn ∗ µn (or equivalently: fn = gn ∗ ζn), n ≥ 1.

For the theory of free cumulants which will be developed in the next
lectures it will be important to have an alternative description of the
Equation (10.28), expressed in terms of power series. This goes as
follows.

Theorem 10.23. Let (fn)n≥1 and (gn)n≥1 be two multiplicative fam-
ilies on NC, which are related as in Equation (10.28). Let (αn)n≥1 and
(βn)n≥1 be the sequences of numbers which determine these two multi-
plicative families; that is, we denote fn(1n) =: αn and gn(1n) =: βn,
n ≥ 1. Consider moreover the power series:

(10.29) u(z) = 1 +
∞∑

n=1

αnz
n and v(z) = 1 +

∞∑
n=1

βnzn.

Then u and v satisfy the functional equations

(10.30) v
(
zu(z)

)
= u(z) and u

( z

v(z)

)
= v(z).

Proof. From fn = gn ∗ ζn we have that αn = fn(1n) =∑
π∈NC(n) gn(π). We rewrite the latter sum in the way that we fix

the first block V1 of π (i.e. that block which contains the element 1)
and sum over all possibilities for the other blocks. We get:

αn =
n∑

s=1

∑

V1 with |V1| = s

∑
π∈NC(n)

where π = {V1, . . . }

gn(π).

If we write explicitly V1 = {v1, v2, . . . , vs} with 1 = v1 < v2 < · · · <
vs, then from the non-crossing condition it is immediate that the π’s
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appearing in the above formula have to be of the form

π = V1 ∪ π̃1 ∪ · · · ∪ π̃s,

where π̃j is a non-crossing partition of {vj +1, vj +2, . . . , vj+1−1} (and
where we make the convention that vs+1 := n). Putting

ij := vj+1 − vj − 1

we identify π̃j with an element in NC(ij) (where the appropriate con-
vention is made in the case when ij = 0). The multiplicativity of g
gives us that

gn(π) = βsgi1(π̃1) · · · gis(π̃s)

(where gij(π̃j) is simply taken to be 1 in the cases when ij = 0). We
thus obtain:

αn =
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

∑
π=V1∪π̃1∪···∪π̃s

π̃j∈NC(ij)

βsgi1(π̃1) · · · gis(π̃s)

=
n∑

s=1

βs

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

( ∑

π̃1∈NC(i1)

gi1(π̃1)
) · · · (

∑

π̃s∈NC(is)

gis(π̃s)
)

=
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

βsαi1 · · ·αis .

This can now be used to rewrite the corresponding formal power series
in the following way.

u(z) = 1 +
∞∑

n=1

αnz
n

= 1 +
∞∑

n=1

n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

(βsz
s)(αi1z

i1) · · · (αisz
is)

= 1 +
∞∑

s=1

βsz
s
( ∞∑

i=0

αiz
i
)s

= v
(
zu(z)

)
.

To get the second version of the functional equation (10.30) we put
x = zu(z), which yields

z =
x

u(z)
=

x

v(x)
.
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But then we have

v(x) = v(zu(z)) = u(z) = u
( x

v(x)

)
.

¤

Example 10.24. Recall the statement made in Proposition 9.35 of
the preceding lecture, that the multi-chains of length k−1 in the lattice

NC(n) are counted by the Fuss-Catalan number C
(k)
n . We outline here

a possible way of deriving this fact, relying on the functional equation
obtained in the preceding theorem.

The Fuss-Catalan numbers C
(k)
n (n, k ≥ 1) were introduced via

the Equation (9.22) of Notation 9.34, which generalizes the formula
defining Catalan numbers. We will accept here that, for every fixed

k ≥ 1, the sequence (C
(k)
n )∞n=1 could be alternatively defined via the

recurrence relation

(10.31) C(k)
n =

∑

i1,...,ik+1≥0

i1+···+ik+1=n−1

C
(k)
i1

C
(k)
i2
· · ·C(k)

ik+1
, n ≥ 1,

where we make the convention that C
(k)
0 := 1. (Note that in the partic-

ular case when k = 1, this is precisely the Catalan recurrence relation
(2.8) from Remark 2.10, which has repeatedly appeared throughout
these lectures.) It is immediately seen that the recurrence (10.31) can
be concisely re-written as an equation for the corresponding power se-
ries; this equation is

(10.32) uk(z) = 1 + zuk(z)k+1, k ≥ 1,

where for every k ≥ 1 we put

(10.33) uk(z) :=
∞∑

n=0

C(k)
n zn.

Let us now pretend we don’t know what is the number of multi-

chains of length k−1 in NC(n), and let us denote this number by Z
(k)
n

(n, k ≥ 1). For every k ≥ 1 let (f
(k)
n )n≥1 be the multiplicative family of

functions on NC which is determined by the sequence (Z
(k)
n )n≥1 (in the

sense of Definition 10.19). It is easily verified by induction on k that

f (k)
n = ζn ∗ ζn ∗ · · · ∗ ζn︸ ︷︷ ︸

k+1

, ∀ n, k ≥ 1.
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But then, for every k ≥ 1, the power series

wk+1(z) := 1 +
∞∑

n=1

Z(k+1)
n zn and wk(z) := 1 +

∞∑
n=1

Z(k)
n zn

can play the roles of u and respectively v in the Theorem 10.23, and
must therefore satisfy the functional equation of that theorem,

(10.34) wk(zwk+1(z)) = wk+1(z).

The functional equation (10.34) can in turn be used to show (via an
easy induction on k) that wk satisfies the Equation (10.32). It follows
that wk must coincide with the series uk defined in (10.33), and the

equality Z
(k)
n = C

(k)
n follows for all n, k ≥ 1.

Exercises

Exercise 10.25. Let P be a poset with n elements. Prove that
one can find a way of listing P = {π1, . . . , πn} which has the following
property: for every 1 ≤ i < j ≤ n, either the elements πi and πj are
incomparable or they are such that πi < πj.

[Hint: There has to exist an ω ∈ P with no majorants – i.e. such
that there exists no π ∈ P with ω < π. Set πn := ω and proceed by
induction.]

Exercise 10.26. Let T be a set of n×n upper triangular matrices
which has the following properties:
• T is closed under addition, multiplication, and scalar multiplication.
• Every diagonal matrix is in T .

Suppose that T ∈ T is an invertible matrix. Prove that T−1 ∈ T .

[Hint: Write T = D −N where D is diagonal and N is strictly upper
triangular. Observe that D is invertible and that D−1, N ∈ T . Then

write T−1 = (In −D−1N)−1 ·D−1 =
(∑n−1

k=0(D
−1N)k

)
D−1.]

Exercise 10.27. Prove the statements made in the Proposition
10.14 of this lecture.

[Hint: For the statement 2, verify that the function on P (2) defined
by the right-hand side of Equation (10.16) satisfies the relations which
were discussed in the Remark 10.7, and which determine µP uniquely.]

The next exercise will use the following definition.

Definition 10.28. Let P be a finite poset which has a minimum
element 0P .
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1) A family π0 < π1 < · · · < πk of elements of P is called a chain
in P ; the non-negative integer k is called the length of the chain.

2) A saturated chain in P is a chain π0 < π1 < · · · < πk in P
which has the property that πi covers πi−1 for every 1 ≤ i ≤ k.

3) Consider the following condition on P : whenever π0 < π1 <
· · · < πk and σ0 < σ1 < · · · < σl are saturated chains in P such that
π0 = σ0 and πk = σl, it follows that k = l. If this condition is fulfilled,
then we say that P is a graded poset.

4) Suppose that P is a graded poset. Then for every π ∈ P we
define the rank of π to be the length of an arbitrary saturated chain
π0 < π1 < · · · < πk such that π0 = 0P and πk = π.

Exercise 10.29. Let n be a positive integer.
1) Let π, σ ∈ NC(n) be such that π ≤ σ. Describe what it means

for σ to cover π, and observe that this is equivalent to the equality
|π| = |σ|+ 1.

2) Show that NC(n) is a ranked poset, where the rank of π ∈
NC(n) is equal to n− |π|.

Exercise 10.30. Give an alternative derivation for the Möbius
functions on the lattices of non-crossing partitions by using the concept
of multiplicative family on NC, and the functional equations provided
by the Proposition 10.23.

The Exercises 10.31–10.33 are about the Möbius function for the
lattice P(n) of all partitions of {1, . . . , n}. We will denote this Möbius
function by µP(n). The derivation of the explicit formula for µP(n) goes
on the same line as shown above for the Möbius function on NC(n),
and thus starts with a factorization result (which is even more straight-
forward than the one from the non-crossing framework).

Exercise 10.31. Let π and σ be partitions in P(n) such that π ≤ σ.
Let us write explicitly σ = {V1, . . . , Vr} and

π = {W1,1, . . . , W1,k1 , . . . , Wr,1, . . . , Wr,kr},
where Wi,1 ∪ · · · ∪Wi,ki

= Vi, 1 ≤ i ≤ r. Prove that the interval [π, σ]
of P(n) is isomorphic to the direct product P(k1)× · · · × P(kr).

Exercise 10.32. For every n ≥ 1, let us denote

µP(n)( [0n, 1n] ) =: an,

where 0n and 1n are the minimum and respectively the maximum el-
ements of P(n). By using an argument which parallels the one in the
proof of Proposition 10.15, show that

an = (−1)n−1(n− 1)!, ∀ n ≥ 1.
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[Hint. One obtains a recurrence for the an’s, in exactly the same way
as the Equation (10.20) was obtained in the proof of Proposition 10.15.
The recurrence reads as follows:

an +
∑

A⊂{1,...,n−2}
a1+|A| · an−1−|A| = 0, n ≥ 2. ]

Exercise 10.33. Consider again the partitions π ≤ σ in P(n)
which appeared in Exercise 10.31 (and where the blocks of π and of σ
are listed explicitly in the same way as in Exercise 10.31). Prove that

µP(n)( [π, σ] ) =
r∏

i=1

(−1)ki−1(ki − 1)!





LECTURE 11

Free cumulants: definition and basic properties

We will now introduce our main combinatorial tool for dealing with
free independence, the “free cumulants”. Motivated by our treatment
of the free central limit theorem we expect these free cumulants κπ to
be determined by the “moment-cumulant formula”

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ[a1, . . . , an]

and by the fact that κπ factorizes according to the block structure of
π. This fits in the frame of multiplicative functions on NC and the
Möbius inversion of the last two lectures, modulo the small detail that
our multiplicative functions are now not determined by a sequence of
numbers but by a sequence of multilinear functionals on an algebra A.
We will thus first extend our notion of multiplicative functions to this
setting.

Given all these preparations the definition of free cumulants will
then be quite straightforward. That this is indeed a useful definition
in the context of free probability theory will become clear from the
main result of this lecture: free independence can be characterized by
the vanishing of mixed cumulants. An important technical tool for
deriving this characterization is a formula for free cumulants where the
arguments are products of random variables. This formula is actually
at the basis of many of our forthcoming results in later lectures and
allows elegant proofs of many statements.

Multiplicative functionals on NC

Definition 11.1. Let A be a unital algebra. Given a sequence
(ρn)n≥1 of multilinear functionals on A,

ρn : An → C
(a1, . . . , an) 7→ ρn(a1, . . . , an),

185
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we extend this to a family of multilinear functionals ρπ (n ≥ 1, π ∈
NC(n)),

ρπ : An → C
(a1, . . . , an) 7→ ρπ[a1, . . . , an],

by the following formula: if π = {V1, . . . , Vr} ∈ NC(n), then:

(11.1) ρπ[a1, . . . , an] := ρ(V1)[a1, . . . , an] · · · ρ(Vr)[a1, . . . , an],

where we used the notation

(11.2) ρ(V )[a1, . . . , an] := ρs(ai1 , . . . , ais) for V = (i1 < · · · < is).

Then (ρπ)n≥1,π∈NC(n) is called the multiplicative family of function-
als on NC determined by the sequence (ρn)n≥1. Note the distinction
between our use of round brackets for the ρn and square brackets for
the ρπ. The ρπ are indeed an extension of the ρn, because we have
ρn =̂ ρ1n , i.e.,

ρn(a1, . . . , an) = ρ1n [a1, . . . , an]

for all n ≥ 1 and all a1, . . . , an.
In general, a family of multilinear functionals

(ρπ : An → C)n≥1,π∈NC(n)

will be said to be multiplicative if it arises from some sequence of
multilinear functionals ρn : An → C in the way described above. (The
ρn’s will be in this case uniquely determined, ρn =̂ ρ1n for n ≥ 1.)

So the multiplicativity of a family (ρπ)n≥1,π∈NC(n) means that one
has a factorization of the ρπ’s according to the block structure of the
non-crossing partitions π. In addition to the case of multiplicative
families of functions from the last lecture we must now also distribute
our arguments a1, . . . , an according to the blocks of π. For example,
for

π = {(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} ∈ NC(10),

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

,

we have

ρπ[a1, . . . , a10] = ρ2(a1, a10) · ρ3(a2, a5, a9) · ρ2(a3, a4) · ρ1(a6) · ρ2(a7, a8).
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Definition of free cumulants

First, we have to make out of our functional ϕ a sequence of multi-
linear functions ϕn and then extend this to the corresponding moment
functionals ϕπ.

Notation 11.2. Let A be a unital algebra and ϕ : A → C a
unital linear functional. This gives rise to a sequence of multilinear
functionals (ϕn)n∈N on A via

(11.3) ϕn(a1, . . . , an) := ϕ(a1 · · · an).

We extend these to the corresponding multiplicative functionals on
non-crossing partitions by (a1, . . . , an ∈ A)

(11.4) ϕπ[a1, . . . , an] :=
∏
V ∈π

ϕ(V )[a1, . . . , an],

where ϕ(V )[a1, . . . , an] is defined as in (11.2).

Now we can define the free cumulants by Möbius inversion.

Definition 11.3. Let (A, ϕ) be a non-commutative probability
space. The corresponding free cumulants (κπ)π∈NC are, for each
n ∈ N, π ∈ NC(n), multilinear functionals

κπ : An → C,

(a1, . . . , an) 7→ κπ[a1, . . . , an]

which are defined as follows:

(11.5) κπ[a1, . . . , an] :=
∑

σ∈NC(n)
σ≤π

ϕσ[a1, . . . , an]µ(σ, π),

where µ is the Möbius function on NC(n).
For each n ≥ 1, we put κn := κ1n .

Note that all our arguments from the last lecture about multiplica-
tive functions and Möbius inversion remains also valid in the more
general context of multiplicative families of functionals (provided we
take care of distributing the arguments a1, . . . , an at the right posi-
tions). Thus our results from the last lecture yield the following basic
statements about free cumulants.

Proposition 11.4. 1) The free cumulant function π 7→ κπ is a
multiplicative family of functionals, i.e. we have

(11.6) κπ[a1, . . . , an] :=
∏
V ∈π

κ(V )[a1, . . . , an].
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2) In particular, all information about the free cumulants is con-
tained in the sequence of cumulants (κn)n∈N, where, for n ∈ N,
κn := κ1n. The Definition 11.3 of free cumulants is equivalent to the
statement that π 7→ κπ is a multiplicative family of functionals and that
for all n ∈ N and all a1, . . . , an ∈ A we have

(11.7) κn(a1, . . . , an) =
∑

σ∈NC(n)

ϕσ[a1, . . . , an]µ(σ, 1n).

3) The Definition 11.3 of free cumulants is equivalent to the state-
ments that π 7→ κπ is a multiplicative family of functionals and that
for all n ∈ N and all a1, . . . , an ∈ A we have

(11.8) ϕ(a1 · · · an) =
∑

σ∈NC(n)

κπ[a1, . . . , an].

Proof. The fact that multiplicativity of ϕ and multiplicativity
of κ are equivalent follows from Proposition 10.21. The equivalence
between the relations (11.7) and (11.8) is just an instance of general
Möbius inversion, Proposition 10.6. ¤

Notation 11.5. We will call Equations (11.7) and (11.8) the
moment-cumulant formulas.

Examples 11.6. We want to determine the concrete form of
κn(a1, . . . , an) for small values of n.

1) n = 1: Clearly, here we have

κ1(a1) = ϕ(a1).

2) n = 2: There are only two partitions in NC(2) and the values
of the Möbius function are

µ( , ) = 1, µ( , ) = −1.

Thus we have

κ2(a1, a2) = ϕ [a1, a2]− ϕ [a1, a2]

= ϕ(a1a2)− ϕ(a1)ϕ(a2).

3) n = 3: We have five partitions and the relevant values of the
Möbius function are

µ( , ) = 1, µ( , ) = −1

µ( , ) = −1, µ( , ) = −1, µ( , ) = 2.
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With this we obtain

κ3(a1, a2, a3) = ϕ [a1, a2, a3]− ϕ [a1, a2, a3]− ϕ [a1, a2, a3]

− ϕ [a1, a2, a3] + 2ϕ [a1, a2, a3]

= ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a2)ϕ(a3)

− ϕ(a1a3)ϕ(a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).

4) n = 4: In this case we consider only the special situation where
all ϕ(ai) = 0. Then we have

κ4(a1, a2, a3, a4) = ϕ(a1a2a3a4)− ϕ(a1a2)ϕ(a3a4)− ϕ(a1a4)ϕ(a2a3).

Another way to look at the cumulants κn for n ≥ 2 is that they
organize in a special way the information about how much ϕ ceases to
be a homomorphism.

Proposition 11.7. Let (κn)n≥1 be the cumulants corresponding to
ϕ. Then ϕ is a homomorphism if and only if κn vanishes for all n ≥ 2.

Proof. Let ϕ be a homomorphism. Note that, for any σ ∈ NC(n),
this means

ϕσ[a1, . . . , an] = ϕ(a1)ϕ(a2) · · ·ϕ(an) = ϕ0n [a1, . . . , an]

for all a1, . . . , an ∈ A, thus we have ϕσ = ϕ0n for all σ ∈ NC(n). Thus
we get

κn =
∑
σ≤1n

ϕσµ(σ, 1n) = ϕ0n

∑
0n≤σ≤1n

µ(σ, 1n),

which is, by the recurrence relation (10.11) for the Möbius function,
equal to zero if 0n 6= 1n, i.e. for n ≥ 2.

To see the other direction, one only has to observe the following: if
κ2 vanishes, then we have for all a1, a2 ∈ A

0 = κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2),

i.e., ϕ(a1a2) = ϕ(a1)ϕ(a2) for all a1, a2 ∈ A, and thus ϕ is an homo-
morphism. ¤

Remark 11.8. In particular, this means that on constants only the
first order cumulants are different from zero:

(11.9) κn(1, . . . , 1) = δn1.
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Products as arguments

In this section, we want to focus on properties of our free cumu-
lants with respect to the algebraic structure of our underlying algebra
A. Of course, the behavior of free cumulants with respect to the linear
structure of A is clear, because our cumulants are multilinear function-
als. Thus it remains to see whether there is anything to say about the
relation of the free cumulants with the multiplicative structure of the
algebra.

The crucial property in a multiplicative context is associativity.
On the level of moments this just means that we can put brackets
arbitrarily and this goes over to our moment functionals ϕn in the form
that we do not have to bother about putting commas; for example, we
have

ϕ2(a1a2, a3) = ϕ((a1a2)a3) = ϕ(a1(a2a3)) = ϕ2(a1, a2a3).

The corresponding statement on the level of cumulants is, of course,
not true, i.e. κ2(a1a2, a3) 6= κ2(a1, a2a3) in general. However, there is
a treatable and nice replacement for associativity, which allows to deal
with free cumulants whose entries are products of random variables.
This formula will be fundamental for our forthcoming investigations
on free cumulants.

Consider random variables a1, . . . , an ∈ A, multiply some of the
“neighboring” ones together, and look on a free cumulant with these
products as entries, i.e., we are interested in

κτ [a1 · · · ai(1), ai(1)+1 · · · ai(2), . . . , ai(m−1)+1 · · · ai(m)]

for some fixed increasing sequence of integers 1 ≤ i(1) < i(2) < · · · <
i(m) := n. Thus our cumulant has m arguments and τ is some partition
in NC(m). Our aim is to express this cumulant in terms of cumulants of
the original random variables, i.e. in terms of κπ[a1, a2, . . . , an], where
π are now some cumulants in NC(n). Since in such a formula τ and π
must be somehow related, we need a way to put them both in the same
lattice of non-crossing partitions. It will turn out that the following
embedding of NC(m) into NC(n) is the adequate tool for doing so.

Notation 11.9. For fixed natural numbers m,n ∈ N with m < n
and a fixed sequence of integers

i(0) := 0 < i(1) < i(2) < · · · < i(m) := n

we define an embedding from NC(m) into NC(n), τ 7→ τ̂ , as follows: τ̂
is that partition which we get from τ by replacing each j ∈ {1, . . . , m}
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by (i(j − 1) + 1, . . . , i(j)) ⊂ (1, . . . , n) , i.e.,

i(j − 1) + 1 ∼τ̂ i(j − 1) + 2 ∼τ̂ · · · ∼τ̂ i(j)

and i(k) ∼τ̂ i(l) if and only if k ∼τ l. It is easily checked that τ̂ is
really non-crossing.

Another way of stating the definition of τ̂ is to say that it is given
as the pullback τ̂ = f−1 ◦ τ of the function f : {1, . . . , n} → {1, . . . , m}
defined by f(l) = k for i(k − 1) < l ≤ i(k).

Example 11.10. As an example, consider n = 6, m = 3, and
i(1) = 1 < i(2) = 4 < i(3) = 6. It is most illustrative to index the
partitions with the random variables instead of integers. So let also
dummy random variables a1, . . . , a6 be given and we are interested in
cumulants in the new variables A1 := a1, A2 := a2a3a4, A3 := a5a6.

Consider the partition τ = {(1, 2), (3)} ∈ NC(3), which we draw
as

A1A2A3

.

Then τ̂ is obtained by replacing A1 with a1, A2 with a2a3a4, and A3

with a5a6 which leads to

a1 a2 a3 a4 a5 a6

,

thus τ̂ = {(1, 2, 3, 4), (5, 6)} ∈ NC(6).
As another example, consider σ = {(1, 3), (2)} ∈ NC(3), i.e.,

A1A2A3

.

The corresponding partition in terms of the ai looks like

a1 a2 a3 a4 a5 a6

,

thus σ̂ = {(1, 5, 6), (2, 3, 4)} ∈ NC(6).

Remarks 11.11. We want here to collect some basic properties of
the mapping τ 7→ τ̂ , which follow directly from the definition.

1) The mapping τ 7→ τ̂ is injective, we have that 1̂m = 1n and

0̂m =
{
(1, . . . , i(1)), (i(1) + 1, . . . , i(2)), . . . , (i(m− 1) + 1, . . . , i(m))

}
.
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Furthermore, the mapping τ 7→ τ̂ preserves the partial order – i.e.,
σ ≤ π for σ, π ∈ NC(m) implies σ̂ ≤ π̂ – and the image of NC(m) is

N̂C(m) = [0̂m, 1̂m] = [0̂m, 1n] ⊂ NC(n)

We can summarize all these facts by saying that the mapping τ 7→ τ̂ is
a lattice isomorphism between NC(m) and [0̂m, 1n] ⊂ NC(n).

2) Since the value µ(σ, π) of the Möbius function depends only on
the interval [σ, π], the lattice isomorphism between [σ, π] ⊂ NC(m)
and [σ̂, π̂] ⊂ NC(n) implies, in particular, that for all σ, π ∈ NC(m)
we have µ(σ, π) = µ(σ̂, π̂).

Theorem 11.12. Consider a non-commutative probability space
(A, ϕ) and let (κπ)π∈NC be the corresponding free cumulants. Let
m,n ∈ N and 1 ≤ i(1) < i(2) < · · · < i(m) = n be given and con-
sider the corresponding embedding τ 7→ τ̂ , defined in Notation 11.9.
Recall that

0̂m =
{
(1, . . . , i(1)), . . . , (i(m− 1) + 1, . . . , i(m))

} ∈ NC(m).

Consider now random variables a1, . . . , an ∈ A.
1) For a non-crossing partition τ ∈ NC(m) the following equation

holds:

(11.10) κτ [a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)] =
∑

π∈NC(n)

π∨0̂m=τ̂

κπ[a1, . . . , an] .

2) In particular, for τ = 1m we have
(11.11)

κm(a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)) =
∑

π∈NC(n)

π∨0̂m=1n

κπ[a1, . . . , an].

Proof. Let us denote Aj := ai(j−1)+1 · · · ai(j) (1 ≤ j ≤ m). Then,
by using the basic properties of the embedding τ 7→ τ̂ from Remark
11.11, we can calculate as follows:

kτ [A1, . . . , Am] =
∑

π∈NC(m)
π≤τ

ϕπ[A1, . . . , Am]µ(π, τ)

=
∑

π∈NC(m)
π≤τ

ϕπ̂[a1, . . . , an]µ(π̂, τ̂)

=
∑

σ∈NC(n)

0̂m≤σ≤τ̂

ϕσ[a1, . . . , an]µ(σ, τ̂)
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But the last formula is now exactly a partial Möbius inversion as we
considered in the last lecture, and Proposition 10.11 yields directly our
assertion. ¤

Example 11.13. As an illustrative example for the statement of
the theorem let us consider the following example: We take m = 2,
n = 3, i(1) = 2 < i(2) = 3, and τ = 12. This means we are looking at
the cumulant κ2(a1a2, a3). Our theorem tells us that we have to sum
over all π ∈ NC(3) which have the property that π∨{(1, 2), (3)} = 13.
This means that π has to connect the block (1, 2) to the block (3). The
π ∈ NC(3) which do so are given in the following picture:

a1 a2 a3

The other two elements in NC(3) do not have this property:

a1 a2 a3

Thus our theorem claims that

κ2(a1a2, a3) = κ [a1, a2, a3] + κ [a1, a2, a3] + κ [a1, a2, a3]

= κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3) + κ2(a1, a3)κ1(a2) .

Of course, one can easily check directly that this true.

Remark 11.14. If σ ∈ NC(n) is an interval partition as above –
i.e., if all blocks V of σ consist of consecutive numbers – then, according
to Exercise 9.43, the join σ∨π for any π ∈ NC(n) is the same in NC(n)
as in P(n). In particular, the condition σ∨π = 1n amounts to the fact
that for any two blocks V and W of σ we can find a chain of points
p1, . . . , pr such that p1 ∈ V , pr ∈ W , and such that alternatingly the
points are in the same block of π or σ,

V 3 p1 ∼π p2 ∼σ p3 ∼π · · · ∼σ pr−1 ∼π pr ∈ W.

Thus we will also address, in the case that σ is an interval partition,
the condition σ ∨ π = 1n by saying that π couples the blocks of σ.
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Free independence and free cumulants

Now we want to present the main reason why free cumulants are
an important tool in free probability theory: free independence can be
described very easily and effectively in terms of cumulants. Roughly
speaking, random variables are freely independent if and only if their
mixed cumulants vanish. Let us start with a special case of this. Since
1 is, by Lemma 5.17, free from everything we should have that free
cumulants of lengths greater than one vanish whenever at least one
of their arguments is 1. Note that for n = 1 we have, of course,
κ1(1) = ϕ(1) = 1.

Proposition 11.15. Let (A, ϕ) be a non-commutative probability
space and let (κn)n∈N be the corresponding free cumulants. Consider
n ≥ 2 and a1, . . . , an ∈ A. Then we have κn(a1, . . . , an) = 0 if there
exists at least one i, 1 ≤ i ≤ n, such that ai = 1.

Proof. To simplify notation we consider the case an = 1, i.e. we
want to show that κn(a1, . . . , an−1, 1) = 0. We will prove this by in-
duction on n.

For n = 2, the assertion is true, since

κ2(a, 1) = ϕ(a1)− ϕ(a)ϕ(1) = 0.

Now assume we have proved the assertion for all k < n and let us
show it for n. We have

ϕ(a1 · · · an−11) =
∑

π∈NC(n)

κπ[a1, . . . , an−1, 1]

= κn(a1, . . . , an−1, 1) +
∑

π∈NC(n)
π 6=1n

κπ[a1, . . . , an−1, 1].

According to our induction hypothesis, a partition π 6= 1n contributes
to the above sum only if (n) is a one-element block of π, i.e., if π =
σ ∪ (n) with σ ∈ NC(n− 1). For such a partition π we have

κπ[a1, . . . , an−1, 1] = κσ[a1, . . . , an−1]κ1(1) = κσ[a1, . . . , an−1],

hence

ϕ(a1 · · · an−11) = κn(a1, . . . , an−1, 1) +
∑

σ∈NC(n−1)

kσ[a1, . . . , an−1]

= κn(a1, . . . , an−1, 1) + ϕ(a1 · · · an−1).

Since ϕ(a1 · · · an−11) = ϕ(a1 · · · an−1), we obtain finally our assertion
κn(a1, . . . , an−1, 1) = 0. ¤
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Now we can prove our main theorem, which states that free inde-
pendence is equivalent to the “vanishing of mixed cumulants”.

Theorem 11.16. (vanishing of mixed cumulants)
Let (A, ϕ) be a non-commutative probability space and let (κn)n∈N be
the corresponding free cumulants. Consider unital subalgebras (Ai)i∈I

of A. Then the following two statements are equivalent:

i) (Ai)i∈I are freely independent
ii) We have for all n ≥ 2 and for all aj ∈ Ai(j) (j = 1, . . . , n)

with i(1), . . . , i(n) ∈ I that κn(a1, . . . , an) = 0 whenever there
exist 1 ≤ l, k ≤ n with i(l) 6= i(k).

Remark 11.17. This characterization of freeness in terms of cu-
mulants is the translation to cumulants of the definition of freeness
(which was in terms of moments) – by using the moment-cumulant for-
mula (11.7). One should note that, in contrast to the characterization
in terms of moments, we do not require that i(1) 6= i(2) 6= · · · 6= i(n)
nor that ϕ(aj) = 0. Hence the characterization of freeness in terms of
cumulants is much easier to use than the characterization in terms of
moments.

Proof. (i) =⇒ (ii): If all aj are centered, i.e., ϕ(aj) = 0 for all
j = 1, . . . , n, and alternating, i.e., i(1) 6= i(2) 6= · · · 6= i(n), then the
assertion follows directly by the moment-cumulant formula

κn(a1, . . . , an) =
∑

π∈NC(n)

ϕπ[a1, . . . , an]µ(π, 1n),

because at least one factor of ϕπ is of the form ϕ(alal+1 · · · al+p), which
vanishes by the definition of free independence.

The essential part of the proof consists in showing that on the level
of cumulants the assumption “centered” is not needed and “alternat-
ing” can be weakened to “mixed”.

Let us start by getting rid of the assumption “centered”. Since
n ≥ 2, the above Proposition 11.15 implies that we have for arbitrary
a1, . . . , an ∈ A the relation

(11.12) κn(a1, . . . , an) = kn

(
a1 − ϕ(a1)1, . . . , an − ϕ(an)1

)
,

i.e. we can center the arguments of our cumulants κn (n ≥ 2) without
changing the value of the cumulants.

Thus we have proved the following statement: Consider n ≥ 2 and
aj ∈ Ai(j) (j = 1, . . . , n) with i(1) 6= i(2) 6= · · · 6= i(n). Then we have
κn(a1, . . . , an) = 0.

To prove (ii) in full generality we will use induction on the length of
our cumulants. For n = 2 and a1, a2 free we have ϕ(a1a2) = ϕ(a1)ϕ(a2)
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and thus

κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2) = 0.

Fix now n ≥ 3 and assume we have proved (ii) for all κl with l < n.
Consider aj ∈ Ai(j) (j = 1, . . . , n). Assume that there exist k, l with
i(k) 6= i(l). We have to show that κn(a1, . . . , an) = 0. If i(1) 6=
i(2) 6= · · · 6= i(n), then the assertion is already proved. If the elements
are not alternating then we multiply neighboring elements from the
same algebra together, i.e. we write a1 . . . an = A1 . . . Am such that
neighboring A’s come from different subalgebras. Note that m ≥ 2
because of our assumption i(k) 6= i(l). Then, by Theorem 11.12, we
have

κm(A1, . . . , Am) =
∑

π∈NC(n),
π∨σ=1n

κπ[a1, . . . , an]

= κn(a1, . . . , an) +
∑

π∈NC(n),π 6=1n
π∨σ=1n

κπ[a1, . . . , an]

where σ ∈ NC(n) is that partition whose blocks encode the information
about which elements aj we have to multiply in order to get the Ai; that

is σ = 0̂m in the Notation 11.9. Since the A’s are alternating we have
κm(A1, . . . , Am) = 0. Furthermore, for π 6= 1n, the term κπ[a1, . . . , an]
is a product of cumulants of lengths smaller than n. Thus our induction
hypothesis applies to them and we see that κπ[a1, . . . , an] can only be
different from zero, if each block of π contains only elements from
the same subalgebra. So all blocks of σ that are coupled by π must
correspond to the same subalgebra. (Note that by the definition of σ,
each of its blocks contains only elements from the same subalgebra.)
However, we are only looking at π with the additional property that
π ∨ σ = 1n, which means that π has to couple all blocks of σ, compare
Remark 11.14. Hence all appearing elements must be from the same
subalgebra, which is in contradiction with m ≥ 2. Thus there is no non-
vanishing contribution in the above sum and we get κn(a1, . . . , an) = 0.

(ii) =⇒ (i): Consider aj ∈ Ai(j) (j = 1, . . . , n) with i(1) 6=
i(2) 6= · · · 6= i(n) and ϕ(aj) = 0 for all j = 1, . . . , n. Then
we have to show that ϕ(a1 · · · an) = 0. But this is clear because
we have ϕ(a1 · · · an) =

∑
π∈NC(n) κπ[a1, . . . , an] and each product

κπ[a1, . . . , an] =
∏

V ∈π κ(V )[a1, . . . , an] contains at least one factor of
the form κp+1(al, al+1, . . . , al+p) which vanishes in any case (for p = 0
because our variables are centered and for p ≥ 1 because of our as-
sumption on the vanishing of mixed cumulants). ¤
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Cumulants of random variables

When we are dealing with random variables (ai)i∈I living in some
non-commutative probability space (A, ϕ), then we are mainly inter-
ested in the collection of all their joint moments or their joint distri-
bution, i.e., in ϕ restricted to the algebra A0 := alg(ai | i ∈ I}. In
the same spirit, we will mainly consider free cumulants restricted to
A0, more specifically, to cumulants whose arguments are the random
variables themselves.

Notation 11.18. Let (ai)i∈I be random variables in some non-
commutative probability space (A, ϕ) and let (κn)n∈N be the corre-
sponding free cumulant functionals.

1) We will call free cumulants of (ai)i∈I all expressions of the
form κn(ai(1), ai(2), . . . , ai(n)) for n ∈ N and i(1), . . . , i(n) ∈ I.

2) If (A, ϕ) is a ∗-probability space, then by the free ∗-cumulants
of (ai)i∈I we will mean the free cumulants of (ai, a

∗
i )i∈I .

3) If we have only one random variable a, then we will also use the
notation κa

n := κn(a, . . . , a).

Remarks 11.19. 1) It is clear that the knowledge of all cumulants
of (ai)i∈I contains the same information as the family of joint moments
of (ai)i∈I .

2) In order to recognize cumulants of given random variables
(ai)i∈I it is worthwhile to give the following explicit reformulation
of Proposition 11.4: Assume we are given some complex numbers
κ̃π[ai(1), . . . , ai(n)] for all n ∈ N, π ∈ NC(n), 1 ≤ i(1), . . . , i(n) ≤ m
such that:

(i) The κ̃π are multiplicative in the sense

κ̃π[ai(1), . . . , ai(n)] =
∏
V ∈π

κ̃(V )[a1, . . . , an],

where, for V = (r1 < · · · < rs) ∈ π, we use the notation (11.2),

κ̃(V )[ai(1), . . . , ai(n)] := κ̃1s(ai(r1), . . . , ai(rs)).

(ii) We can write the moments of (ai)i∈I as

ϕ(ai(1) · · · ai(n)) =
∑

π∈NC(n)

κ̃π[ai(1), . . . , ai(n)]

for all n ∈ N and all i(1), . . . , i(n) ∈ I.

Then these κ̃ are the cumulants of (ai)i∈I , i.e.,

κπ[ai(1), . . . , ai(n)] = κ̃π[ai(1), . . . , ai(n)]

for all n ∈ N and π ∈ NC(n).



198 11. FREE CUMULANTS: DEFINITION AND BASIC PROPERTIES

Let us now consider the question of how to recognize free indepen-
dence between random variables (ai)i∈I by looking at their cumulants.
Theorem 11.16 tells us that we can decide on this by checking the
vanishing of mixed cumulants, however, there we have to examine all
mixed cumulants with entries from the subalgebras generated by our
random variables. In the spirit of the present section we might hope
that it is enough to consider the free cumulants of the random variables
themselves (without having to invoke the generated subalgebras). The
next theorem shows that this is indeed the case.

Theorem 11.20. Consider a non-commutative probability space
(A, ϕ) and let (κn)n∈N be the corresponding free cumulant function-
als. Consider random variables (ai)i∈I in A. Then the following two
statements are equivalent:

i) (ai)i∈I are freely independent.
ii) We have for all n ≥ 2 and for all i(1), . . . , i(n) ∈ I that

κn(ai(1), . . . , ai(n)) = 0 whenever there exist 1 ≤ l, k ≤ n with
i(l) 6= i(k).

Proof. That i) implies ii) follows of course directly from Theorem
11.16. But the other way around is not immediately clear, since we have
to show that our present assumption ii) implies also the apparently
stronger assumption ii) for the case of algebras. Thus let Ai be the
unital algebra generated by the element ai and consider now elements
bj ∈ Ar(j) (j = 1, . . . , n) with r(1), . . . , r(n) ∈ I such that r(l) 6=
r(k) for some l, k. Then we have to show that κn(b1, . . . , bn) vanishes.
As each bj is a polynomial in ar(j) and since cumulants with a 1 as
entry vanish always for n ≥ 2, it suffices, by the multilinearity of the
cumulants, to consider the case where each bj is some power of ar(j). If
we write b1 · · · bn as ai(1) · · · ai(m) then we have

κn(b1, . . . , bn) =
∑

π∈NC(m)
π∨σ=1m

κπ[ai(1), . . . , ai(m)],

where the blocks of σ denote the neighboring elements which have to
be multiplied to give the bi. In order that κπ[ai(1), . . . , ai(m)] is different
from zero, we must have, by our assumption (ii), that i(p) = i(q)
whenever p ∼π q. So all blocks of σ which are coupled by π must
correspond to the same ai. However, we only consider π for which
we have π ∨ σ = 1m, which means that all blocks of σ have to be
coupled by π. Thus all ai should be the same, in contradiction with
the fact that we consider a mixed cumulant. Hence there is no non-
vanishing contribution in the above sum and we finally get our assertion
κn(b1, . . . , bn) = 0. ¤
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Example: semicircular and circular elements

Examples 11.21. Let us record here the cumulants of semicircular
elements and families.

1) The second part of Remark 11.19 allows us to extract directly
the cumulants of semicircular variables from the knowledge of their mo-
ments. Recall from Lectures 2 and 8 (in particular, Corollary 2.14 and
Lemma 8.9) that the moments of a semicircular element s of variance
σ2 are given by the number of non-crossing pairings, i.e.,

ϕ(s2k) = σ2k ·#NC2(2k) = σ2k
∑

π∈NC2(2k)

1 =
∑

π∈NC(2k)

∏
V ∈π

κ(V ),

where

κ(V ) =

{
σ2, if #V = 2

0, otherwise
.

This tells us that the second order cumulant of s is equal to σ2 and all
other cumulants are zero,

(11.13) κs
n = δn2σ

2.

2) More generally, the Definition 8.15 of a semicircular family (si)i∈I

of covariance (cij)i∈I can be stated in the equivalent form that

(11.14) κn(si(1), . . . , si(n)) = δn2ci(1)i(2).

Another important random variable in free probability is the non-
normal version of a semicircular element - the circular element. This is
the replacement of a complex normal distribution in the world of free
probability.

Definition 11.22. An element c of the form c = 1√
2
(s1 + is2) –

where s1 and s2 are two freely independent semicircular elements of
variance 1 – is called a circular element.

Example 11.23. The vanishing of mixed cumulants in free vari-
ables gives directly the cumulants of a circular element: Since only sec-
ond order cumulants of semicircular elements are different from zero,
the only non-vanishing cumulants of a circular element are also of sec-
ond order and for these we have

κ2(c, c) = κ2(c
∗, c∗) =

1

2
− 1

2
= 0

κ2(c, c
∗) = κ2(c

∗, c) =
1

2
+

1

2
= 1.
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Even elements

Notations 11.24. Let (A, ϕ) be a non-commutative probability
space.

1) We call an element x ∈ A even if all its odd moments vanish,
i.e. if ϕ(x2k+1) = 0 for all k ≥ 0.

2) Let x be an even element. We will call (αn)n≥1 with αn := κx
2n

the determining sequence of the variable x.

It is immediately seen that the vanishing of all odd moments is
equivalent to the vanishing of all odd cumulants and thus the deter-
mining sequence contains all information about the distribution of an
even element. Another way of encoding the information about an even
element x is by looking at the distribution of x2. Actually, there is a
very precise way of relating these two descriptions.

Proposition 11.25. Let x be an even element with determining
sequence (αn)n≥1. Then the cumulants of x2 are given as follows:

(11.15) κn(x2, . . . , x2) =
∑

π∈NC(n)

απ,

where απ is the multiplicative extension to NC of the determining se-
quence, i.e., for any π ∈ NC(n)

απ =
∏
V ∈π

α|V |.

The proof of this statement relies mainly on our formula for cu-
mulants with products as arguments and a detailed study of what the
condition on π ∨ σ means in this case. This proof is very typical for
many of our investigations in free probability theory and various vari-
ants of these arguments will show up at different places in the rest of
Part 2.

Proof. Applying Theorem 11.12 yields

κn(xx, . . . , xx) =
∑

π∈NC(2n)
π∨σ=12n

κπ[x, x, . . . , x, x]

with σ = {(1, 2), (3, 4), . . . , (2n− 1, 2n)} ∈ NC(2n).
We claim now the following:

(11.16) {π ∈ NC(2n) | π ∨ σ = 12n} =

{π ∈ NC(2n) | 1 ∼π 2n, 2k ∼π 2k + 1 ∀k = 1, . . . , n− 1}.
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Since the right-hand side of (11.16) is in canonical bijection with
NC(n) and since kπ[x, x, . . . , x, x] goes under this bijection to the prod-
uct απ, this gives directly the assertion.

So it remains to prove the claim. It is clear that a partition which
has the claimed property does also fulfill π ∨ σ = 12n. So we only have
to prove the other direction.

Let V be the block of π which contains the element 1. Since x is even
the last element of this block has to be an even number. (Otherwise
there would be an odd number of x’s which must be coupled among
themselves by π.) If this even number would not be 2n, but 2k for
1 ≤ k < n, then we would have a situation as follows . . .

V¾ -

x x
?

1

· · · x x
?

2k

x x
?

2k + 1

· · ·

. . . and V would not be connected in π ∨ σ to the block containing
2k + 1. Hence π ∨ σ = 12n implies that the block containing the first
element 1 contains also the last element 2n.

Now fix a k = 1, . . . , n − 1 and let V be the block of π containing
the element 2k. Assume that V does not contain the element 2k + 1.
Then there are two possibilities.

Either 2k is not the last element in V , i.e., there exists a next
element in V , which is necessarily of the form 2l + 1 with l > k:

V

· · · x x
?

2k

x x
?

2k + 1

· · · x x x x
?

2l + 1

· · ·

. . . or 2k is the last element in V , in which case the first element of V
is of the form 2m + 1 with 0 ≤ m ≤ k − 1:

x x
?

2m + 1

· · · x x
?

2k

x x
?

2k + 1

· · ·
V¾ -
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But in both cases the block V does not get connected with the element
2k + 1 in π ∨ σ, so that this cannot give 12n. Hence the condition
π ∨ σ = 12n forces 2k and 2k + 1 to lie in the same block. This proves
our claim and hence the assertion.

¤
Example 11.26. As an example for the application of the previous

proposition, let us calculate the cumulants for the square of a semicir-
cular variable s of variance σ2. Then we have αn = δn1 and thus

απ =

{
σ2n, if π = 0n

0, otherwise.

Hence (11.15) says in this case

κn(s2, . . . , s2) = σ2n.

We will come back to the relevance of this result in the next lecture in
the context of free Poisson distributions, see Proposition 12.13.

Appendix: classical cumulants

The theory of free cumulants is of course inspired by an analogous
theory of classical cumulants. As we pointed out repeatedly, from the
combinatorial point of view the difference between classical probability
theory and free probability theory consists in replacing the lattice of
all partitions by the lattice of non-crossing partitions. In this section,
we want to be a bit more explicit on this and provide, for comparison,
the definition and some main properties of classical cumulants.

Notations 11.27. 1) Recall from Lecture 9, Definition 9.1 and
Remark 9.19, that P(n) denotes the lattice of all partitions of the set
{1, . . . , n}, equipped with the usual reversed refinement order as partial
order. Furthermore, we use the notation

P :=
∞⋃

n=1

P(n).

2) We extend a linear functional on an algebra A to a corresponding
multiplicative function on all partitions in the same way as we did it
in Notation 11.2 for non-crossing partitions, namely by (π ∈ P(n),
a1, . . . , an ∈ A)

(11.17) ϕπ[a1, . . . , an] :=
∏
V ∈π

ϕ(V )[a1, . . . , an],

where we use our usual notation ϕ(V )[a1, . . . , an] := ϕs(ai1 , . . . , ais) for
V = (i1 < · · · < is) ∈ π.
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Definition 11.28. Let (A, ϕ) be a non-commutative probability
space. Then, for π ∈ P(n), we define the classical cumulants cπ as
a multilinear functional by

(11.18) cπ[a1, . . . , an] =
∑

σ∈P(n)
σ≤π

ϕσ[a1, . . . , an] · µP(n)(σ, π),

where µP(n) denotes the Möbius function on P(n). Sometimes, these
classical cumulants are also called semi-invariants.

The above definition is, by Möbius inversion on P(n), equivalent to

ϕ(a1 · · · an) =
∑

π∈P(n)

cπ[a1, . . . , an].

As in the non-crossing case, one shows that (cπ)n∈N,π∈P(n) is a mul-
tiplicative family of functions on P and it is thus determined by the
values of

cn(a1, . . . , an) := c1n [a1, . . . , an].

Examples 11.29. Let us compare free and classical cumulants for
small values of n. Since NC(n) and P(n) agree up to n = 3, we have
that c1 = κ1, c2 = κ2, and c3 = κ3. For n = 4, let us consider the
special case of centered variables, ϕ(ai) = 0 for i = 1, . . . , 4. Then we
have

c4(a1, a2, a3, a4) = ϕ(a1a2a3a4)

− ϕ(a1a2)ϕ(a3a4)− ϕ(a1a4)ϕ(a2a3)− ϕ(a1a3)ϕ(a2a4),

whereas

κ4(a1, a2, a3, a4) = ϕ(a1a2a3a4)−ϕ(a1a2)ϕ(a3a4)−ϕ(a1a4)ϕ(a2a3).

One has now the analogues of Theorems 11.12 and 11.16 for classical
cumulants. For the first one, observe that our map τ 7→ τ̂ can be
extended in a canonical way to an embedding P(m) → P(n).

Theorem 11.30. Consider a non-commutative probability space
(A, ϕ) and let (cπ)π∈P be the corresponding free cumulants. Let m,n ∈
N and 1 ≤ i(1) < i(2) < · · · < i(m) = n be given and denote by τ 7→ τ̂
the corresponding embedding P(m) → P(n). Recall that

0̂m =
{
(1, . . . , i(1)), . . . , (i(m− 1) + 1, . . . , i(m))

}
.

Consider now random variables a1, . . . , an ∈ A Then we have

(11.19) cm(a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)) =
∑

π∈P(n)

π∨0̂m=1n

cπ[a1, . . . , an]
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Example 11.31. Let us compare the statement of this theorem for
c2(a1a2, a3a4) with the corresponding statement for κ2(a1a2, a3a4). In
order to reduce the number of involved terms we will restrict to the
special case where ϕ(ai) = 0 for all i = 1, 2, 3, 4. In the classical case
there are three partitions π ∈ P(4) without singletons which satisfy

π ∨ {(1, 2), (3, 4)} = 14,

namely a1 a2 a3 a4

and thus Theorem 11.30 gives in this case

c2(a1a2, a3a4) = c4(a1, a2, a3, a4)

+ c2(a1, a4)c2(a2, a3) + c2(a1, a3)c2(a2, a4).

In the free case, only the first two, non-crossing partitions contribute
and the corresponding formula from Theorem 11.12 yields

κ2(a1a2, a3a4) = κ4(a1, a2, a3, a4) + κ2(a1, a4)κ2(a2, a3).

Classical cumulants have been considered in classical probability
theory – usually in terms of Fourier transforms, see Exercise 11.37 –
for a long time. Their relevance comes of course from the following
characterization, which is the perfect analogue of Theorem 11.16.

Theorem 11.32. Consider a non-commutative probability space
(A, ϕ) and let (cn)n∈N be the corresponding classical cumulants. Con-
sider unital subalgebras (Ai)i∈I of A which commute. Then the follow-
ing two statements are equivalent:

i) (Ai)i∈I are tensor independent
ii) We have for all n ≥ 2 and for all aj ∈ Ai(j) (j = 1, . . . , n)

with i(1), . . . , i(n) ∈ I that cn(a1, . . . , an) = 0 whenever there
exist 1 ≤ l, k ≤ n with i(l) 6= i(k).

Exercises

Exercise 11.33. Let (A, ϕ) be a probability space and X1,X2 ⊂ A
two subsets of A. Show that the following two statements are equiva-
lent:
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i) We have for all n ∈ N, 1 ≤ k < n and all a1, . . . , ak ∈ X1 and
ak+1, . . . , an ∈ X2 that ϕ(a1 · · · akak+1 · · · an) = ϕ(a1 · · · ak) ·
ϕ(ak+1 · · · an).

ii) We have for all n ∈ N, 1 ≤ k < n and all a1, . . . , ak ∈ X1 and
ak+1, . . . , an ∈ X2 that κn(a1, . . . , ak, ak+1, . . . , an) = 0.

Exercise 11.34. We will use the following notations: A partition
π ∈ P(n) is called decomposable, if there exists an interval I = {k, k +
1, . . . , k + r} 6= {1, . . . , n} (for some k ≥ 1, 0 ≤ r ≤ n− r), such that π
can be written in the form π = π1∪π2, where π1 ∈ P({k, k+1, . . . , k+
r}) is a partition of I and π2 ∈ P(1, . . . , k − 1, k + r + 1, . . . , n}) is a
partition of {1, . . . , n}\I. If there does not exist such a decomposition
of π, then we call π indecomposable. A function t :

⋃
n∈N P(n) → C is

called NC-multiplicative, if we have for each decomposition π = π1∪π2

as above that t(π1∪π2) = t(π1)·t(π2) (π1 and π2 are here identified with
partitions in P(r + 1)) and P(n − r − 1), respectively, in the obvious
way.)
Consider now a random variable a whose moments are given by the
formula

(11.20) ϕ(an) =
∑

π∈P(n)

t(π),

where t is a NC-multiplicative function on the set of all partitions.
Show that the free cumulants of a are then given by

(11.21) κn(a, . . . , a) =
∑

π∈P(n)
π indecomposable

t(π).

Exercise 11.35. Let b be a symmetric Bernoulli variable, i.e. a
selfadjoint random variable whose distribution is the probability mea-
sure 1

2
(δ−1 + δ1). In terms of moments this means:

(11.22) ϕ(bn) =

{
1, if n even

0, if n odd

Show that the cumulants of b are given by the following formula:

(11.23) κn(b, . . . , b) =

{
(−1)k−1Ck−1, if n = 2k even

0, if n odd.

Exercise 11.36. This exercise refers to classical cumulants
1) Prove Theorem 11.30.
2) Prove Theorem 11.32.
3) Calculate the classical cumulants of a Gaussian distribution and

of a classical Poisson distribution.
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Exercise 11.37. In this exercise we want to establish the connec-
tion between the combinatorial Definition 11.28 of classical cumulants
and the more common formulation in terms of Fourier transforms. We
restrict here to the case of one random variable.

1) Let (mn)n≥1 be the moments of a random variable and (cn)n≥1

the corresponding classical cumulants. Consider the exponential gen-
erating power series

A(z) := 1 +
∞∑

n=1

mn

n!
zn

and

B(z) :=
∞∑

n=1

cn

n!
zn.

Show that the combinatorial relation

mn =
∑

π∈P(n)

cπ

between the coefficients of these power series is equivalent to the rela-
tion

B(z) = log(A(z))

between the power series themselves.
2) Use the previous part of this exercise to prove the following. Let

ν be a compactly supported probability measure on R and F its Fourier
transform, defined by

F(t) :=

∫

R
e−itxdν(x).

Then, with (mn)n≥1 and (cn)n≥1 denoting the moments and classical
cumulants, respectively, of ν, we have the power series expansions

F(t) = 1 +
∞∑

n=1

(−it)n

n!
mn

and

logF(t) =
∞∑

n=1

(−it)n

n!
cn.



LECTURE 12

Sums of free random variables

Our main concern in this lecture will be the understanding and
effective description of the sum of freely independent random variables:
How can we calculate the distribution of a + b if a and b are free and if
we know the distribution of a and the distribution of b. Of particular
interest is the case of self-adjoint random variables x and y in a C∗-
probability space. In this case their distributions can be identified with
probability measures on R and thus taking the sum of free random
variables gives rise to a binary operation on probability measures on
R. We will call this operation “free convolution”, in analogy with the
usual concept of convolution of probability measures which corresponds
to taking the sum of classically independent random variables. Our
combinatorial approach to free probability theory, resting on the notion
of free cumulants, will give us very easy access to the main results of
Voiculescu on this free convolution via the so-called “R-transform”.

Free convolution

Definition 12.1. Let µ and ν be probability measures on R with
compact support. Let x and y be self-adjoint random variables in some
C∗-probability space such that x has distribution µ, y has distribution
ν, and such that x and y are freely independent. Then the distribution
of the sum x + y is called the free convolution of µ and ν and is
denoted by µ ¢ ν.

Remarks 12.2. 1) Note that, for given µ and ν as above, one
can always find x and y as required. For example, we can realize
x and y as multiplication operators with the identity function on the
Hilbert spaces L2(µ) and L2(ν), respectively and then take the reduced
free product of these C∗-probability spaces to make x and y freely
independent. Furthermore, by Lemma 5.13, the distribution of the sum
does only depend on the distribution µ of x and on the distribution ν
of y and not on the concrete realizations of x and y. Thus µ ¢ ν is
well-defined.

207
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2) Since x + y is selfadjoint and bounded, its distribution is also
a compactly supported probability measure on R. Thus ¢ is a bi-
nary operation on all compactly supported probability measures on R.
Without pursuing this line, we would like to mention that by adequate
truncations one can extend the definition of (and the main results on)
¢ also to arbitrary probability measures on R.

3) We have to warn the reader that there will be another notion
of free convolution, which will refer to the product of free random
variables and which will appear in Lecture 14. In order to distinguish
these two notions of free convolutions, one also calls ¢ the “additive
free convolution”.

Our aim is to find an effective way of calculating the free convolution
of two probability measures. According to our general philosophy that
free independence is better to describe in terms of cumulants than in
terms of moments, we should check what adding free variables means
for its cumulants.

Recall from Notation 11.18 that, for a random variable a we put

κa
n := κn(a, . . . , a)

and call (κa
n)n≥1 the “free cumulants of a”. Clearly, the free cumu-

lants of a contain the same information as the moments of a. However,
free cumulants behave much nicer with respect to taking sums of free
variables. This is a direct consequence of the vanishing of mixed cumu-
lants in free random variables and the multilinearity of our cumulant
functionals.

Proposition 12.3. Let a and b be free random variables in some
non-commutative probability space. Then we have

(12.1) κa+b
n = κa

n + κb
n for all n ≥ 1.

Proof. We have

κa+b
n = κn(a + b, . . . , a + b)

= κn(a, . . . , a) + κn(b, . . . , b)

= κa
n + κb

n,

because cumulants which have both a and b as arguments vanish by
Theorem 11.16. ¤

Thus, the sum of freely independent random variables is easy to
describe on the level of cumulants: the cumulants are additive in such
a case.
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Of course, the main problem has now been shifted to the connec-
tion between moments and cumulants. Let us recall what our Defini-
tion 11.3 for the free cumulants means in the case of one variable: If
(mn)n≥1 and (κn)n≥1 are the moments and the free cumulants, respec-
tively, of some random variable, then the connection between these two
sequences of numbers is given by our moment-cumulant formula

(12.2) mn =
∑

π∈NC(n)

κπ,

where π 7→ κπ is the multiplicative extension of cumulants to non-
crossing partitions, i.e.,

κπ := κ|V1| · · ·κ|Vr| for π = {V1, . . . , Vr} ∈ NC(n).

Example 12.4. Let us write down the moment-cumulant formula
and its Möbius inversion in this special case of one random variable for
small n. Of course, this is just a specialization of the corresponding
formulas from Examples 11.6.

1) For n = 1, we have

m1 = κ = κ1

and thus
κ1 = m1.

2) For n = 2, we have

m2 = κ + κ = κ2 + κ2
1,

and thus
κ2 = m2 −m2

1.

3) For n = 3, we have

m3 = κ + κ + κ + κ + κ = κ3 + 3κ1κ2 + κ3
1,

and thus
κ3 = m3 − 3m1m2 + 2m3

1.

For concrete calculations, however, one would prefer to have a more
analytical description of the relation between moments and cumulants.
This can be achieved by translating the moment-cumulant formula to
a formula which involves the corresponding formal power series. Note
that we treated this problem in Lecture 10, in the context of multi-
plicative families of functions on non-crossing partitions. Namely, if we
use the moments mn to build a multiplicative family of functions fn

on NC – by putting fn(1n) := mn for all n ≥ 1 – and the cumulants
κn to built a multiplicative family of functions gn on NC – by putting
gn(1n) := κn for all n ≥ 1 – then the relation (12.2) between moments
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and cumulants amounts to f = g ∗ ζ. What this means for the relation
between the (mn)n≥1 and (κn)n≥1 in terms of generating power series
was the content of Proposition 10.23. Let us reformulate this in our
present language.

Theorem 12.5. Let (mn)n≥1 and (κn)n≥1 be the moments and free
cumulants, respectively, of some random variable and consider the cor-
responding formal power series

(12.3) M(z) := 1 +
∞∑

n=1

mnzn

and

(12.4) C(z) := 1 +
∞∑

n=1

κnz
n.

Then we have

(12.5) C[zM(z)] = M(z).

If our random variable is a self-adjoint element in a C∗-probability
space, hence its distribution is a probability measure on R, it is advan-
tageous to consider instead of the moment generating series M(z) the
closely related Cauchy transform, because the latter has nice analytic
properties and allows in particular to recover the corresponding prob-
ability measure concretely with the help of Stieltjes inversion formula
(compare Remark 2.20 in Lecture 2). Recall that the Cauchy transform
for a probability measure µ is defined by

Gµ(z) =

∫

R

dµ(t)

z − t

and has in the case of a compactly supported µ the following power
series expansion about z = ∞

(12.6) Gµ(z) =
∞∑

n=0

mn

zn+1
,

where mn are the moments of µ. This means of course that we have

(12.7) Gµ(z) =
1

z
M(1/z).

(This equation can be either considered as equality between formal
power series, or as an analytic equation for sufficiently large z.) Thus we
can reformulate the previous theorem in terms of Gµ. When Voiculescu
first discovered these relations, he formulated the results not in terms
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of the cumulant generating series C(z), but in terms of a closely related
series, which he called “R-transform”.

Notation 12.6. Let µ be a compactly supported probability mea-
sure on R. Denote by (κn)n≥1 the free cumulants of µ. The R-
transform of µ is the formal power series

(12.8) Rµ(z) :=
∞∑

n=0

κn+1z
n.

Now we can combine the reformulation of our above Theorem 12.5
in terms of Cauchy- and R-transform together with the R-transform
formulation of Proposition 12.3 to obtain the main theorem about the
description of additive free convolution.

Theorem 12.7. 1) The relation between the Cauchy-transform
Gµ(z) and the R-transform Rµ(z) of a probability measure µ is given
by

(12.9) Gµ

[Rµ(z) + 1/z
]

= z.

2) The R-transform linearizes the free convolution, i.e., if µ and ν
are compactly supported probability measures on R, then we have

(12.10) Rµ¢ν(z) = Rµ(z) +Rν(z).

Proof. 1) We just have to note that the formal power series M(z)
and C(z) from Theorem 12.5 and G(z), R(z), and K(z) = R(z) + 1

z
are related by (12.7) and

C(z) = 1 + zR(z) = zK(z), thus K(z) :=
C(z)

z
.

This gives (where we leave the verification of the validity of these formal
power series manipulations as a straightforward exercise to the reader)

K[G(z)] =
1

G(z)
C[G(z)] =

1

G(z)
C

[M(1/z)

z

]
=

1

G(z)
M(1/z) = z,

thus K[G(z)] = z and hence also

G[R(z) + 1/z] = G[K(z)] = z.

2) Since, by Proposition 12.3, the coefficients of the R-transform
are additive under free convolution, the same is of course also true for
the R-transform itself. ¤

The R-transform was introduced by Voiculescu as the main tool for
dealing with free convolution and the above Theorem 12.7 presents his
two main results about this. However, his treatment was much more
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analytical, and showed the existence of the free cumulants of a random
variable, without giving a concrete combinatorial description of them.

Analytic calculation of free convolution

The above Theorem 12.7 provides us with a quite effective ma-
chinery for calculating the free convolution. Let µ, ν be probability
measures on R, then we can calculate µ ¢ ν as follows: Out of µ
and ν we calculate Gµ and Gν , respectively, then we use the rela-
tion between Cauchy transform and R-transform, Theorem 12.7, to
calculate the corresponding R-transforms Rµ and Rν . The free con-
volution on the level of R-transforms is now quite easily described by
Rµ¢ν(z) = Rµ(z) +Rν(z). It remains to go over to Gµ¢ν by invoking
once again Theorem 12.7 and finally to use the Stieltjes inversion for-
mula to recover µ ¢ ν itself. All these calculation should be done on
the level of analytic functions, not just as formal power series manipu-
lations.

Of course, explicit formulas for the transition between the Cauchy
transform and the R-transform might not always be obtainable, but
the following examples show that non-trivial examples can be treated.

Examples 12.8. 1) Let

µ = ν =
1

2
(δ−1 + δ+1).

Then we have

Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

Put

Kµ(z) =
1

z
+Rµ(z).

Then z = Gµ[Kµ(z)] gives

Kµ(z)2 − Kµ(z)

z
= 1,

which has as solutions

Kµ(z) =
1±√1 + 4z2

2z
.

Thus the R-transform of µ is given by

Rµ(z) = Kµ(z)− 1

z
=

√
1 + 4z2 − 1

2z
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(Note: Rµ(0) = k1(µ) = m1(µ) = 0, so that we have to choose the
plus-sign for the square root). Hence we get

Rµ¢µ(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z
,

and

K(z) := Kµ¢µ(z) = Rµ¢µ(z) +
1

z
=

√
1 + 4z2

z
,

which allows to determine G := Gµ¢µ via

z = K[G(z)] =

√
1 + 4G(z)2

G(z)

as

G(z) =
1√

z2 − 4

From this we can calculate the density

d(µ ¢ µ)(t)

dt
= − 1

π
lim
ε→0

= 1√
(t + iε)2 − 4

= − 1

π
= 1√

t2 − 4
,

so that we finally get

(12.11)
d(µ ¢ µ)(t)

dt
=

{
1

π
√

4−t2
, |t| ≤ 2

0, otherwise

Thus µ ¢ µ is the arcsine distribution. Note that in the corresponding
classical case, one gets a binomial distribution

µ ∗ µ =
1

4
δ−2 +

1

2
δ0 +

1

4
δ+2.

Thus it is justified to call µ ¢ µ a “free binomial distribution”.
2) In the same way as above, we can also calculate µ¢4 instead of

µ¢2. Note that this corresponds to the free convolution of the arcsine
distribution with itself and thus should recover the result of Kesten for
the moment generating series for the Laplacian in the free group F2;
see Example 4.5. The calculation proceeds as above; the R-transform
for µ¢4 is given by

R(z) = 2

√
1 + 4z2 − 1

z
,

which results in a Cauchy-transform

G(z) =
−z + 2

√
z2 − 12

z2 − 16
.
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If we rewrite this in the moment generating series M(z) = 1
z
G(1/z) we

get exactly the result mentioned in (4.9),

M(z) =
2
√

1− 12z2 − 1

1− 16z2
.

More general µ¢n for all n ∈ N will be addressed in Exercise 12.21.

Exercise 12.9. For a probability measure µ and a real number
r ∈ R we denote by Sr(µ) the probability measure which is the shift of
µ by the amount r, i.e., for measurable A ⊂ R
(12.12) Sr(µ)(A) := µ(A− r), where A− r := {t− r | t ∈ A}.
Show that the free convolution has the property

(12.13) µ ¢ δr = Sr(µ).

Remarks 12.10. The above examples reveal some properties of
the free convolution, which are quite surprising compared to the corre-
sponding classical situation.

1) The free convolution has the property that the convolution of
discrete distributions can be an absolutely continuous distribution (i.e.,
a distribution which has a density with respect to Lebesgue measure).

2) In particular, we see that ¢ is not distributive with respect to
convex combinations of probability measures. If we put, as before, µ :=
1
2
(δ−1 + δ+1), then we have seen that µ ¢ µ is the arcsine distribution.

But on the other hand, by invoking also the above Exercise 12.9, we
have
1

2
(δ−1 ¢ µ) +

1

2
(δ+1 ¢ µ) =

1

2
S−1(µ) +

1

2
S+1(µ) =

1

4
δ−2 +

1

2
δ0 +

1

4
δ2,

so that we see:
1

2
(δ−1 + δ+1) ¢ µ 6= 1

2
(δ−1 ¢ µ) +

1

2
(δ+1 ¢ µ)

Proof of the free Central Limit Theorem via R-transform

With the help of the R-transform machinery we can now give a
more analytic and condensed proof of the free central limit theorem.
Since free cumulants are polynomials in moments and vice versa the
convergence of moments is equivalent to the convergence of cumu-
lants. Consider random variables a1, a2, . . . , which are free, identically
distributed, centered, and with variance σ2. In order to prove that
(a1 + · · ·+aN)/

√
N converges in distribution to a semicircular variable

s of variance σ2, it suffices thus to show that

R(a1+···+aN )/
√

N(z) →Rs(z) = σ2z
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in the sense of convergence of the coefficients of the formal power series.
It is easy to see that

Rλa(z) = λRa(λz).

Thus we get

R(a1+···+aN )/
√

N(z) =
1√
N
Ra1+···+aN

(
z√
N

)

= N
1√
N
Rai

(
z√
N

)

=
√

NRai
(

z√
N

)

=
√

N(κ1 + κ2
z√
N

+ κ3
z2

N
+ . . . )

=
√

N(σ2 z√
N

+ κ3
z2

N
+ . . . )

→ σ2z,

since κ1 = 0 and κ2 = σ2.

Free Poisson distribution

One of the most prominent distributions in classical probability
theory beyond the normal distribution is the Poisson distribution. One
can get a classical Poisson distribution as the limit in distribution for
N →∞ of (

(1− λ

N
)δ0 +

λ

N
δα

)∗N
,

see Exercise 12.22 for a precise formulation. Usually, the parameters λ
and α are called the “rate” and the “jump size” of the limiting Poisson
distribution (the latter referring to the fact that in the corresponding
Poisson process α is the size of the possible jumps; for the distribution
it just means that it is concentrated on natural multiples of α.)

Let us look at the free counterpart of that limit theorem. Clearly,
we will call a distribution appearing there in the limit a “free Poisson
distribution”. We will also use the names “rate” and “jump size” for the
parameters, although the latter clearly has no real meaning anymore
in the non-commutative context.

Proposition 12.11. (Free Poisson Limit Theorem)
Let λ ≥ 0 and α ∈ R. Then the limit in distribution for N →∞ of

(
(1− λ

N
)δ0 +

λ

N
δα

)¢N
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has free cumulants (κn)n≥1 which are given by

κn = λαn (n ≥ 1).

This corresponds to a probability measure ν on R which is given by

(12.14) ν =

{
(1− λ)δ0 + λν̃, if 0 ≤ λ ≤ 1

ν̃, if λ > 1
,

where ν̃ is the measure supported on the interval

[α(1−
√

λ)2, α(1 +
√

λ)2]

with density

(12.15) dν̃(t) =
1

2παt

√
4λα2 − (

t− α(1 + λ)
)2

dt.

Note that our choice of the parameters λ and α corresponds exactly
to the requirement that, for sufficiently large N , (1−λ/N)δ0 +λ/Nδα,
and thus also its N -fold free convolution power, is a probability measure
on R.

Definition 12.12. For given λ ≥ 0 and α ∈ R, the probability
measure given by (12.14) and (12.15) is called free Poisson distri-
bution with rate λ and jump size α.

Proof. Let us put

νN := (1− λ

N
)δ0 +

λ

N
δα.

This is a probability measure on R for N ≥ λ. In the following we
will always assume that N is large enough. We denote by mn(ν) and
κn(ν) the n-th moment and n-th cumulant, respectively, of a measure
ν. Then we have

mn(νN) =
λ

N
αn

and thus by the moment-cumulant formula (note that µ(·, ·) denotes
here the Möbius function on NC)

κn(νN) =
∑

π∈NC(n)

mπ(νN)µ(π, 1n)

=
λ

N
αn +

∑
π∈NC(n)

π 6=1n

mπ(νN)µ(π, 1n)

=
λ

N
αn + 0(1/N2),
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where O(1/N2) denotes a term which is bounded by a constant times
1/N2. Thus we have

κn(ν¢N
N ) = N · κn(νN) = λαn + O(1/N).

Letting N go to infinity shows that the n-th cumulant of νN converges
towards κn = λαn. Since the convergence of all cumulants is equivalent
to the convergence of all moments (for a formal proof of this in a more
general situation, see Lemma 13.2) it only remains to calculate the
explicit form of the limit out of the knowledge of its free cumulants.
For this we will use the R-transform machinery.

The R-transform of the limit is given by

R(z) =
∞∑

n=0

κn+1z
n =

∞∑
n=0

λαn+1zn = λα
1

1− αz
.

Thus the corresponding Cauchy-transform G(z) has to fulfill the equa-
tion

λα
1

1− αG(z)
+

1

G(z)
= z,

which has the solutions

G(z) =
z + α− λα±

√(
z − α(1 + λ)

)2 − 4λα2

2αz

Since G(z) must behave like 1/z for large z we have to choose the
minus-sign; application of Stieltjes inversion formula leads finally to
the asserted form of the probability measure. ¤

If we now look back on Example 11.26 then we see that we have
found there a quite surprising realization of a free Poisson element. Let
us state the result of that example in our present language.

Proposition 12.13. The square of a semicircular element of vari-
ance σ2 is a free Poisson element of rate λ = 1 and jump size α = σ2.

Remarks 12.14. 1) We want to emphasize that the analogous rela-
tion in classical probability theory does not hold, the square of a normal
variable is, of course, not a classical Poisson variable. In contrast to
the free case, there is no direct relation between normal and Poisson
variables in the classical world. This is a manifestation of the general
observation that the lattice of non-crossing partitions has “more struc-
ture” than the lattice of all partitions, which results in relations in free
probability theory without classical precedent.

2) The combinatorial explanation behind the fact that the square of
a semicircular element is a free Poisson element is that the number of
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non-crossing pairings of a set of 2n elements is the same as the number
of non-crossing pairings of a set of n elements, namely both are equal
to the Catalan number Cn. In the classical world, both corresponding
numbers have no clear relation. The number of pairings of a set of 2n
elements (i.e., the even moments of a Gaussian variable of variance 1)
is (2n− 1) · (2n− 3) · · · 5 · 3 · 1, whereas the number of partitions of a
set of n elements (i.e., the moments of a Poisson variable) is counted
by the so-called “Bell numbers” Bn. For more information on those,
see Exercise 12.23.

Compound free Poisson distribution

There exists a natural generalization of the class of classical Poisson
distributions – the so-called “compound Poisson distributions”. One
possibility for defining them is via a generalization of the limit theorem
for the Poisson distribution. Again, we have canonical counterparts of
this notion and results in the free world. We present the free version
of the limit theorem in the following proposition. The proof of this is
left to the reader.

Proposition 12.15. Let λ ≥ 0 and ν a probability measure on R
with compact support. Then the limit in distribution for N →∞ of

(
(1− λ

N
)δ0 +

λ

N
ν
)¢N

has free cumulants (κn)n≥1 which are given by

(12.16) κn = λ ·mn(ν) (n ≥ 1),

and thus an R-transform of the form

R(z) = λ

∫

R

x

1− xz
dν(x).

Definition 12.16. A probability measure µ on R with free cumu-
lants κn = κn(µ) of the form (12.16) for some λ > 0 and some com-
pactly supported probability measure ν on R, is called a compound
free Poisson distribution (with rate λ and jump distribution ν).

Remark 12.17. We can recover, of course, a free Poisson element
as a special compound free Poisson element for the choice ν = δα.
A general compound free Poisson distribution can be thought of as a
superposition of freely independent Poisson distributions; see Exercise
12.25 for more details on this.

Again, there is a relation between semicircular elements and com-
pound Poisson elements.
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Proposition 12.18. Let (A, ϕ) be a non-commutative probability
space. Let s, a ∈ A such that s is a semicircular element of variance 1
and such that s and a are free. Then the cumulants of sas are given by

(12.17) κn(sas, . . . , sas) = ϕ(an) for all n ≥ 1.

In particular, if a is living in a C∗-probability space and is selfadjoint
with distribution ν, then sas is a compound free Poisson element of
rate λ = 1 and jump distribution ν.

Proof. By Theorem 11.12, we get

κn(sas, . . . , sas) =
∑

π∈NC(3n)
π∨σ=13n

κπ[s, a, s, s, a, s, . . . , s, a, s],

where σ ∈ NC(3n) is the partition

(12.18) σ = {(1, 2, 3), (4, 5, 6), . . . , (3n− 2, 3n− 1, 3n)}.
Since s and a are freely independent, their mixed cumulants vanish and
κπ can only give a non-vanishing contribution if no block of π connects
an s with an a. Furthermore, since s is semicircular, each block which
connects among the s has to consist of exactly two elements. But then
the requirement π ∨ σ = 13n implies, by our usual arguments (see, for
instance, the proof of Proposition 11.25) that the blocks of π which
connect among the s must look like this:

s a s s a s s a s · · · · · · · · · s a s

This means that π must be of the form πs ∪ πa where πs is the special
partition

πs = {(1, 3n), (3, 4), (6, 7), (9, 10), . . . , (3n− 3, 3n− 2)}
∈ NC(1, 3, 4, 6, 7, 9, . . . , 3n− 3, 3n− 2, 3n),

and where πa is a partition restricted to the position of the a’s. Since
πs glues the blocks of σ together, πa does not have to fulfill any con-
straint and can be an arbitrary element in NC(2, 5, 8, . . . , 3n−1). Since
kπ[s, a, s, s, a, s, . . . , s, a, s] factorizes for π = πs ∪ πa into

κπs∪πa [s, a, s, s, a, s, . . . , s, a, s] = κπs [s, s, . . . , s] · κπa [a, a, . . . , a]

= κπa [a, a, . . . , a],
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we get finally

κn(sas, . . . , sas) =
∑

πa∈NC(n)

kπa [a, a, . . . , a] = ϕ(an).

¤

Example 12.19. As a generalization of the last proposition, con-
sider now the following situation. Let (A, ϕ) be a non-commutative
probability space. Consider s, a1, . . . , am ∈ A such that s is a semicir-
cular element of variance 1 and such that s and {a1, . . . , am} are freely
independent. Put Pi := sais. As above we can calculate the joint
distribution of these elements as

κn(Pi(1), . . . , Pi(n)) = κn(sai(1)s, . . . , sai(n)s)

=
∑

π∈NC(3n)
π∨σ=13n

kπ[s, ai(1), s, s, ai(2), s, . . . , s, ai(n), s]

=
∑

πa∈NC(n)

κπa [ai(1), ai(2), . . . , ai(n)]

= ϕ(ai(1)ai(2) · · · ai(n)),

where σ ∈ NC(3n) is as before the partition given in (12.18). Thus
we have again the result that the cumulants of P1, . . . , Pm are given
by the moments of a1, . . . , am. This contains of course the statement
that each of the Pi is a compound Poisson element, but we also get
that orthogonality between the ai is translated into free independence
between the Pi. Namely, assume that all ai are orthogonal in the sense
aiaj = 0 for all i 6= j. Consider now a mixed cumulant in the Pi, i.e.
κn(Pi(1), . . . , Pi(n)), with i(l) 6= i(k) for some l, k. Of course, then there
are also two neighboring indices which are different, i.e. we can assume
that k = l + 1. But then we have

κn(Pi(1), . . . , Pi(l), Pi(l+1), . . . , Pi(n)) = ϕ(ai(1) . . . ai(l)ai(l+1) . . . ai(n)) = 0.

Thus mixed cumulants in the Pi vanish and, by our Theorem 11.20,
P1, . . . , Pm have to be freely independent.

Exercises

Exercise 12.20. Let (A, ϕ) be a non-commutative probability
space and consider a family of random variables (“stochastic process”)
(at)t≥0 with at ∈ A for all t ≥ 0. Consider, for 0 ≤ s < t, the following
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formal power series

(12.19) G(t, s) =
∞∑

n=0

∫
· · ·

∫

t≥t1≥···≥tn≥s

ϕ(at1 . . . atn)dt1 . . . dtn,

which can be considered as a kind of replacement for the Cauchy
transform. We will now consider a generalization to this case of
Voiculescu’s formula for the connection between Cauchy transform and
R-transform.

(a) Denote by κn(t1, . . . , tn) := κn(at1 , . . . , atn) the free cumulants
of (at)t≥0. Show that G(t, s) fulfills the following differential equation

d

dt
G(t, s)

(12.20)

=
∞∑

n=0

∫
· · ·

∫

t≥t1≥···≥tn≥s

κn+1(t, t1, . . . , tn) ·G(t, t1)·

·G(t1, t2) · · ·G(tn−1, tn) ·G(tn, s)dt1 . . . dtn

= κ1(t)G(t, s) +

∫ t

s

κ2(t, t1) ·G(t, t1) ·G(t1, s)dt1

+

∫∫

t≥t1≥t2≥s

κ3(t, t1, t2) ·G(t, t1) ·G(t1, t2) ·G(t2, s)dt1dt2 + . . .

(b) Show that in the special case of a constant process, i.e., at = a
for all t ≥ 0, the above differential equation goes over, after Laplace
transformation, into Voiculescu’s formula for the connection between
Cauchy transform and R-transform.

Exercise 12.21. For µ = 1
2
(δ−1 + δ+1) calculate the density of

the “free binomial distributions” µ¢n for all natural n. (The resulting
measures were found by Kesten in the context of random walks on free
groups.) Does the result also make sense for non-integer n? (We will
come back to this question in Example 14.15.)

Exercise 12.22. Show (e.g., by using Fourier transforms) that the
limit of

(
(1− λ

N
)δ0 +

λ

N
δα

)∗N
,
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is given by the classical Poisson distribution of rate λ and jump size α,
i.e., by the probability distribution

e−λ

∞∑

k=0

λk

k!
δkα.

(δkα is here the discrete probability measure with mass 1 at kα.) This
is sometimes called the “law of rare events”.

Exercise 12.23. Let Bn denote the number of partitions of the set
(1, . . . , n). Show that the exponential generating series of these Bell
numbers is given by

(12.21)
∞∑

n=1

Bn

n!
zn = exp(ez − 1)

Determine the value of Bn for small n.

Exercise 12.24. Prove the limit theorem for compound free Pois-
son distribution, Prop. 12.15.

Exercise 12.25. 1) Let a1 and a2 be free Poisson elements with
rate λ1 and λ2 and jump size α1 and α2, respectively. Assume that a1

and a2 are freely independent. Show that a1 + a2 is a compound free
Poisson element. Show that it is a free Poisson element if and only if
α1 = α2.

2) Show that any compound free Poisson a can be approximated in
distribution by elements an where each an is the sum of finitely many
freely independent free Poisson elements.



LECTURE 13

More about limit theorems and infinitely divisible
distributions

The theory of infinitely divisible distributions is an important de-
velopment in classical probability theory which generalizes the central
limit theorem and the Poisson limit theorem. In this lecture we want
to develop the basics of the free counterpart of that theory.

Limit theorem for triangular arrays

We will now consider a more general limit theorem, corresponding
to triangular arrays of free random variables. In the corresponding
classical situation we get in the limit the so-called infinite divisible
distributions. We will see later that we have an analogous characteri-
zation in our free situation. In order to keep our considerations simple
we restrict to the case where we have identical distributions within the
rows of our triangle.

We will formulate our general limit theorem for the case of families
of random variables, indexed by some set I. Readers who do not feel
comfortable with such a generality should rewrite the theorem for the
special case where I consists of one element; for this, see also our
Remark 13.4.

Theorem 13.1. (Free Limit Theorem for Triangular Arrays)
Let, for each N ∈ N, (AN , ϕN) be a non-commutative probability space.
Let I be an index set. Consider a triangular field of random variables,
i.e. for each i ∈ I, N ∈ N and 1 ≤ r ≤ N we have a random

variable a
(i)
N ;r ∈ AN . Assume that, for each fixed N ∈ N, the sets

{a(i)
N ;1}i∈I , . . . , {a(i)

N ;N}i∈I are free and identically distributed. Then the
following statements are equivalent:

(1) The sums over the rows of our triangle converge in distribu-
tion, i.e., there is a family of random variables (bi)i∈I in some
non-commutative probability space such that

(13.1)
(
a

(i)
N ;1 + · · ·+ a

(i)
N ;N

)
i∈I

distr−→ (bi)i∈I .

223
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(2) For all n ≥ 1 and all i(1), . . . , i(n) ∈ I the limits

(13.2) lim
N→∞

N · ϕN(a
(i(1))
N ;r · · · a(i(n))

N ;r )

(which are independent of r by the assumption of identical dis-
tribution) exist.

Furthermore, if these conditions are satisfied, then the joint distribution
of the limit family (bi)i∈I is determined in terms of free cumulants by
(n ≥ 1, i(1), . . . , i(n) ∈ I)

(13.3) κn(bi(1), . . . , bi(n)) = lim
N→∞

N · ϕN(a
(i(1))
N ;r · · · a(i(n))

N ;r ).

Since our main tool are cumulants and not moments, it is good
to convince oneself that the statement on convergence of moments is
equivalent to convergence of cumulants.

Lemma 13.2. Let (AN , ϕN) be a sequence of probability spaces and

let, for each i ∈ I, a random variable a
(i)
N ∈ AN be given. Denote by

κN the free cumulants corresponding to ϕN . Then the following two
statements are equivalent:

(1) For each n ≥ 1 and each i(1), . . . , i(n) ∈ I the limit

lim
N→∞

N · ϕN(a
(i(1))
N · · · a(i(n))

N )

exists.
(2) For each n ≥ 1 and each i(1), . . . , i(n) ∈ I the limit

lim
N→∞

N · κN
n (a

(i(1))
N , . . . , a

(i(n))
N )

exists.

Furthermore the corresponding limits are the same.

Proof. (2) =⇒ (1): We have

lim
N→∞

N · ϕN(a
(i(1))
N · · · a(i(n))

N ) = lim
N→∞

∑

π∈NC(n)

N · κN
π [a

(i(1))
N , . . . , a

(i(n))
N ].

By assumption (2), all terms for π with more than one block tend to
zero and the term for π = 1n tends to the finite limit given by (2).
The other direction (1) =⇒ (2) is analogous. ¤

Proof of Theorem 13.1. We write

ϕN

(
(a

(i(1))
N ;1 + · · ·+ a

(i(N))
N ;N )n

)
=

N∑

r(1),...,r(n)=1

ϕN(a
(i(1))
N ;r(1) · · · a(i(n))

N ;r(n))

and observe that for fixed N a lot of terms in the sum give the same
contribution. Namely, the tuples (r(1), . . . , r(n)) and (r′(1), . . . , r′(n))
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give the same contribution if the indices agree at the same places.
As in the case of the central limit theorem (see, in particular, (8.1)),
we encode this relevant information by a partition π (which might a
priori be a crossing partition). Let (r(1), . . . , r(n)) be an index-tuple
corresponding to a fixed π, i.e., p ∼π q if and only if r(p) = r(q)
(p, q = 1, . . . , n). Then we can write

ϕN(a
(i(1))
N ;r(1) · · · a(i(n))

N ;r(n)) =
∑

σ∈NC(n)

κN
σ [a

(i(1))
N ;r(1), . . . , a

(i(n))
N ;r(n)]

=
∑

σ∈NC(n)
σ≤π

κN
σ [a

(i(1))
N ;r , . . . , a

(i(n))
N ;r ]

(where the latter expression is independent of r). The last equality
comes from the fact that elements belonging to different blocks of π
are free. The number of tuples (r(1), . . . , r(n)) corresponding to π is
of order N |π|, thus we get

(13.4) lim
N→∞

ϕN

(
(a

(i(1))
N ;1 + · · ·+ a

(i(n))
N ;N )n

)

=
∑

π∈P(n)

∑
σ∈NC(n)

σ≤π

lim
N→∞

N |π|κN
σ [a

(i(1))
N ;r , . . . , a

(i(n))
N ;r ].

By taking suitable polynomials in the left-hand expressions (namely,
classical cumulants of them), we see that the convergence in distribu-
tion of the sum of our rows is equivalent to the existence of all limits

∑
σ∈NC(n)

σ≤π

lim
N→∞

N |π|κN
σ [a

(i(1))
N ;r , . . . , a

(i(n))
N ;r ]

for all π ∈ P(n). By induction, the latter is equivalent to the existence
of all limits

lim
N→∞

N |π|κN
σ [a

(i(1))
N ;r , . . . , a

(i(n))
N ;r ]

for any π ∈ P(n) and σ ∈ NC(n) with σ ≤ π. By invoking also Lemma
13.2, this is equivalent to the existence of all limits (13.2).

If the existence of these limits is assumed then we get non-vanishing
contributions in (13.4) exactly in those cases where the power of N
agrees with the number of factors from the cumulants κσ. This means
that |π| = |σ|, which can only be the case if π itself is a non-crossing
partition and σ = π. But this gives, again by using Lemma 13.2,
exactly the assertion on the cumulants of the limiting distribution. ¤

Exercise 13.3. Apply the Limit Theorem 13.1 to the special situ-
ations treated in our limit theorems for free Poisson and compound free
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Poisson distributions from the last lecture and check that one recovers
the statements from Propositions 12.11 and 12.15.

Remark 13.4. In the case of C∗-probability spaces and I consist-
ing of just one element, this theorem reduces to the statement that, for
given probability measures µN on R with compact support, the conver-
gence in distribution of µ¢N

N to some compactly supported probability
measure µ is equivalent to the fact that

κµ
n = lim

N→∞
N ·mn(µN).

Our main goal in the following will be to characterize the possible limits
in this case.

Cumulants of operators on Fock space

Before we study more the possible limit distributions of triangular
arrays, we would like to give a nice application of that limit theorem;
it can be used to determine very easily the cumulants of creation, an-
nihilation and gauge operators on a full Fock space. We use here the
notations as introduced in Lecture 7 in Definitions 7.13 and 7.24.

Proposition 13.5. Let H be a Hilbert space and consider the C∗-
probability space (B(F(H)), τH). Then the cumulants of the random
variables l(f), l∗(g), Λ(T ) (f, g ∈ H, T ∈ B(H)) are of the following
form: We have (n ≥ 2, f, g ∈ H, T1, . . . , Tn−2 ∈ B(H))

(13.5) κn(l∗(f), Λ(T1), . . . , Λ(Tn−2), l(g)) = 〈T1 . . . Tn−2g, f〉
and all other cumulants with arguments from the set {l(f) | f ∈ H} ∪
{l∗(g) | g ∈ H} ∪ {Λ(T ) | T ∈ B(H)} vanish.

Proof. For N ∈ N, put

HN := H⊕ · · · ⊕ H︸ ︷︷ ︸
N times

and (f, g ∈ H, T ∈ B(H))
Then it is easy to see that the random variables {l(f), l∗(g), Λ(T ) |

f, g ∈ H, T ∈ B(H)} in (B(F(H)), τH) have the same joint distribution
as the random variables

{l(f ⊕ · · · ⊕ f√
N

), l∗(
g ⊕ · · · ⊕ g√

N
), Λ(T ⊕ · · · ⊕ T ) | f, g ∈ H, T ∈ B(H)}

in (B(F(HN)), τHN
). The latter variables, however, are the sum of N

free random variables, the summands having the same joint distribu-
tion as {lN(f), l∗N(g), ΛN(T ) | f, g ∈ H, T ∈ B(H)} in (B(F(H)), τH),
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where

lN(f) :=
1√
N

l(f), l∗N(g) :=
1√
N

l∗(g), ΛN(T ) := Λ(T ).

Hence we know from our Limit Theorem 13.1 that the cumulants
κn(a(1), . . . , a(n)) for a(i) ∈ {l(f), l∗(g), Λ(T ) | f, g ∈ H, T ∈ B(H)}
can also be calculated as

κn(a(1), . . . , a(n)) = lim
N→∞

N · ϕHN
(a

(1)
N · · · a(n)

N ).

This yields directly the assertion. ¤

Infinitely divisible distributions

Finally, we like to characterize the compactly supported probability
measures on R which can arise as limits of triangular arrays. It will
turn out that these are exactly the infinitely divisible ones.

Definition 13.6. Let µ be a probability measure on R with com-
pact support. We say that µ is infinitely divisible (in the free sense)
if, for each positive integer n, there exists a probability measure µn,
such that

(13.6) µ = (µn)¢n.

Remark 13.7. 1) Of course, we will denote the probability measure
µn appearing in the above definition by µ¢1/n. One should note that
the existence of µ¢1/n as a linear (not necessarily positive) functional
on polynomials is not a problem, the non-trivial requirement for µ
being infinitely divisible is the existence of this µ¢1/n in the class of
probability measures.

2) Since µ¢p/q = (µ¢1/q)¢p for positive integers p, q, it follows that
the rational convolution powers are probability measures. By continu-
ity, we get then also that all convolution powers µ¢t for real t > 0 are
probability measures. Thus the property “infinitely divisible” is equiv-
alent to the existence of the convolution semigroup µ¢t in the class of
probability measures for all t > 0.

In order to get a better understanding of the class of infinitely
divisible distributions it would be good to have a sufficiently large
supply of operators whose distributions are infinitely divisible. As we
will see in the next proposition, sums of creation, annihilation and
gauge operators on full Fock spaces are such a class. Even better, in
the proof of Theorem 13.16 we will see that every infinitely divisible
distribution can be realized in such a way.
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Proposition 13.8. Let H be a Hilbert space and consider the C∗-
probability space (B(F((H)), τH). For f ∈ H, T = T ∗ ∈ B(H) and
λ ∈ R, let a be the self-adjoint operator

(13.7) a := l(f) + l∗(f) + Λ(T ) + λ · 1.
Then the distribution of a is infinitely divisible.

Proof. Clearly, it suffices to consider the case where λ = 0. Let
us use the frame which we have set up in the proof of Proposition 13.5.
There we have remarked that a = l(f) + l∗(f) + Λ(T ) has the same
distribution as the sum

[
l
(f ⊕ 0⊕ · · · ⊕ 0√

N

)
+ l∗

(f ⊕ 0⊕ · · · ⊕ 0√
N

)
+Λ(T ⊕ 0⊕ · · · ⊕ 0)

]
+ · · ·

· · ·+
[
l
(0⊕ · · · ⊕ 0⊕ f√

N

)
+l∗

(0⊕ · · · ⊕ 0⊕ f√
N

)
+Λ(0⊕ · · · ⊕ 0⊕ T )

]
.

The N summands are self-adjoint, have all the same distribution (which
is a probability measure), and they are freely independent. Since we
have this for each N ∈ N this yields the infinite divisibility of the
distribution of a. ¤

Exercise 13.9. Realize a free Poisson distribution of rate λ and
jump size α in the form l(f) + l∗(f) + Λ(T ) + β · 1 for suitably chosen
f , T , and β.

Conditionally positive definite sequences

Before looking on the relation between infinitely divisible distribu-
tions and limit theorems, we want to determine what infinite divisibility
means for the cumulants of the distribution. It will turn out that the
following is the right concept for this problem.

Notation 13.10. Let (tn)n≥1 be a sequence of complex numbers.
We say that (tn)n≥1 is conditionally positive definite if we have for
all r = 1, 2, . . . and all α1, . . . , αr ∈ C that

r∑
n,m=1

αnᾱmtn+m ≥ 0.

Remarks 13.11. 1) Recall that a sequence (sn)n≥0 of complex num-
bers is called “positive definite” if we have for all r = 0, 1, . . . and all
α0, . . . , αr ∈ C that

r∑
n,m=0

αnᾱmsn+m ≥ 0.
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This is equivalent to the fact that 〈Xn, Xm〉 := sn+m defines a non-
negative sesquilinear form on C〈X〉, the vector space of polynomials
in one variable. The “conditional” in the notation above refers to
the fact that conditionally positive definite sequences provide in the
same way a non-negative sesquilinear form restricted to the subspace
of polynomials without constant term.

2) If (tn)n≥1 is a conditionally positive definite sequence, then we
can define the shifted sequence (sn)n≥0 by sn := tn+2 for n ≥ 0. (Note
that we loose the information about t1 by doing so; on the other hand,
the value of t1 is irrelevant for the question whether (tn)n≥1 is condi-
tionally positive definite.) Clearly, the statement that (tn)n≥1 is condi-
tionally positive definite is equivalent to the statement that (sn)n≥0 is
positive definite, because

r∑
n,m=0

αnᾱmsn+m =
r∑

n,m=0

αnᾱmtn+m+2 =
r∑

n,m=0

βn+1β̄m+1t(n+1)+(m+1),

with βn+1 = αn for n = 0, . . . , r.
3) Let (tn)n≥1 be a conditionally positive definite sequence. What

does this mean for the generating power series

R(z) :=
∞∑

n=0

tn+1z
n?

(Let us use R as notation for this power series, because we will only be
interested in the case where the tn are cumulants of a probability mea-
sure µ, and then indeed the considered power series is the R-transform
of µ.) It is easier to handle this question in terms of the shifted se-
quence (sn)n≥0 with sn := tn+2 (n ≥ 0). This sequence (sn)n≥0 is
positive definite, which means that we are dealing with moments of a
finite measure ρ,

sn =

∫
xndρ(x) (n ≥ 0).

Thus our R(z) is

R(z) = t1 +
∞∑

n=0

snzn+1

= t1 +
∞∑

n=0

z

∫

R
(xz)ndρ(x)

= t1 +

∫

R

z

1− xz
dρ(x).
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In order to stay within our frame of measures with compact support
and thus also justify the last equation on an analytic level we only con-
sider the situation that ρ has compact support (in which case it is also
uniquely determined by the sn). In terms of the (sn)n≥0 this amounts
to the requirement that they do not grow faster than exponentially in
n. Let us work this out a bit in the following.

Definition 13.12. We say that a sequence (sn)n≥0 of complex num-
bers does not grow faster than exponentially if there exists a
constant c > 0 such that

|sn| ≤ cn for all n ∈ N.

Lemma 13.13. Let ρ be a finite measure on R and let

sn :=

∫

R
xndρ(x) (n ∈ N)

be its moments. Then the following statements are equivalent:

(1) ρ has compact support.
(2) The moments sn exist for all n ∈ N and the sequence (sn)n∈N

does not grow faster than exponentially.

Proof. (1)=⇒(2): Assume ρ has compact support included in the
interval [−R, R]. Put

c := max(1, ρ(R)) < ∞.

Then we have

|sn| ≤
∫ R

−R

|xn|dρ(x) ≤ Rnρ(R) ≤ (Rc)n.

(2)=⇒(1): This follows from the fact that the support of ρ is
bounded by limn→∞ 2n

√
s2n (for this, compare the proof of Proposition

3.17). Thus, if we assume an exponential bound |sn| ≤ cn, this yields
as bound for the support of ρ

lim
n→∞

2n
√

s2n ≤ lim
n→∞

2n
√

c2n = c.

¤
Clearly, the condition of exponential growth for a sequence (sn)n

is the same as for the shifted sequence (tn)n = (sn−2)n. Thus we can
summarize our considerations from the above Remark 13.11 as follows.

Proposition 13.14. Let (tn)n≥1 be a sequence of complex num-
bers which does not grow faster than exponentially. Then the following
statements are equivalent:

(1) The sequence (tn)n≥0 is conditionally positive definite.
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(2) There exists a finite measure ρ on R with compact support such
that ∞∑

n=0

tn+1z
n = t1 +

∫

R

z

1− xz
dρ(x).

If we want to apply this to the characterization of infinitely divisible
distributions we need one more observation. Our sequence (tn) will be
given by the cumulants of a compactly supported probability measure
µ. By the above Lemma 13.13, the moments of µ do not grow faster
than exponentially. However, what we really need is that the cumulants
have this property. That this is indeed equivalent follows from the fact
that the size of NC(n) and also its Möbius function do not grow faster
than exponentially.

Proposition 13.15. Let (A, ϕ) be a non-commutative probability
space and consider a random variable a ∈ A. Let mn := ϕ(an) (n ∈ N)
and κn := κa

n be the moments and free cumulants, respectively, of a.
Then the fact that the sequence (mn)n of moments does not grow faster
than exponentially is equivalent to the fact that the sequence (κn)n of
cumulants does not grow faster than exponentially.

Proof. Let us assume that the cumulants do not grow faster
than exponentially. By the moment-cumulant formula, we have mn =∑

π∈NC(n) κπ. Note that the assumption |κn| ≤ cn implies that we also

have |κπ| ≤ cn for all π ∈ NC(n). Thus, we get

|mn| ≤
∑

π∈NC(n)

|κπ| ≤ #NC(n) · cn.

If we note now that for all n ∈ N
#NC(n) = Cn =

1

n + 1

(
2n

n

)
≤ 4n

then we get the desired growth bound for the moments.
For the other direction, we also need the fact that the Möbius func-

tion µ(·, ·) on NC does not grow faster than exponentially. We know
that

|µ(0n, 1n)| = |(−1)n−1Cn−1| ≤ 4n.

This implies, for any π ∈ NC(n),

|µ(π, 1n)| = |µ(0n, K(π))| ≤ 4n,

so that from the assumption mn ≤ cn we get finally

|κn| = |
∑

π∈NC(n)

mπµ(π, 1n)| ≤
∑

π∈NC(n)

cn · 4n ≤ 4n · cn · 4n,
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thus the wanted exponential bound for the growth of the cumulants.
¤

Characterization of infinitely divisible distributions

Now we are ready to state our final theorem on characterizing infin-
itely divisible distributions with compact support. The formula (13.8)
is the free analogue of the classical Levy-Khintchine formula, in the
version for compactly supported measures.

Theorem 13.16. Let µ be a probability measure on R with compact
support and let κn := κµ

n be the free cumulants of µ. Then the following
statements are equivalent:

(1) µ is infinitely divisible.
(2) The sequence (κn)n≥1 of free cumulants of µ is conditionally

positive definite.
(3) The R-transform of µ is of the form

(13.8) R(z) = κ1 +

∫

R

z

1− xz
dρ(x),

for some finite measure ρ on R with compact support.
(4) µ is a possible limit in our triangular array limit theorem: for

each N ∈ N, there exists a compactly supported probability
measure µN such that

µ¢N
N

distr−→ µ.

Proof. The equivalence between (2) and (3) follows from Proposi-
tion 13.14 together with Proposition 13.15. The remaining equivalences
will be proved via the chain of implications (4)=⇒(2)=⇒(1)=⇒(4).

(4)=⇒(2): Assume that we have µ¢N
N

distr−→ µ. Let aN be a self-
adjoint random variable in some C∗-probability space (AN , ϕN) which
has distribution µN . Then our limit theorem (in the special form con-
sidered in Remark 13.4) tells us that we get the cumulants of µ as

κn = lim
N→∞

N · ϕN(an
N).

Consider now α1, . . . , αr ∈ C. Then we have
k∑

n,m=1

αnᾱmκn+m = lim
N→∞

N ·
k∑

n,m=1

ϕN(αnᾱman+m
N )

= lim
N→∞

N · ϕN

(
(

k∑
n=1

αna
n
N) · (

k∑
m=1

αmam
N)∗

)

≥ 0,
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because all ϕN are positive.
(2)=⇒(1): Denote by C0〈X〉 the polynomials in one variable X

without constant term, i.e.

C0〈X〉 := CX ⊕ CX2 ⊕ . . . .

We equip this vector space with an inner product by sesquilinear ex-
tension of

(13.9) 〈Xn, Xm〉 := κn+m (n,m ≥ 1).

The assumption (2) on the sequence of cumulants yields that this is
indeed a non-negative sesquilinear form. Thus we get a Hilbert space
H after dividing out the kernel and completion. In the following we
will identify elements from C0〈X〉 with their images in H. We consider
now in the C∗-probability space (B(F((H)), τH) the operator

(13.10) a := l(X) + l∗(X) + Λ(X) + κ1 · 1,
where X in Λ(X) is considered as the multiplication operator with X.
(Note that, by our assumption of compact support of µ, this operator X
is indeed bounded.) By Proposition 13.8, we know that the distribution
of a is infinitely divisible. We claim that this distribution is the given
µ. Indeed, this follows directly from Proposition 13.5: For n = 1, we
have

κa
1 = κ1;

for n = 2, we get

κa
2 = κ2(l

∗(X), l(X)) = 〈X,X〉 = κ2,

and for n > 2, we have

κa
n = κn(l∗(X), Λ(X), . . . , Λ(X), l(X)〉

= 〈X, Λ(X)n−2X〉
= 〈X,Xn−1〉
= κn.

Thus all cumulants of a agree with the corresponding cumulants of µ
and hence the two distributions coincide.

(1)=⇒(4): Just put, for each N ∈ N, µN := µ¢1/N which exists as
a probability measure by the definition of “infinitely divisible”. ¤

Exercises

Exercise 13.17. Show that 1
2
δ−1 + 1

2
δ+1 is not infinitely divisible.
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Exercise 13.18. In this exercise we will investigate the relation
between compound free Poisson distributions (see Definition 12.16) and
infinitely divisible distributions.

1) Show that every compound free Poisson distribution is infinitely
divisible.

2) Show that there exist infinitely divisible distributions with com-
pact support which are not compound free Poisson distributions.

3) Show that any infinitely divisible distribution with compact sup-
port can be approximated in distribution by compound free Poisson
distributions.

Exercise 13.19. This exercise addresses the relation between in-
finitely divisible distributions and stationary processes with free incre-
ments. A stationary process with free increments or a free Levy
process is a collection of selfadjoint random variables xt for all real
t ≥ 0 (think of t as time), living in a C∗-probability space such that
we have

(1) x0 = 0
(2) for any set of times 0 < t1 < · · · < tn the increments

xt1 , xt2 − xt1 , . . . , xtn − xtn−1

are freely independent
(3) for all 0 ≤ s < t the distribution of xt − xs depends only on

t− s

1) Let (xt)t≥0 be a stationary process with free increments. Show
that the distribution µ of x1 is infinitely divisible and that the distri-
bution of xt is given by µ¢t for any t > 0.

2) Let µ be an infinitely divisible distribution. Show that there
exists a stationary process (xt)t≥0 with free increments such that the
distribution of x1 is equal to µ.
[Hint: One might adapt the construction in the proof of 13.16 from the
level of one operator to the level of processes by considering a family
of operators on F(H⊗ L2(R+)) instead of one operator on F(H).]



LECTURE 14

Products of free random variables

In the previous lectures we treated the sum of freely independent
variables. In particular, we showed how one can understand and solve
from a combinatorial point of view the problem of describing the dis-
tribution of a + b in terms of the distributions of a and of b if these
variables are freely independent. Now we want to turn to the corre-
sponding problem for the product. Thus we want to understand how
we get the distribution of ab out of the distribution of a and of b if a
and b are freely independent.

Note that for the corresponding classical problem no new consider-
ations are required, since this can be reduced to the additive problem.
Namely, if a and b commute, we have ab = exp(log a + log b) and thus
we only need to apply the additive theory to log a and log b. In the
non-commutative situation, however, the functional equation for the
exponential function does not hold any more, so there is no clear way
to reduce the multiplicative problem to the additive one and some new
considerations are needed. In our combinatorial treatment it will turn
out that the description of the multiplication of freely independent vari-
ables is intimately connected with the complementation map K in the
lattice of non-crossing partitions. Since there is no counterpart of the
complementation map for all partitions, statements around the multi-
plication of freely independent variables might be quite different from
what one expects classically. With respect to additive problems classi-
cal and free probability theory go quite parallel (combinatorially this
essentially means that one replaces arguments for all partitions by the
corresponding arguments for non-crossing partitions); with respect to
multiplicative problems the world of free probability is, however, much
richer.

Multiplicative free convolution

As in the additive case we want to define a binary operation on
probability measures on R which corresponds to the product of free
random variables. However, one has to note the following problem:
if x and y are selfadjoint random variables in a C∗-probability space

235
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(A, ϕ), then the product xy (unlike the sum x + y) is not selfadjoint
in general; as a consequence, the moments of xy will in general not be
the moments of a probability measure, even if the moments of x and
of y are so. In order to fix this problem, we will assume that at least
one of the elements x and y is positive. Indeed, if (say) x is a positive
element of A, y is selfadjoint and x and y are free, then xy has the
same moments as the selfadjoint random variable

√
xy
√

x, because we
have for all n ≥ 1 that

ϕ((
√

xy
√

x )n) = ϕ(
√

xy(xy)n−1 · √x)

= ϕ(
√

x · √xy(xy)n−1)

= ϕ((xy)n).

(At the second equality sign we took into account that ϕ has to be
tracial on the unital subalgebra of A generated by x and y – cf. Propo-
sition 5.19 in Lecture 5.)

For most of our considerations, we will in fact only use the more
symmetric framework where both x and y are positive elements. We
thus arrive to the following definition.

Definition 14.1. Let µ and ν be compactly supported probability
measures on R+. Then their multiplicative free convolution µ £ ν
is defined as the distribution in analytical sense of

√
xy
√

x where x and
y are positive elements in some C∗-probability space, such that x and y
are free, and x and y have µ and ν, respectively, as their distributions
in analytical sense.

Remarks 14.2. 1) As for the additive case, one has to note that
one can always find x and y as required and that the result does not
depend on the specific choice of x and y, but only on their distributions
µ and ν.

2) Since the moments of
√

xy
√

x are the same as those of
√

yx
√

y
the operation £ is commutative,

µ £ ν = ν £ µ.

3) Note that we need the operator
√

xy
√

x just to be sure that we
are dealing with moments of a probability distribution. Thus we can
also define µ £ ν, for µ and ν compactly supported probability mea-
sures on R+, as the probability distribution whose moments are given
by ϕ((ab)n) for any choice of a, b in some non-commutative probability
space (A, ϕ) such that a and b are free and such that the moments
of µ and ν are given by ϕ(an) and ϕ(bn), respectively. This probabil-
ity distribution is then uniquely determined and necessarily compactly
supported on R+.
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4) The previous remark makes the associativity of the multiplica-
tive free convolution obvious. Given r compactly supported probability
measures µ1, . . . , µr on R+, µ1£ · · ·£µr is the (necessarily uniquely de-
termined and compactly supported) probability measure on R+, whose
moments are given by the moments of a1 · · · ar, whenever a1, . . . , ar are
free elements in some non-commutative probability space such that the
moments of ai are the same as the moments of µi, for all i = 1, . . . , r.

5) Since it is enough to have one of the involved operators x and
y positive in order to recognize the moments of xy as giving rise to a
probability measure, we can extend the definition of £ to a mapping

(14.1) £ : Pc(R)× Pc(R+) → Pc(R),

where Pc(A) denotes the set of all compactly supported probability
measures on A ⊂ R. We will indicate it explicitly if we consider £ in
this more general context. Usually, we consider it as a binary operation
on Pc(R+).

6) There is also a variant of £ for probability measures on the
circle. Note that probability measures on the circle arise naturally as
∗-distributions in analytical sense of unitary operators. Furthermore,
the product of any two unitary operators is again unitary, so that, for
probability measures µ and ν on the circle, we can define µ £ ν as the
distribution in analytical sense of uv, if u and v are unitary operators in
a C∗-probability space such that u has distribution µ, v has distribution
ν, and u and v are freely independent. Much of the theory of £ for
unitary elements is parallel to the theory of £ for positive elements.
We will restrict in this book to the latter situation.

As in the additive case, we would now like to understand, in general,
how to get the distribution of ab, for a and b free, out of the distri-
bution of a and the distribution of b and, in particular, how we can
calculate the multiplicative free convolution µ £ ν out of µ and ν. In
this lecture we will mainly talk about the general problem on the com-
binatorial level. The translation of this into formal power series (called
S-transform) which will yield an analytical description for µ £ ν will
be postponed to Part 3, where we will talk more systematically about
transforms.

Combinatorial description of the free multiplication

Our combinatorial description of the product of free variables relies
crucially on the complementation map K : NC(n) → NC(n), which
was introduced in Definitions 9.21. Let us first note in the following
exercise another possibility for characterizing K(π). We will use this
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characterization in the proof of the second formula in our main theorem
on the description of products of free random variables.

Exercise 14.3. Let π be a partition in NC(n). Prove that the
Kreweras complement K(π) can also be characterized in the following
way: It is the only element σ ∈ NC(1̄, . . . , n̄) with the properties that
π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄) ∼= NC(2n) is non-crossing and that

(14.2) (π ∪ σ) ∨ {(1, 1̄), (2, 2̄), . . . , (n, n̄)} = 12n.

Theorem 14.4. Let (A, ϕ) be a non-commutative probability space
and consider random variables a1, . . . , an, b1, . . . , bn ∈ A such that
{a1, . . . , an} and {b1, . . . , bn} are freely independent. Then we have
(14.3)

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(n)

κπ[a1, a2, . . . , an] · ϕK(π)[b1, b2, . . . , bn]

and
(14.4)

κn(a1b1, a2b2, . . . , anbn) =
∑

π∈NC(n)

κπ[a1, a2, . . . , an] ·κK(π)[b1, b2, . . . , bn].

Proof. 1) By using the vanishing of mixed cumulants in free vari-
ables we obtain

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(2n)

κπ[a1, b1, a2, b2, . . . , an, bn]

=
∑

πa∈NC(1,3,...,2n−1),πb∈NC(2,4,...,2n)

πa∪πb∈NC(2n)

κπa [a1, a2, . . . , an] · κπb
[b1, b2, . . . , bn]

=
∑

πa∈NC(1,3,...,2n−1)

κπa [a1, a2, . . . , an] · (
∑

πb∈NC(2,4,...,2n)

πa∪πb∈NC(2n)

κπb
[b1, b2, . . . , bn]

)
.

Now note that, for fixed πa ∈ NC(1, 3, . . . , 2n− 1) ∼= NC(n), the con-
dition πa ∪ πb ∈ NC(2n) for πb ∈ NC(2, 4, . . . , 2n) ∼= NC(n) means
nothing but πb ≤ K(πa) (since K(πa) is by definition the biggest ele-
ment with this property). Thus we can continue

ϕ(a1b1a2b2 . . . anbn)

=
∑

πa∈NC(n)

κπa [a1, a2, . . . , an] · (
∑

πb≤K(πa)

κπb
[b1, b2, . . . , bn]

)

=
∑

πa∈NC(n)

κπa [a1, a2, . . . , an] · ϕK(πa)[b1, b2, . . . , bn].
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2) One can get (14.4) from (14.3) by convolution with the Möbius
function; however, by invoking the simple observation made in Exercise
14.3, one can also give a nice direct proof as follows. By using Theorem
11.12 for cumulants with products as entries we get

κn(a1b1, . . . , anbn) =
∑

π∈NC(2n)
π∨σ=12n

κπ[a1, b1, . . . , an, bn],

where σ = {(1, 2), (3, 4), . . . , (2n − 1, 2n)}. By the vanishing of
mixed cumulants only such π contribute in the sum which do not
couple a’s with b’s, thus they are of the form π = πa ∪ πb with
πa ∈ NC(a1, a2, . . . , an) and πb ∈ NC(b1, b2, . . . , bn). Fix now an arbi-
trary πa. Then, by Exercise 14.3, there is exactly one πb which fulfills
the requirements that πa∪πb is non-crossing and that (πa∪πb)∨σ = 12n,
namely πb has to be the complement K(πa) of πa. But then the above
sum reduces to the right-hand side of (14.4). ¤

Remark 14.5. One should note that in the case a1 = · · · = an =: a
and b1 = · · · = bn =: b the structure of the formula (14.4) is

κab
n =

∑

π∈NC(n)

κa
π · κb

K(π),

which, in the language of Lecture 10, says that the multiplicative func-
tion determined by the cumulants of ab is the convolution of the mul-
tiplicative functions determined by the cumulants of a with the multi-
plicative function determined by the cumulants of b. We will examine
this more systematically in Part 3.

Examples 14.6. 1) Let us write down explicitly the formulas (14.3)
and (14.4) for small n.
For n = 1 we get

ϕ(ab) = κ1(a)ϕ(b) and κ1(ab) = κ1(a)κ1(b),

which are just versions of the factorization rule ϕ(ab) = ϕ(a)ϕ(b).
For n = 2 we get

ϕ(a1b1a2b2) = κ1(a1)κ1(a2)ϕ(b1b2) + κ2(a1, a2)ϕ(b1)ϕ(b2)

and

κ2(a1b1, a2b2) = κ1(a1)κ1(a2)κ2(b1, b2) + κ2(a1, a2)κ1(b1)κ1(b2)

which are both rephrasings of the formula

ϕ(a1b1a2b2) = ϕ(a1)ϕ(a2)ϕ(b1b2)

+ ϕ(a1a2)ϕ(b1)ϕ(b2)− ϕ(a1)ϕ(a2)ϕ(b1)ϕ(b2).



240 14. PRODUCTS OF FREE RANDOM VARIABLES

2) Let us specialize the first formula (14.3) to the case where
a1, . . . , an are elements chosen from free semicircular elements si. The
only non-trivial cumulants are then κ2(si, sj) = δij, and we have

(14.5) ϕ(sp(1)b1 · · · sp(n)bn) =
∑

π∈NC
(p)
2 (n)

ϕK(π)[b1, . . . , bn],

where NC
(p)
2 (n) denotes those non-crossing pairings of n elements

whose blocks connect only the same p-indices, i.e., only the same semi-
circular elements. An example is

ϕ(s1b1s1b2s2b3s2b4s2b5s2b6s3b7s3b8) =

ϕ(b1)ϕ(b2b6b8)ϕ(b3b5)ϕ(b4)ϕ(b7) + ϕ(b1)ϕ(b2b4b6b8)ϕ(b3)ϕ(b5)ϕ(b7),

where we have two contributing π ∈ NC(6) according to the pictures

s1 b1 s1 b2 s2 b3 s2 b4 s2 b5 s2 b6 s3 b7 s3 b8

and
s1 b1 s1 b2 s2 b3 s2 b4 s2 b5 s2 b6 s3 b7 s3 b8

Formula (14.5) will become relevant in Lecture 22, in the context of
asymptotic freeness of random matrices.

Theorem 14.4 is the basic combinatorial result about the product
of free variables. By translating this into generating power series one
can get Voiculescu’s description of multiplicative free convolution via
the so-called S-transform. However, this translation is not as obvious
as in the case of the R-transform and thus we will postpone this to
Part 3, where we talk more systematically about transforms.

For the moment we want to show that even without running through
analytic calculations the above description can be used quite effectively
to handle some special important situations. In the rest of this lecture,
we will apply Theorem 14.4 to calculate the distribution of free com-
pressions of random variables.

Compression by a free projection

There is a general way of producing new non-commutative probabil-
ity spaces out of given ones, namely by compressing with projections.
Let us first introduce this general concept.
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Notation 14.7. If (A, ϕ) is a non-commutative probability space
and p ∈ A a projection (i.e. p2 = p) such that ϕ(p) 6= 0, then we can
consider the compression (pAp, ϕpAp), where

(14.6) pAp := {pap | a ∈ A}
and

(14.7) ϕpAp(·) :=
1

ϕ(p)
ϕ(·) restricted to pAp.

We will denote the cumulants corresponding to ϕpAp by κpAp, whereas
κ refers as usual to the cumulants corresponding to ϕ.

Remarks 14.8. 1) Note that the compression (pAp, ϕpAp) is indeed
a non-commutative probability space: pAp is an algebra, whose unit
element is p = p · 1 · p; and we have rescaled ϕ just to get ϕpAp(p) = 1.

2) Additional properties of (A, ϕ) will usually pass over to the com-
pression. In particular, if (A, ϕ) is a C∗-probability space and p is
selfadjoint, then it is immediately checked that (pAp, ϕpAp) is also a
C∗-probability space.

Example 14.9. If A = M4(C) are the 4×4-matrices equipped with
the normalized trace ϕ = tr4 and p is the projection

p =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 ,

then

p




α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44


 p =




α11 α12 0 0
α21 α22 0 0
0 0 0 0
0 0 0 0


 ,

and going over to the compressed space just means that we throw
away the zeros and identify pM4(C)p with the 2 × 2-matrices M2(C).

Of course, the renormalized state trpAp
4 coincides with the state tr2 on

M2(C).

If we have some random variables a1, . . . , am in the original space,
not much can be said about the compressed variables pa1p, . . . , pamp
in the compressed space in general. However, in the case that p is free
from the considered variables, we can apply our machinery and relate
the distribution of the compressed variables with the distribution of
the original ones.
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Theorem 14.10. Consider a non-commutative probability space
(A, ϕ) and random variables p, a1, . . . , am ∈ A such that p is a pro-
jection with ϕ(p) 6= 0 and such that p is freely independent from
{a1, . . . , am}. Put λ := ϕ(p). Then we have the following relation
between the cumulants of a1, . . . , am ∈ A and the cumulants of the
compressed variables pa1p, . . . , pamp ∈ pAp:

(14.8) κpAp
n (pai(1)p, . . . , pai(n)p) =

1

λ
κn(λai(1), . . . , λai(n))

for all n ≥ 1 and all 1 ≤ i(1), . . . , i(n) ≤ m.

Remark 14.11. The fact that p is a projection implies

ϕ(pai(1)ppai(2)p · · · pai(n)p) = ϕ(pai(1)pai(2)p · · · ai(n)p),

so that apart from the first p we are in the situation where we have
a free product of a’s with p. If we would assume a tracial situation,
then of course the first p could be absorbed by the last one. How-
ever, we want to treat the theorem in full generality. But even with-
out traciality we can arrive at the situation treated in Theorem 14.4,
just by enlarging {a1, . . . , am} to {1, a1, . . . , am} (which does not in-
terfere with the assumption on free independence because 1 is freely
independent from everything) and reading ϕ(pai(1)pai(2)p . . . ai(n)p) as
ϕ(1pai(1)pai(2)p . . . ai(n)p).

Proof. By using Theorem 14.4 in the form indicated in the above
remark, we get

ϕpAp(pai(1)p · · · pai(n)p) =
1

λ
ϕ(pai(1)p · · · pai(n)p)

=
1

λ
ϕn+1(1p, ai(1)p, . . . , ai(n)p)

=
1

λ

∑

σ∈NC(n+1)

κσ[1, ai(1), . . . , ai(n)] · ϕK(σ)[p, p, . . . , p].

Now we observe that kσ[1, ai(1), . . . , ai(n)] can only be different from
zero if σ does not couple the random variable 1 with anything else, i.e.
σ ∈ NC(n + 1) = NC(0, 1, . . . , n) must be of the form σ = (0) ∪ π
with π ∈ NC(1, . . . , n). So in fact the sum runs over π ∈ NC(n) and,
since κ1(1) = 1, κσ[1, ai(1), . . . , ai(n)] is nothing but κπ[ai(1), . . . , ai(n)].
Furthermore, p2 = p implies that all moments of p are equal to ϕ(p) =
λ, which gives

ϕK(σ)[p, p, . . . , p] = λ|K(σ)|

Using the easily checked fact (see Exercise 9.23) that |σ|+|K(σ)| = n+2
for all σ ∈ NC(n + 1) we can rewrite |K(σ)| in terms of |π| = |σ| − 1
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and continue our above calculation as follows.

ϕpAp
n (pai(1)p, . . . , pai(n)p) =

1

λ

∑

π∈NC(n)

κπ[ai(1), . . . , ai(n)]λ
n+1−|π|

=
∑

π∈NC(n)

1

λ|π|
κπ[λai(1), . . . , λai(n)].

Since the function π 7→ 1
λ|π|κπ(λai(1), . . . , λai(n)) is multiplicative, we

see that according to Remark 11.19 the cumulants of the compressed
random variables are given by

κpAp
n [pai(1)p, . . . , pai(n)p] =

1

λ|1n|κ1n [λai(1), . . . , λai(n)]

=
1

λ
κn(λai(1), . . . , λai(n))

¤
This theorem has two interesting corollaries. The first states that

free independence is preserved under taking free compressions, whereas
the second is a very surprising statement about free harmonic analysis.

Corollary 14.12. Let (A, ϕ) be a non-commutative probability
space and p ∈ A a projection such that ϕ(p) 6= 0. Consider unital
subalgebras A1, . . . ,Am ⊂ A such that p is freely independent from
A1 ∪ · · · ∪ Am. Then the following two statements are equivalent:

(1) The subalgebras A1, . . . ,Am ⊂ A are freely independent in the
original non-commutative probability space (A, ϕ).

(2) The compressed subalgebras pA1p, . . . , pAmp ⊂ pAp are freely
independent in the compressed probability space (pAp, ϕpAp).

Proof. Since the cumulants of the Ai coincide with the cumulants
of the compressions pAip up to some power of λ, the vanishing of mixed
cumulants in the Ai is equivalent to the vanishing of mixed cumulants
in the pAip. ¤

Convolution semigroups (µ¢t)t≥1

For the second consequence of our Theorem 14.10 let us see what it
tells us in the case of one variable. Consider a random variable x in a
C∗-probability space whose distribution is a probability measure µ on
R. Then the above theorem tells us that, for p being a projection with
ϕ(p) = λ and such that x and p are free, the distribution of pxp in the
compressed space is given by a distribution whose cumulants are 1/λ
times the corresponding cumulants of λx. Going over from x to λx is
of course just a rescaling of our distribution µ by a factor λ – let us
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denote this by Dλ(µ). Multiplying cumulants by a factor 1/λ, on the
other hand, corresponds to taking the 1/λ-fold free convolution of the
given distribution – which a priori, makes only sense for integer 1/λ.
Thus, for λ = 1/n, we get that the distribution of pap is (Dλ(µ))¢n,
and hence compressing by free projections has, up to trivial rescalings,
the same effect as taking convolution powers. Since in the compression
picture we are not restricted to λ’s of the form 1/n, this gives us the
possibility of also obtaining non-integer free convolution powers.

Corollary 14.13. Let µ be a compactly supported probability mea-
sure on R. Then there exists a semigroup (µt) (t ∈ R, t ≥ 1) of
compactly supported probability measures on R such that

µ1 = µ,

µs+t = µs ¢ µt (s, t ≥ 1)

and the mapping t 7→ µt is continuous with respect to the weak∗ topology
on probability measures (i.e., all moments of µt are continuous in t).

Proof. Let x be a self-adjoint random variable and p a selfadjoint
projection in some C∗-probability space (A, ϕ) such that ϕ(p) = 1

t
, the

distribution of x is equal to µ, and x and p are freely independent. (It
is no problem to realize such a situation with the usual free product
constructions as described in Lecture 7.) Put now xt := p(tx)p and
consider this as an element in the compressed space (pAp, ϕpAp). As we
noted in Remark 14.8, this compressed space is again a C∗-probability
space, thus the distribution µt of xt ∈ pAp is a compactly supported
probability measure. Furthermore, by Theorem 14.10, we know that
the cumulants of xt are given by

κµt
n = κpAp

n (xt, . . . , xt) = tκn(
1

t
tx, . . . ,

1

t
tx) = tκn(x, . . . , x) = tκµ

n.

This implies that for all n ≥ 1

κµs+t
n = (s + t)κµ

n = sκµ
n + tκµ

n = κµs
n + κµt

n ,

which just means that µs+t = µs ¢ µt. Since κµ1
n = κµ

n, we also have
µ1 = µ. Furthermore, the mapping t 7→ tκµ

n is clearly continuous,
thus all cumulants, and hence also all moments, of µt are continuous
in t. ¤

Remarks 14.14. 1) For t = n ∈ N, we have of course the convo-
lution powers µn = µ¢n. The corollary states that we can interpolate
between these also for non-natural powers. Of course, the crucial fact
is that we claim the µt to be always probability measures. As linear
functionals these objects exist trivially, the non-trivial fact is positivity.
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2) Note that the corollary claims the existence of µt only for t ≥ 1.
For 0 < t < 1, µt does not exist as a probability measure in general.
In particular, the existence of the semigroup µt for all t > 0 is, as we
have seen in the last lecture, equivalent to µ being infinitely divisible
in the free sense.

3) As we have seen in the proof of Theorem 14.10, the corollary
relies very much on the complementation map and its properties. Thus
it is no surprise that there is no classical analogue of this result. In
the classical case one can usually not interpolate between the natural
convolution powers. E.g., if µ = 1

2
(δ−1 + δ1) is a symmetric Bernoulli

distribution, we have µ∗µ∗µ = 1
8
δ−3 + 3

8
δ−1 + 3

8
δ1 + 1

8
δ3 and it is trivial

to check that there is no possibility to write µ ∗ µ ∗ µ as ν ∗ ν for some
other probability measure ν = µ∗3/2.

Example 14.15. Consider the symmetric Bernoulli distribution
µ = 1

2
(δ−1 + δ+1). Then, the compression with a projection having

ϕ(p) = 1/n gives a distribution which is, up to rescaling, the n-fold
free convolution of µ with itself. E.g., for ϕ(p) = 1/2, we get that the
compression of Bernoulli has the arcsine distribution. More generally,
we get rescalings of the Kesten measures µ¢n, which were calculated in
Exercise 12.21. Furthermore, our above corollary explains the fact that
the calculations of µ¢n in that exercise also make sense for non-integer
n ≥ 1.

Compression by a free family of matrix units

Definition 14.16. Let (A, ϕ) be a non-commutative probability
space. A family of matrix units is a set {eij}i,j=1,...,d ⊂ A (for some
d ∈ N) with the properties

eijekl = δjkeil for all i, j, k, l = 1, . . . , d(14.9)

d∑
i=1

eii = 1(14.10)

Remarks 14.17. 1) Consider the non-commutative probability
space (Md(C), trd) of d×d-matrices equipped with the normalized trace.
Then the canonical family of matrix units is {Eij}i,j=1,...,d, where Eij is
the matrix

Eij = (δikδjl)
d
k,l=1.

2) For a non-commutative probability space (A, ϕ) we considered in
Exercise 1.23 the non-commutative probability space (Md(A), tr⊗ϕ) of
d× d-matrices over A. The {Eij}i,j=1,...,d from above are sitting inside
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such an Md(A) via

Md(C) =̂ Md(C)⊗ 1A ⊂ Md(C)⊗A =̂ Md(A),

and form there a family of matrix units. In such a situation we will be
interested in the question when the family of matrix units is free from
a matrix A ∈ Md(A). (Note that the algebra generated by the matrix
units is just Md(C)⊗1A.) We will present the solution to this problem
in Theorem 14.20.

Theorem 14.18. Consider a non-commutative probability space
(A, ϕ) and random variables a(1), . . . , a(m) ∈ A. Furthermore, let
{eij}i,j=1,...,d ⊂ A be a family of matrix units which satisfies

(14.11) ϕ(eij) = δij
1

d
for all i, j = 1, . . . , d,

and such that {a(1), . . . , a(m)} is freely independent from {eij}i,j=1,...,d.

Put now a
(r)
ij := e1ia

(r)ej1 and p := e11, λ := ϕ(p) = 1/d. Then we have

the following relation between the cumulants of a(1), . . . , a(m) ∈ A and

the cumulants of the compressed variables a
(r)
ij ∈ pAp (i, j = 1, . . . , d;

r = 1, . . . , m) : For all n ≥ 1 and all 1 ≤ r(1), . . . , r(n) ≤ m, 1 ≤
i(1), j(1), . . . , i(n), j(n) ≤ d we have

(14.12) κpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n))

=

{
1
λ
κn(λa(r(1)), . . . , λa(r(n))), if j(k) = i(k + 1) for all k = 1, . . . , n

0, otherwise

(where we put i(n + 1) := i(1)).

Notation 14.19. Let a partition π ∈ NC(n) and an n-tuple
of double-indices (i(1)j(1), i(2)j(2), . . . , i(n)j(n)) be given. Then we
say that π couples in a cyclic way (c.c.w., for short) the indices
(i(1)j(1), i(2)j(2), . . . , i(n)j(n)) if we have for each block (r1 < r2 <
· · · < rs) ∈ π that j(rk) = i(rk+1) for all k = 1, . . . , s (where we put
rs+1 := r1).

Proof. Let us denote in the following the fixed tuple of indices by

(~i,~j) := (i(1)j(1), i(2)j(2), . . . , i(n)j(n)).

As in the case of one free projection we calculate

ϕpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n))

=
1

λ

∑

σ∈NC(n+1)

κσ[1, a(r(1)), . . . , a(r(n))]·ϕK(σ)[e1,i(1), ej(1)i(2), . . . , ej(n)1].
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Again σ has to be of the form σ = (0)∪π with π ∈ NC(n). The factor
ϕK(σ) gives

ϕK(σ)[e1,i(1), ej(1)i(2), . . . , ej(n)1] = ϕK(π)[ej(1)i(2), ej(2),j(3), . . . , ej(n)i(1)]

=

{
λ|K(π)|, if K(π) c.c.w. (~j,~i)

0, otherwise
,

where

(~j,~i) := (j(1)i(2), j(2)i(3), . . . , j(n)i(1)).

Now one has to observe that cyclicity of K(π) in (~j,~i) is equivalent to

cyclicity of π in (~i,~j). (The proof of this is left to the reader.) Then
one can continue the above calculation as follows.

ϕpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n)) =

1

λ

∑
π∈NC(n)

π c.c.w. (~i,~j)

κπ[a(r(1)), . . . , a(r(n))] · λ|K(π)|

=
∑

π∈NC(n)

π c.c.w. (~i,~j)

1

λ|π|
κπ[λa(r(1)), . . . , λa(r(n))],

where we sum only over those π which couple in a cyclic way (~i,~j).
Noticing that the function

π 7→
{

1
λ|π|κπ[λa(r(1)), . . . , λa(r(n))], if π c.c.w. (~i,~j)

0, otherwise

is multiplicative, gives the statement. ¤

We can now come back to the question, raised in Remark 14.17,
when Md(C) =̂ Md(C)⊗1A ⊂ Md(A) is free from a matrix A ∈ Md(A).

Theorem 14.20. Consider random variables aij (i, j = 1, . . . , d)
in some non-commutative probability space (A, ϕ). Then the following
two statements are equivalent.

(1) The matrix A := (aij)
d
i,j=1 is freely independent from Md(C)

in the non-commutative probability space (Md(A), trd ⊗ ϕ).
(2) Cumulants of {aij | i, j = 1, . . . , d} in (A, ϕ) have the property

that only cyclic cumulants κn(ai(1)i(2), ai(2)i(3), . . . , ai(n)i(1)) are
different from zero and the value of such a cumulant depends
only on n, but not on the tuple (i(1), . . . , i(n)).

Proof. That (1) implies (2) follows directly from Theorem 14.18
(for the case m = 1), because we can identify the entries of the matrix
A with the compressions by the matrix units.
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For the other direction, note that joint moments (with respect to
trd ⊗ ϕ) of the matrix A := (aij)

d
i,j=1 and elements from Md(C) can

be expressed in terms of moments of the entries of A. Thus the
free independence between A and Md(C) depends only on the joint
distribution (i.e., on the cumulants) of the aij. This implies that
if we can present a realization of the joint distribution of the aij

(i, j = 1, . . . , d) in which the corresponding matrix A = (aij)
d
i,j=1 is

free from Md(C), then we are done. But this representation is given
by Theorem 14.18. Namely, let a be a random variable whose cumu-
lants are given, up to a factor, by the cyclic cumulants of the aij, i.e.
ka

n = dn−1kn(ai(1)i(2), ai(2)i(3), . . . , ai(n)i(1)). Let furthermore {eij}i,j=1,...,d

be a family of matrix units which are freely independent from a in some
probability space (Ã, ϕ̃). Then we compress a with the free matrix units
as in Theorem 14.18 and denote the compressions by ãij := e1iaej1. By
Theorem 14.18 and the choice of the cumulants for a, we have that

the joint distribution of the ãij in (e11Ãe11, ϕ̃
e11Ãe11) coincides with the

joint distribution of the aij. Furthermore, the matrix Ã := (ãij)
d
i,j=1 is

freely independent from Md(C) in (Md(e11Ãe11), ϕ̃
e11Ãe11⊗trd), because

the mapping

Ã → Md(e11Ãe11), y 7→ (e1iyej1)
d
i,j=1

is an isomorphism which sends a into Ã and ekl into the canonical
matrix units Ekl in Md(C)⊗ 1. ¤

Exercises

Exercise 14.21. Show that we have for all compactly supported
probability measures µ on R and for all t with t ≥ 1 that

(14.13) µ £
(
(1− 1

t
)δ0 +

1

t
δt

)
= (1− 1

t
)δ0 +

1

t
µ¢t.

(In this formulation we use the extended definition (14.1) of £, where
only one of the involved probability measures has to be supported on
R+.)

Exercise 14.22. Let (A, ϕ) be a non-commutative probability
space. Consider a family of matrix units {eij}i,j=1,...,d ⊂ A, which
satisfies (14.11), and a subset X ⊂ A such that {eij}i,j=1,...,d and X
are freely independent. Consider now, for i = 1, . . . , d, the compressed
subsets Xi := e1iX ei1 ⊂ e11Ae11. Show that X1, . . . ,Xd are freely inde-
pendent in the compressed space (e11Ae11, ϕ

e11Ae11).



LECTURE 15

R-diagonal elements

There is a substantial difference in our understanding of normal
operators on one side and non-normal operators on the other side.
Whereas the first case takes place in the classical commutative world,
where we have at hand the sophisticated tools of analytic function
theory, the second case is really non-commutative in nature and is much
harder to analyze. It is therefore quite important to have sufficiently
large classes of non-normal operators at hand which can be treated.

In this lecture we present one of the most prominent classes of non-
normal operators arising from free probability - the class of R-diagonal
operators. It will turn out that these operators are on one side simple
enough to allow concrete calculations, but on the other side this class
is also big enough to appear quite canonically in a lot of situations.

Motivation: cumulants of Haar unitary element

The motivation for the introduction of R-diagonal elements was the
observation that the two most prominent non-selfadjoint elements in
free probability theory – the circular element and the Haar unitary ele-
ment – show similar structures of their ∗-cumulants. The ∗-cumulants
for a circular element c are very easy to determine: the only non-
vanishing ∗-cumulants are

κ2(c, c
∗) = 1 = κ2(c

∗, c).

For a Haar unitary element u, on the other side, the calculation of its
∗-cumulants is quite non-trivial. The determination of those will be
our goal in this section.

So let u be a Haar unitary. Recall that this means that u is unitary
and that all ∗-moments of the form ϕ(uk) (k ∈ Z) vanish unless k = 0;
for k = 0 we have of course ϕ(u0) = ϕ(1) = 1. This clearly gives com-
plete information about the ∗-distribution of u because any ∗-moment
of u can, by the unitarity condition, be reduced to a moment of the
form ϕ(uk) for k ∈ Z.

We want to calculate κn(u1, . . . , un), where u1, . . . , un ∈ {u, u∗}.
First we note that such a cumulant can only be different from zero

249
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if the number of u among u1, . . . , un is the same as the number of u∗

among u1, . . . , un. This follows directly by the formula κn(u1, . . . , un) =∑
π∈NC(n) ϕπ[u1, . . . , un]µ(π, 1n). Indeed, if the number of u is not

equal to the number of u∗, then for all π ∈ NC(n) there exists a
block V ∈ π which contains an unequal number of u and u∗; but then
ϕ(V )[u1, . . . , un], and thus also ϕπ[u1, . . . , un], vanishes. This means, in
particular, that only cumulants of even length are different from zero.

Consider now a cumulant where the number of u and the number
of u∗ are the same. We claim that only such cumulants are different
from zero where the entries are alternating in u and u∗. We will prove
this by induction on the length of the cumulant. For length 2 this
is clear, because κ2(u, u) = ϕ(uu) − ϕ(u)ϕ(u) = 0 and in the same
way κ2(u

∗, u∗) = 0. Assume now that we have proved the vanishing
of all non-alternating cumulants of length smaller than n and con-
sider a non-alternating cumulant of length n. Non-alternating means
that we find in the sequence of arguments at least one of the pat-
terns κn(. . . , u∗, u, u, . . . ), κn(. . . , u, u, u∗, . . . ), κn(. . . , u, u∗, u∗, . . . ), or
κn(. . . , u∗, u∗, u, . . . ). Note that actually it suffices to consider the first
two cases because we can get the other two from those by replacing u
by u∗, and if u is a Haar unitary then so is u∗. Let us only treat the first
case, the second is similar. So let us consider κn(. . . , u∗, u, u, . . . ) and
say that the positions of . . . , u∗, u, u, . . . are . . . , m,m + 1,m + 2, . . . .
By Proposition 11.15, we have that κn(. . . , 1, u, . . . ) = 0. On the other
hand, the latter cumulant is the same as κn(. . . , u∗ ·u, u, . . . ), and then
we can use Theorem 11.12 to write this as

0 = κ(. . . , u∗ · u, u, . . . ) =
∑

π∈NC(n)
π∨σ=1n

κπ[. . . , u∗, u, u, . . . ].

Here

σ = {(1), (2), . . . , (m,m + 1), (m + 2), . . . , (n)}
is the partition which glues together the elements m and m+1. Which
partitions π ∈ NC(n) do have the property π ∨ σ = 1n? Of course, we
have the possibility π = 1n. The only other possibilities are π’s which
consist of exactly two blocks, one of them containing m and the other
containing m+1. For these π, the summand κπ[. . . , u∗, u, u, . . . ] factor-
izes into a product of two cumulants of smaller length, so, by induction
hypothesis, each of the two blocks of π must connect alternatingly u
and u∗. This implies that such a π cannot connect m + 1 with m + 2,
and hence it must connect m with m+2. But this forces m+1 to give
rise to a singleton of π, i.e., such a π looks like this:
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u∗ u u· · · · · ·· · · · · ·
?

m

?

m + 1

?

m + 2

Hence one factor of κπ for such a π is just κ1(u) = 0. This implies that
only π = 1n makes a contribution to the above sum, i.e., we get

0 =
∑

π∈NC(n)
π∨σ=1n

κπ[. . . , u∗, u, u, . . . ] = κn(. . . , u∗, u, u, . . . ),

which proves our claim on the vanishing of non-alternating cumulants.
Finally, it remains to determine the value of the alternating cumu-

lants. Let us denote by αn the value of such a cumulant of length 2n,
i.e.,

κ2n(u, u∗, . . . , u, u∗) =: αn = κ2n(u∗, u, . . . , u∗, u).

The last equality comes from the fact that with u also u∗ is a Haar
unitary. We use now again Proposition 11.15 and Theorem 11.12:

0 = κ2n−1(1, u, u∗, . . . , u, u∗) = κ2n−1(u · u∗, u, u∗, . . . , u, u∗)

=
∑

π∈NC(2n)
π∨σ=12n

κπ[u, u∗, u, u∗, . . . , u, u∗],

where σ = {(1, 2), (3), (4), . . . , (2n)} ∈ NC(2n) is the partition which
couples the first two elements. Again, π’s fulfilling the condition π∨σ =
12n are either π = 12n or consist of exactly two blocks, one containing
the element 1 and the other containing the element 2. Note that in the
latter case the next element in the block containing 1 must correspond
to an u∗, hence be of the form 2(p + 1) for some 1 ≤ p ≤ n − 1, and
such a π must look like this:

u u∗ uu u∗ u u∗ u u∗· · · · · ·
?

1

?

2

?

2(p + 1)

?

2n
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Then we can continue the above calculation as follows:

0 =
∑

π∈NC(2n)
π∨σ=12n

κπ[u, u∗, u, u∗, . . . , u, u∗]

= k2n(u, u∗, u, u∗, . . . , u, u∗)

+
n−1∑
p=1

k2n−2p(u, u∗, . . . , u, u∗) · κ2p(u
∗, u, . . . , u∗, u)

= αn +
n−1∑
p=1

αn−pαp.

Thus we have the recursion

(15.1) αn = −
n−1∑
p=1

αn−pαp,

which is up to the minus-sign and a shift in the indices by 1 the recur-
sion relation (2.8) for the Catalan numbers. Since also α1 = κ2(u, u∗) =
1 = C0, we have finally proved the following statement.

Proposition 15.1. The alternating ∗-cumulants of a Haar unitary
u are given by

(15.2) κ2n(u, u∗, . . . , u, u∗) = κ2n(u∗, u, . . . , u∗, u) = (−1)n−1Cn−1.

All other ∗-cumulants of u vanish.

Definition of R-diagonal elements

We see that for both the circular and the Haar unitary element a
lot of ∗-cumulants vanish, namely those for which the arguments are
not alternating between the element and its adjoint. We will take this
as the defining property of R-diagonal elements - thus providing a class
of (in general, non-normal) elements which contain circular and Haar
unitary elements as special cases.

Notation 15.2. Let a be a random variable in a ∗-probability
space. A cumulant κ2n(a1, . . . , a2n) with arguments from {a, a∗} is said
to have alternating arguments or is alternating, if there does not
exist any ai (1 ≤ i ≤ 2n − 1) with ai+1 = ai. Cumulants with an odd
number of arguments will always be considered as not alternating.

For example, κ8(a, a∗, a∗, a, a, a∗, a, a∗) or κ5(a, a∗, a, a∗, a) are not
alternating, whereas κ6(a, a∗, a, a∗, a, a∗) is alternating.
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Definition 15.3. Let (A, ϕ) be a ∗-probability space.
1) A random variable a ∈ A is called R-diagonal if for all n ∈ N

we have that κn(a1, . . . , an) = 0 whenever the arguments a1, . . . , an ∈
{a, a∗} are not alternating in a and a∗.

2) If a ∈ A is R-diagonal we denote the non-vanishing cumulants
by αn := κ2n(a, a∗, a, a∗, . . . , a, a∗) and βn := κ2n(a∗, a, a∗, a, . . . , a∗, a)
(n ≥ 1). The sequences (αn)n≥1 and (βn)n≥1 are called the determin-
ing sequences of a.

3) If the state ϕ restricted to the ∗-algebra generated by an R-
diagonal a ∈ A is tracial – which means that the two determining
sequences coincide, αn = βn for all n – then we call a a tracial R-
diagonal element.

Examples 15.4. 1) The only non-vanishing cumulants for a circular
element are κ2(c, c

∗) = κ2(c
∗, c) = 1. Thus a circular element is a tracial

R-diagonal element with determining sequence

(15.3) αn = βn =

{
1, n = 1

0, n > 1.

2) Let u be a Haar unitary. We calculated its cumulants in Proposition
15.1. In our present language, we showed there that u is a tracial
R-diagonal element with determining sequence

(15.4) αn = βn = (−1)n−1Cn−1.

Notation 15.5. Note that many R-diagonal elements a (e.g., cir-
cular or Haar unitary elements) are tracial. In this case all information
about the ∗-distribution of a is contained in one sequence (αn)n≥1 and
many formulas can then be formulated quite compactly in terms of the
corresponding multiplicative function on non-crossing partitions. We
will denote this function also by α, thus in analogy to our moment and
cumulant functions we will then use the notation

(15.5) απ :=
∏
V ∈π

α|V | (π ∈ NC(n)).

It is clear that all information on the ∗-distribution of an R-diagonal
element a is contained in its determining sequences. In the next propo-
sition we will connect the determining sequences with the distribution
of aa∗ and the distribution of a∗a.

Proposition 15.6. Let a be an R-diagonal random variable and

αn : = κ2n(a, a∗, a, a∗, . . . , a, a∗),

βn : = κ2n(a∗, a, a∗, a, . . . , a∗, a)
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the determining sequences of a.
1) Then we have

κn(aa∗, . . . , aa∗) =
∑

π∈NC(n)
π={V1,...,Vr}

α|V1|β|V2| · · · β|Vr|(15.6)

and

κn(a∗a, . . . , a∗a) =
∑

π∈NC(n)
π={V1,...,Vr}

β|V1|α|V2| · · · β|Vr|(15.7)

where V1 denotes that block of π ∈ NC(n) which contains the first
element 1.

2) In the tracial case (i.e. if αn = βn for all n) we have

(15.8) κn(aa∗, . . . , aa∗) = κn(a∗a, . . . , a∗a) =
∑

π∈NC(n)

απ.

Proof. 1) Applying Theorem 11.12 yields

κn(aa∗, . . . , aa∗) =
∑

π∈NC(2n)
π∨σ=12n

κπ[a, a∗, . . . , a, a∗]

with σ = {(1, 2), (3, 4), . . . , (2n− 1, 2n)} ∈ NC(2n).
Note that this is exactly the same σ which appeared in the proof

of Proposition 11.25. In that proof it was shown that a partition
π ∈ NC(2n) fulfills the condition π ∨ σ = 12n if and only if it has
the following properties: the block of π which contains the element 1
contains also the element 2n, and, for each 1 ≤ k ≤ n − 1, the block
of π which contains the element 2k contains also the element 2k + 1.
Moreover, in the proof of Proposition 11.25 it was observed that the
set of partitions π ∈ NC(2n) which have these properties is in canon-
ical bijection with NC(n). It is immediate that, under this bijection,
κπ[a, a∗, . . . , a, a∗] is transformed into the product appearing on the
right-hand side of Equation (15.6). This proves (15.6), and the proof
of (15.7) is similar.

2) This is a direct consequence from the first part, if the α’s and
β’s are the same. ¤

Corollary 15.7. 1) The ∗-distribution of an R-diagonal element
a is uniquely determined by the distribution of aa∗ and the distribution
of a∗a.

2) The ∗-distribution of a tracial R-diagonal element a is uniquely
determined by the distribution of a∗a.
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Proof. This follows immediately from the observation that the
formulas (15.6) and (15.7) can inductively be resolved for (αn)n≥1 and
(βn)n≥1 in terms of the cumulants of aa∗ and the cumulants of a∗a. ¤

Proposition 15.8. Let a and b be elements in a ∗-probability space
(A, ϕ) such that a is R-diagonal and such that {a, a∗} and {b, b∗} are
freely independent. Then ab is R-diagonal.

Proof. We have to show that non alternating cumulants in ab and
b∗a∗ vanish. Thus we have to look at situations like κn(. . . , ab, ab, . . . )
or κn(. . . , b∗a∗, b∗a∗, . . . ). We will only consider the first case, the latter
is similar. In order to be able to distinguish the various a’s appearing
in the cumulant, we will put some indices on them. So we consider
κn(. . . , a1b, a2b, . . . ), where a1 = a2 = a.

By Theorem 11.12, we have

(15.9) κn(. . . , a1b, a2b, . . . , ) =
∑

π∈NC(2n)
π∨σ=12n

κπ[. . . , a1, b, a2, b, . . . ] ,

where σ = {(1, 2), (3, 4), . . . , (2n− 1, 2n)}.
The fact that a and b are ∗-freely independent implies, by Theorem

11.20 on the vanishing of mixed cumulants, that only such partitions
π ∈ NC(2n) contribute to the sum for which each of their blocks
contains elements only from {a, a∗} or only from {b, b∗}. Let V be the
block containing a2. We have to examine two situations.

On the one hand, it might happen that a2 is the first element in
the block V . Then the last element in V must be an a∗. This situation
can be sketched in the following way:

a1 b a2 b b∗ a∗· · ·· · · · · ·
V -¾

In this case π does not couple the block of σ which contains a1 with
the block of σ which contains a2; thus π ∨ σ cannot be equal to 12n.

On the other hand, it can happen that a2 is not the first element
of V . Since a is R-diagonal, the element preceding a2 in V is an a∗.

b∗ a∗ a1 b a2 b· · ·· · · · · ·
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But then again the block of σ containing a1 and the block of σ con-
taining a2 will not be coupled by π, and thus π ∨ σ cannot be equal to
12n.

As in both cases we do not find any partition contributing to the
sum (15.9), this has to vanish and thus we get the assertion. ¤

If we take for a a Haar unitary then we get the following corollary.

Corollary 15.9. Let u and b be elements in some ∗-probability
space such that u is a Haar unitary and such that u and b are ∗-free.
Then ub is a R-diagonal.

The previous results yield now the following characterization of R-
diagonal elements by an “invariance of the ∗-distribution under multi-
plication with a free Haar unitary”.

Theorem 15.10. Let a be an element in a ∗-probability space
(A, ϕ). Furthermore, let u be a Haar unitary in (A, ϕ) such that u
and a are ∗-free. Then a is R-diagonal if and only if a has the same
∗-distribution as ua.

Proof. =⇒: We assume that a is R-diagonal and, by Corollary
15.9, we know that ua is R-diagonal, too. In order to see that a and
ua have the same ∗-distribution we invoke Corollary 15.7, which tells
us that the distribution of an R-diagonal element a is determined by
the distribution of aa∗ and the distribution of a∗a. So we have to show
that the distribution of aa∗ agrees with the distribution of ua(ua)∗ and
that the distribution of a∗a agrees with the distribution of (ua)∗ua.
For the latter this is directly clear, whereas for the former one only has
to observe that, for a self-adjoint random variable y and an unitary u,
uyu∗ has the same distribution as y if u is ∗-free from y. Note that in
the non-tracial case one really needs the freeness assumption in order
to get the first u cancel the last u∗ via

ϕ((uyu∗)n) = ϕ(uynu∗) = ϕ(uu∗)ϕ(yn) = ϕ(yn).

⇐=: We assume that the ∗-distribution of a is the same as the
∗-distribution of ua. As, by Corollary 15.9, ua is R-diagonal it follows
that a is R-diagonal, too. ¤

Corollary 15.11. Let a be R-diagonal. Then aa∗ and a∗a are
freely independent.

Proof. By enlarging (A, ϕ), if necessary, we may assume that
there exists a Haar unitary u in our ∗-probability space, such that u
and a are ∗-free (see Exercise 6.17). Since a has the same ∗-distribution
as ua it suffices to prove the statement for ua. But there it just says
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that uaa∗u∗ and a∗u∗ua = a∗a are freely independent, which follows
easily from the definition of free independence (see Exercise 5.24). ¤

Special realizations of tracial R-diagonal elements

Let us recall from Notation 11.24 that we say an element x in a
non-commutative probability space is even if all its odd moments vanish
(which is equivalent to the fact that all odd cumulants vanish) and that
we find it convenient to record all non-trivial information about such an
element x in its determining sequence (αx

n)n≥1 with αx
n := κx

2n. In this
section all considered even elements will live in a ∗-probability space
and be selfadjoint, so that their ∗-distribution is determined by their
determining sequence. It is no accident that we denote the non-trivial
information (cumulants of even length) for even elements in the same
way as the non-trivial information (alternating cumulants) for tracial
R-diagonal elements . Selfadjoint even elements and tracial R-diagonal
elements show quite a lot of similarities, in a sense the latter can be
seen as the non-normal relatives of the former. Let us in particular
point out that in both cases the information about the distribution
of the square of the variable is calculated in the same way out of the
determining sequence; namely, by Proposition 15.6 we have for a tracial
R-diagonal element a with determining sequence (αa

n)n≥1 that

(15.10) κn(a∗a, . . . , a∗a) =
∑

π∈NC(n)

αa
π,

whereas, by Proposition 11.25, we have for an even element x with
determining sequence (αx

n)n≥1 that

(15.11) κn(x2, . . . , x2) =
∑

π∈NC(n)

αx
π,

This suggests that for each tracial R-diagonal distribution there
should be a corresponding even distribution with the same determining
sequence. This is indeed the case, and will be made precise in the next
proposition.

Proposition 15.12. 1) Let a be a tracial R-diagonal element
in a ∗-probability space (A, ϕ). Consider in the ∗-probability space
(M2(A), ϕ⊗ tr2) of 2× 2-matrices over A the random variable

X =

(
0 a
a∗ 0.

)

Then X is selfadjoint and even, and its determining sequence is the
same as the determining sequence of a.
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2) If x is a selfadjoint even element in some ∗-probability space
and u is a Haar unitary which is ∗-free from x, then ux is a tracial
R-diagonal element with the same determining sequence as x.

3) Any tracial R-diagonal distribution arising in a ∗-probability
space can be realized in the form ux where u is a Haar unitary, x
is selfadjoint and even, and u and x are ∗-free. The determining se-
quence of the R-diagonal distribution and the determining sequence of
the selfadjoint even element are necessarily the same.

Proof. 1) X is clearly selfadjoint and it is even because odd powers
of X have zero entries on the diagonal. Since the determining sequences
(αa

n)n≥1 of a and (αX
n )n≥1 of X can be calculated out of the moments of

a∗a and X2, respectively, in the same way (namely by Möbius inversion
of formulas 15.10 and 15.11), it is enough to see that the moments of
a∗a are the same as the moments of X2 in order to infer that both a
and X have the same determining sequences. However,

(X2)n =

(
(aa∗)n 0

0 (a∗a)n

)

and thus the moments of X2 are clearly the same as the corresponding
moments of a∗a.

2) Put a := ux. Then, by Corollary 15.9, a is R-diagonal. Since
both u and x are normal, our state restricted to the ∗-algebra generated
by u and restricted to the ∗-algebra generated by x is a trace. Thus, by
Proposition 5.19, it is also a trace restricted to the ∗-algebra generated
by u and x, and thus a is a tracial R-diagonal element. Now note that
a∗a = x2 and thus the moments of a∗a coincide with the moments of
x2. As before, this implies that their determining sequences are also
the same.

3) This is just a combination of the first and second part; take for
x the matrix X from part 1. ¤

The above correspondence between tracial R-diagonal elements and
selfadjoint even elements goes of course over to a C∗-probability frame-
work, i.e, if the R-diagonal element lives in a C∗-probability space, then
the corresponding even element does so, and the other way around.
However, in the C∗-context, we can also get other canonical realiza-
tions of R-diagonal elements which involve positive elements instead of
even ones.

Proposition 15.13. Let a be a tracial R-diagonal element in a
C∗-probability space. Then the ∗-distribution of a can be realized in the
form uq, where u and q are elements in some C∗-probability space such
that u is a Haar unitary, q is a positive element, and u and q are ∗-free.
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The distribution of q is then necessarily the same as the distribution of√
a∗a.

Proof. Note first that if we have a realization of the ∗-distribution
of a in the form b := uq as in the proposition, then b∗b = qu∗uq = q2.
Since both b∗b and q2 are positive we can take the square root (which

is possible in a C∗-framework), yielding
√

b∗b =
√

q2 = q (because q

is positive). Since
√

b∗b has the same distribution as
√

a∗a, we get the
assertion on the distribution of q.

Let us now construct the asserted realization. By invoking the
free product construction for C∗-probability space we can construct
elements u and q in some C∗-probability space such that

• u is a Haar unitary
• q is positive and has the same distribution as |a| =

√
a∗a

(which is, by traciality, the same as the distribution of
√

aa∗)
• u and q are ∗-free

Then, by 15.9, uq is R-diagonal; since u and q are normal we have again
that uq is a tracial R-diagonal element. However, (uq)∗(uq) = q2 has
the same distribution as a∗a, and thus the tracial R-diagonal element
uq and the tracial R-diagonal element a have the same ∗-distribution,
by Corollary 15.7. ¤

The previous result can actually be refined to a statement about
the polar decomposition of a tracial R-diagonal element – which has
the nice feature that we find the elements u and q not just in some
other non-commutative probability space, but in the von Neumann
algebra generated by a. Since we are not using von Neumann algebras
in this book, we give that result just as an additional statement for
the interested reader without elaborating on the used facts about von
Neumann algebras. Let us just recall that any bounded operator a on a
Hilbert space admits a unique polar decomposition in the form a = u|a|,
where |a| :=

√
a∗a and where u is a partial isometry (as defined in

Definition 7.21) such that ker(u) = ker(a). Whereas the absolute value
|a| lies, by continuous functional calculus, always in the C∗-algebra
generated by a, this is not true in general for u. However, what is true
in general is that u lies in the von Neumann algebra generated by a.
Thus, for a meaningful formulation of a polar decomposition result for
R-diagonal operators one needs a non-commutative probability space
which is a von Neumann algebra (usually this is called a W ∗-probability
space).
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Corollary 15.14. Let (A, ϕ) be a W ∗-probability space (i.e., A is
a von Neumann algebra) with ϕ a faithful trace and let a ∈ A be such
that ker(a) = {0}. Then the following two statements are equivalent.

(1) a is R-diagonal.
(2) a has a polar decomposition of the form a = uq, where u is a

Haar unitary and u, q are ∗-free.
Proof. The implication 2) =⇒ 1) is just an application of 15.9.

1) =⇒ 2): Let ã = ũq̃ be the R-diagonal element, which we constructed
in Proposition 15.13 (where we write now ũ and q̃ for the u and q ap-
pearing in that proposition) and which has the same ∗-distribution as
a. But this means that the von Neumann algebra generated by a is
isomorphic to the von Neumann algebra generated by ã via the map-
ping a 7→ ã (for this we need the faithfulness of the trace, see the
corresponding statement on the level of C∗-algebras in Theorem 4.11).
Since the polar decomposition takes places inside the von Neumann
algebras, the polar decomposition of a is mapped to the polar decom-
position of ã under this isomorphism. But the polar decomposition
of ã is by construction just ã = ũq̃ (note that we need the condition
on the kernel of a for this) and thus has the stated properties. Hence
these properties (which rely only on the ∗-distributions of the elements
involved in the polar decomposition) are also true for the elements in
the polar decomposition of a. ¤

Example 15.15. A circular element can be realized in (or has polar
decomposition of) the form c = uq where u is Haar unitary and ∗-free
from q and where q has the distribution of

√
c∗c. The later is the same

as the distribution of
√

s2 where s is a semicircular element of radius 1.
This distribution of q is the so-called quarter-circular distribution
and is given by a density

1

π

√
4− t2dt on [0, 2].

Remarks 15.16. 1) The above polar decomposition was only for
the case when a has trivial kernel. What happens in the case of non-
trivial kernel? We restrict for the moment to a tracial situation. Then
it is still true that we can realize the given distribution in the form
b = uq, where u is a Haar unitary, q is positive, and u and q are ∗-free.
This was the content of Proposition 15.13. However, it is not true any
more that uq is the polar decomposition of b, because a Haar unitary
u has always trivial kernel. Thus there is (in a W ∗-setting) a polar
decomposition of b of the form b = vq, where v is a partial isometry. In
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this representation it will not be true that v and q are ∗-free because
they share a common kernel.

2) One might wonder whether one also has analogues of the repre-
sentations from this section for non-tracial R-diagonal elements. Note
that in such a case it is not possible to realize such elements in the form
uq with u a Haar unitary, q positive, and u and q ∗-free – because u and
q are normal elements, our state restricted to the ∗-algebra generated
by uq is necessarily tracial; same with ux for x selfadjoint and even.
What one can expect is to realize non-tracial R-diagonal elements in
the form vq or vx, where v is an R-diagonal partial isometry. There
are some results in this direction, the general situation however is not
so clear. We will address this kind of questions in Exercises 15.27 and
15.28.

Product of two free even elements

Theorem 15.17. Let x, y be two selfadjoint even random variables
in some ∗-probability space. If x and y are freely independent then
xy is a tracial R-diagonal element. Furthermore, the determining se-
quence of xy is given in terms of the determining sequence of x and
the determining sequence of y as follows.

(15.12) αxy
n =

∑
π,σ∈NC(n)

σ≤K(π)

αx
π · αy

σ.

Proof. Put a := xy. We have to see that non alternating cumu-
lants in a = xy and a∗ = yx vanish. Since it is clear that cumulants
of odd length in xy and yx vanish always, it remains to check the van-
ishing of cumulants of the form κn(. . . , xy, xy, . . . ). (Because of the
symmetry of our assumptions in x and y this will also yield the case
κn(. . . , yx, yx, . . . ).) By Theorem 11.12, we can write this cumulant as

κn(. . . , xy, xy, . . . ) =
∑

π∈NC(2n)
π∨σ=12n

κπ[. . . , x, y, x, y, . . . ],

where σ = {(1, 2), (3, 4), . . . , (2n − 1, 2n)}. In order to be able to
distinguish y’s appearing at different positions we will label them by
indices (i.e. yi = y for all appearing i). Thus we have to look at
κπ[. . . , x, y1, x, y2, . . . ] for π ∈ NC(2n). Because of the free indepen-
dence of x and y, π only gives a contribution if it does not couple x
with y. Furthermore all blocks of π have to be of even length, by our
assumption that x and y are even. Let now V be that block of π which
contains y1. Then there are two possibilities.
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i) Either y1 is not the last element in V . Let y3 be the next element
in V , then we must have a situation like this

x y1 x · · ·· · · · · ·y2 y3 x

Note that y3 has to belong to a product yx as indicated, because both
the number of x and the number of y lying between y1 and y3 have to
be even. But then everything lying between y1 and y3 is not connected
to the rest (neither by π nor by σ), and thus the condition π ∨ σ = 12n

cannot be fulfilled.
ii) Or y1 is the last element in the block V . Let y0 be the first

element in V . Then we have a situation as follows

x y2y0 x x y1· · ·· · · · · ·
V -¾

Again we have that y0 must come from a product yx, because the
number of x and the number of y lying between y0 and y1 have both
to be even (although now some of the y from that interval might be
connected to V , too, but that has also to be an even number). But
then everything lying between y0 and y1 is separated from the rest and
we cannot fulfill the condition π ∨ σ = 12n.

Thus in any case there is no π which fulfills π ∨ σ = 12n and has
also kπ[. . . , x, y1, x, y2, . . . ] different from zero. Hence κ(. . . , xy, xy, . . . )
vanishes.

So it remains to calculate κ2n(xy, yx, . . . , xy, yx). This is quite sim-
ilar to the proof of Proposition 11.25. We will be quite condensed and
leave the details to the reader.

By Theorem 11.12, we get

κ2n(xy, yx, . . . , xy, yx) =
∑

π∈NC(4n)
π∨σ=14n

κπ[x, y, y, x, . . . , x, y, y, x],

where σ = {(1, 2), (3, 4), . . . , (4n − 1, 4n)} ∈ NC(4n). As in the proof
of Proposition 11.25 one can show that the requirement π ∨ σ = 14n is
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equivalent to the following properties of π: The block containing 1 must
also contain 4n and, for each k = 1, . . . , 2n − 1, the block containing
2k must also contain 2k + 1. The set of partitions in NC(4n) fulfilling
these properties are in canonical bijection with NC(2n). Furthermore
we have to take into account that each block of π ∈ NC(4n) couples
either only x or only y. For the image of π in NC(2n) this means that
it splits into blocks living on the odd numbers – corresponding to a
π1 ∈ NC(1, 3, . . . , 2n − 1) – and blocks living on the even numbers –
corresponding to a π2 ∈ NC(2, 4, . . . , 2n). Under this identification the
quantity κπ[x, y, y, x, . . . , x, y, y, x] goes over to αx

π1
·αy

π2
. The fact that

the union of π1 and π2 must be non-crossing amounts to the requirement
that π2 ≤ K(π1). Renaming π1 to π and π2 to σ gives (15.12). ¤

As we have seen in the last section we can make a transition from
a selfadjoint even element to an R-diagonal element with the same
determining sequence by multiplying the given even element with a
free Haar unitary. Our present considerations show that instead of a
Haar unitary we could also take a symmetric Bernoulli element. Recall
that a symmetric Bernoulli variable is a selfadjoint even element b with
b2 = 1.

Corollary 15.18. Let x be a selfadjoint even element and b be a
symmetric Bernoulli variable, such that x and b are free. Then xb is
R-diagonal and has the same determining sequence as the even element
x.

Proof. By Theorem 15.17, a := xb is a tracial R-diagonal element.
Since aa∗ = xb2x = x2, all moments of aa∗ are the same as the corre-
sponding moments of x2 which implies that the R-diagonal element a
and the even element x have the same determining sequence. ¤

Exercise 15.19. Let s be a semicircular element of variance 1 and
b be a symmetric Bernoulli variable which is free from s. Prove that
sb is a circular element.

The free anti-commutator of even elements

If we understand the ∗-distribution of xy, then we can of course
also make some statements about the distribution of the corresponding
commutator xy − yx or anti-commutator xy + yx.

Theorem 15.20. Let x and y be two selfadjoint even elements
which are freely independent. Then their anti-commutator xy + yx
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is also selfadjoint and even, and its determining sequence is given by

(15.13) αxy+yx
n = 2

∑
π,σ∈NC(n)

σ≤K(π)

αx
π · αy

σ.

Proof. Since, by Theorem 15.17, xy is R-diagonal it is clear that
cumulants in xy + yx of odd length vanish and that for even length we
get

αxy+yx
n = κxy+yx

2n

= κ2n(xy + yx, . . . , xy + yx)

= κ2n(xy, yx, . . . , xy, yx) + κ2n(yx, xy, . . . , yx, xy)

Since xy is tracial we have actually that the last two summands coincide
and thus

αxy+yx
n = 2αxy

n .

The assertion follows then from formula (15.12). ¤
Remarks 15.21. 1) Instead of the anti-commutator one can also

consider the selfadjoint version i(xy−yx) of the commutator. One sees
easily that in our case where x and y are even the distribution of this
commutator is the same as the distribution of the anti-commutator.

2) If one wants to consider the case of the free commutator or anti-
commutator for general selfadjoint x and y then the situation becomes
much more involved. In such a situation xy is of course not R-diagonal,
so we have no good tools for calculating the joint moments in xy and
yx. (Note that if we only consider moments in xy, then we are back to
the problem of the product of free variables, which we treated in the
last lecture. The point of the commutator or anti-commutator is that
one needs to understand the ∗-moments of xy, not just the moments.)

3) Even though we have no useful general formulas for the ∗-
moments of xy in the general case, the commutator can nevertheless be
treated in full generality, due to some remarkable cancelations which
allow to reduce the general situation to the case of even x and y. We
will come back to this in Lecture 19.

4) As it becomes clear from our above result about the free anti-
commutator, the combinatorial formulas are getting more and more
involved and one might start to wonder how much insight such formulas
provide. What is really needed for presenting these solutions in a useful
way is a machinery which allows to formalize the proofs and manipulate
the results in an algebraic way without having to spend too much
considerations on the actual kind of summations. Such a machinery
will be presented in Part 3, and it will be only with the help of that
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apparatus that one can really formulate the results in a form which is
also suitable for concrete analytic calculations.

Powers of R-diagonal elements

We have seen that R-diagonality is preserved under several oper-
ations (like taking the sum or product of free elements). We will see
now that powers of R-diagonal elements are R-diagonal, too.

Proposition 15.22. Let a be an R-diagonal element and let r be
a positive integer. Then ar is R-diagonal, too.

Proof. For notational convenience we deal with the case r = 3.
General r can be treated analogously.

We have to show that cumulants κn(. . . , a∗a∗a∗, a∗a∗a∗, . . . ) vanish.
(Cumulants κn(. . . , aaa, aaa, . . . ) are then covered by the observation
that a being R-diagonal is the same as a∗ being R-diagonal.) In order
to be able to distinguish the relevant a∗ we will index them from a∗1 to
a∗6, i.e., we are looking at κn(. . . , a∗1a

∗
2a
∗
3, a

∗
4a
∗
5a
∗
6, . . . ).

Theorem 11.12 yields in this case

(15.14)

κn(. . . , a∗1a
∗
2a
∗
3, a

∗
4a
∗
5a
∗
6, . . . ) =

∑
π∈NC(3n)
π∨σ=13n

κπ[. . . , a∗1, a
∗
2, a

∗
3, a

∗
4, a

∗
5, a

∗
6, . . . ],

where σ := {(1, 2, 3), (4, 5, 6), . . . , (3n − 2, 3n − 1, 3n)} ∈ NC(3n). In
order to find out which partitions π ∈ NC(3n) contribute to the sum
we look at the structure of the block of π containing the element a∗4; in
the following we will call this block V .

There are two situations which can occur. The first possibility is
that a∗4 is the first component of V ; in this case the last component of
V must be an a and, since each block has to contain the same number
of a and a∗, this a has to be the third a of an argument a3.

· · · a∗1 a∗2 a∗3 a∗4 a∗5 a∗6 · · · a a a · · ·
V¾ -

But then the block V gets in π ∨ σ not connected with the block
containing a∗3 and hence the requirement π∨σ = 13n cannot be fulfilled
in such a situation.
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The second situation that might happen is that a∗4 is not the first
component of V . Then the preceding element in this block must be an
a and again it must be the third a of an argument a3.

· · · a a a · · · a∗1 a∗2 a∗3 a∗4 a∗5 a∗6 · · ·

But then the block containing a∗3 is again not connected with V in π∨σ.
Thus, there exists no π which gives a non-vanishing contribution in

(15.14) and we get that κn(. . . , a∗a∗a∗, a∗a∗a∗, . . . ) is zero. ¤

Exercises

Exercise 15.23. Let a and b be two R-diagonal elements which
are ∗-free. Show that the sum a + b is also R-diagonal and express its
determining sequence in terms of the determining sequence of a and
the determining sequence of b.

Exercise 15.24. Let a and b be R-diagonal random variables such
that {a, a∗} is free from {b, b∗}. By Proposition 15.8 we know that ab
is R-diagonal. In this exercise we want to see how we can express the
determining sequence of ab in terms of the determining sequence of a
and of b. We put

αa
n := κ2n(a, a∗, a, a∗, . . . , a, a∗), βa

n := κ2n(a∗, a, a∗, a, . . . , a∗, a)

αb
n := κ2n(b, b∗, b, b∗, . . . , b, b∗), αab

n := κ2n(ab, b∗a∗, . . . , ab, b∗a∗).

1) Show that we have

(15.15) αab
n =

∑
π=πa∪πb∈NC(2n)

πa={V1,...,Vk}∈NC(1,3,...,2n−1)

πb={V ′1,...,V ′
l
}∈NC(2,4,...,2n)

αa
|V1|β

a
|V2| · · · βa

|Vk|α
b
|V ′1 | · · ·α

b
|V ′l | ,

where V1 is that block of π which contains the first element 1.
2) Show that in the tracial case the statement reduces to

(15.16) αab
n =

∑
π,σ∈NC(n)

σ≤K(π)

αa
π · αb

σ.

Exercise 15.25. 1) Prove the following statement: Let a be an
R-diagonal element and r a positive integer. Then the ∗-distribution
of ar is the same as the ∗-distribution of a1 · · · ar where each ai (i =
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1, . . . , r) has the same ∗-distribution as a and where a1, . . . , ar are ∗-
freely independent.

2) Let a1, . . . , an be n R-diagonal elements which are ∗-free. Con-
sider a matrix (γij)

n
i,j=1 of complex numbers. Define a :=

∑n
i,j=1 γijaiaj.

Show that a is R-diagonal.

Exercise 15.26. Let c be a circular element and r a positive inte-
ger.

1) Calculate the determining sequence of cr and the moments of
c∗rcr.

2) Calculate the norms of powers of circular elements (assuming
they live in a C∗-probability space with faithful state ϕ) via the formula

‖cr‖ = lim
n→∞

2n

√
ϕ
(
(c∗rcr)n

)
.

Exercise 15.27. 1) Show that a Haar unitary element is the only
unitary element that is R-diagonal.

2) Let v be a partial isometry (as defined in Definition 7.21) which
is also R-diagonal. Show that all ∗-moments of v are determined by
the knowledge of α := ϕ(v∗v) and β := ϕ(vv∗). Let us call such a v
an (α, β)-Haar partial isometry in the following. Show that such an
(α, β)-Haar partial isometry is tracial if and only if α = β.

3) Show that for a (α, β)-Haar partial isometry in a C∗-probability
space we have necessarily 0 ≤ α, β ≤ 1.

Exercise 15.28. Let l1 := l(f) and l2 := l(g) be two creation oper-
ators on a full Fock space F(H), such that f and g are two orthogonal
unit vectors, i.e., l1 and l2 are ∗-free with respect to the vacuum ex-
pectation state. For a fixed 0 ≤ λ ≤ 1 we put c := l1 +

√
λl∗2.

1) Show that c is R-diagonal and that it is tracial if and only if
λ = 1, in which case it is circular. We will call the c’s for general λ
generalized circular elements.

2) Show that the vacuum expectation state restricted to the ∗-
algebra generated by c is faithful for 0 < λ ≤ 1.

3) Consider the polar decomposition c = vq of a generalized circular
element (in a W ∗-probability space). Show that v and q are ∗-free and
that the polar part is a (1, β)-Haar partial isometry for suitable β.

4) Let v1 be a (1, β)-Haar isometry and v2 a (1, α)-Haar partial
isometry, and assume that v1 and v2 are ∗-free. Show that then v :=
v1v

∗
2 is an (α, β)-Haar partial isometry.
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Transforms and Models





LECTURE 16

The R-transform

In this lecture (and in general in the lectures on transforms in Part
3) we will take a point of view on free cumulants which emphasizes
formal power series. This leads us to the concept of R-transform for a
tuple of non-commutative random variables. The R-transform contains
essentially the same information as the free cumulants of the random
variables in question, the difference is in the point of view:

free cumulants ↔ the R-transform
(“coefficients”) (“power series”)

The R-transform of one variable has already appeared in Lecture 12,
where it was used to study the operation of addition of freely inde-
pendent random variables. In this lecture we will introduce the mul-
tivariable version of the R-transform, and point out the analogy with
its counterpart in classical probability, the logarithm of the Fourier
transform.

The multivariable R-transform

We start by introducing the space of series that we want to use,
and the operation of extracting a coefficient from such a series.

Notations 16.1. Let s be a positive integer.
1) We denote by Θs the set of all formal power series of the form

(16.1) f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

αi1,...inzi1 · · · zin ,

with αi1,...,in ∈ C (∀ n ≥ 1, ∀ 1 ≤ i1, . . . , in ≤ s), and where z1, . . . , zs

are non-commuting indeterminates.
2) Let f ∈ Θs be as in the Equation (16.1). For every n ≥ 1 and

1 ≤ i1, . . . , in ≤ s we denote

(16.2) αi1,...,in =: Cf(i1,...,in)(f)

(“the coefficient of order (i1, . . . , in)” of f).

We will need, moreover, the following notation for “generalized co-
efficients” of a power series in Θs.

271
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Notation 16.2. Let s be a positive integer. For n ≥ 1, 1 ≤
i1, . . . , in ≤ s and ∅ 6= V ⊂ {1, . . . , n} we will use “(i1, . . . , in)|V ” to
denote the tuple in {1, . . . , s}|V | obtained from (i1, . . . , in) by retaining
only the ij’s with j ∈ V . (For instance if n = 6 and V = {2, 3, 5} then
(i1, . . . , i6)|V = (i2, i3, i5).)

Now, let f be a power series in Θs. For every n ≥ 1, every 1 ≤
i1, . . . , in ≤ s, and every non-crossing partition π = {V1, . . . , Vr} ∈
NC(n) we denote

(16.3) Cf(i1,...,in);π(f) := α(i1,...,in)|V1 · · ·α(i1,...,in)|Vr .

Note that in general Cf(i1,...,in);π(f) isn’t a true coefficient of f , but
rather a product of such coefficients. (Of course, if π happens to be
the partition with only one block, 1n, then Cf(i1,...,in);π(f) reduces to
the regular coefficient Cf(i1,...,in)(f).)

Definition 16.3. Let (A, ϕ) be a non-commutative probability
space, and let a1, . . . , as be an s-tuple of elements of A.

1) Consider the family of joint moments of a1, . . . , as,{
ϕ(ai1 · · · ain) | n ≥ 1, 1 ≤ i1, . . . , in ≤ s

}
.

We can use all these numbers to make up a power series in Θs which will
be denoted by Ma1,...,as , and is called the moment series of a1, . . . , as:

(16.4) Ma1,...,as(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

ϕ(ai1 · · · ain)zi1 · · · zin .

2) Consider on the other hand the family of all free cumulants of
a1, . . . , as, {

κn(ai1 , . . . , ain) | n ≥ 1, 1 ≤ i1, . . . , in ≤ s
}

.

With these numbers we make up a series in Θs, denoted by Ra1,...,as

and called the R-transform of a1, . . . , as:

(16.5) Ra1,...,as(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

κn(ai1 , . . . , ain)zi1 · · · zin .

Remarks 16.4. Let us make some comments on how the notations
introduced above relate to some other notations used in the preceding
lectures.

1) When applied to the R-transform f = Ra1,...,as ∈ Θs, the notation
Cf(i1,...,in);π(f) from Equation (16.3) matches the notations of the type
“κπ[a1, . . . , an]” used in the lectures from Part 2. Indeed, it is clear that
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given a non-commutative probability space (A, ϕ) and the elements
a1, . . . , as ∈ A, we have:

(16.6) Cf(i1,...,in)(Ra1,...,as) = κn(ai1 , . . . , ain),

and more generally:

(16.7) Cf(i1,...,in);π(Ra1,...,as) = κπ[ai1 , . . . , ain ]

for every n ≥ 1, every 1 ≤ i1, . . . , in ≤ s, and every π ∈ NC(n).
2) The particular case s = 1 of Equation (16.5) gives us a series

Ra(z) =
∞∑

n=1

κn(a, . . . , a)zn,

where a is an element in a non-commutative probability space (A, ϕ).
This is, of course, very closely related to the series Ra introduced in
Notation 12.6). More precisely: the definitions of Ra and of Ra are
made in such a way that the two series only differ by a shift in the
powers of z:

(16.8) Ra(z) = zRa(z).

In the free probability literature (and in particular in this book) both
the series Ra and Ra are referred to as “the R-transform of a”. We
hope the reader will have no difficulty to take this minor detail into
account, in the various R-transform calculations which are being shown
throughout the book.

Remark 16.5. As explained in the Lecture 11 (see in particular the
Appendix to that lecture), the free cumulants represent the free proba-
bilistic analogue for the concept of cumulants from classical probability
– in the respect that they are obtained from joint moments by the same
kind of formulas, but where one only looks at non-crossing partitions
(instead of arbitrary partitions) of finite sets. Let us now revisit this
fact, from the point of view of power series.

Let X1, . . . , Xs be an s-tuple of real random variables in the classical
(commutative) sense. It is well-known (cf. Exercise 11.37) that the
classical joint cumulants of X1, . . . , Xs can be retrieved as coefficients
of the power series (in s commuting indeterminates) logF(ν), where ν
is the joint distribution of X1, . . . , Xs (ν is a probability measure on
Rs – compare e.g to Example 4.4.1 of Lecture 4). Here F(ν) denotes
the Fourier transform (a.k.a. the characteristic function) of ν, and the
log can be viewed in the formal power series sense.

On the other hand, free cumulants are coefficients of R-transforms
for s-tuples of non-commutative random variables; hence the analogy
from the level of cumulants leads to the following important statement:
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“The R-transform is the analogue in free probability
for the logarithm of the Fourier transform.”

This statement is illustrated by the following theorem (“a free inde-
pendence criterion in terms of R-transforms”), which is a fundamental
result in the theory of the R-transform.

Theorem 16.6. Let (A, ϕ) be a non-commutative probability space,
and let a1, . . . , as be elements of A. Then the following two statements
are equivalent:

(1) a1, . . . , as are freely independent.
(2) We have that

(16.9) Ra1,...,as(z1, . . . , zs) = Ra1(z1) + · · ·+ Ras(zs).

Proof. This is a restatement of the Theorem 11.20 of Lecture 11
(which said that “free independence is equivalent to the vanishing of
all the mixed cumulants”), in the context where the free cumulants of
a1, . . . , as are viewed as coefficients of Ra1,...,as . ¤

Remarks 16.7. 1) The Equation (16.9) in the preceding theorem is
the free analogue for the following basic property of the Fourier trans-
form: Suppose that X1, . . . , Xs are random variables on a probability
space (in classical, commutative sense); let F be the Fourier transform
of the joint distribution of X1, . . . , Xs, and let F1, . . . ,Fs denote the
Fourier transforms of the individual distributions of X1, . . . , Xs, respec-
tively (so that F is a series in s commuting complex variables, while
each of F1, . . . ,Fs is a series of one variable). Then X1, . . . , Xs are
classically independent precisely when

(16.10) F(z1, . . . , zs) = F1(z1) · · · Fs(zs).

The analogy between the Equations (16.9) and (16.10) becomes obvious
when one applies the log to both sides of (16.10).

2) The result of the preceding theorem also holds in a version where
instead of s elements we deal with s families of elements. For ex-
ample for s = 2 this would be stated as follows: Let (A, ϕ) be a
non-commutative probability space, and let a1, . . . , ap, b1, . . . , bq be el-
ements of A. Then the family {a1, . . . , ap} is freely independent from
{b1, . . . , bq} if and only if we have

(16.11) Ra1,...,ap,b1,...,bq(z1, . . . , zp, w1, . . . , wq)

= Ra1,...,ap(z1, . . . , zp) + Rb1,...,bq(w1, . . . , wq).

This too follows from the fact that free independence is equivalent to
the vanishing of the mixed free cumulants (one has to prove and then
apply the suitable version of Theorem 11.16).
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3) The phenomenon of vanishing of mixed free cumulants has an
important consequence about the addition of free s-tuples, which has
already been observed in the case s = 1 in the Lecture 12 (Proposition
12.3).

Proposition 16.8. Let (A, ϕ) be a non-commutative probabil-
ity space, and let a1, . . . , as, b1, . . . , bs be elements of A such that
{a1, . . . , as} is freely independent from {b1, . . . , bs}. Then

(16.12) Ra1+b1,...,as+bs = Ra1,...,as + Rb1,...,bs .

Proof. For n ≥ 1 and 1 ≤ i1, . . . , in ≤ s we have that

Cf(i1,...,in)(Ra1+b1,...,as+bs) = κn(ai1 + bi1 , . . . , ain + bin).

By using the multilinearity of κn we expand the latter cumulant as a
sum of 2n terms; and after that we notice that 2n−2 of the 2n terms are
mixed free cumulants of {a1, . . . , as} and {b1, . . . , bs}, therefore must
vanish. We are thus left with a sum of two terms:

Cf(i1,...,in)(Ra1+b1,...,as+bs) = κn(ai1 , . . . , ain) + κn(bi1 , . . . , bin)

= Cf(i1,...,in)(Ra1,...,as) + Cf(i1,...,in)(Rb1,...,bs),

and the assertion follows. ¤

Example 16.9. The use of R-transforms can sometimes help our
terminology become more concise. As an example let us look at the
R-diagonal elements studied in Lecture 15. In the language of the R-
transform, an element a in a ∗-probability space (A, ϕ) is R-diagonal
precisely when the R-transform Ra,a∗ is of the form:

(16.13) Ra,a∗(z1, z2) = f(z1z2) + g(z2z1)

where f and g are series of one variable,

f(z) =
∞∑

n=1

αnzn and g(z) =
∞∑

n=1

βnz
n.

The sequences of coefficients (αn)n≥1 and (βn)n≥1 were called in the
Lecture 15 the determining sequences of the R-diagonal element a; in
the same vein, the two power series f and g appearing above will be
termed in what follows as the determining series of a.

The interpretation in terms of R-transforms is actually the one
which explains the name “R-diagonal element”: the requirement for
a to be R-diagonal is that the joint R-transform Ra,a∗ is in a certain
sense supported on the diagonal of the set which indexes its coefficients.
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Another property of the multivariable R-transform which is worth
recording is that it has a very nice behavior under linear transforma-
tions. In order to state this, let us first introduce a notation for a linear
change of variables in a formal power series.

Notation 16.10. Let r and s be positive integers, let f be a series
in Θs, and let L = (λij)i,j be a complex s × r matrix. We denote as
“f ◦ L” the series in Θr with coefficients defined as follows:

(16.14) Cfj1,...,jn(f ◦ L) =
s∑

i1,...in=1

Cfi1,...,in(f)λi1j1 · · ·λinjn ,

for n ≥ 1 and 1 ≤ j1, . . . , jn ≤ r.

Remark 16.11. The explanation for the notation “f ◦ L” is that,
with a small notational abuse, the relation between f and f ◦L can be
written as

(16.15) (f ◦ L)(w1, . . . , wr) = f
( r∑

j=1

λ1jwj, . . . ,

r∑
j=1

λsjwj

)
.

The meaning of Equation (16.15) is the following: take the expanded
form of f ,

f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

Cf(i1,...in)(f)zi1 · · · zin .

In this expanded form perform the substitutions

zi =
r∑

j=1

λijwj, 1 ≤ i ≤ s,

then multiply out the monomials zi1 · · · zin and re-group terms to get
a series in the indeterminates w1, . . . , wr. The resulting series will be
precisely f ◦ L ∈ Θr.

The justification for the notation “f ◦L” is even clearer if Equation
(16.15) is written in the more concise form

(f ◦ L)(w1, . . . , wr) = f( L(w1, . . . , wr) ).

Proposition 16.12. Let (A, ϕ) be a non-commutative probability
space, let a1, . . . , as be elements of A, and let L = (λij)i,j be a complex
s× r matrix. Consider the elements b1, . . . , br ∈ A defined by

bj =
s∑

i=1

λijai, 1 ≤ j ≤ r.
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Then we have

(16.16) Rb1,...,br = Ra1,...,as ◦ L.

Proof. For n ≥ 1 and 1 ≤ j1, . . . , jn ≤ r we have that

Cf(j1,...,jn)(Rb1,...,br) = κn(bj1 , . . . , bjn)

= κn

( s∑
i=1

λi,j1ai, . . . ,

s∑
i=1

λi,jnai

)

=
s∑

i1,...,in=1

λi1j1 · · ·λinjnκn(ai1 , . . . , ain)

=
s∑

i1,...,in=1

λi1j1 · · ·λinjnCf(i1,...,in)(Ra1,...,as)

= Cf(j1,...,jn)(Ra1,...,as ◦ L).

¤
Remarks 16.13. 1) If one uses the more suggestive (though some-

what unrigorous) notations from Remark 16.11, then the statement of
the preceding proposition can be summarized by the formula

RLt(a1,...,as)(w1, . . . , wr) = Ra1,...,as( L(w1, . . . , wr) ),

where Lt is the transpose of L.
2) A well-known fact from classical probability theory is that inde-

pendent Gaussian random variables are characterized by the property
of remaining independent under rotations. The formula for the be-
havior of the R-transform under linear transformations can be used
to obtain the free analogue of this fact, where instead of independent
Gaussian variables we are now dealing with freely independent semicir-
cular variables (in a non-commutative context). See the Exercise 16.23
at the end of the lecture for the precise formulation of how this goes.

The functional equation for the R-transform

In this section we derive an important functional equation which is
always satisfied by the series Ma1,...,as and Ra1,...,as , when a1, . . . , as are
random variables in a non-commutative probability space. This will
extend the functional equation observed for s = 1 in Theorem 12.5.

We fix for the section a positive integer s, and we consider the
space of power series Θs, as in Notations 16.1. It is obvious that Θs is
an algebra (non-unital, though) under the usual operations of addition,
multiplication and scalar multiplication for power series. Besides this it
also makes sense to consider compositions of series from Θs, as follows.
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Notation 16.14. Let f, h1, . . . , hs be in Θs, and suppose that f is
written explicitly,

f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

αi1,...,inzi1 · · · zin .

We denote by f(h1, . . . , hs) the series defined as:

(16.17) f(h1, . . . , hs) :=
∞∑

n=1

s∑
i1,...,in=1

αi1,...,inhi1 · · ·hin .

The infinite sum on the right-hand side of Equation (16.17) does not
raise convergence problems – indeed, (16.17) can also be written by
saying that:

(16.18) Cf(j1,...,jm)

(
f(h1, . . . , hs)

)
:=

m∑
n=1

s∑
i1,...,in=1

αi1,...,in · Cf(j1,...,jm)(hi1 · · ·hin),

for every m ≥ 1 and every 1 ≤ j1, . . . , jm ≤ s.

The functional equation announced in the title of the section goes
as follows.

Theorem 16.15. For f, g ∈ Θs the following two conditions are
equivalent:

(1) Cf(i1,...,in)(g) =
∑

π∈NC(n)

Cf(i1,...,in);π(f), ∀ n ≥ 1, 1 ≤ i1, . . . , in ≤ s.

(2) g = f
(
z1(1 + g), . . . , zs(1 + g)

)
.

Proof. We fix a series f ∈ Θs,

f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

αi1,...,inzi1 · · · zin .

For this f we consider the functional equation

(16.19) ξ = f
(
z1(1 + ξ), . . . , zs(1 + ξ)

)
,

in the unknown ξ ∈ Θs. The equivalence of the conditions (1) and (2)
in the theorem will clearly follow if we show that:

(a) The Equation (16.19) has a unique solution in Θs.
(b) The series g ∈ Θs with coefficients defined as in the condition

(1) of the theorem is a solution of the Equation (16.19).
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We show (a) by pointing out that (16.19) is equivalent to a recur-
rence relation for the coefficients of the series ξ. Indeed, by taking
(16.18) into account, we get that (16.19) is equivalent to:

(16.20) Cf(j1,...,jm)(ξ) =

m∑
n=1

s∑
i1,...,in=1

αi1,...,in · Cf(j1,...,jm)

(
zi1(1 + ξ) · · · zin(1 + ξ)

)
,

for m ≥ 1 and 1 ≤ j1, . . . jm ≤ s. For m = 1 the Equation (16.20)
simply says that the coefficient of zj in ξ is equal to αj, for 1 ≤ j ≤ s.
Now let us consider an m ≥ 2 and some 1 ≤ j1, . . . , jm ≤ s. Then the
coefficients appearing on the right-hand side of (16.20) keep track of
all the possibilities of producing the word

(16.21) zj1 · · · zjm

as part of the expansion of an expression

(16.22) zi1(1 + ξ) · · · zin(1 + ξ),

with 1 ≤ n ≤ m and 1 ≤ i1, . . . , in ≤ s. However, this can only be
done when i1, . . . , in of (16.22) are sitting among j1, . . . , jn of (16.21),
i.e. we have

i1 = jb(1), . . . , in = jb(n)

for some 1 = b(1) < b(2) < · · · < b(n) ≤ m. If we enumerate i1, . . . , in
in terms of b(1), . . . , b(n), we get that the right-hand side of (16.20) is
equal to:

(16.23)
m∑

n=1

∑

1=b(1)<···<b(n)≤m

αjb(1),jb(2),...,jb(n)
· Cf(jb(1)+1,...,jb(2)−1)(ξ) · · ·

· · ·Cf(jb(n)+1,...,jm)(ξ)

(with the appropriate convention that Cf(jp,...,jq)(ξ) = 1 when p > q).
Hence in (16.23) we obtained an expression for the coefficient of order
(j1, . . . , jm) of ξ, in terms of some shorter coefficients of the same series
(the lengths of the coefficients listed in (16.23) add up to m− n < m,
so each of them is indeed “shorter”). This is a recurrence relation for
the coefficients of ξ, which determines ξ uniquely.

We now go to the statement (b), that the series g defined by the con-
dition (1) in the theorem is a solution of the Equation (16.19). Clearly,
this will follow if we show that the coefficients of g satisfy the recur-
rence from (16.23). To obtain this recurrence, we write Cf(j1,...,jm)(g)
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in terms of the coefficients of f :

Cf(j1,...,jm)(g) =
∑

π∈NC(m)

Cf(j1,...,jm);π(f)

=
m∑

n=1

∑

1=b(1)<···<b(n)≤m

∑

π∈NC(m) s.t.

{b(1),...,b(n)}
is block of π

Cf(j1,...,jm):π(f)(16.24)

(by enumerating the partitions from NC(m) in terms of their block
which contains the number 1). But if a partition π ∈ NC(m)
is subjected to the condition of having a prescribed block B =
{b(1), . . . , b(n)}, with 1 = b(1) < · · · < b(n) ≤ m, then knowing π
is equivalent to knowing its restrictions π1 ∈ NC(b(2) − b(1) − 1),
π2 ∈ NC(b(3)−b(2)−1), . . . , πn ∈ NC(m−b(n)) to the spaces left be-
tween the consecutive elements of B; moreover, if π1, . . . , πn correspond
to π in this way, then it is immediate that:

(16.25) Cf(j1,...,jm);π(f) =

αjb(1),...jb(n)
· Cf(jb(1)+1,...,jb(2)−1);π1(f) · · ·Cf(jb(n)+1,...,jm);πn(f).

By substituting (16.25) in (16.24) we obtain that

Cf(j1,...,jm);π(g) =
m∑

n=1

∑

1=b(1)<···<b(n)≤m

αjb(1),...,jb(n)
·

·
( ∑

π1∈NC(b(2)−b(1)−1)

Cf(jb(1)+1,...,jb(2)−1);π1(f)
)
· · ·

· · ·
( ∑

πn∈NC(m−b(n))

Cf(jb(n)+1,...,jm);πn(f)
)

=
m∑

n=1

∑

1=b(1)<···<b(n)≤m

αjb(1),jb(2),...,jb(n)
·(16.26)

· Cf(jb(1)+1,...,jb(2)−1)(g) · · ·Cf(jb(n)+1,...,jm)(g),

where at the last equality sign we used again the connection between
f and g, given by the condition (1) in the theorem. But the Equation
(16.26) is just a repetition of (16.23) with “g” appearing in the place
of “ξ”. ¤

Corollary 16.16. Let (A, ϕ) be a non-commutative probability
space, and let a1, . . . , as be in A. Consider the moment series M :=
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Ma1,...,as and the R-transform R := Ra1,...,as. Then M and R satisfy the
equation

(16.27) M = R
(
z1(1 + M), . . . , zs(1 + M)

)
.

Proof. From the lectures about free cumulants we know that M
and R satisfy the condition (1) of Theorem 16.15. Therefore they must
also satisfy the condition (2) of the same theorem, which is (16.27). ¤

Example 16.17. Let (A, ϕ) be a ∗-probability space, and let c ∈ A
be a circular element. It was observed in Example 11.23 that the only
non-vanishing joint cumulants of c and c∗ are k2(c, c

∗) = k2(c
∗, c) = 1.

In the language of the R-transform, this says:

Rc,c∗(z1, z2) = z1z2 + z2z1.

What about the moment series of c and c∗? There doesn’t appear to be
any nice formula for the joint moments of c, c∗, but at least the above
corollary gives a “non-commutative quadratic equation” for the series
M := Mc,c∗ , namely:

(16.28) M = z1(1 + M)z2(1 + M) + z2(1 + M)z1(1 + M).

More about the 1-dimensional case

Remark 16.18. Let us consider a non-commutative probability
space (A, ϕ), and let a be an element of A. The particular case s = 1
of Corollary 16.16 gives us the functional equation

(16.29) Ma(z) = Ra

(
z(1 + Ma(z))

)
,

where

Ma(z) =
∞∑

n=1

ϕ(an)zn

and

Ra(z) =
∞∑

n=1

κn(a, a, . . . , a)zn.

We will look at some other ways in which the Equation (16.29) can
be reformulated. Clearly, we can start by writing (16.29) in the form

(16.30) Ma = Ra ◦
(
z(1 + Ma)

)
,

where ◦ denotes composition of power series. Suppose now that the
element a ∈ A we are working with is such that ϕ(a) 6= 0. Since the
linear term of both the series Ma and Ra is equal to ϕ(a), it follows
that these series are invertible under composition; we will denote their
inverses under composition by M<−1>

a and R<−1>
a , respectively. In
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(16.30) let us compose with R<−1>
a on the left, and with M<−1>

a on the
right. We obtain that:

R<−1>
a =

(
z(1 + Ma)

) ◦M<−1>
a

= (z ◦M<−1>
a ) · (1 + Ma ◦M<−1>

a )

= M<−1>
a · (1 + z).

So it is interesting that while the series Ma and Ra are in general quite
different from each other, their inverses under composition differ only
by a multiplication with 1 + z:

(16.31) R<−1>
a (z) = (1 + z)M<−1>

a (z).

This in particular gives a “practical” method for passing between Ma

and Ra. For instance from Ma to Ra, what one has to do is take
inverse under composition, then multiply by 1 + z, then take inverse
under composition again.

Modulo a shift in the coefficients, the series which appears in Equa-
tion (16.31) is another important “transform” of free probability, the
S-transform, and will be studied in more detail in Lecture 18.

Remark 16.19. We will conclude the lecture with a discussion of
the connection between the functional equation of the R-transform (in
the case s = 1) and the Lagrange inversion formula. The latter formula
concerns the implicit equation:

(16.32) ξ(z) = z · u(
ξ(z)

)
,

where ξ ∈ Θ1 is the unknown, and where u is a given power series,
u(t) = u0 + u1t + · · ·+ unt

n + · · · The Equation (16.32) has unique so-
lution, and Lagrange inversion says that the coefficients of the solution
can be determined as follows, for all n ≥ 1:

(16.33) [ coef. of order n of ξ ] =
1

n
· [ coef. of order n− 1 of un ],

There is a striking resemblance between (16.32) and the particular
case s = 1 of the functional equation of Theorem 16.15, which was:

(16.34) g(z) = f
(
z(1 + g(z))

)
.

Indeed, if in (16.34) we add 1 and then multiply by z on both sides,
we will get exactly (16.32) for the situation when u = 1+f and ξ(z) =
z(1 + g(z)). But since (16.34) is equivalent to the relation between the
moment series and the R-transform of a random variable, this means
that the Lagrange inversion formula can also be used to describe this
relation. More precisely, the recipe from (16.33) is converted into the
following:
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Proposition 16.20. Let (A, ϕ) be a non-commutative probability
space, let a be an element of A, and let Ra be the R-transform of a.
Then for every n ≥ 1 we have:

(16.35) ϕ(an) =
1

n + 1
· [ coef. of order n of (1 + Ra)

n+1 ].

It is instructive to see directly how the Equation (16.35) can be
obtained from the relation between moments and free cumulants via
summations over non-crossing partitions, as introduced in the Lecture
11. This must of course come pretty close to re-proving the Lagrange
inversion formula. In fact one of the standard combinatorial proofs
of the Lagrange inversion formula is in terms of Lukasiewicz paths,
so we only have to look at that one, and use the bijection between
non-crossing partitions and Lukasiewicz paths observed in Lecture 9.

Proof. Let us write explicitly

(1 + Ra)(z) :=
∞∑

n=0

αnz
n,

where α0 = 1 and αn = κn(a, . . . , a) for n ≥ 1. The coefficient of order
n of (1 + Ra)

n+1 is then spelled out as
∑

i1,...,in+1≥0

i1+···+in+1=n

αi1 · · ·αin+1 =
∑

j1,...,jn+1≥−1

j1+···+jn+1=−1

α1+j1 · · ·α1+jn+1

(via the obvious change of variable j1 = i1 − 1, . . . , jn+1 = in+1 − 1).
Consider now the concept of almost-rising path on Z2 which ap-

peared in Lecture 9 (cf. Definitions 9.6). We use the coefficients (αn)n≥0

of the series 1+Ra in order to define a weight for an almost-rising path
γ, as follows: if the steps of γ are (1, j1), . . . , (1, jm) (with m ≥ 1 and
j1, . . . , jm ∈ N ∪ {−1, 0}), then the weight of γ is

wt(γ) := α1+j1α1+j2 · · ·α1+jm .

Let Γn denote the set of all almost-rising paths going from (0, 0) to
(n + 1,−1). Then, clearly, the last expression found for the coefficient
of order n of (1 + Ra)

n+1 is just
∑

γ∈Γn
wt(γ). On the other hand let

us recall that the Proposition 9.11 of Lecture 9 gives us an explicit
bijection between Γn and Luk(n) × {1, . . . , n + 1}, where Luk(n) is
the set of Lukasiewicz paths with n steps. If γ ∈ Γn corresponds via
this bijection to (γ0,m) ∈ Luk(n)× {1, . . . , n + 1}, then we have that
wt(γ) = wt(γ0). (Indeed, γ0 is obtained from γ by suppressing one
falling step and then by cyclically permuting the remaining steps, and
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this does not affect the weight.) By putting all these observations
together we get that:

(16.36) coef. of order n of (1 + Ra)
n+1 = (n + 1) ·

∑

γ0∈Luk(n)

wt(γ0).

Finally, let us look at the explicit bijection between Luk(n) and
NC(n) which is put into evidence in Proposition 9.8 of Lecture 9.
If γ0 ∈ Luk(n) corresponds via this bijection to π = {V1, . . . , Vr} ∈
NC(n), then we have that wt(γ0) = α|V1| · · ·α|Vr|. (Indeed, from the
description of the bijection we see that γ0 has precisely r non-falling
steps, and the rises of these steps are |V1| − 1, . . . , |Vr| − 1.) As a
consequence, we can re-write (16.36) in the form

coef. of order n of (1 + Ra)
n+1 = (n + 1) ·

∑
π∈NC(n)

π={V1,...,Vr}

α|V1| · · ·α|Vr|.

But in view of the relation between the moments and the free cumulants
of a, the summation on the right-hand side is precisely equal to ϕ(an).
The desired formula (16.35) follows. ¤

Exercises

Exercise 16.21. Let s be a positive integer.
(a) Prove that for every series f ∈ Θs one can find a non-

commutative probability space (A, ϕ) and some elements a1, . . . , as ∈
A such that Ma1,...,as = f .

(b) Prove that for every series g ∈ Θs one can find a non-
commutative probability space (A, ϕ) and some elements a1, . . . , as ∈
A such that Ra1,...,as = g.

Exercise 16.22. Let q, r, s be positive integers. Let L and M be
complex matrices of sizes s × r and respectively r × q, and let f be a
series in Θs. Verify that

(f ◦ L) ◦M = f ◦ (LM).

Exercise 16.23. Let (A, ϕ) be a ∗-probability space and let a1, a2

be two selfadjoint elements of A, such that a1 is free from a2.
(a) Suppose that a1 and a2 are semicircular elements, and that

they have the same radius. Prove that (cos θ)a1 + (sin θ)a2 is free from
(− sin θ)a1 + (cos θ)a2 for every θ ∈ R.

(b) Conversely, suppose there exists an angle θ which is not an
integer multiple of π/2, such that (cos θ)a1 + (sin θ)a2 is free from
(− sin θ)a1 + (cos θ)a2. Prove that a1 and a2 are semicircular elements
and that they have the same radius.



LECTURE 17

The operation of boxed convolution

The operation of boxed convolution, ?, is a binary operation on the
space Θs of formal power series considered in the preceding lecture. Its
free probabilistic interpretation is that it encodes the multiplication of
free tuples of non-commutative random variables, when one keeps track
of these tuples by using R-transforms.

On the other hand, the same operation ? can be viewed as a dis-
tillation (taking place in the power series framework) for the operation
of convolution of multiplicative functions on NC, as encountered in
Lecture 10.

Thus ? is a natural object to consider, both from the free probability
angle and from a strictly combinatorial point of view. Because of this,
? is a very useful tool in the combinatorics of free probability. In this
lecture we develop its basic theory, and show how it can be used in
computations with R-transforms.

The definition of boxed convolution, and its motivation

Definition 17.1. Let s be a positive integer, and let Θs be the
space of power series in s non-commuting indeterminates which was
considered in Lecture 16. On Θs we define a binary operation ?, by
the following rule: for every f, g ∈ Θs and for every n ≥ 1, 1 ≤
i1, . . . , in ≤ s, the coefficient of order (i1, . . . , in) of f ? g is:

(17.1) Cf(i1,...,in)( f ? g ) :=
∑

π∈NC(n)

Cf(i1,...,in);π(f) ·Cf(i1,...,in);K(π)(g)

(where “K(π)” stands for the Kreweras complement of a partition π ∈
NC(n), as in Definition 9.21). In the cases when it can be ambiguous
what is the number s of indeterminates we work with, we will write
“?s”instead of just “?”.

In this section we explain the motivation for introducing ?, from
the point of view of free probability. The operation ? has in some sense
already appeared in this monograph in the Lecture 14, in connection to
the multiplication of two free tuples of elements in a non-commutative

285
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probability space. More precisely: if (A, ϕ) is a non-commutative prob-
ability space and if a1, . . . , as, b1, . . . , bs ∈ A are such that {a1, . . . , as}
is free from {b1, . . . , bs}, then the Equation (14.4) in Theorem 14.4 gives
us that

κn(ai1bi1 , . . . , ainbin) =
∑

π∈NC(n)

κπ[ai1 , . . . , ain ] · κK(π)[bi1 , . . . , bin ],

for every n ≥ 1 and every 1 ≤ i1, . . . , in ≤ s. When the above free
cumulants are interpreted as coefficients of the R-transforms of the
various s-tuples involved, we obtain the following neat statement.

Proposition 17.2. Let (A, ϕ) be a non-commutative probability
space and let a1, . . . , as, b1, . . . , bs ∈ A be such that {a1, . . . , as} is free
from {b1, . . . , bs}. Then the R-transform of the s-tuple (a1b1, . . . , asbs)
is

(17.2) Ra1b1,...,asbs = Ra1,...,as ? Rb1,...,bs .

The implicit presence of ? in the preceding lectures can in fact be
already spotted in the fundamental relation which connects the mo-
ments and the free cumulants of a tuple of non-commutative random
variables. Let us introduce the following notation.

Notation 17.3. Let s be a positive integer. We denote by Zeta (or
by Zetas, if the specification of s is necessary) the series in Θs which
has all the coefficients equal to 1:

(17.3) Zeta(z1, . . . , zs) :=
∞∑

n=1

s∑
i1,...,in=1

zi1 · · · zin .

Then we have:

Proposition 17.4. Let (A, ϕ) be a non-commutative probability
space, and let a1, . . . , as be elements of A. Then the moment series
M := Ma1,...,as and the R-transform R := Ra1,...,as are related by the
equation

(17.4) M = R ? Zeta.

Proof. The relation expressing the joint moments of a1, . . . , as in
terms of free cumulants is

ϕ(ai1 · · · ain) =
∑

π∈NC(n)

κπ[ai1 , . . . , ain ],
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for n ≥ 1 and 1 ≤ i1, . . . , in ≤ s (cf. Proposition 11.4.3). This can be
re-written as

Cf(i1,...,in)(M) =
∑

π∈NC(n)

Cf(i1,...,in);π(R) · Cf(i1,...,in);K(π)(Zeta),

which leads to (17.4). ¤

Basic properties of boxed convolution

Proposition 17.5. Let s be a positive integer, and consider the
operation ? on Θs. Then:

1) ? is associative.
2) Let us denote by ∆ (or ∆s, if the specification of s is necessary)

the series in Θs defined by

(17.5) ∆(z1, . . . , zs) = z1 + · · ·+ zs.

Then ∆ is the unit for ?.

These two properties of ? can be proved either by basic combina-
torics (directly from the Definition 17.1) or by using the connection to
the multiplication of free s-tuples which was recorded in the Proposi-
tion 17.2. In the proof written below we illustrate both methods (see
also the Exercise 17.23 at the end of the lecture for the alternative
choices of method in the parts 1 and 2 of the proof).

Proof. 1) Consider three series f, g, h ∈ Θs, about which we will
prove that (f ? g) ? h = f ? (g ? h). By the Exercise 16.21 in the
preceding lecture, one can find non-commutative probability spaces
(Ai, ϕi), 1 ≤ i ≤ 3, and elements a1, . . . , as ∈ A1, b1, . . . , bs ∈ A2,
c1, . . . , cs ∈ A3, such that Ra1,...,as = f , Rb1,...,bs = g, and Rc1,...,cs = h.
By considering the free product (A, ϕ) of the (Ai, ϕi)’s, 1 ≤ i ≤ 3, one
can in fact assume that all the 3s elements a1, . . . , cs belong to the same
non-commutative probability space (A, ϕ), and moreover that the three
sets {a1, . . . , as}, {b1, . . . , bs} and {c1, . . . , cs} are freely independent in
(A, ϕ). We then repeatedly apply Proposition 17.2, by also taking into
account the associativity of free independence (cf. Lecture 5, Remark
5.20). What we obtain is that both (f ? g) ? h and f ? (g ? h) are
equal to the R-transform Ra1b1c1,...,asbscs .

2) Let f be a series in Θs. For n ≥ 1 and 1 ≤ i1, . . . , in ≤ s we have

(17.6) Cf(i1,...,in)(f ? ∆) =
∑

π∈NC(n)

Cf(i1,...,in);π(f) · Cf(i1,...,in);K(π)(∆).
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But obviously, Cf(i1,...,in);ρ(∆) = 0 for every ρ 6= 0n in NC(n); or equiv-
alently, we have that Cf(i1,...,in);K(π)(∆) = 0 for every π 6= 1n in NC(n).
This shows that the right-hand side of (17.6) is in fact equal to

Cf(i1,...,in);1n(f) · Cf(i1,...,in);0n(∆),

which is nothing but Cf(i1,...,in)(f).
In this way we obtained that f ? ∆ = f , for every f ∈ Θs. The

equality ∆ ? f = f is verified in exactly the same way. ¤
Remark 17.6. A property which ? does not have is distributivity

with respect to the addition and/or scalar multiplication of power se-
ries. This is because the functionals Cf(i1,...,in);π : Θs → C (defined for
n ≥ 1, 1 ≤ i1, . . . , in ≤ s, and π ∈ NC(n)) are not linear, except for
the case when π = 1n.

Also, it is easy to see by example that the boxed convolution ?s on
Θs is non-commutative for s ≥ 2 (cf. Exercise 17.24 at the end of the
lecture). For s = 1 we do have that ?1 is commutative, as shown in
Corollary 17.10 below.

We next describe the series in Θs which are invertible with respect
to ?.

Proposition 17.7. Let s be a positive integer, and consider the
operation ? on Θs. Let f be a series in Θs. We have that f is invertible
with respect to ? if and only if Cf(i)(f) 6= 0 for all 1 ≤ i ≤ s.

Proof. Let us write f explicitly,

f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

αi1,...,inzi1 · · · zin .

“=⇒” The hypothesis is that there exists g ∈ Θs,

g(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

βi1,...,inzi1 · · · zin ,

such that f ? g = ∆. For every 1 ≤ i ≤ s we then have:

1 = Cf(i)(∆) = Cf(i)( f ? g )

=
∑

π∈NC(1)

Cf(i);π(f) · Cf(i);K(π)(g) = αiβi.

Hence αiβi = 1, which implies αi 6= 0.

“⇐=” Now the hypothesis is that αi 6= 0, ∀ 1 ≤ i ≤ s. We show
how one can construct a series g ∈ Θs, such that f ? g = ∆. The
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construction of the coefficients of g is done by induction on their length,
n. For n = 1 we set Cf(i)(g) := α−1

i , 1 ≤ i ≤ s. Suppose next that the
construction of the coefficients of g has been done up to length n− 1,
for some n ≥ 2. For every i1, . . . , in ∈ {1, . . . , s} we define Cf(i1,...,in)(g)
as being equal to

(17.7) −(αi1 · · ·αin)−1 ·
∑

π∈NC(n)
π 6=0n

Cf(i1,...,in);π(f) · Cf(i1,...,in);K(π)(g).

It is immediate that the expression in (17.7) only uses coefficients of
g which have length ≤ n − 1; hence it makes indeed sense to use
(17.7) as definition for Cf(i1,...,in)(g). By comparing the Equations (17.1)
and (17.7) one readily sees that the series g obtained as result of the
inductive construction will satisfy:

Cf(i1,...,in)( f ? g ) = 0,

for every n ≥ 2 and 1 ≤ i1, . . . , in ≤ s. Together with the assignment
for the coefficients of length 1 of g, this leads to the fact that f ? g = ∆.

In a similar way one can construct a series h ∈ Θs such that h ? f =
∆. Then g = h because of the associativity of ?, and we conclude that
f is invertible. ¤

Radial series

Definition 17.8. Let s be a positive integer, and let f be a series
in Θs. If Cf(i1,...,in)(f) only depends on n (but not on the specific choices
of 1 ≤ i1, . . . , in ≤ s), then we will say that f is radial. In other words,
f is radial when it is of the form:

f(z1, . . . , zs) =
∞∑

n=1

s∑
i1,...,in=1

αnzi1 · · · zin(17.8)

=
∞∑

n=1

αn(z1 + · · ·+ zs)
n

for some complex coefficients (αn)∞n=1.

For example, both the “special” series Zeta and ∆ encountered
above (in Equations (17.3) and (17.5), respectively) are radial.

Proposition 17.9. Let s be a positive integer, and consider the
operation ? on Θs. Let f be a series in Θs. If f is radial, then f is in
the center of ? , i.e. it satisfies f ? g = g ? f for all g ∈ Θs.
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Proof. We denote the coefficients of f by α1, α2, . . . , αn, . . . (as
in Equation (17.8)). Let g ∈ Θs be arbitrary. For any n ≥ 1 and
1 ≤ i1, . . . , in ≤ s we write:

Cf(i1,...,in)( f ? g ) =
∑

π∈NC(n)

Cf(i1,...,in);π(f) · Cf(i1,...,in);K(π)(g)

=
∑

ρ∈NC(n)

Cf(i1,...,in);ρ(g) · Cf(i1,...,in);K−1(ρ)(f),(17.9)

where the latter equality is obtained by doing the substitution “ρ =
K(π)”, and by reversing the order in the product of coefficients of f
and g.

The point is now to remark that for every ρ ∈ NC(n) we have:

(17.10) Cf(i1,...,in);K−1(ρ)(f) = Cf(i1,...,in);K(ρ)(f).

Indeed, the partitions K(ρ) and K−1(ρ) are obtained from each other
by a cyclic permutation of {1, . . . , n} (since K(ρ) = K2( K−1(ρ) ) and
by Exercise 9.23.1 of Lecture 9). As a consequence we can write these
two partitions as

K(ρ) = {V1, . . . , Vr}, K−1(ρ) = {V ′
1 , . . . , V

′
r},

where |V1| = |V ′
1 | =: m1, . . . , |Vp| = |V ′

r | =: mr. But then the radiality
of f implies that both sides of (17.10) are equal to αm1 · · ·αmr .

By substituting (17.10) in (17.9) we obtain exactly the expression
defining the coefficient of order (i1, . . . , in) of g ? f , and the assertion
follows. ¤

An immediate consequence of the above proposition is that:

Corollary 17.10. The semigroup (Θ1, ?1) is commutative.

Proof. Every f ∈ Θ1 is radial, hence in the center of ?1. ¤

Let us note, moreover, that the series from Θ1 are in some sense
showing up in the center of every Θs.

Proposition 17.11. Let s be a positive integer. Consider the map
from Θ1 to Θs defined by

(17.11)
∞∑

n=1

αnzn
1 7→

∞∑
n=1

αn(z1 + · · ·+ zs)
n.

Then this map is a homomorphism between the operations ?1 on Θ1

and ?s on Θs, and is thus an embedding of ( Θ1, ?1 ) into the center of
( Θs, ?s ).
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Proof. Let f, g be in Θ1, and set f ?1 g =: h. Let us denote

the images of f, g, h via the map (17.11) by f̃ , g̃, h̃, respectively. This
means that we have the relation

(17.12) Cf(i1,...,in)(f̃) = Cf(1,...,1)(f), n ≥ 1, 1 ≤ i1, . . . , in ≤ s,

and similar relations involving g and h. Note that (17.12) immediately
extends to:

(17.13) Cf(i1,...,in);π(f̃) = Cf(1,...,1);π(f),

where π is an arbitrary partition in NC(n).

We have to show that f̃ ?s g̃ = h̃. And indeed, for arbitrary n ≥ 1
and 1 ≤ i1, . . . , in ≤ s we have

Cf(i1,...,in)(f̃ ?s g̃) =
∑

π∈NC(n)

Cf(i1,...,in);π(f̃) · Cf(i1,...,in);K(π)(g̃)

=
∑

π∈NC(n)

Cf(1,...,1);π(f) · Cf(1,...,1);K(π)(g)

= Cf(1,...,1)(h)

= Cf(i1,...,in)(h̃).

In this chain of equalities we used successively the definition of ?s,
Equation (17.13) and its analogue written for g, the definition of ?1,
and the analogue of (17.12) written for h). ¤

An obvious consequence of Proposition 17.11 is that:

Corollary 17.12. Let s be a positive integer, and consider the
operation ?s on Θs.

1) If f, g ∈ Θs are radial, then so is f ?s g.
2) Consider a radial series in Θs,

f(z1, . . . , zs) =
∞∑

n=1

αn(z1 + · · ·+ zs)
n.

Then:
(a) f is invertible with respect to ?s if and only if α1 6= 0.
(b) Suppose that α1 6= 0. Then the inverse of f under ?s is also

radial, and is described as follows:

g(z1, . . . , zs) =
∞∑

n=1

βn(z1 + · · ·+ zs)
n,

where (βn)∞n=1 are such that
∑∞

n=1 βnz
n
1 is the inverse of

∑∞
n=1 αnzn

1

with respect to the operation ?1 on Θ1.
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Remark 17.13. In the setting of moment series and R-transforms
for s-tuples in a non-commutative probability space, the embedding of
Θ1 into Θs from the preceding proposition amounts to repeating the
random variables of our s-tuples. More precisely, it is immediate from
the definitions that if (A, ϕ) is a non-commutative probability space
and if a ∈ A, then the s-tuple (a, . . . , a) ∈ As will have

Ma,...,a(z1, . . . , zs) = Ma(z1 + · · ·+ zs)

and
Ra,...,a(z1, . . . , zs) = Ra(z1 + · · ·+ zs).

The Möbius series and it use

Definition 17.14. Let s be a positive integer. Consider the op-
eration ? on Θs, and the series Zeta ∈ Θs introduced in the Notation
17.3. The inverse of Zeta under ? is called the Möbius series, and is
denoted by Möb (or by Möbs if the specification of s is necessary).

Note that the above definition of the Möb series makes indeed sense
(the series Zeta really is invertible with respect to ?, by Proposition
17.7). Alternatively, one can also describe Möb by explicitly indicating
its coefficients.

Proposition 17.15. The explicit formula for the Möbius series in
Θs is:

(17.14) Möbs(z1, . . . , zs) =
∞∑

n=1

(−1)n−1Cn−1 · (z1 + · · ·+ zs)
n,

where (Cn)∞n=1 is the sequence of Catalan numbers.

Proof. Due to the Corollary 17.12, it will suffice to verify the
Equation (17.14) in the particular case when s = 1

The particular case s = 1 can in turn be easily inferred by us-
ing the functional equation of the R-transform. Indeed, we have
Möb1 ?1 Zeta1 = ∆1, hence the series f := Möb1 and g := ∆1 sat-
isfy the condition (1) of Theorem 16.15. Thus Möb1 and ∆1 must also
satisfy the condition (2) of the same theorem, which amounts in this
case to:

(17.15) Möb1( z(1 + z) ) = z.

This equation is equivalent to

(17.16) Möb1(z) + Möb2
1(z) = z

(indeed, both (17.15) and (17.16) state that Möb1 is the inverse under
composition for the series z + z2).
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When Möb1 is written explicitly,

Möb1(z) =
∞∑

n=1

γnz
n

the Equation (17.16) becomes a recurrence for the γn’s, namely

(17.17) γ1 = 1 and γn +
n−1∑

k=1

γkγn−k = 0, n ≥ 2.

But this is the well-known recurrence of the signed Catalan numbers
(as also encountered e.g. in the Lecture 10, while proving Proposition
10.15); so we get that the explicit writing of Möb1 is indeed

Möb1(z) =
∞∑

n=1

(−1)n−1Cn−1z
n,

and the result follows. ¤

In the remaining part of this section we will give a couple of illus-
trations for how the series Möb and Zeta can be used in computations
related to R-transforms.

For the first illustration let us look again at the discussion about the
square of an even element in a non-commutative probability space (cf.
Lecture 11, Proposition 11.25). In order to rephrase that discussion in
terms of power series it will be convenient to use the following notation
(analogous to the notation “f ◦ L” which was used in Lecture 16).

Notation 17.16. Let f be a series in Θ1. We will denote by f ◦Sq
the new series in Θ1 which has all the coefficients of odd order equal
to 0 and has

coef. of order 2n of f◦ Sq = coef. of order n of f, ∀ n ≥ 1.

In other words: if f(z) =
∑∞

n=1 αnz
n then we have

(f ◦ Sq)(z) :=
∞∑

n=1

αnz2n.

Written more succinctly (though somewhat less rigorously), the equa-
tion defining f ◦ Sq is thus saying that

(17.18) (f ◦ Sq)(z) := f(z2).

Remark 17.17. Let (A, ϕ) be a non-commutative probability
space, and let a ∈ A be even (in the sense that ϕ(an) = 0 for odd
n). The moment series of a and of a2 will then contain precisely the



294 17. THE OPERATION OF BOXED CONVOLUTION

same information. It is clear from the definitions that the formula
which relates these two moment series is just

(17.19) Ma = Ma2 ◦ Sq.

When we look at the two corresponding R-transforms, we expect them
to be related by an analogous equation. This is indeed the case, only
that there is an extra ingredient which appears – a boxed convolution
with the Möbius series.

In order to explain how the Möbius series appears when we write
the relation between Ra and Ra2 , let us first recall from Lecture 11
that the sequence of free cumulants of even order of the even element a
is called “the determining sequence of a”(cf. Notations 11.24). In the
same vein, we will then refer to the power series

g(z) :=
∞∑

n=1

κ2n(a, a, . . . , a)zn

by calling it the determining series of the even element a. It is clear
that this determining series g is connected to the R-transform Ra by
the equation

(17.20) Ra = g ◦ Sq.

Now, the Proposition 11.25 which relates the cumulants of a with
those of a2 can be interpreted in our current notations to say that

(17.21) Ra2 = g ? Zeta.

This implies that g = Ra2 ? Möb, and thus gives the following formula
for Ra:

(17.22) Ra = ( Ra2 ? Möb ) ◦ Sq.

As announced above, the Equation (17.22) is the counterpart with
R-transforms for the Equation (17.19) about moment series, with the
extra twist brought in by the convolution with Möb. This formula can
also be stated without making explicit reference to a and to (A, ϕ), as
follows.

Proposition 17.18. For every series f ∈ Θ1 one has that

(17.23) (f ◦ Sq) ? Möb = ( f ? Möb ? Möb ) ◦ Sq.

Proof. By using Exercise 16.21, one can find a non-commutative
probability space (A, ϕ) and an even element a ∈ A such that Ma2 = f .
Then the left-hand side of (17.23) is Ra, while the right-hand side of
(17.23) is (Ra2 ? Möb) ◦ Sq. Thus (17.23) follows from (17.22). ¤
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Remarks 17.19. 1) The operations f 7→ f ◦ Sq and f 7→ f ? Möb
on Θ1 do not commute, but the preceding proposition says that they
still satisfy a certain commutation relation (given by Equation (17.23)).

2) As an application of the discussion about Sq, let us see for in-
stance how it entails a quick solution of Exercise 11.35 in Lecture 11.
Let (A, ϕ) be a non-commutative probability space, and let b ∈ A be a
symmetric Bernoulli random variable (which means, by definition, that
b is even and has b2 = 1A). The above Equation (17.22) amounts here
to

Rb = (R1A ? Möb) ◦ Sq.

By taking into account that

R1A = ∆ = the unit for ?,

we obtain that Rb = Möb ◦ Sq (which was exactly the statement of
Exercise 11.35).

For a second illustration of computations with Möb and Zeta we
will point out a power series approach to the construction shown in Lec-
ture 12 for free families of free Poisson elements. The construction is
described as follows (cf. Example 12.19): Let (A, ϕ) be a ∗-probability
space and let x, e1, . . . , es ∈ A be such that x is semicircular, e1, . . . , es

are mutually orthogonal projections, and {x} is free from {e1, . . . , es}.
Then xe1x, . . . , xesx is a free family, consisting of free Poisson elements.
We show here how this fact comes out effortlessly from some simple
manipulations involving boxed convolutions (the resulting proof is dif-
ferent from the one shown in Example 12.19, though of course both
proofs rely on non-crossing partitions and on free cumulants). The
starting point is to identify the Zeta series as the R-transform of x2:

Proposition 17.20. Let (A, ϕ) be a ∗-probability space and let x =
x∗ ∈ A be a standard semicircular element. Then

(17.24) Rx2,...,x2 = Zetas, for every s ≥ 1.

Proof. We first observe that

(17.25) Mx2 = Zeta ? Zeta

(where here Zeta stands for Zeta1 ∈ Θ1). Indeed, the coefficient of
order n of Zeta ? Zeta is

∑

π∈NC(n)

Cf(1,...,1);π(Zeta) · Cf(1,...,1);K(π)(Zeta) =
∑

π∈NC(n)

1 = Cn,
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the nth Catalan number. But on the other hand the coefficient of order
n of the moment series of x2 is exactly the same Catalan number,

ϕ( (x2)n ) = ϕ(x2n) = Cn

(by the Definition 2.16 of a standard semicircular element).
By convolving both sides of Equation (17.25) with Möb, we get that

Mx2 ? Möb = Zeta, i.e. that Rx2 = Zeta. This is the case s = 1 of
Equation (17.24). The general case follows, since we have that

Rx2,...,x2(z1, . . . , zs) = Rx2(z1 + · · ·+ zs)

= Zeta1(z1 + · · ·+ zs)

= Zetas(z1, . . . , zs).

¤
In view of the role of the Zeta series of connecting moments with free

cumulants, it then immediately follows that the left-and-right multipli-
cation with a free semicircular has the effect of “converting moments
into free cumulants”. Thus we obtain the following alternative deriva-
tion of Example 12.19:

Proposition 17.21. Let (A, ϕ) be a tracial ∗-probability space and
let x, a1, . . . , as be selfadjoint elements of A such that x is standard
semicircular and such that {x} is freely independent from {a1, . . . , as}.
Then

(17.26) Rxa1x,...,xasx = Ma1,...,as .

Proof. The traciality of ϕ implies that

ϕ(xai1x · · · xainx) = ϕ(ai1x
2 · · · ainx2),

for every n ≥ 1 and every 1 ≤ i1, . . . , in ≤ s. At the level of series in
Θs, this amounts to saying that

Mxa1x,...,xasx = Ma1x2,...,asx2 .

By convolving both sides of the latter equation with Möbs we obtain
the equality of the corresponding R-transforms,

(17.27) Rxa1x,...,xasx = Ra1x2,...,asx2 .

But the right-hand side of (17.27) is successively equal to:

Ra1x2,...,asx2 = Ra1,...,as ? Rx2,...,x2 (by Proposition 17.2)

= Ra1,...,as ? Zetas (by Proposition 17.20)

= Ma1,...,as (by Proposition 17.4).

¤
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Finally, if we want to strictly focus on free Poisson elements, we
have:

Corollary 17.22. Let (A, ϕ) be a ∗-probability space and let
x, e1, . . . , es be selfadjoint elements of A such that

(i) x is semicircular of radius r > 0.
(ii) e2

i = ei, for 1 ≤ i ≤ n, and eiej = 0 whenever i 6= j.
(iii) {x} is freely independent from {e1, . . . , es}.

Then the elements xe1x, . . . , xesx form a free family in (A, ϕ), and
every xeix is a free Poisson element of parameters λ = ϕ(ei) and α =
r2/4 (in the sense of Definition 12.12).

Proof. By rescaling x we may assume without loss of generality
that r = 2 (i.e. that x is a standard semicircular element). Also, we
can assume without loss of generality that the unital ∗-algebra gener-
ated by x and e1, . . . , es is all of A (otherwise we just replace A by
alg(1A, x, e1, . . . , es)). Since the restrictions of ϕ to alg(1A, x) and to
alg(1A, e1, . . . , es) are traces (which happens because the two algebras
in question are commutative), the Proposition 5.19 in Lecture 5 gives
us that ϕ is a trace.

We are hence in a situation where we can apply the Proposition
17.21; when doing this we obtain:

Rxe1x,...,xesx(z1, . . . , zs) = Me1,...,es(z1, . . . , zs)

=
s∑

i=1

(
ϕ(ei) ·

∞∑
n=1

zn
i

)
,

where the last equality follows from the hypothesis that e1, . . . , es are
mutually orthogonal projections.

We thus obtained that the joint R-transform of xe1x, . . . , xesx is
a series in separate variables, and Theorem 16.6 now implies that
xe1x, . . . , xesx form a free family. At the same time we obtain that
for every 1 ≤ i ≤ s, the R-transform of xeix is

Rxeix(z) = ϕ(ei) ·
∞∑

n=1

zn,

and this corresponds to the fact that xeix is free Poisson of parameters
λ = ϕ(ei) and α = 1. ¤

Exercises

Exercise 17.23. 1) Give an alternative proof of Proposition 17.5.1,
by proceeding directly from the definition of ?, and by only using the
basic combinatorics of non-crossing partitions.
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[Note: it may be useful to look ahead at the concept of relative Krew-
eras complement for non-crossing partitions, which is discussed in the
next lecture.]

2) Give an alternative proof of Proposition 17.5.2, by using the
connection of ? with the multiplication of free s-tuples, and the fact
that in a non-commutative probability space (A, ϕ) one always has
R1A,...,1A = ∆.

Exercise 17.24. Let s ≥ 2 be an integer. Determine explicitly the
elements of the set:{

f ∈ Θs | f invertible and central with respect to ?s

}
.

The next exercise discusses the behavior of ? in connection to the
operations of scalar multiplication and of dilation for power series. We
will use the following notation.

Notation 17.25. Let s be a positive integer, let f be a series in
Θs, and let α be a number in C \ {0}. We denote by f ◦Dα the series
in Θs which is defined by the equation:

(f ◦Dα)(z1, . . . , zs) = f(αz1, . . . , αzs),

or more rigorously by the fact that:

Cf(i1,...,in)(f ◦Dα) = αn · Cf(i1,...,in)(f),

for all n ≥ 1 and 1 ≤ i1, . . . , in ≤ s.

Exercise 17.26. Let s be a positive integer, let f, g be series in
Θs, and let α be a number in C \ {0}.

(a) Prove that

(f ◦Dα) ? g = f ? (g ◦Dα) = (f ? g) ◦Dα.

(b) Prove that

1

α
(αf ? αg) = (f ? g) ◦Dα.



LECTURE 18

More on the 1-dimensional boxed convolution

The preceding lecture introduced the operation ? and showed its
meaning in connection to free probability, but did not detail the re-
lation between ? and the Möbius inversion theory of the lattices of
non-crossing partitions. This relation is best observed when looking at
the 1-dimensional boxed convolution, ?1. Indeed, the monoid (Θ1, ?1)
turns out to capture exactly the convolution of families of multiplica-
tive functions on NC(2). This will be proved in the first section of the
present lecture (thus completing the discussion about these multiplica-
tive families, which was started in Lecture 10).

In the second section of this lecture we will look further at the
monoid (Θ1, ?1), and we will give a precise description of the group
of invertible elements in this monoid. What happens here is that one
can find a transformation F which converts 1-dimensional boxed con-
volution into plain multiplication of power series (cf. Theorem 18.14
below). At the level of free probabilistic interpretations, this gives us
the concept of S-transform, a very useful tool for computing the distri-
bution of the product of two freely independent random variables.

Relation to multiplicative functions on NC

Since in this lecture we are dealing exclusively with series of 1 vari-
able, we will use a shortened version of the notations for coefficients
introduced in Lecture 16.

Notation 18.1. Let f(z) =
∑∞

n=1 αnzn be a series in Θ1. For every
n ≥ 1 and π = {B1, . . . , Br} ∈ NC(n), we denote

(18.1) Cfπ(f) := α|B1| · · ·α|Br|.

Remark 18.2. Let f(z) =
∑∞

n=1 αnz
n and g(z) =

∑∞
n=1 βnzn be

two series in Θ1, and consider their boxed convolution,

(f ?1 g)(z) =:
∞∑

n=1

γnz
n.

299
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The explicit formula for the coefficients of f ?1 g (obtained from the
Equation (17.1) in the preceding lecture) is then

(18.2) γn =
∑

π∈NC(n)

π={V1,...,Vp}
K(π)={W1,...,Wq}

α|V1| · · ·α|Vp|β|W1| · · · β|Wq |.

Our starting point in this section is to observe that the very same
formula appears in the framework of multiplicative functions on NC(2)

which were considered in Lecture 10. Indeed, in the framework of
Definition 10.16, let (Fn)n≥1 and (Gn)n≥1 be the two multiplicative
families of functions in NC(2) which are determined by the sequences
(αn)n≥1 and respectively (βn)n≥1 Then for every n ≥ 1 we have:

(Fn ∗Gn)(0n, 1n) =
∑

π∈NC(n)

Fn(0n, π)Gn(π, 1n)

=
∑

π∈NC(n)

Fn(0n, π)Gn( 0n, K(π) )

=
∑

π∈NC(n)

π={V1,...,Vp}
K(π)={W1,...,Wq}

α|V1| · · ·α|Vp|β|W1| · · · β|Wq |.

(The second equality follows by property (ii) in Remark 10.17, applied
to (Gn)n≥1, the third equality by property (iii) in Remark 10.17.) In
other words we have obtained that

(18.3) (Fn ∗Gn)(0n, 1n) = γn, ∀ n ≥ 1;

so if we knew that the family (Fn ∗ Gn)n≥1 is multiplicative, then it
would follow that it is precisely the family of multiplicative functions
determined by the sequence (γn)n≥1.

But of course, it is not obvious that (Fn ∗ Gn)n≥1 is multiplica-
tive. The goal of the present section is to prove this fact. We will
take an approach which relies on a “relative” version of the Kreweras
complementation map on NC(n).

Definition 18.3. Let π, σ be partitions in NC(n), such that π ≤ σ.
Write explicitly σ = {V1, . . . , Vr} and for 1 ≤ q ≤ r let Jq denote
the unique order-preserving bijection from Vq onto {1, . . . , |Vq|}. The
relative Kreweras complement of π in σ is the partition ρ ∈ NC(n)
determined by the following two conditions:

(i) ρ ≤ σ.
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(ii) For every 1 ≤ q ≤ r, we have that ρq = K(πq), where

πq := Jq(π|Vq), ρq := Jq(ρ|Vq),

and where “K” denotes the Kreweras complementation map on
NC( |Vq| ).
The relative Kreweras complement of π in σ will be denoted as Kσ(π).

Example 18.4. Consider the partitions π, σ ∈ NC(12) defined by

π = { {1, 9}, {2, 5}, {3}, {4}, {6}, {7, 8}, {10}, {11}, {12} } and
σ = { {1, 6, 9, 12}, {2, 4, 5}, {3}, {7, 8}, {10, 11} }

(these are the same as in Example 9.31 of Lecture 9). If we look at the
block V1 = {1, 6, 9, 12} of σ (which is split into the blocks {1, 9}, {6},
{12} of π) we see that

π1 = J1(π|V1) = { {1, 3}, {2}, {4} } ∈ NC(4).

Therefore we must have

ρ1 = K(π1) = { {1, 2}, {3, 4} } ∈ NC(4),

which implies that V1 is split into blocks of ρ as {1, 6}, {9, 12}. By
doing the same kind of calculation for the other blocks of σ, we find
that

ρ = Kσ(π) = { {1, 6}, {2, 4}, {3}, {5}, {7}, {8}, {9, 12}, {10, 11} }.
Remark 18.5. For a fixed σ ∈ NC(n), the map π 7→ Kσ(π) is a

bijection from {π ∈ NC(n) |π ≤ σ} to itself, which is order-reversing
and maps 0n 7→ σ, σ 7→ 0n. These properties follow immediately from
the corresponding properties of the Kreweras complementation map
which were discussed in Lecture 9 (cf. Exercise 9.23).

Note that in fact the Kreweras complementation map K on NC(n)
can itself be viewed as a relative complementation, with respect to the
partition with one block 1n ∈ NC(n). Indeed, it is obvious that we
have K1n(π) = K(π), ∀ π ∈ NC(n).

The relevance of the relative Kreweras complementation map in
connection to multiplicative functions comes from the following lemma.

Lemma 18.6. Let π, σ be partitions in NC(n) such that π ≤ σ.
Consider the relative Kreweras complement Kσ(π), and write explicitly

Kσ(π) = {W1, . . . ,Wk}.
Then the canonical factorization of the interval [π, σ] ⊂ NC(n) (as
introduced in Definition 9.30) is

[π, σ] ' NC( |W1| )× · · · ×NC( |Wk| ).
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Proof. Let us denote Kσ(π) =: ρ, and let us write explicitly the
list of blocks of σ,

σ = {V1, . . . , Vr}.
Since ρ ≤ σ, the explicit writing of ρ can then be put in the form

ρ = {W1,1, . . . , W1,k1 , . . . , Wr,1, . . . , Wr,kr},
with Wq,1 ∪ · · · ∪Wq,kq = Vq for 1 ≤ q ≤ r. With these notations, the
statement to be proved is that the canonical factorization of [π, σ] is

(18.4) [π, σ] '
k∏

q=1

kq∏
j=1

NC( |Wq,j| ).

Let us re-examine the proof of Theorem 9.29 from Lecture 9, while
at the same time using the notations “π1, . . . , πr, ρ1, . . . , ρr” as in Def-
inition 18.3. The proof of Theorem 9.29 starts by identifying [π, σ]
with

[π1, 1|V1|]× · · · × [πr, 1|Vr|].
This direct product is then found to be anti-isomorphic to

[0|V1|, K(π1)]× · · · × [0|Vr|, K(πr)],

i.e. to
[0|V1|, ρ1]× · · · × [0|Vr|, ρr].

Finally every interval [0|Vq |, ρq)] ⊂ NC( |Vq| ) is factored into a direct
product by using the block structure of ρq,

[0|Vq |, ρq] ' NC( |Wq,1| )× · · · ×NC( |Wq,kq | )
(where the latter product is then noticed to be anti-isomorphic to it-
self). It is clear that the combination of these steps leads precisely to
(18.4). ¤

Example 18.7. The relative Kreweras complement Kσ(π) com-
puted in Example 18.4 has 4 blocks with 1 element and 4 blocks with
2 elements, corresponding to the factorization

[π, σ] ' NC(1)4 ×NC(2)4

found in Example 9.31.

Remark 18.8. In Lecture 10 we considered separately the concepts
of “multiplicative family of functions on NC” and “multiplicative fam-
ily of functions on NC(2)”. There exists a canonical correspondence
between these two kinds of families – this is clear, just from the fact
that the data determining either a multiplicative family on NC or a
multiplicative family on NC(2) is always a sequence of complex num-
bers (αn)n≥1. The preceding lemma gives us an even better formula for
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moving back and forth between a multiplicative family (fn)n≥1 on NC
and a multiplicative family (Fn)n≥1 on NC(2) which are determined by
the same sequence (αn)n≥1. This formula doesn’t involve the αn’s in
an explicit way, but rather goes as follows:

• If we know the fn’s then the Fn’s are determined by

(18.5) Fn(π, σ) = fn( Kσ(π) ), ∀ n ≥ 1, ∀ π ≤ σ in NC(n).

• If we know the Fn’s then the fn’s are determined by

(18.6) fn(π) = Fn(0n, π), ∀ n ≥ 1, ∀ π ∈ NC(n).

Based on this observation, the statement that we want to prove
about the convolution of multiplicative families on NC(2) can be pulled
out from the weaker result proved in Lecture 10 (Proposition 10.21),
combined with a few additional facts about the relative Kreweras com-
plementation map. These additional facts are listed in the following
lemma.

Lemma 18.9. Let π, σ be partitions in NC(n), such that π ≤ σ.
1) For every τ ∈ [π, σ] we have that Kτ (π) ≤ Kσ(π). Moreover, the

map τ 7→ Kτ (π) is a lattice isomorphism between the intervals [π, σ]
and [0n, Kσ(π)] in NC(n).

2) Let τ be in [π, σ], and consider the partition Kτ (π) ∈ [0n, Kσ(π)].
Then we have

(18.7) KKσ(π) ( Kτ (π) ) = Kσ(τ).

Remark 18.10. Note that the first statement of the preceding
lemma is in some sense a reinforcement of Lemma 18.6. Indeed, the
Lemma 18.6 says essentially that [π, σ] and [0n, Kσ(π)] have the same
canonical factorization – so in particular these two intervals have to
be isomorphic as lattices. The Lemma 18.9.1 indicates explicitly an
isomorphism between them.

For the second statement of the preceding lemma, it is useful to
think informally of the relative Kreweras complement as a kind of “di-
vision”. Indeed, if for π ≤ σ in NC(n) we were to write σ/π instead
of Kσ(π), then the Equation (18.7) would become

σ
π
τ
π

=
σ

τ

(and would thus look less mysterious). In fact the proof of (18.7) is
most conveniently done by making the idea of “division of σ by π”
become rigorous; this is achieved by viewing π and σ as elements of
the symmetric group Sn.
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In order to not divert too much from the main line of this section,
we will break the proof of Lemma 18.9 into a set of exercises left to the
reader (see Exercises 18.25 and 18.26 below). What we will do here is
to show how the Lemma 18.9 is used to complete the discussion about
multiplicative families of functions on NC(2), and their connection to
the operation of boxed convolution ?1.

Theorem 18.11. 1) If (Fn)n≥1 and (Gn)n≥1 are multiplicative fam-
ilies of functions on NC(2), then so is (Fn ∗ Gn)n≥1. Thus the set of
multiplicative families of functions on NC(2) has a semigroup structure,
under the operation of convolution.

2) Consider the map which associates to a series f(z) =
∑∞

n=1 αnzn

in Θ1 the multiplicative family on NC(2) determined by the sequence
(αn)n≥1. Then this map is an isomorphism between the semigroup
(Θ1, ?1 ) and the semigroup structure observed in the first part of
the theorem.

Proof. If part 1 of the theorem is assumed to be true then part 2
follows in the way observed in Remark 18.2. Thus we only need to do
part 1.

Let (Fn)n≥1 and (Gn)n≥1 be multiplicative families of functions on
NC(2). Denote by (fn)n≥1 and (gn)n≥1 the multiplicative families of
functions on NC which correspond to (Fn)n≥1 and (Gn)n≥1, respec-
tively (as discussed in Remark 18.8). Let us moreover denote

hn := fn ∗Gn, ∀ n ≥ 1.

Then (hn)n≥1 is also a multiplicative family of functions on NC, by
Proposition 10.21. We will prove that

(18.8) (Fn ∗Gn)(π, σ) = hn( Kσ(π) ),

for every n ≥ 1 and every π, σ ∈ NC(n) such that π ≤ σ. This will
imply that (Fn ∗Gn)n≥1 is a multiplicative family, by Remark 18.8.

In order to establish the equality stated in (18.8), we evaluate sep-
arately its two sides. On the left-hand side:

(Fn ∗Gn)(π, σ) =
∑

τ∈[π,σ]

Fn(π, τ)Gn(τ, σ)

=
∑

τ∈[π,σ]

fn(Kτ (π))gn(Kσ(τ)).(18.9)
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On the right-hand side:

hn( Kσ(π) ) = (fn ∗Gn)( Kσ(π) )

=
∑

θ≤Kσ(π)

fn(θ)Gn(θ,Kσ(π))

=
∑

θ∈[0n,Kσ(π)]

fn(θ)gn( KKσ(π)(θ) ).(18.10)

Finally, we observe that the sums appearing in (18.9) and in (18.10)
are identified to each other term by term, via the bijection

[π, σ] 3 τ 7→ θ ∈ [0n, Kσ(π)]

put into evidence in Lemma 18.9. ¤

The S-transform

In this section we continue our study of the monoid (Θ1, ?1), and
we prove a theorem describing the group of invertible elements of this
monoid.

We start by introducing a few notations which will ease the presen-
tation of the theorem.

Notations 18.12. 1) We will denote by Θ
(inv)
1 the set of series f ∈

Θ1 which are invertible with respect to ?1. As implied by Proposition

17.7, a series f(z) =
∑∞

n=1 αnzn belongs to Θ
(inv)
1 if and only if α1 6= 0.

2) We denote by Γ the set of all power series u(z) =
∑∞

n=0 unzn

with the property that the constant term u0 of u is not equal to 0. On
Γ we consider the group structure given by the usual multiplication of
power series.

3) For f ∈ Θ
(inv)
1 we denote:

(18.11) [F(f) ](z) =
1

z
f<−1>(z),

where f<−1> is the inverse of f under composition.

Remark 18.13. Observe that Θ
(inv)
1 can at the same time be de-

scribed as the set of series in Θ1 which are invertible under composition;
thus the inverse “f<−1>” on the right-hand side of (18.11) does make
sense. Let us also observe that the formula (18.11) is defining a map

F : Θ
(inv)
1 → Γ (in order to check that F(f) ∈ Γ for every f ∈ Θ

(inv)
1 ,

we just have to see that the constant coefficient of F(f) is α−1
1 6= 0,

where α1 is the linear coefficient of f).

Then the theorem of this section is stated as follows.
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Theorem 18.14. The function F defined in Equation (18.11) is a

group isomorphism between ( Θ
(inv)
1 , ?1 ) and (Γ, ·).

Before starting to discuss the proof of the theorem, let us record
the consequence it has concerning products of free random variables –
the multiplicativity property of the S-transform of Voiculescu.

Definition 18.15. Let (A, ϕ) be a non-commutative probability
space, and let a ∈ A be such that ϕ(a) 6= 0. The S-transform of a is
the series in Γ defined by:

(18.12) Sa(z) :=
1

z
R<−1>

a (z).

Remark 18.16. The series Sa always belongs to the space Γ (in-
deed, it is immediate that the constant coefficient of Sa is equal to
1/ϕ(a) 6= 0). An alternative definition for Sa could be given in terms
of the moment series, namely:

(18.13) Sa(z) =
1 + z

z
M<−1>

a (z).

The equality of the series appearing on the right-hand sides of the
Equations (18.12) and (18.13) was established in Remark 16.18.

Corollary 18.17. Let (A, ϕ) be a non-commutative probability
space, and let a, b be in A. If a is free from b, then:

(18.14) Sab(z) = Sa(z) · Sb(z).

Proof. It is clear from the definitions that we have

(18.15) F( Rx ) = Sx,

for every x ∈ A such that ϕ(x) 6= 0. Hence we can write:

Sab = F( Rab )

= F( Ra ? Rb ) (by Proposition 17.2)

= F( Ra ) · F( Rb ) (by Theorem 18.14)

= Sa · Sb.

¤
Remark 18.18. One could also introduce the S-transform and state

its multiplicativity property in reference to the operation of multiplica-
tive free convolution £ which was discussed in Lecture 14.

Indeed, if µ is a compactly supported probability measure on R
such that

∫
R t dµ(t) 6= 0, then one can define the S-transform of µ by

the formula

(18.16) S(µ) := Sa ∈ Γ,
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where a is a random variable (in some non-commutative probability
space (A, ϕ)) which has the same moments as µ. It is immediate that
this definition makes sense: first of all the S-transform Sa exists because

ϕ(a) =

∫

R
t dµ(t) 6= 0;

then secondly, the series Sa is defined in terms of the moments of a,
hence it only depends on µ (and not on the particular choice of an a
which has the same moments as µ).

Now recall (cf. Remark 14.2.3) that if µ, ν are compactly supported
probability measures on R+, then the multiplicative free convolution
µ £ ν is also a compactly supported probability measure on R+, which
can be described by the following condition: the moments of µ £ ν
coincide with the moments of ab, where a and b are positive random
variables in some C∗-probability space (A, ϕ) such that a has distribu-
tion µ, b has distribution ν, and a is free from b. It is immediate that
the Equation (18.14) in the above corollary amounts in this case to

(18.17) S(µ £ ν) = S(µ) · S(ν),

as an equality of power series in Γ.

Remark 18.19. On our way towards the proof of the Theorem
18.14 a key point will be to obtain a formula which is similar in nature
to the functional equation of the R-transform (in the case of 1 variable),
but where we consider boxed convolution with a series different from
Zeta. To be more precise: the case s = 1 of Theorem 16.15 says that
for two series f, g ∈ Θ1, the relation g = f ? Zeta is equivalent to
g = f ◦( z(1+g) ). If f is invertible under composition, we thus obtain
that f<−1> ◦ g = z(1 + g), or writing only in terms of f :

(18.18) f<−1> ◦ (f ? Zeta) = z( 1 + f ? Zeta ).

In the following Proposition 18.21 we will discuss a generalization of
(18.18) to the case when Zeta is replaced by an arbitrary series h ∈ Θ1.
The generalization uses a concept of incomplete 1-dimensional boxed
convolution.

Definition 18.20. Let f and h be series in Θ1. The incomplete

boxed convolution of f and h, denoted by f
∨
? h, is the series

(f
∨
? h)(z) :=

∞∑
n=1

λnzn ∈ Θ1,
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where for every n ≥ 1 we set:

(18.19) λn =
∑

π∈NC(n) such

that (1) is

a block of π

Cfπ(f) · CfK(π)(h).

Proposition 18.21. Let f and h be series in Θ1. We denote by α1

the coefficient of z in f . Suppose that f is invertible under composition,
i.e. that α1 6= 0. Then we have that:

(18.20) f<−1> ◦ (f ? h) =
1

α1

(f
∨
? h).

Proof. We will show, equivalently, that

(18.21) f ? h = f ◦ (
1

α1

(f
∨
? h) ).

We fix a positive integer m, and we will verify the equality of the coef-
ficients of order m in the series appearing on the two sides of Equation
(18.21). The verification is similar to the part (b) in the proof of The-
orem 16.15, for this reason we will not insist to give all the details.

Let us write explicitly:

f(z) =
∞∑

n=1

αnz
n, (f

∨
? h)(z) =

∞∑
n=1

λnz
n.

The coefficient of order m in the series on the right-hand side of (18.21)
is expressed in terms of the αn’s and the λn’s as:

(18.22)
m∑

n=1

∑

i1,...,in≥1

i1+···+in=m

αnα−n
1 · λi1 · · ·λin .

Let us now look at the coefficient of order m on the left-hand side
of (18.21). By the definition of ?, this is equal to:

∑

π∈NC(m)

Cfπ(f) · CfK(π)(h).

The summation over NC(m) can be detailed by enumerating the par-
titions in NC(m) according to their first block. When this is done,
we obtain the following expression (analogous to Equation (16.24) of
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Lecture 16):

(18.23)
m∑

n=1

∑

1=b1<···<bn≤m

∑

π∈NC(m) s.t.

{b1,...,bn}
is block of π

Cfπ(f) · CfK(π)(h).

But if a partition π ∈ NC(m) is subjected to the condition of having
a prescribed block B = {b1, . . . , bn}, with 1 = b1 < · · · < bn ≤ m, then
knowing π is equivalent to knowing its restrictions to the spaces left
between the consecutive elements of B. This time we proceed slightly
differently from what we did in the proof of Theorem 16.15, and we
denote: π1 = the restriction of π to {b1, . . . , b2−1}, π2 = the restriction
of π to {b2, . . . , b3 − 1}, . . . , πn = the restriction of π to {bn, . . . , m}.
The difference consists in the fact that each of π1, . . . , πn also has (in
addition to containing a union of blocks of π) a block of one element
at the left end. The advantage of setting the notations this way is that
we get a nice relation when we look at Kreweras complements: as is
immediately checked, we have that K(π) is just the juxtaposition of
the Kreweras complements K(π1), . . . , K(πn). The relations between
π and π1, . . . , πn lead us to the equations:

(18.24) Cfπ(f) = αnα
−n
1 · Cfπ1(f) · · ·Cfπn(f),

and

(18.25) CfK(π)(h) = CfK(π1)(h) · · ·CfK(πn)(h)

((18.24) is the analogue of Equation (16.25) in Lecture 16, while (18.25)
is an additional formula obtained by looking at Kreweras comple-
ments).

We substitute (18.24) and (18.25) into (18.23); we get that the
quantity in (18.23) is thus equal to:

(18.26)
m∑

n=1

∑

1=b1<···<bn≤m

αnα
−n
1 ·

∑
π1,...,πn

Cfπ1(f) · · ·

· · ·Cfπn(f) · CfK(π1)(h) · · ·CfK(πn)(h),

where π1 ∈ NC(b2−b1), π2 ∈ NC(b3−b2), . . . , πn ∈ NC(m−bn+1) are
only subjected to the condition that they start with a one-element block
on the left. In (18.26) we can clearly factor out separate summations

over π1, . . . , πn. Due to the way how
∨
? was defined, we find on the
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other hand that∑
π1

Cfπ1(f)CfK(π1)(h) = λb2−b1 , . . . ,
∑
πn

Cfπn(f)CfK(πn)(h) = λm−bn+1.

Hence (18.26) becomes:

(18.27)
m∑

n=1

∑

1=b1<···<bn≤m

αnα−n
1 · λb2−b1λb3−b2 · · ·λm−bn+1,

and it is obvious that we got the same quantity as in (18.22). ¤
Exercise 18.22. Verify that if in the framework of Proposition

18.21 we set h = Zeta, then the Equation (18.20) reduces to the refor-
mulation (18.18) of the functional equation for the R-transform.

We can now present the proof of the Theorem 18.14.

Proof. The fact that F is bijective is immediate, the problem is
to prove that the relation

(18.28) F(f ? g) = F(f) · F(g)

holds for every f, g ∈ Θ
(inv)
1 . By substituting in (18.28) the explicit

definition of F (as given in Notations 18.12.3) we see that we have to
show:

(18.29) z · (f ? g)<−1>(z) = f<−1>(z) · g<−1>(z), ∀ f, g ∈ Θ
(inv)
1 .

For the rest of the proof we fix two series in Θ
(inv)
1 ,

f(z) =
∞∑

n=1

αnz
n and g(z) =

∞∑
n=1

βnzn,

about which we will show that (18.29) holds.
In order to eliminate the inverses under composition which appear

in (18.29), we will compose both sides of this equation, on the right,
with f ? g. The new equation obtained in this way will be equivalent
to (18.29), since we can always go back by composing with (f ? g)<−1>.

When composed with f ? g on the right, the left-hand side of (18.29)
becomes:
(
z · (f ? g)<−1>

) ◦ (f ? g) =
(
z ◦ (f ? g)

) · ((f ? g)<−1> ◦ (f ? g)
)

= (f ? g)(z) · z.
A similar calculation done on the right-hand side of (18.29) leads us to
the series (

f<−1> ◦ (f ? g)
) · ( g<−1> ◦ (f ? g)

)
,
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which, by Proposition 18.21, is equal to α−1
1 β−1

1 · (f
∨
? g)(g

∨
? f).

The equation equivalent to (18.29) which we obtain is thus:

(18.30) (f
∨
? g)(z) · (g

∨
? f)(z) = α1β1z · (f ? g)(z).

In order to conclude the proof, we fix a positive integer m, for which
we show that the coefficients of zm+1 on the two sides of (18.30) are
equal. As is immediately seen, the coefficient of zm+1 on the left-hand
side of (18.30) is equal to:

(18.31)
m∑

n=1

∑

π∈NC(n),

(1) block of π

∑

ρ∈NC(m+1−n),

(1) block of ρ

Cfπ(f) · CfK(π)(g)×

× Cfρ(g) · CfK(ρ)(f),

while the corresponding coefficient on the right-hand side of (18) is

(18.32)
∑

σ∈NC(m)

α1β1 · Cfσ(f) · CfK(σ)(g).

Now, the point is that there exists a natural bijection between the
index sets of the sums in (18.31) and (18.32),

(18.33)
⋃

1≤n≤m

{π ∈ NC(n) | (1) is block of π}×

×{ρ ∈ NC(m− n + 1) | (1) is block of ρ} ←→ NC(m)

such that whenever (π, ρ) ↔ σ by this bijection, the term indexed by
(π, ρ) in the sum (18.31) equals the term indexed by σ in the sum
(18.32) – and even more precisely:

(18.34)





Cfπ(f) · CfK(ρ)(f) = α1 · Cfσ(f),

CfK(π)(g) · Cfρ(g) = β1 · CfK(σ)(g).

Described from left to right, the bijection (18.33) goes as follows:
start with 1 ≤ n ≤ m, π ∈ NC(n) such that (1) is a block of π, and
with ρ ∈ NC(m + 1− n) such that (1) is a block of ρ. Denote by πo ∈
NC(n − 1) the partition obtained by deleting the one-element block
(1) of π, and consider on the other hand the Kreweras complement
K(ρ) ∈ NC(m + 1 − n). Then σ ∈ NC(m) which corresponds by
(18.33) to (π, ρ) is obtained by simply juxtaposing πo and K(ρ), in this
order.
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[Numerical example: if n = 6, j = 3, π = {(1), (2, 3)}, ρ =
{(1), (2, 4), (3)}, then σ = {(1, 2), (3, 6), (4, 5)}.]

If on the other hand one wants to describe the bijection (18.33)
from right to left, this is done as follows: start with σ ∈ NC(m),
and denote by n the smallest element of the block of σ containing m.
Then each of {1, . . . , n − 1} and {n, . . . , m} is a union of blocks of σ,
thus σ is obtained as the juxtaposition of two non-crossing partitions
σ1 ∈ NC(n− 1) and σ2 ∈ NC(m + 1− n). We let π ∈ NC(n) be the
partition obtained by adding a one-element block to the left of σ1, and
we put ρ = K−1(σ2) ∈ NC(m + 1 − n) (K−1(σ2) has (1) as a block –
this is implied by the fact that 1 and m + 1− n are in the same block
of σ2). The pair (π, ρ) obtained in this way is what corresponds to σ
by the map (18.33).

We leave it as an exercise to the reader to check that the bijection
described in the preceding paragraph also has the following property:
if (π, ρ) ↔ σ by this bijection, then K−1(σ) is the juxtaposition of
K(π) and ρo, where ρo denotes the partition obtained by deleting the
left-most block (of one element) of the partition ρ.

Finally, let us observe that if (π, ρ) ↔ σ by the bijection (18.33),
then the Equations (18.34) are indeed satisfied. The first of these
equations follows directly from how σ is obtained as a juxtaposition of
πo and K(ρ), while the other follows from the analogous property of
K−1(σ):

CfK(σ)(g) = CfK−1(σ)(g)

= CfK(π)(g) · Cfρo(g)

=
1

β1

CfK(π)(g) · Cfρ(g)

(The first equality is valid because K(σ) and K−1(σ) are obtained from
each other by a cyclic permutation – same argument as in Equation
(17.10) in Lecture 17; the second equality follows because K−1(σ) is the
juxtaposition of K(π) and ρo; the third equality is due to the relation
between ρ and ρo.) ¤

Exercises

Exercise 18.23. Prove the following generalization of the formula
(9.18) which appeared in Exercise 9.23: If π, σ ∈ NC(n) are such that
π ≤ σ, then

(18.35) |π|+ |Kσ(π)| = n + |σ|.
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Notations 18.24. Let n be a positive integer, and let Sn denote
the group of all permutations of {1, . . . , n}.

1) For α ∈ Sn and a, b ∈ {1, . . . , n} we will say that a and b are in
the same orbit of α if there exists an integer m such that αm(a) = b.
The set {1, . . . , n} is then partitioned into orbits of α; the partition
obtained in this way will be denoted by Orb(α).

2) Let π be a partition in NC(n). We will denote by Pπ the per-
mutation α ∈ Sn which is determined by the following properties:

(i) Orb(α) = π.
(ii) If V = {a1, a2, . . . , ak} is a block of π, with 1 ≤ a1 < a2 < · · · <

ak ≤ n, then we have α(a1) = a2, . . . , α(ak−1) = ak, α(ak) = a1.

The first part of the following exercise is a rigorous formulation of
the fact that the relative Kreweras complement Kσ(π) is in some sense
“the quotient of σ by π”.

Exercise 18.25. 1) Let π, σ be partitions in NC(n), such that
π ≤ σ. Prove that

(18.36) PKσ(π) = P−1
π Pσ

(equality holding in the symmetric group Sn).
2) Let π, ρ, σ be partitions in NC(n) such that ρ ≤ σ and such that

PπPρ = Pσ. Prove that π ≤ σ and that Kσ(π) = ρ.

Exercise 18.26. Let π, σ be partitions in NC(n), such that π ≤ σ.
1) Prove that for τ ∈ [π, σ] we have that Kτ (π) ≤ Kσ(π), and that

KKσ(π)( Kτ (π) ) = Kσ(τ).

2) Prove that the map τ 7→ Kτ (π) is a lattice isomorphism between
the intervals [π, σ] and [0n, Kσ(π)] in NC(n).

[Hint for 1: The partitions Kτ (π), Kσ(τ), Kσ(π) (in this order) satisfy
the hypothesis of Exercise 18.25.2. Hint for 2: [π, σ] and [0n, Kσ(π)]
have the same canonical factorization, hence the same cardinality.]

Exercise 18.27. Let (A, ϕ) be a ∗-probability space. Let e, f ∈ A
be two selfadjoint projections such that e is free from f , and consider
the element x := efe. By using S-transforms, determine the distribu-
tion in analytic sense of x in (A, ϕ) (you should get an explicit answer
depending on the parameters α and β, where α := ϕ(e) and β := ϕ(f)).





LECTURE 19

The free commutator

The original use of the R-transform was in connection to the prob-
lem of describing the distribution of a sum of free random variables
(via the formula Ra+b = Ra + Rb, which always holds when a is free
from b in some non-commutative probability space – cf. Lectures 12,
16). Similarly, the S-transform was introduced to solve the problem of
multiplication of free random variables (cf. Lecture 18). By following
these lines, it is natural to ask what happens when one considers the
commutator ab − ba, or the anti-commutator ab + ba of two free ele-
ments. Some remarks about this have already been made in Lecture
15. In the present lecture we will continue the discussion started there,
by using the convenient language of the operation of boxed convolution
?.

The problem of the free commutator can be treated on two levels,
which will be discussed separately:

• A level where one considers even random variables. At this level
the problem can be solved as an application of the results on R-diagonal
elements. One obtains a formula which is at the same time valid for
the anti-commutator (of two free, even random variables), and which
was presented in Theorem 15.20 of Lecture 15.

• A general level, where the assumption that the random variables
are even is now dropped. Quite surprisingly, it turns out that the free
commutator (unlike the free anti-commutator) is still described in this
case by the same formula as we had in the even case. This is caused by
a non-trivial cancelation phenomenon: if a is free from b, then the free
cumulants of odd order of a and of b simply disappear (all the terms
involving them cancel out) in the process of computing the moments
of ab− ba.

Free commutators of even elements

Recall from Lecture 11 that an element a in a non-commutative
probability space (A, ϕ) is said to be even if it has the property that
ϕ(an) = 0 for every odd positive integer n. For such an element we
have introduced its determining sequence (cf. Notations 11.24) and

315
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then its determining series (cf Remarks 17.17). The latter series will
play an important role in this lecture, so we will introduce a notation
for it.

Notation 19.1. Let (A, ϕ) be a non-commutative probability
space, and let a be an even element of A. The determining series

of a will be denoted by R
(even)
a . That is, we have:

(19.1) R(even)
a (z) :=

∞∑
n=1

α2nzn,

where α2n is the free cumulant of order 2n of a, for n ≥ 1.

Remark 19.2. If a is an even element in (A, ϕ), then knowing the

determining series R
(even)
a is equivalent to knowing the full R-transform

Ra of a (since the coefficients of Ra that aren’t used in R
(even)
a are all

equal to 0). In fact it is clear that Ra is obtained back from R
(even)
a via

the formula

(19.2) Ra(z) = R(even)
a (z2),

which is a restatement of the formula (17.20) in Remark 17.17. Let us
also record here the equation

(19.3) Ra2 = R(even)
a ? Zeta,

which is a copy of Equation (17.21) of the same remark, and will be
used in main result of this section.

We will next review (from the Lecture 15) a few facts about R-
diagonal elements, and we will re-write the corresponding formulas in
terms of power series and their boxed convolution.

It will be more convenient to consider here the general framework
of a non-commutative probability space (A, ϕ) (where A does not nec-
essarily have a ∗-operation). In this framework instead of R-diagonal
element we talk about R-diagonal pairs. More precisely, we have:

Definition 19.3. Let (A, ϕ) be a non-commutative probability
space, and let x1, x2 be elements of A. We say that (x1, x2) is an
R-diagonal pair if the joint R-transform Rx1,x2 is of the form

(19.4) Rx1,x2(z1, z2) = f(z1z2) + g(z2z1),

where f(z) and g(z) are series of one variable. The series f and g are
called the determining series of (x1, x2).
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Remarks 19.4. 1) If in the notations of the preceding definition
we write explicitly:

f(z) =
∞∑

n=1

αnz
n and g(z) =

∞∑
n=1

βnzn,

then the fact that the pair (x1, x2) is R-diagonal amounts thus to the
following:

(i) For every n ≥ 1 we have that:

κ2n(x1, x2, . . . , x1, x2) = αn, and κ2n(x2, x1, . . . , x2, x1) = βn.

(ii) The free cumulants of x1 and x2 which are not listed in (i) are
all equal to zero.

2) The connection with the R-diagonal elements of Lecture 15 is
quite clear, an element x in a ∗-probability space is R-diagonal pre-
cisely when the pair (x, x∗) is R-diagonal. Most of the results about
R-diagonal elements shown in the Lecture 15 can in fact be extended,
with the same proofs, to the framework of R-diagonal pairs. Among
these results, one which is most relevant for our purposes is the The-
orem 15.17, about the product of two free even elements; when using
the framework of R-diagonal pairs, this is stated as follows.

Proposition 19.5. Let (A, ϕ) be a non-commutative probability
space. Let a, b ∈ A be even, and suppose that a is free from b. Then
(ab, ba) is an R-diagonal pair.

Remark 19.6. One of the important points in Lecture 15 was to
observe a basic relation which connects the determining series of an
R-diagonal element x with the distributions of the elements xx∗ and
x∗x. Let us also review this relation, stated in the framework of R-
diagonal pairs. We will look at the case of a tracial non-commutative
probability space; thus what we will write is the counterpart of the
Proposition 15.6.2 (specifically of the Equation (15.8) obtained there).

So let (A, ϕ) be a tracial non-commutative probability space, and
let (x1, x2) be an R-diagonal pair in (A, ϕ). In this case we have that

κ2n(x1, x2, . . . , x1, x2) = κ2n(x2, x1, . . . , x2, x1), ∀ n ≥ 1,

so that the two determining series f and g of Equation (19.4) are equal
to each other, and the Equation (19.4) is now just

(19.5) Rx1,x2(z1, z2) = f(z1z2) + f(z2z1).

The traciality of ϕ also implies that the elements x1x2 and x2x1 have the
same moment series, and hence the same R-transform. The Proposition
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15.6.2 (adjusted to our current framework) then simply says that the
common R-transform of x1x2 and x2x1 is given by the equation:

(19.6) Rx1x2 = f ? Zeta.

Equivalent to (19.6), one can of course also write:

(19.7) f = Rx1x2 ? Möb.

The Equations (19.5) and (19.7) imply together the important fact that
the joint distribution of x1 and x2 (i.e, the values of ϕ on all the words
in x1 and x2) is completely determined by the distribution of x1x2

(i.e, by the values of ϕ on just the alternating words of even length
x1x2 · · · x1x2).

After these preliminaries, we can now state the main result of this
section.

Theorem 19.7. Let (A, ϕ) be a non-commutative probability space,
and let a, b be even elements of A, such that a is free from b. Then

(19.8) Rab−ba(z) = 2( R(even)
a ? R

(even)
b ? Zeta )(−z2).

Proof. Due to the fact that a and b are free and generate commu-
tative algebras, it follows that the restriction of ϕ to the unital algebra
Ao generated by a and b is a trace. Thus by replacing A with Ao, we
can assume without loss of generality that ϕ is a trace.

Denote ab =: x1 and ba =: x2. As reviewed in Proposition 19.5, the
pair (x1, x2) is R-diagonal. Let f denote its determining series. Then
we have:

f = Rx1x2 ? Möb (by Equation (19.7))

= Rabba ? Möb (by replacing x1 = ab, x2 = ba)

= Ra2b2 ? Möb (since Rabba = Ra2b2 , by traciality)

= Ra2 ? Rb2 ? Möb (by Proposition 17.2)

= (R(even)
a ? Zeta) ? (R

(even)
b ? Zeta) ? Möb (by Eqn.(19.3)).

If in the last expression obtained above we use the commutativity of
the operation ? of one variable, and the fact that Möb is the inverse of
Zeta, we arrive to the formula:

(19.9) f = R(even)
a ? R

(even)
b ? Zeta.

On the other hand, let us note that the formula for the behav-
ior of the R-transform under linear transformations (cf. Lecture 16,
Proposition 16.12) gives us that:

(19.10) Rab−ba(z) = Rx1−x2(z) = Rx1,x2(z,−z).
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By combining this with Equation (19.5), we thus get:

(19.11) Rab−ba(z) = f
(
z · (−z)

)
+ f

(
(−z) · z)

= 2f(−z2).

Finally, the Equations (19.9) and (19.11) yield together (19.8). ¤

Remarks 19.8. Let (A, ϕ) be a non-commutative probability
space, and let a, b ∈ A be even, such that a is free from b.

1) The commutator ab − ba is again an even element. It wouldn’t
be hard to prove this directly from the definitions, but at this point it
is more convenient to observe that it is an immediate consequence of
the formula (19.8) – indeed, the R-transform Rab−ba is a series in z2.

2) In the discussions about the free commutator it is usually more
convenient to deal with i(ab − ba) instead of ab − ba. (For instance,
if (A, ϕ) was to be a ∗-probability space, and if a and b were to be
selfadjoint, then i(ab− ba) would again be a selfadjoint element.) The
R-transforms of ab− ba and i(ab− ba) are related by

Ri(ab−ba)(z) = Rab−ba(iz),

thus instead of Equation (19.8) of Theorem 19.7 we would now have

(19.12) Ri(ab−ba)(z) = 2( R(even)
a ? R

(even)
b ? Zeta )(z2)

(the minus sign disappears, since −(iz)2 = +z2). Note that the latter
equation can be written without making explicit use of the indetermi-
nate z, in the form

(19.13) R
(even)
i(ab−ba) = 2( R(even)

a ? R
(even)
b ? Zeta ).

3) The anti-commutator ab+ ba has the same distribution as i(ab−
ba), and consequently the expression on the right-hand side of (19.12)
also describes the R-transform Rab+ba.

Indeed, the proof of Theorem 19.7 only involved the element ab−ba
at the very end, in the Equation (19.10). But (in the framework of that
proof) we can also write the analogue of (19.10) for ab + ba:

Rab+ba(z) = Rx1+x2(z)

= Rx1,x2(z, z) (by Proposition 16.12)

= 2f(z2) (by Eqn.(19.5)),

hence the same expression as for Ri(ab−ba) is obtained.
A short calculation (left as exercise) shows that the formula for

the free anti-commutator which is obtained in this way is precisely
the translation in terms of R-transforms and boxed convolution of the
Equation (15.13) in Theorem 15.20 of Lecture 15.
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Example 19.9. In the framework of Theorem 19.7, let us suppose
that the even element b is such that b2 = 1A. Then the even free
cumulants of b are the signed Catalan numbers (cf. Exercise 11.35, or

Remark 17.19.2); in other words, R
(even)
b is equal to Möb, the Möbius

series of one variable. The formula (19.12) becomes:

Ri(ab−ba)(z) = 2( R(even)
a ? Möb ? Zeta )(z2)

= 2R(even)
a (z2)

= 2Ra(z) (by Eqn.(19.2)).

So we see that in this case we have:

(19.14) Ri(ab−ba) = 2Ra;

or in other words, i(ab − ba) has the same distribution as the sum of
two free elements a1 and a2, such that each of a1 and a2 has the same
distribution as a.

Remark 19.10. The Theorem 19.7 has a nice reformulation in
terms of S-transforms. More precisely, let a, b be as in Theorem 19.7,
and consider the element c = i(ab − ba). Since a, b, c are even, their
distributions are determined by the S-transforms Sa2 , Sb2 , Sc2 , respec-
tively. The version with S-transforms of Theorem 19.7 is a formula
which expresses Sc2 in terms of Sa2 and Sb2 ; this will be presented in
Proposition 19.12 below. The conversion from Theorem 19.7 to Propo-
sition 19.12 is obtained by using the isomorphism “F” from Theorem
18.14 of the preceding lecture. We will first prove a lemma.

Lemma 19.11. Let (A, ϕ) be a non-commutative probability space,
and let a ∈ A be an even element. Suppose that ϕ(a2) 6= 0, so that

the S-transform Sa2 exists. Then R
(even)
a belongs to the set Θ

(inv)
1 of

series which are invertible with respect to ? (so that F can be applied

to R
(even)
a ), and we have:

(19.15) Sa2(w) =

(F(R
(even)
a )

)
(w)

1 + w
.

Proof. R
(even)
a belongs to Θ

(inv)
1 because its linear coefficient is

ϕ(a2) 6= 0. In order to obtain (19.15), we apply F to both sides of
Equation (19.3). On the left-hand side we will get F(Ra2) which is
Sa2 (cf. Equation (18.15) in Lecture 18). On the right-hand side we

will get F( R
(even)
a ? Zeta ), which is F(R

(even)
a ) · F(Zeta), by Theorem

18.14. Hence we obtain:

Sa2 = F(R(even)
a ) · F(Zeta).
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But a direct calculation using the definition of F , and the fact that
Zeta(z) = z/(1− z), leads to the formula:

(19.16)
(F(Zeta)

)
(w) =

1

1 + w
,

and (19.15) follows. ¤
Proposition 19.12. Let (A, ϕ) be a non-commutative probability

space, and let a, b be even elements of A, such that a is free from
b. Assume that ϕ(a2) 6= 0 6= ϕ(b2). Denote c := i(ab − ba). Then
ϕ(c2) = 2ϕ(a2) · ϕ(b2) 6= 0, and:

(19.17) Sc2(w) =
1 + w

2

2(1 + w)
· Sa2(

w

2
) · Sb2(

w

2
).

Proof. The fact that ϕ(c2) = 2ϕ(a2) · ϕ(b2) is obtained by direct
computation: we have

c2 = −abab− baba + ab2a + ba2b

and ϕ(abab) = ϕ(baba) = 0 (directly from the definition of free inde-
pendence) and ϕ(ab2a) = ϕ(ba2b) = ϕ(a2)ϕ(b2).

Consider now the equation:

(19.18) R(even)
c = 2( R(even)

a ? R
(even)
b ? Zeta ),

which is a reformulation of Equation (19.12) in Remark 19.8.2. We
apply F to both sides of (19.18). On the left-hand side we get:

(19.19) Sc2(w) · (1 + w),

by Lemma 19.11 applied to the even element c. For the right hand side
we use the identity

(F(2f)
)
(w) = 2−1 · (F(f)

)
(w/2) (∀f ∈ Θ

(inv)
1 ),

which follows immediately from the definition of F , and thus we get:

1

2

(F( R(even)
a ? R

(even)
b ? Zeta )

)
(w/2)

=
1

2
·(F(R(even)

a )
)
(w/2) · (F(R

(even)
b )

)
(w/2) · (F(Zeta)

)
(w/2)

=
1

2
· Sa2(w/2) · (1 +

w

2

) · Sb2(w/2) · (1 +
w

2

) · 1

1 + w
2

=
1

2
· (1 +

w

2

) · Sa2(w/2) · Sb2(w/2)

(by using Theorem 18.14, Lemma 19.11 and also Equation (19.16)).
The result follows by equating the last line with (19.19). ¤
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Free commutators in the general case

We start by extending the Notation 19.1 to the framework of ele-
ments that aren’t necessarily even.

Notation 19.13. Let (A, ϕ) be a non-commutative probability
space, let a be an element of A (not necessarily even!), and consider
the R-transform Ra(z) :=

∑∞
n=1 αnz

n. We denote:

R(even)
a (z) :=

∞∑
n=1

α2nzn.

Remark 19.14. The formula for R
(even)
a is hence the same as in

the discussion about even elements; but it is clear that for an arbitrary

a ∈ A, the series R
(even)
a does not anymore contain the full information

about the distribution of a.
On the other hand it is also clear that in order to determine the

commutator of two free elements a and b, one does not need to know
the full information about the distributions of a and b. For instance
a trivial remark, which doesn’t in fact depend on the freeness of a
and b, is that the expectations ϕ(a) and ϕ(b) don’t have any influence

on ab − ba. The main point here will be that: the series R
(even)
a and

R
(even)
b provide exactly the partial information about a and b which

is needed in order to determine the distribution of their commutator.
More precisely, the main result of this section goes as follows.

Theorem 19.15. Let (A, ϕ) and (A′, ϕ′) be non-commutative prob-
ability spaces, and suppose that we have elements a, b ∈ A, a′, b′ ∈ A′,
such that a is free from b in (A, ϕ), a′ is free from b′ in (A′, ϕ′), and
such that:

(19.20) R(even)
a = R

(even)
a′ , R

(even)
b = R

(even)
b′ .

Then the commutators ab− ba ∈ A and a′b′ − b′a′ ∈ A′ are identically
distributed.

The proof of Theorem 19.15 will be discussed in the next section.
Here we will only examine the formulas which this theorem entails, and
we will present a concrete example of calculation for a distribution of
a free commutator.

Corollary 19.16. Let (A, ϕ) be a non-commutative probability
space, and let a, b be elements of A, such that a is free from b. Then
the relation:

Ri(ab−ba)(z) = 2( R(even)
a ? R

(even)
b ? Zeta )(z2)
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holds (even if a and b are not even!)

Proof. By using the Exercise 16.21, one can easily construct a
non-commutative probability space (A′, ϕ′) and even elements a′, b′ ∈
A′ such that a′ is free from b′, and such that Equation (19.20) holds.
But then:

Ri(ab−ba)(z) = Ri(a′b′−b′a′)(z) (by Theorem 19.15)

= 2( R
(even)
a′ ? R

(even)
b′ ? Zeta )(z2) (by Theorem 19.7)

= 2( R(even)
a ? R

(even)
b ? Zeta )(z2) (by Eqn.(19.20)).

¤

Let us also state the S-transform version of the above corollary.

Corollary 19.17. Let (A, ϕ) be a non-commutative probability
space, let a, b be elements of A such that a is free from b, and suppose
that the variances γa = ϕ(a2) − ϕ(a)2 and γb = ϕ(b2) − ϕ(b)2 are
different from 0. Denote c = i(ab− ba). Then c is even, with ϕ(c2) =
2γaγb 6= 0, and we have:

(19.21) Sc2(w) =
2

w2(1 + w)(1 + w
2
)
· ( R(even)

a )<−1>(w/2)×

× ( R
(even)
b )<−1>(w/2).

Proof. This is very similar to the proof of Proposition 19.12 in
the preceding section, involving the use of the isomorphism F from
Lecture 18. The difference is that now the Lemma 19.11 can only be
applied in connection to the element c (for a and b it does not apply,
since these elements are not assumed to be even). So all we do now

about the series F(R
(even)
a ) and F(R

(even)
b ) (which appear during the

calculation) is to replace them by using the definition of F – then the
Equation (19.21) is obtained. ¤

We will conclude this section by presenting a concrete example of
computation: we will determine the distribution for the free commu-
tator of a projection and a semicircular element. For this example it
feels more natural to use the framework of a ∗-probability space (even
though the ∗-operation does not really play a role in the computation).
We start by examining the R(even) series of the projection.

Example 19.18. Let (A, ϕ) be a ∗-probability space, and let b ∈ A
be a selfadjoint projection such that ϕ(b) = λ ∈ (0, 1). We will show
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that:

(19.22)
(
R

(even)
b

)<−1>
(b) =

w(1 + w)(1 + 2w)2

(w + λ)(w + 1− λ)
.

In order to obtain (19.22), we start from the moment series of b,
which is

Mb(z) =
∞∑

n=1

λzn =
λz

1− z
.

It is then immediate that

M<−1>
b (w) =

w

λ + w
,

hence, the Remark 16.18 from Lecture 16 gives us:

R<−1>
b (w) = (1 + w)M<−1>

b (w) =
w(1 + w)

λ + w
.

This formula for R<−1>
b amounts to an algebraic equation satisfied by

Rb, namely

z =
Rb(z)(1 + Rb(z))

λ + Rb(z)
.

The conclusion up to this point is hence that the R-transform Rb

satisfies the quadratic equation:

(19.23) Rb(z)2 + (1− z)Rb(z)− λz = 0.

What we need, however, is some information concerning only the even
part of the series Rb. This can be obtained as follows: write

Rb(z) = g(z2) + zh(z2),

where g coincides with R
(even)
b , while h is a series made up by using the

coefficients of odd degree of Rb. The Equation (19.23) is then turned
into a system of two equations in g and h:




g + g2 − z(h− h2) = 0

2gh + h− g − λ = 0

By solving for h in the second equation of the system, and by plugging
the result into the first equation, we obtain a polynomial equation of
degree 4 satisfied by g:

(19.24) (g + g2)(1 + 2g)2 = z(g + λ)(g + 1− λ).

Having to find g ( = R
(even)
b ) from this equation would not be a very

pleasant thing. But fortunately, we do not need to use the series R
(even)
b

itself, but its inverse under composition. This means that in (19.24)
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we actually need to solve for z in terms of g, which is much easier and
leads to the formula stated in (19.22).

Example 19.19. Let (A, ϕ) be a ∗-probability space, and let a, b
be selfadjoint elements of A such that: a is a standard semicircular
element, b is a projection with ϕ(b) = λ ∈ (0, 1), and a is free from b.
Denote c = i(ab− ba); we want to calculate the distribution of c.

By using Corollary 19.17, we see that:

Sc2(w) =
2

w2(1 + w)(1 + w
2
)
· w

2
·

w
2
(1 + w

2
)(1 + w)2

(w
2

+ λ)(w
2

+ 1− λ)

(where we used the fact that R
(even)
a (z) = z, and we substituted

( R
(even)
b )<−1> from the preceding example). After simplification this

becomes:

Sc2(w) =
1 + w

2(w
2

+ λ)(w
2

+ 1− λ)
.

Then we compute the inverse of the moment series of c2:

M<−1>
c2 (w) =

w

1 + w
Sc2(w)

=
2w

w2 + 2w + 4λ(1− λ)
.

This yields a quadratic equation for Mc2 . By using the obvious relation
Mc(z) = Mc2(z

2) (which holds because we know that c is even) we
obtain a quadratic equation for the moment series Mc, which reads as
follows:

(19.25) Mc(z)2 + (2− 2

z2
)Mc(z) + 4λ(1− λ) = 0.

From this point on we assume that (A, ϕ) is a C∗-probability space,
with ϕ faithful. Then the selfadjoint element c ∈ A has a spectral dis-
tribution µc which is a probability measure with compact support on
R, and which can be calculated by the techniques described in the Lec-
tures 2 and 3. More precisely, if we denote by G the Cauchy transform
of µc, then from (19.25) we get a quadratic equation for G:

(19.26) ζ2G(ζ)2 − 2ζ3G(ζ) + (2ζ2 − 1 + 4λ(1− λ)) = 0,

holding for all ζ ∈ C with positive imaginary part. By solving for G in
(19.26) and then by using the Stieltjes inversion formula, one can find
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an explicit description of µc. This is:

(19.27) µc =
√

1− 4λ(1− λ) δ0

+
1

π|t|
√

4λ(1− λ)− (t2 − 1)2 χ[−β,−α]∪[α,β]dt,

where δ0 denotes the Dirac measure at 0, and the numbers α, β are
defined by

α :=

√
1− 2

√
λ(1− λ), β :=

√
1 + 2

√
λ(1− λ).

The cancelation phenomenon

In this section we outline the argument proving Theorem 19.15.
We first observe that there is no loss of generality if we strengthen the
hypothesis of the theorem in the way indicated in the next proposition.

Proposition 19.20. Let (A, ϕ) and (A′, ϕ′) be non-commutative
probability spaces, and suppose that we have elements a, b ∈ A, a′, b′ ∈
A′, such that a is free from b in (A, ϕ), a′ is free from b′ in (A′, ϕ′),
and such that:

(19.28) R(even)
a = R

(even)
a′ , Rb = Rb′ .

Then the commutators ab− ba ∈ A and a′b′ − b′a′ ∈ A′ are identically
distributed.

What is different in the statement of Proposition 19.20 is the

hypothesis “Rb = Rb′”, replacing the weaker hypothesis “R
(even)
b =

R
(even)
b′ ” of Theorem 19.15. If we assume Proposition 19.20, then The-

orem 19.15 is proved as follows.

Proof of Theorem 19.15. Let (A, ϕ), (A′, ϕ′), a, b ∈ A and
a′, b′ ∈ A′ be as in the statement of Theorem 19.15. One can construct
(by appealing again to Exercise 16.21) a non-commutative probability
space (A′′, ϕ′′) and elements a′′, b′′ ∈ A′′ such that a′′ is free from b′′

and such that

(19.29) Ra′′ = Ra′ , Rb′′ = Rb.

The first equality in (19.29) implies in particular that

R
(even)
a′′ = R

(even)
a′ = R(even)

a ;

so Proposition 19.20 applies to a, b ∈ A and a′′, b′′ ∈ A′′, and gives us
that ab − ba and a′′b′′ − b′′a′′ are identically distributed. Analogously,
we have that

R
(even)
b′ = R

(even)
b = R

(even)
b′′ and Ra′ = Ra′′ ,
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so that Proposition 19.20 applies to b′, a′ ∈ A′ and b′′, a′′ ∈ A′′, and
gives us that b′a′ − a′b′ and b′′a′′ − a′′b′′ are identically distributed. It
follows that both ab− ba and a′b′ − b′a′ have the same distribution as
a′′b′′ − b′′a′′, and the conclusion follows. ¤

We next look at the formula for the moment of order n of a free
commutator ab− ba, in terms of the free cumulants of a and of b. We
will use the following notations.

Notations 19.21. For ε = (ε(1), . . . , ε(n)) ∈ {1, 2}n we denote:
• A(ε) := {2i−1 | 1 ≤ i ≤ n, ε(i) = 1}∪{2j | 1 ≤ j ≤ n, ε(j) = 2};
• B(ε) := {2i | 1 ≤ i ≤ n, ε(i) = 1}∪{2j−1 | 1 ≤ j ≤ n, ε(j) = 2};
• t(ε) := card{j | 1 ≤ j ≤ n, ε(j) = 2}.

Thus t(ε) just stands for “number of twos” in ε, while {A(ε), B(ε)}
is a partition of {1, . . . , 2n} into two blocks of n elements each. The
significance of A(ε) and B(ε) is the following: if one denotes ab =: x1,
ba =: x2 and then writes explicitly xε(1)xε(2) · · · xε(n) as a monomial of
length 2n in a and b, then this monomial will have a’s on the positions
indicated by A(ε) and will have b’s on the positions indicated by B(ε).

Proposition 19.22. Let (A, ϕ) be a non-commutative probability
space, and let a, b ∈ A be such that a is free from b. Denote

Ra(z) =
∞∑

n=1

αnzn, Rb(z) =
∞∑

n=1

βnzn.

Then for every n ≥ 1 we have:

(19.30) ϕ( (ab− ba)n ) =

∑

ε∈{1,2}n

∑

π∈NC(2n),

π≤{A(ε),B(ε)}

(−1)t(ε)
( ∏

V ∈π,

V⊂A(ε)

α|V |
)( ∏

W∈π,

W⊂B(ε)

β|W |
)
.

(Note: The inequality π ≤ {A(ε), B(ε)} under the second summation
sign in (19.30) is in the lattice of all partitions of {1, . . . , 2n} – it thus
simply means that every block of π either is contained in A(ε) or is
contained in B(ε).)

Proof. Denote ab =: x1 and ba =: x2. Then we can write:

ϕ( (ab− ba)n ) = ϕ( (x1 − x2)
n )

=
∑

ε∈{1,2}n

(−1)t(ε)ϕ(xε(1) · · · xε(n)).
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Now for every ε ∈ {1, 2}n let us write xε(1) · · · xε(n) as a monomial in a
and b (with a’s and b’s on the positions indexed by A(ε) and respectively
B(ε)), and let us express ϕ(xε(1) · · ·xε(n)) in terms of the free cumulants
of a and b. The mixed free cumulants of a and b will vanish (since a is
free from b); so in the resulting summation over NC(2n), the partitions
which are not smaller than {A(ε), B(ε)} will have zero contribution.
We arrive to

ϕ(xε(1) · · ·xε(n)) =
∑

π∈NC(2n),

π≤{A(ε),B(ε)}

(
∏

V ∈π,

V⊂A(ε)

α|V |) · (
∏

W∈π,

W⊂B(ε)

β|W |),

and substituting this in the formula obtained above for ϕ( (ab− ba)n )
leads to Equation (19.30). ¤

We now arrive to the main point of the argument, which is that:
in the double summation on the right-hand side of (19.30), the terms
which involve the cumulants of odd order of a (that is, they contain
factors αk for odd k) are canceling each other in pairs. In order to
formalize this, it is convenient to use the following notation.

Notation 19.23. Let S be a totally ordered finite set, and consider
the lattice NC(S) of non-crossing partitions of S. We denote

NCE(S) := {π ∈ NC(S) | every block of π has even cardinality }
NCO(S) := NC(S) \NCE(S).

Proposition 19.24. Let n be a positive integer, and denote

Xn :=
{

(π, ε) ∈ NC(2n)× {1, 2}n π ≤ {A(ε), B(ε)} and
π|A(ε) ∈ NCO(A(ε))

}
.

One can find a map Φn : Xn → Xn such that Φn ◦ Φn is the identity
map on Xn and such that for every (π, ε) ∈ Xn the element Φn(π, ε) =:
(π′, ε′) has the following properties:

(i) t(ε′) is not of the same parity as t(ε).
(ii) π′|A(ε′) has the same block structure as π|A(ε), and π′|B(ε′)

has the same block structure as π|B(ε) (where two partitions are said
to have the same block structure when they have the same number of
blocks of size k for every k ≥ 1).

A possible way of putting into evidence a map Φn with the proper-
ties listed in Proposition 19.24 is indicated in the section of exercises,
at the end of the lecture. If one assumes this combinatorial statement,
then the proof of Proposition 19.20 (to which the Theorem 19.15 had
been reduced) follows easily. Indeed, when putting together the Propo-
sitions 19.22 and 19.24 we get the following corollary.
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Corollary 19.25. Let (A, ϕ) be a non-commutative probability
space, and let a, b ∈ A be such that a is free from b. Denote

Ra(z) =
∞∑

n=1

αnzn, Rb(z) =
∞∑

n=1

βnzn.

Then for every n ≥ 1 we have:

(19.31)

ϕ( (ab − ba)n ) =
∑

(π,ε)∈Yn

(−1)t(ε)
( ∏

V ∈π,

V⊂A(ε)

α|V |
)( ∏

W∈π,

W⊂B(ε)

β|W |
)
,

where

Yn :=
{

(π, ε) ∈ NC(2n)× {1, 2}n π ≤ {A(ε), B(ε)} and
π|A(ε) ∈ NCE(A(ε))

}
.

Proof. The Proposition 19.22 gives us a formula like the one which
is required, with the difference that the sum on the right-hand side is
over Xn ∪ Yn instead of just Yn (with Xn as defined in Proposition
19.24). But the Proposition 19.24 implies that

∑
Xn
· · · = 0, as the

terms indexed by Xn can be grouped (by using the bijection Φn) in
pairs which cancel each other. The formula (19.31) follows. ¤

The proof of Proposition 19.20 is now immediate.

Proof of 19.20. Let (A, ϕ), (A′, ϕ′), a, b ∈ A and a′, b′ ∈ A′ be
as in the statement of Proposition 19.20. Denote

R(even)
a (z) = R

(even)
a′ (z) =:

∞∑
n=1

α2nzn, Rb(z) = Rb′(z) =:
∞∑

n=1

βnzn.

For every n ≥ 1, both ϕ( (ab − ba)n ) and ϕ′( (a′b′ − b′a′)n ) are equal
to the right-hand side of Equation (19.31). Thus ab− ba and a′b′− b′a′

are identically distributed. ¤

Exercises

Exercise 19.26. Let (A, ϕ) be a ∗-probability space, and let a, b
be even selfadjoint elements of A such that a is free from b and such
that a2 = 1A = b2. Prove that c := i(ab− ba) is a semicircular element
of radius

√
2.

Exercise 19.27. Let (A, ϕ) be a ∗-probability space, and let
{an | n ≥ 0} be a free family of elements of A, such that every an

is a standard semicircular element. Denote c1 = i√
2
(a0a1 − a1a0) and
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cn = i√
2
(cn−1an − ancn−1), ∀ n ≥ 2. Prove that the sequence (cn)∞n=1

converges in distribution, and describe the limit distribution.

The Exercises 19.28–19.33 suggest a possible way of constructing a
bijection with the properties stated in Proposition 19.24.

Exercise 19.28. Let S be a totally ordered set and let π be a
partition in NCO(S). Prove that there exists a block V = {v1, . . . , vk}
of π, with v1 < v2 < · · · < vk, such that k is odd and such that each of
the intervals [v1, v2], [v2, v3], . . . , [vk−1, vk] in S has even cardinality.

A block V with the properties described in Exercise 19.28 is some-
times said to be parity-alternating (because of how it looks in the
particular case when S = {1, . . . , n} – in that case the numbers
v1 < v2 < · · · < vk will have alternating parities). The next exercise
records an immediate consequence of the fact that NCO partitions
must always have such blocks.

Exercise 19.29. Let S be a totally ordered set and let π be a
partition in NCO(S). Prove that one can find elements p ≤ q of S
such that the following hold:

(i) The interval [p, q] of S has odd cardinality.
(ii) p and q belong to the same block V of π, and moreover we have

that p = min(V ), q = max(V ).
(iii) The block V appearing in (ii) has odd cardinality.

In order to shorten the statements of the following exercises, it is
convenient to make up some names for the terminology which will be
used in them.

Notations 19.30. 1) Let S be a totally ordered set and let π be
a partition in NCO(S). Among all the intervals [p, q] of S which have
the properties described in Exercise 19.29, pick the one for which the
element p is as small as possible (in the order of S). That interval [p, q]
will be called the odd-marked interval of π.

2) On the set ∪∞n=0{1, 2}n of finite sequences of 1’s and 2’s we will
consider the (obvious) operation of multiplication by concatenation.
Moreover on this set we will also consider the ∗-operation defined as
follows: for ε = (ε(1), . . . , ε(n)) ∈ {1, 2}n we set

ε∗ := (3− ε(n), . . . , 3− ε(1))
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(for example (1, 1, 1, 2, 2, 1)∗ = (2, 1, 1, 2, 2, 2)).

3) For n ≥ 1 and 1 ≤ a ≤ b ≤ n we will denote by σ
(n)
a,b the

permutation of {1, . . . , n} defined by:

σ
(n)
a,b (m) =

{
a + b−m if a ≤ m ≤ b

m otherwise.

In other words, σ
(n)
a,b turns around the interval [a, b] of {1, . . . , n}, and

does not change what is outside it.

Exercise 19.31. Let π be a partition in NC(n), let W be a block
of π, and denote min(W ) =: p, max(W ) =: q.

(a) Prove that σ
(n)
p,q ·π ∈ NC(n) (where the action of a permutation

τ on π is as discussed in Notation 9.40, τ ·π := {τ(V ) | V block of π}).
(b) Suppose that p > 1. Prove that σ

(n)
p−1,q · π ∈ NC(n).

(c) Suppose that q < n. Prove that σ
(n)
p,q+1 · π ∈ NC(n).

Exercise 19.32. Let (π, ε) be an element of the set Xn defined in
Proposition 19.24. Consider the partition π|A(ε) ∈ NCO(A(ε)), and
let [p, q] be its odd-marked interval (as defined in 19.30.1).

(a) Let i ∈ {1, . . . , n} be the ceiling of p/2 (that is, i = p/2 if p is
even and i = (p + 1)/2 if p is odd); similarly, let j be the ceiling of
q/2. Consider the (unique) factorization, in sense of multiplication by
concatenation:

ε = ε−ε0ε+,

where the lengths of ε−, ε0, ε+ are equal to i − 1, j − i + 1 and n − j,
respectively. Then consider the n-tuple

ε′ := ε−ε∗0ε+ ∈ {1, 2}n.

Prove that t(ε′) is not of the same parity as t(ε).
(b) Consider the permutation τ of {1, . . . , 2n} defined by:

τ =





σ
(2n)
p,q if p, q have different parities

σ
(2n)
p−1,q if p, q are both even

σ
(2n)
p,q+1 if p, q are both odd.

Prove that τ(A(ε)) = A(ε′) and that τ(B(ε)) = B(ε′), where ε′ is the
n-tuple defined in the part (a) of the exercise.

(c) Let π′ := τ · π, where τ is as in the part (b) of the exercise.
Prove that (π′, ε′) belongs to the set Xn defined in Proposition 19.24.

Exercise 19.33. Consider the set Xn defined in Proposition 19.24,
and for every element (π, ε) ∈ Xn define Φn(π, ε) := (π′, ε′), with π′ and
ε′ constructed as in Exercise 19.32. Prove that the map Φn : Xn → Xn
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which is defined in this way has the properties stated in Proposition
19.24.



LECTURE 20

R-cyclic matrices

In this lecture we look at the natural operation of taking d×d matri-
ces over a non-commutative probability space (A, ϕ). If A = (aij)1≤i,j≤d

is a matrix in Md(A), then it is immediate (right from the definitions)
that the distribution of A in Md(A) is completely determined by the
joint distribution of the family {aij | 1 ≤ i, j ≤ d} in (A, ϕ); but,
as a rule, there is no explicit formula for computing the distribution
of A from the one of the aij’s. A notable exception to this rule was
observed early on by Voiculescu, and occurs when a free family of cir-
cular/semicircular elements is used in order to build up a selfadjoint
matrix A – in this case the matrix A turns out to have itself a semicir-
cular distribution in Md(A).

In this lecture we introduce the concept of R-cyclic matrix, which
is a generalization of the situation of the matrix with free circu-
lar/semicircular entries. The definition of R-cyclicity is in terms of
the joint R-transform of the entries of the matrix: one requires that
only the cyclic non-crossing cumulants of the entries are allowed to be
different from 0. We show that for an R-cyclic matrix A = (aij)1≤i,j≤d

one has an explicit ?–convolution formula for computing the distribu-
tion of A (considered in Md(A)) in terms of the joint distribution of
the aij’s (considered in the original space (A, ϕ)).

The discussion extends without difficulty to the situation when one
considers several matrices A1, . . . , As ∈ Md(A). Thus one has the
concept of R-cyclic family of matrices, and a convolution formula for
computing the joint distribution of such a family of matrices, in terms
of the joint distribution of their entries. Several important situations of
families of matrices with tractable joint distributions arise by applying
this formula.

Definition and examples of R-cyclic matrices

Let us first recall what we mean when we talk about “d×d matrices
over a non-commutative probability space” (cf. also the Exercise 1.23
in Lecture 1).

333
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Notation 20.1. Let (A, ϕ) be a non-commutative probability
space, and let d be a positive integer. Consider the algebra Md(A)
of d × d matrices over A. We denote by ϕd the linear functional on
Md(A) defined by the formula:

(20.1) ϕd

(
(aij)

d
i,j=1

)
=

1

d

d∑
i=1

ϕ(aii).

Then (Md(A), ϕd) is itself a non-commutative probability space.

Definition 20.2. Let (A, ϕ) and d be as above, and let A =
(aij)

d
i,j=1 be a matrix in Md(A).

1) A is said to be R-cyclic if the following condition holds:

(20.2) κn(ai1j1 , . . . , ainjn) = 0

for every n ≥ 1 and every 1 ≤ i1, j1, . . . , in, jn ≤ d for which it is not
true that j1 = i2, . . . , jn−1 = in, jn = i1.

2) If the matrix A is R-cyclic, then the series:

f(z1, . . . , zd) :=
∞∑

n=1

d∑
i1,...,in=1

κn(aini1 , ai1i2 , . . . , ain−1in)zi1zi2 · · · zin

is called the determining series of the entries of A. (Note that
f ∈ Θd, where Θd is as in Notations 16.1.)

Example 20.3. Consider a diagonal matrix,

A :=




a1 0
. . .

0 ad


 ∈ Md(A),

where (A, ϕ) and d are as above. Then A is R-cyclic if and only if
a1, . . . , ad form a freely independent family. Indeed, the R-cyclicity
condition (20.2) is spelled here as follows: κn(ai1 , . . . , ain) = 0 whenever
it is not true that i1 = i2 = · · · = in. But in view of Theorem 11.20,
the latter condition is in turn equivalent to the free independence of
a1, . . . , ad.

For more elaborate examples we will use the framework of a ∗-
probability space, and we will focus on selfadjoint matrices over such
a space.

Example 20.4. Let (A, ϕ) be a ∗-probability space, and let
{eij | 1 ≤ i, j ≤ d} be a family of matrix units, i.e., a family of el-
ements of A which satisfy the following relations: e∗ij = eji for all

1 ≤ i, j ≤ d, eijekl = δj,keil for all 1 ≤ i, j, k, l ≤ d, and
∑d

i=1 eii = 1A.
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We will assume in addition that ϕ(eij) = 0 whenever i 6= j, and that
ϕ(e11) = · · · = ϕ(edd) = 1/d. We denote by (C, ψ) the compression of
(A, ϕ) by e11, i.e:

C := e11Ae11, ψ := d · ϕ|C.
Let now a be a selfadjoint element of A, which is free from {eij | 1 ≤

i, j ≤ d}. We compress a by the matrix unit formed by the eij’s, and
we move the compressions under the projection e11; that is, we consider
the family of elements:

cij := e1iaej1 ∈ C, 1 ≤ i, j ≤ d.

The Theorem 14.18 in Lecture 14 gives us an explicit formula for the
free cumulants of the family {cij | 1 ≤ i, j ≤ d}. Namely, for every
n ≥ 1 and 1 ≤ i1, j1, . . . , in, jn ≤ d, we have that κn(ci1j1 , . . . , cinjn)
equals:




d−(n−1)κn(a, . . . , a) if j1 = i2, . . . , jn−1 = in, jn = i1

0 otherwise.

In other words, the matrix C = (cij)
d
i,j=1 ∈ Md(C) is R-cyclic, and the

determining series of its entries is:

f(z1, . . . , zd) =
∞∑

n=1

d∑
i1,...,in=1

d−(n−1)kn(a, . . . , a)zi1 · · · zin

= d ·
∞∑

n=1

kn(a, . . . , a) ·
(z1 + · · ·+ zd

d

)n

= d ·Ra(
z1 + · · ·+ zd

d
),

where Ra is the R-transform of a, in the original space (A, ϕ).

Example 20.5. Let (A, ϕ) be a ∗-probability space, and let a ∈
A be an R-diagonal element (as in Lecture 15). Consider the non-
commutative probability space (M2(A), ϕ2) defined as in Notation 20.1,
and the selfadjoint matrix:

A =

(
0 a∗

a 0

)
∈ M2(A).

One immediately checks that A is R-cyclic (and in fact that also con-
versely, the R-cyclicity of A implies the R-diagonality of a). Moreover,
the determining series of the entries of A coincides here with the joint
R-transform Ra,a∗ (as appearing for instance in Equation (16.13) of
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Example 16.9). A number of results about R-diagonal elements can be
incorporated in the theory of R-cyclic matrices by using this trick.

Example 20.6. On the lines of Example 20.5, one can consider
the situation of a more general selfadjoint matrix with free R-diagonal
entries. More precisely, let (A, ϕ) be a ∗-probability space, let d be a
positive integer, and suppose that the elements {aij | 1 ≤ i, j ≤ d} of
A have the following properties:

(i) a∗ij = aji, ∀ 1 ≤ i, j ≤ d;
(ii) aij is R-diagonal whenever i 6= j;
(iii) the d(d + 1)/2 families: {aii} for 1 ≤ i ≤ d, together with

{aij, aji} for 1 ≤ i < j ≤ d, are free in (A, ϕ).
Then the matrix A := (aij)

d
i,j=1 ∈ Md(A) is R-cyclic. Indeed, the

freeness condition (iii) combined with the R-diagonality of aij for i 6= j
implies that the only free cumulants made with the entries of A which
could possibly be non-zero are:

{
κn(aii, . . . , aii) with n ≥ 1, 1 ≤ i ≤ d, and
κn(aij, aji, . . . , aij, aji) with n ≥ 1 even, 1 ≤ i, j ≤ d, i 6= j;

all these cumulants fall within the pattern allowed by the definition of
R-cyclicity.

An important particular case of the situation described above is the
one when the aij’s are circular and semicircular. In order to describe
this particular case, it is convenient to allow “rescaled” circular ele-
ments; that is, we will say that an element c in a ∗-probability space
(A, ϕ) is circular of radius r if 2

r
c is a circular element in the sense of

Definition 11.22. (In other words, circular elements of arbitrary posi-
tive radius are defined such that the radius is scaling linearly with the
element, and such that the “standard” circular element from Definition
11.22 has radius 2.) With this convention, one obtains an example of
R-cyclic matrix A = (aij)

d
i,j=1 by taking every aii to be semicircular

(of some radius rii), by taking every aij with i 6= j to be circular (of
some radius rij), and by asking that the above conditions (i), (iii) are
satisfied.

The convolution formula for an R-cyclic matrix

In this section we show how the distribution of an R-cyclic matrix
can be obtained from the determining series of the entries of the matrix.

We start by introducing a few notations.
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Notations 20.7. Let d be a positive integer. We will denote:

Gd(z1, . . . , zd) =
1

d

∞∑
n=1

d∑
i=1

zn
i =

1

d

( z1

1− z1

+ · · ·+ zd

1− zd

)
,

and we will also denote

Hd := Gd ? Möbd

(where Möbd ∈ Θd is the Möbius series in d indeterminates, as discussed
in Lecture 17).

Remarks 20.8. 1) A way of looking at the series Gd and Hd goes by
observing how they appear in the framework of the non-commutative
probability space (Md(C), trd), where trd is the normalized trace. Con-
sider the matrices E1, . . . , Ed ∈ Md(C) where Ei has its (i, i)-entry
equal to 1 and all the other entries equal to 0. It is obvious that the
moment series ME1,...,Ed

is equal to Gd; as a consequence, Hd has to be
equal to the corresponding R-transform:

(20.3) Hd = ME1,...,Ed
? Möbd = RE1,...,Ed

.

The series Hd plays a key role in the next theorem. In order to give
an idea of how it looks like, here is its truncation to order three:

Hd(z1, . . . , zd) =
d∑

i=1

1

d
zi +

d∑
i1,i2=1

1

d
(δi1,i2 −

1

d
)zi1zi2

+
d∑

i1,i2,i3=1

1

d

(
δi1,i2,i3 −

1

d
(δi1,i2 + δi1,i3 + δi2,i3) +

2

d2

)
zi1zi2zi3 + · · ·

(where the δ’s are Kronecker-like symbols – in particular δi1,i2,i3 is equal
to 1 when i1 = i2 = i3 and is equal to 0 otherwise).

2) An application of Equation (20.3) which will be used later in
the lecture is that for every n ≥ 2, k ∈ {1, . . . , n}, and for every fixed
indices i1, . . . , ik−1, ik+1, . . . , in ∈ {1, . . . d}, we have:

(20.4)
d∑

i=1

Cf(i1,...,ik−1,i,ik+1,...,in)(Hd) = 0.

Indeed, the sum on the left-hand side of (20.4) can be interpreted as∑d
i=1 κn(Ei1 , . . . , Eik−1

, Ei, Eik+1
, . . . , Ein), and is hence equal to the cu-

mulant κn(Ei1 , . . . , Eik−1
, Id, Eik+1

, . . . , Ein) (by the multilinearity of κn,
and where Id is the unit d×d matrix). But the latter quantity vanishes
by Proposition 11.15 in Lecture 11.

We can now state the main result of this section.
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Theorem 20.9. Let (A, ϕ) be a non-commutative probability space,
let A = (aij)1≤i,j≤d ∈ Md(A) be an R-cyclic matrix, and let f ∈ Θd be
the determining series of the entries of A. Then the moment series and
R-transform of A in (Md(A), ϕd) can be computed by the formulas:

(20.5) MA(z) =
1

d
(f ? dGd)( z, . . . , z︸ ︷︷ ︸

d times

),

and

(20.6) RA(z) =
1

d
(f ? dHd)( z, . . . , z︸ ︷︷ ︸

d times

),

with Gd and Hd as defined in Notations 20.7.

In the proof of the theorem, we will use the following lemma.

Lemma 20.10. Consider the framework of Theorem 20.9. Let n
be a positive integer, let π be in NC(n), and consider some indices
1 ≤ i1, . . . , in ≤ d. Then we have the equality:
(20.7)

κπ( aini1 , ai1i2 , . . . , ain−1in ) = Cf(i1,...,in);π(f) · Cf(i1,...,in);K(π)(dGd).

Proof. We will use cyclic notations modulo n for indices – i.e,
“ik+1” will mean “i1” if k = n and “ik−1” will mean “in” if k = 1. Also,
we will work with the permutations Pπ and PK(π) which are associated
to π and respectively to K(π). These permutations are defined as in
the exercise section of Lecture 18 (cf. Notations 18.24), and they satisfy
the relation

(20.8) PK(π) = P−1
π · (1, 2, . . . , n)

(which is a particular case of Exercise 18.25).
Since every coefficient of dGd is equal either to 0 or to 1, the gen-

eralized coefficient of dGd appearing on the right-hand side of (20.7) is
also equal to 0 or 1. So we have two cases.

Case 1: Cf(i1,...,in);K(π)(dGd) = 1.

By writing explicitly what the generalized coefficient of dGd is, we
find that:

(20.9)

{
1 ≤ k, l ≤ n,

k, l in the same block of K(π)

}
=⇒ ik = il.

Under this assumption, we have to show that:

(20.10) κπ(aini1 , ai1i2 , . . . , ain−1in) = Cf(i1,...,in);π(f).

Each of the two sides of (20.10) is a product of factors indexed by the
blocks of π; we will prove (20.10) by showing that actually for any
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given block V of π, the factor corresponding to V on the left-hand side
is equal to the factor corresponding to V on the right-hand side.

So let us fix a block V = {k(1) < k(2) < · · · < k(p)} of π. The
factor corresponding to V on the left-hand side of (20.10) is:

(20.11) κp(aik(1)−1ik(1)
, aik(2)−1ik(2)

, . . . , aik(p)−1ik(p)
)

(where recall that if k1 = 1, then we use in for “ik(1)−1”). On the other
hand, the factor corresponding to V on the right-hand side of (20.10)
is Cf(ik(1),...,ik(p))(f), i.e:

(20.12) κp(aik(p)ik(1)
, aik(1)ik(2)

, . . . , aik(p−1)ik(p)
).

But now let us notice that k(1) and k(2) − 1 belong to the same
block of K(π), and same for k(2) and k(3)− 1, . . . , same for k(p) and
k(1) − 1. This is easily seen by looking at the permutations Pπ and
PK(π): we have

Pπ(k(1)) = k(2), . . . , Pπ(k(p− 1)) = k(p), Pπ(k(p)) = k(1),

so from Equation (20.8) we get that:

PK(π)(k(2)− 1) = k(1), . . . , PK(π)(k(1)− 1) = k(p).

As a consequence of this remark and of the implication stated in (20.9)
we see that the expressions appearing in (20.11) and (20.12) are in fact
identical.

Case 2: Cf(i1,...,in);K(π)(dGd) = 0.

In this case we know that (20.9) does not hold, and we have to show
that the left-hand side of (20.7) is equal to 0.

It is immediate that, under the current assumption, we can find
1 ≤ k, l ≤ n such that:

(20.13) PK(π)(l) = k, and ik 6= il.

Indeed, if it were true that ik = il whenever PK(π)(l) = k, then by
moving along the cycles of PK(π) we would find that (20.9) holds.

By taking into account the fact that Pπ · PK(π) is the long cycle
(1, . . . , n), we then immediately see that for k, l as in (20.13) we must
also have Pπ(k) = l+1. Hence k and l+1 belong to the same block V of
π; and moreover, if the block V is written as V = {k(1) < k(2) < · · · <
k(p)}, then there exists an index j, 1 ≤ j ≤ p such that k = k(j) and
l+1 = k(j+1) (with the convention that if k = k(p), then l+1 = k(1)).
But then the fact that ik 6= il reads: ik(j) 6= ik(j+1)−1, which in turn
implies that

κp(aik(1)−1ik(1)
, aik(2)−1ik(2)

, . . . , aik(p)−1ik(p)
) = 0
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(by the definition of R-cyclicity). Since the latter expression is the
factor corresponding to V in the product defining κπ(aini1 , ai1i2 , . . . ,
ain−1in), we conclude that the left-hand side of (20.7) is indeed equal
to 0. ¤

We can now give the proof of Theorem 20.9.

Proof of Theorem 20.9. Let n be a positive integer, and con-
sider some indices 1 ≤ i1, . . . , in ≤ d. By summing over π ∈ NC(n) in
the Equation (20.7) of Lemma 20.10 (and by taking into account the
relation between moments and cumulants, and the definition of ? ), we
get:

(20.14) ϕ(aini1ai1i2 · · · ain−1in) = Cf(i1,...,in)(f ? dGd).

For every 1 ≤ i ≤ d, let us denote by Ei ∈ Md(A) the matrix which
has 1A on the (i, i)-entry, and has all the other entries equal to 0. It is
immediately verified that

ϕd(AEi1 · · ·AEin) =
1

d
ϕ(aini1ai1i2 · · · ain−1in),

for every n ≥ 1 and 1 ≤ i1, . . . , in ≤ d. By combining this with (20.14),
we get that

(20.15) MAE1,...,AEd
=

1

d
(f ? dGd)

(equality of power series from Θd). The Equation (20.5) is an immedi-
ate consequence of (20.15), since for every n ≥ 1:

ϕd(A
n) =

d∑
i1,...,in=1

ϕd(AEi1 · · ·AEin)

=
d∑

i1,...,in=1

Cf(i1,...,in)(MAE1,...,AEd
)

=
1

d

d∑
i1,...,in=1

Cf(i1,...,in)(f ? dGd);

and the latter quantity is easily identified as the coefficient of zn in the
series on the right-hand side of (20.5).

On the other hand let us ? –convolve with Möbd on the right, on
both sides of (20.15). On the left-hand side we get RAE1,...,AEd

, while
on the right-hand side we get ( 1

d
(f ? dGd) ) ? Möbd. But in view of
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the Exercise 17.26(b) we can replace 1
d
(f ? dGd) with ( 1

d
f ? Gd )◦Dd,

and thus we find that:
(1

d
(f ? dGd)

)
? Möbd =

(
(
1

d
f ? Gd) ◦Dd

)
? Möbd

= (
1

d
f ? Gd ? Möbd) ◦Dd (by Ex. 17.26(a))

= (
1

d
f ? Hd) ◦Dd (since Gd ? Möbd = Hd)

=
1

d
(f ? dHd) (by Exercise 17.26(b)).

So we come to the equation:

(20.16) RAE1,...,AEd
=

1

d
(f ? dHd),

out of which (20.6) is obtained in the same way as (20.5) was obtained
from (20.15). ¤

Remark 20.11. During the proof of Theorem 20.9 we obtain
the Equations (20.15) and (20.16), stronger than what was originally
stated, and which show better the significance of the series f ? dGd

and f ? dHd.

R-cyclic families of matrices

Definition 20.12. Let (A, ϕ) be a non-commutative probability

space, and let d be a positive integer. Let A1 = (a
(1)
ij )d

i,j=1, . . . , As =

(a
(s)
ij )d

i,j=1 be matrices in Md(A). We say that the family A1, . . . , As is
R-cyclic if the following condition holds:

κn(a
(r1)
i1j1

, . . . , a
(rn)
injn

) = 0,

for every n ≥ 1, every 1 ≤ r1, . . . , rn ≤ s, and every 1 ≤
i1, j1, . . . , in, jn ≤ d for which it is not true that j1 = i2, . . . , jn−1 =
in, jn = i1.

If the family A1, . . . , As is R-cyclic, then the power series in ds
indeterminates:

(20.17) f(z1,1, . . . , zs,d) :=

∞∑
n=1

∑

1≤i1,...,in≤d

1≤r1,...,rn≤s

κn( a
(r1)
ini1

, a
(r2)
i1i2

, . . . , a
(rn)
in−1in

) · zr1,i1zr2,i2 · · · zrn,in

is called the determining series of the entries of the family.
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The convolution formula presented in the preceding section extends,
with minor adjustments, to the situation when we have a family of
matrices. In order to state precisely how this goes, we will need to use
an adjusted version of the operation ?, which is discussed in the next
remark.

Remark 20.13. Let s and d be positive integers. Consider
the set Θsd of power series in sd non-commuting indeterminates
z1,1, . . . , zr,i, . . . , zs,d. The formula defining ? in Lecture 17 (cf. Defi-
nition 17.1) can be used to define a “convolution operation”, denoted

in what follows by ?̃, which gives a right action of Θd on Θsd. More

precisely, if f ∈ Θsd and g ∈ Θd then we define f ?̃ g ∈ Θsd by the
following formula:

(20.18) Cf((r1,i1),...,(rn,in))(f ?̃ g) :=

∑

π∈NC(n)

Cf((r1,i1),...,(rn,in));π(f) · Cf(i1,...,in);K(π)(g),

holding for every n ≥ 1 and for every 1 ≤ r1, . . . , rn ≤ s, 1 ≤
i1, . . . , in ≤ d. Some straightforward adjustments of the arguments

presented for ? in Lecture 17 show that ?̃ is indeed a right action of
Θd on Θsd, in the sense that the equation

(20.19) (f ?̃ g) ?̃ h = f ?̃ (g ? h)

holds for every f ∈ Θsd and g, h ∈ Θd.
Let us also record the fact that:

(20.20) f ?̃ Zetad = f ? Zetasd, ∀ f ∈ Θsd

(where on the right-hand side of (20.20), ? denotes the boxed convo-
lution operation on Θsd). This relation is obvious if one takes into
account the fact that Zeta series have all the coefficients equal to 1.

From (20.19) and (20.20) it is immediate that one also has:

(20.21) f ?̃ Möbd = f ? Möbsd, ∀ f ∈ Θsd.

Note that, as a consequence, we can write the relation

(20.22) Ma1,1,...,ar,i,...,as,d
?̃ Möbd = Ra1,1,...,ar,i,...,as,d

,

holding for any family {ar,i | 1 ≤ r ≤ s, 1 ≤ i ≤ d} of elements in
some non-commutative probability space (A, ϕ).

The multi-matrix version of the Theorem 20.9 is then stated as
follows.
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Theorem 20.14. Let (A, ϕ) be a non-commutative probability
space. Let A1, . . . , As be an R-cyclic family of matrices in Md(A),
and let f be the determining series of the entries of this family. Then
the joint moment series and R-transform of (A1, . . . , As) in the non-
commutative probability space (Md(A), ϕd) can be computed by:

(20.23) MA1,...,As(z1, . . . , zs) =
1

d
(f ?̃ dGd)( z1, . . . , z1,︸ ︷︷ ︸

d times

. . . , zs, . . . , zs︸ ︷︷ ︸
d times

),

and

(20.24) RA1,...,As(z1, . . . , zs) =
1

d
(f ?̃ dHd)( z1, . . . , z1,︸ ︷︷ ︸

d times

. . . , zs, . . . , zs︸ ︷︷ ︸
d times

),

where the operation ?̃ is as described in the preceding remark, and where
Gd and Hd are as in Notations 20.7.

The proof of the Theorem 20.14 is obtained by adjusting in a
straightforward way the proof which was shown for Theorem 20.9 in the
preceding section – see Exercises 20.20–20.22 at the end of the lecture.

Applications of the convolution formula

In this section we look at R-cyclic families A1, . . . , As of selfadjoint
d× d matrices over a ∗-probability space (A, ϕ); we would like to put
into evidence some non-trivial situations when A1, . . . , As form a free
family in (Md(A), ϕd), and where the individual R-transform of each of
A1, . . . , As can be explicitly determined. The main point of the section
is to observe that situations of this kind appear whenever we have a
“partial summation condition”, as described in the next proposition.

Proposition 20.15. Let (A, ϕ) be a ∗-probability space, and let
d, s be positive integers. Let A1, . . . , As be an R-cyclic family of self-
adjoint matrices in Md(A), and let f denote the determining series
of the entries of this family. Suppose that for every n ≥ 1 and every
1 ≤ r1, . . . , rn ≤ s, 1 ≤ i1, . . . , in ≤ d, the sum:

(20.25)
d∑

i1,...,in−1=1

Cf((r1,i1),...,(rn−1,in−1),(rn,in))(f) =: λr1,...,rn

does not depend on in (even though the sum is only over i1, . . . , in−1).
Then:

(20.26) RA1,...,As(z1, . . . , zs) =
∞∑

n=1

s∑
r1,...,rn=1

λr1,...,rnzr1 · · · zrn .
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Proof. The Equation (20.26) is equivalent to the fact that for
every n ≥ 1 and every 1 ≤ r1, . . . , rn ≤ s we have:

(20.27) κn(Ar1 , . . . , Arn) = λr1,...,rn .

We fix n and r1, . . . , rn for which we will show that (20.27) is true. The
case when n = 1 is immediate (and left as an exercise to the reader),
we will assume that n ≥ 2.

By taking the coefficient of zr1 · · · zrn on both sides of Equation
(20.24) we find that the free cumulant κn(Ar1 , . . . , Arn) is equal to

1

d

d∑
i1,...,in=1

∑

π∈NC(n)

Cf((r1,i1),...,(rn,in));π(f) · Cf(i1,...,in);K(π)(dHd).

We will write this in the form:

(20.28) κn(Ar1 , . . . , Arn) =
∑

π∈NC(n)

Tπ,

where for every π ∈ NC(n) we set:

Tπ :=
1

d

d∑
i1,...,in=1

Cf((r1,i1),...,(rn,in));π(f) · Cf(i1,...,in);K(π)(dHd).

We first consider the quantity Tπ in the special case when π = 1n,
the partition of {1, . . . , n} which has only one block. In this case K(π)
is the partition into n blocks of one element; since all the coefficients
of degree 1 of dHd are equal to 1, it follows that

Cf(i1,...,in);K(1n)(dHd) = 1, ∀ i1, . . . , in ∈ {1, . . . , d}.
We hence get:

T1n =
1

d

d∑
i1,...,in=1

Cf((r1,i1),...,(rn,in))(f).

The partial summation property of the series f (given in Equation
(20.25) implies that the latter sum is equal to λr1,...,rn . Thus, in view
of (20.28), the proof will be over if we can show that Tπ = 0 for every
π 6= 1n in NC(n).

So for the rest of the proof we fix a partition π 6= 1n in NC(n).
Moreover, we will also fix a block Bo of π which is an interval, Bo =
{p, . . . , q} with 1 ≤ p ≤ q ≤ n (every non-crossing partition has such
a block). The considerations below, leading to the conclusion that
Tπ = 0, will be made by looking at the case when Bo has more than
one element; the case when |Bo| = 1 (which is similar, and easier) is
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left as an exercise to the reader. We denote by “Rest” the set of blocks
of π which are different from Bo.

Let us now look at the Kreweras complement K(π). It is immediate
that {p}, {p+1}, . . . , {q−1} are one-element blocks of K(π). We denote
by B′

o the block of K(π) which contains q; observe that B′
o has more

than one element – indeed, it is clear that p − 1 also belongs to B′
o

(where if p = 1, then “p − 1” means “n”; even in this case we have
that p − 1 6= q, since it was assumed that π 6= 1n). Let us denote
by Rest′ the set of blocks of K(π) (if any) which remain after {p},
{p + 1}, . . . , {q − 1} and B′

o are deleted.
For any i1, . . . , in ∈ {1, . . . , d} we have:

Cf((r1,i1),...,(rn,in));π(f) · Cf(i1,...,in);K(π)(dHd) =

(20.29) Cf((rp,ip),...,(rq ,iq))(f) · Cf(i1,...,in)|B′o(dHd)·

·
∏

B∈Rest

Cf((r1,i1),...,(rn,in))|B(f) ·
∏

B′∈Rest′
Cf(i1,...,in)|B′(dHd)

(we took into account that the factors Cf(ip)(dHd), . . . , Cf(iq−1)(dHd),
which should also appear on the right-hand side of (20.29), are
all equal to 1). The indices ip, . . . , iq−1 appear only in the factor
“Cf((rp,ip),...,(rq ,iq))(f)” of (20.29). Thus, if in (20.29) we sum over ip ,
. . . , iq−1, and make use of the partial summation property from (20.25),
then we get:

(20.30) λrp,...,rq · Cf(i1,...,in)|B′o(dHd)·

·
∏

B∈Rest

Cf((r1,i1),...,(rn,in))|B(f) ·
∏

B′∈Rest′
Cf(i1,...,in)|B′(dHd)

(expression depending on some arbitrary indices i1, . . . , ip−1, iq, . . . , in,
chosen from {1, . . . , d}).

Next, in (20.30) we sum over the index iq. The only factor in
(20.30) which involves iq is “Cf(i1,...,in)|B′o(dHd)”, so as a result of this
new summation we get:

λrp,...,rq ·
{ d∑

iq=1

Cf(i1,...,in)|B′o(dHd)
}
·

·
∏

B∈Rest

Cf((r1,i1),...,(rn,in))|B(f) ·
∏

B′∈Rest′
Cf(i1,...,in)|B′(dHd).

But, as an immediate consequence of the Equation (20.4) in Remark

20.8.2 we have that
∑d

iq=1 Cf(i1,...,in)|B′o(dHd) = 0.
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The conclusion that we draw from the preceding three paragraphs
is the following: for any choice of the indices i1, . . . , ip−1, iq+1, . . . , in ∈
{1, . . . , d}, we have that

d∑
ip,...,iq=1

Cf((r1,i1),...,(rn,in));π(f) · Cf(i1,...,in);K(π)(dHd) = 0.

It only remains that we sum over i1, . . . , ip−1, iq+1, . . . , in in the latter
equation, to obtain the desired fact that Tπ = 0. ¤

Corollary 20.16. Let (A, ϕ) be a ∗-probability space, let d, s be

positive integers, and let A1 = (a
(1)
ij )d

i,j=1, . . . , As = (a
(s)
ij )d

i,j=1 be an
R-cyclic family of selfadjoint matrices in Md(A). Suppose that the s

families of entries {a(r)
ij | 1 ≤ i, j ≤ d}, with 1 ≤ r ≤ s, are free in

(A, ϕ). Moreover, for every 1 ≤ r ≤ s let fr ∈ Θd be the determining
series of the entries of Ar. We assume that for every n ≥ 1 and for
every 1 ≤ r ≤ s, 1 ≤ i ≤ d, the sum:

(20.31)
d∑

i1,...,in−1=1

Cf(i1,...,in−1,i)(fr) =: λ(r)
n

does not depend on the choice of i (but only on n and r). Then
A1, . . . , As are free in (Md(A), ϕd), and have R-transforms

(20.32) RAr(z) =
∞∑

n=1

λ(r)
n zn, 1 ≤ r ≤ s.

Proof. Let f denote the determining series of the entries of the
whole R-cyclic family A1, . . . , As. The condition of free independence
between the families of entries of A1, . . . , As implies the formula:

f(z1,1, . . . , zr,i, . . . , zs,d) =
s∑

r=1

fr(zr,1, . . . , zr,i, . . . , zr,d),

where fr is (as in the statement of the corollary) the determining series
for just the entries of Ar. It is immediate that f satisfies the par-
tial summation condition described in Equation (20.25) of Proposition
20.15, where we set:

λr1,...,rn =

{
λ

(r)
n if r1 = · · · = rn = r
0 otherwise.
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Thus the Proposition 20.15 can be applied, and gives us:

RA1,...,As(z1, . . . , zs) =
s∑

r=1

∞∑
n=1

λ(r)
n zn

r .

In view of the description of free independence in terms of R-transforms
(cf. Theorem 16.6), this is equivalent to saying that A1, . . . , As are
freely independent and have individual R-transforms as described in
(20.32). ¤

The Corollary 20.16 can be in turn particularized to the situation
of a family of matrices with free R-diagonal entries (on the lines of
Example 20.6). The precise spelling of this particular case goes as
follows.

Corollary 20.17. Let (A, ϕ) be a tracial ∗-probability space, let

d, s be positive integers, and suppose that the elements {a(r)
ij | 1 ≤ i, j ≤

d, 1 ≤ r ≤ s} of A have the following properties:

(i) ( a
(r)
ij )∗ = a

(r)
ji , for every 1 ≤ i, j ≤ d and 1 ≤ r ≤ s.

(ii) For every 1 ≤ i, j ≤ d such that i 6= j, and for every 1 ≤ r ≤ s,

the element a
(r)
ij is R-diagonal.

(iii) The sd(d + 1)/2 families: {a(r)
ii } for 1 ≤ i ≤ d, 1 ≤ r ≤ s,

together with {a(r)
ij , a

(r)
ji } for 1 ≤ i < j ≤ d, 1 ≤ r ≤ s are free in

(A, ϕ).
For 1 ≤ i, j ≤ d, 1 ≤ r ≤ s and n ≥ 1 let us denote:

α
(r)
ij;n := κn(a

(r)
ij , a

(r)
ji , a

(r)
ij , . . . )

(free cumulant of order n, with alternating aij’s and aji’s; note that

α
(r)
ij;n = 0 whenever i 6= j and n is odd, due to the R-diagonality of

a
(r)
ij ). Suppose that for every n ≥ 1 and every 1 ≤ r ≤ s, 1 ≤ i ≤ d,

the sum:

(20.33)
d∑

j=1

α
(r)
ij;n =: λ(r)

n

does not actually depend on i. Then the matrices A1 = (a
(1)
ij )d

i,j=1, . . . ,

As = (a
(s)
ij )d

i,j=1 are free in (Md(A), ϕd), and have R-transforms

RAr(z) =
∞∑

n=1

λ(r)
n zn, 1 ≤ r ≤ s.
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Remark 20.18. The summation conditions (20.33) become ex-

tremely simple when the elements a
(r)
ii are semicircular, and the ele-

ments a
(r)
ij with i 6= j are circular. Indeed, in this case we have that

α
(r)
ij;n = 0 whenever n 6= 2, and that α

(r)
ij;2 is one quarter of the squared

radius of the circular/semicircular element a
(r)
ij . So if we denote the

radius of a
(r)
ij by γ

(r)
ij , then (20.33) amounts here to asking that, for ev-

ery 1 ≤ r ≤ s, the corresponding matrix of squared radii has constant
sums along its columns:

d∑
j=1

( γ
(r)
1j )2 = · · · =

d∑
j=1

( γ
(r)
dj )2 =: γ2

r .

The conclusion of Corollary 20.17 becomes that the matrices A1 =

(a
(1)
ij )d

i,j=1, . . . , As = (a
(s)
ij )d

i,j=1 are free, and that Ar is semicircular of
radius γr, for 1 ≤ r ≤ s.

Exercises

Exercise 20.19. Let (A, ϕ) be a ∗-probability space, let d, s be

positive integers, and let A1 = (a
(1)
ij )d

i,j=1, . . . , As = (a
(s)
ij )d

i,j=1 form an
R-cyclic family of selfadjoint matrices in Md(A). Suppose that the
cyclic cumulants of the entries of these matrices depend only on the
superscript indices:

(20.34) κn(a
(r1)
in,i1

, a
(r2)
i1,i2

, . . . , a
(rn)
in−1,in

) =: αr1,...,rn ,

for every n ≥ 1 and every 1 ≤ r1, . . . , rn ≤ s, 1 ≤ i1, . . . , in ≤ d. Prove
that:

(20.35) RA1,...,As(z1, . . . , zs) =
∞∑

n=1

s∑
r1,...,rn=1

dn−1αr1,...,rnzr1 · · · zrn .

Exercise 20.20. Let (A, ϕ) be a non-commutative probability
space. Let A1, . . . , As be an R-cyclic family of matrices in Md(A),
and let f denote the determining series of the entries of this family.
Moreover, for every 1 ≤ i, j ≤ d and 1 ≤ r ≤ s, let us denote the

(i, j)-entry of Ar by a
(r)
ij .

Let n be a positive integer, let π be in NC(n), and consider some
indices 1 ≤ i1, . . . , in ≤ d and 1 ≤ r1, . . . , rn ≤ s. Prove the equality:
(20.36)

κπ(a
(r1)
ini1

, a
(r2)
i1i2

, . . . , a
(rn)
in−1in

) = Cf((i1,r1),...,(in,rn));π(f) · Cf(i1,...,in);K(π)(dGd).
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[Hint: This is just a multi-matrix version of the Lemma 20.10, the only
difference is that now one must also carry along a family of superscript
indices r1, . . . , rn.]

Exercise 20.21. Consider the framework of the preceding exercise.
For 1 ≤ i ≤ d we denote by Ei the matrix in Md(A) which has the
(i, i)-entry equal to 1A, and all the other entries equal to 0. Prove
that the moment series and R-transform of the family of ds matrices
A1E1, . . . , ArEi, . . . , AsEd are described as follows:

(20.37) MA1E1,...,AsEd
=

1

d
(f ?̃ dGd),

(20.38) RA1E1,...,AsEd
=

1

d
(f ?̃ dHd)

(as equalities of power series in sd non-commuting indeterminates
z1,1, . . . , zr,i, . . . , zs,d).

[Hint: This exercise goes in parallel with the proofs of Equations (20.15)
and (20.16), obtained while working on the Theorem 20.9, only that
now we use the Exercise 20.20 instead of the Lemma 20.10.]

Exercise 20.22. Show how the Equations (20.23) and (20.24)
stated in Theorem 20.14 follow from the Equations (20.37) and (20.38)
obtained in the preceding exercise.

The next two exercises go in the direction of showing that the prop-
erty of R-cyclicity for a family A1, . . . , As of d × d matrices is in fact
a property of the algebra generated by A1, . . . , As together with the
scalar diagonal matrices.

Exercise 20.23. Let (A, ϕ) be a non-commutative probability
space, let d be a positive integer, and let A1, . . . , As be an R-cyclic
family of matrices in Md(A). Prove that:

(a) Re-arranging A1, . . . , As in a different order does not affect the
R-cyclicity of the family.

(b) If we enlarge A1, . . . , As with a matrix A ∈ span{A1, . . . , As},
then the enlarged family A1, . . . , As, A is still R-cyclic.

(c) If we enlarge A1, . . . , As with the matrix B := A1A2, then the
enlarged family A1, . . . , As, B is still R-cyclic.

(d) If we enlarge A1, . . . , As with a scalar diagonal matrix D (which
has the diagonal entries of the form λi1A, 1 ≤ i ≤ d, and the off-
diagonal entries equal to 0), then the enlarged family A1, . . . , As, D is
still R-cyclic.
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Exercise 20.24. Let (A, ϕ) be a non-commutative probability
space, let d be a positive integer, and let A1, . . . , As be an R-cyclic
family of matrices in Md(A). We denote by D the algebra of scalar
diagonal matrices in Md(A), and by C the subalgebra of Md(A) which
is generated by {A1, . . . , As} ∪ D. Prove that every finite family of
matrices from C is R-cyclic.



LECTURE 21

The full Fock space model for the R-transform

A convenient fact which was observed and then repeatedly used
in the preceding lectures is that one can construct a family of non-
commutative random variables with a prescribed joint distribution
(where quite often the joint distribution is indicated in the guise of
a prescribed joint R-transform). Sometimes there may be more than
one way of doing such a construction; an example of such a situation
is the one of free semicircular families, which can be obtained by an
abstract free product construction, but can also be “concretely” put
into evidence by using operators of creation and annihilation on the
full Fock space (cf. Lecture 7).

Of course, all the different methods for constructing a family of
elements with a prescribed joint distribution are ultimately equivalent,
in the respect that the calculations with moments and with cumulants
performed on the family give the same results, no matter how the
family was constructed. But nevertheless, there can be a substantial
difference in the transparency of the calculations – it may happen that
the solution to the problem we are trying to solve shows up more easily
if one method of construction is used over another.

So this is, in a nut-shell, the idea of “modeling”: find a good way
of constructing a family of non-commutative random variables with a
given joint distribution, so that we are at advantage for the compu-
tations of moments and cumulants which have to be done with that
family. In this lecture we present such a recipe of construction, which
uses operators of creation and annihilation on the full Fock space (and
generalizes the situation encountered in the Lecture 7 for the special
case of free semicircular elements). In order to illustrate how this mod-
eling recipe works, we will show how we can use it to re-derive the
formulas about free compressions which were obtained by direct com-
binatorial analysis in Lecture 14.

351
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Description of the Fock space model

Remark 21.1. We refer to the concept of full Fock space F(H)
over a Hilbert space H, which was introduced in Lecture 7 (cf. Def-
initions 7.13). Recall that for ξ ∈ H one has a creation operator
l(ξ) ∈ B(F(H) ) and that one has the relations

l(ξ)∗l(η) = 〈η, ξ〉 · 1B(F(H)), ∀ ξ, η ∈ H
(cf. Remark 7.14.4). In particular, if ξ1, . . . , ξs is an orthonormal sys-
tem of vectors in H, then we get that:

l(ξi)
∗l(ξj) = δi,j · 1B(F(H)), 1 ≤ i, j ≤ s.

The latter equations are called the Cuntz relations. It will be more
convenient to use them in an abstract framework, which we introduce
next. This abstract framework will also capture, in part 2 of Definition
21.2, the way how the vacuum-state acts on monomials in creation
and annihilation operators. (Indeed, the Equation (21.2) below can be
viewed as an abstract version of the formula

〈l(ξ1) · · · l(ξm)l(η1)
∗ · · · l(ηn)∗Ω, Ω〉 = 0,

which holds for every non-negative integers m,n such that m + n ≥ 1,
and for every ξ1, . . . , ξm, η1, . . . , ηn ∈ H.)

Definition 21.2. 1) Let A be a unital ∗-algebra, and let l1, . . . , ls
be elements of A. We say that l1, . . . , ls form a family of Cuntz
isometries if they satisfy:

(21.1) l∗i lj = δi,j1A, 1 ≤ i, j ≤ s.

2) Let (A, ϕ) be a ∗-probability space. We say that l1, . . . , ls ∈ A
form a free family of Cuntz isometries if (21.1) is satisfied, and if in
addition we have:

(21.2) ϕ(li1 · · · liml∗j1 · · · l∗jn
) = 0

for every non-negative integers m,n such that m+n ≥ 1, and for every
i1, . . . , im, j1, . . . , jn ∈ {1, . . . , s}.

Remarks 21.3. We record here a few comments which help ex-
plaining some of the terminology used in the preceding definition.

1) Recall that an element v of a unital ∗-algebra A is said to be
an isometry if it satisfies v∗v = 1A (cf. Lecture 7, Definition 7.21). So
if l1, . . . , ls ∈ A form a family of Cuntz isometries, then it is part of
(21.1) that each of the li’s is indeed an isometry.

2) Let A be a unital ∗-algebra, and let l1, . . . , ls ∈ A be a family
of Cuntz isometries. By repeating the argument in Remark 7.14.4, it
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is immediately seen that the unital ∗-subalgebra of A generated by
l1, . . . , ls is:

(21.3) ∗-alg(l1, . . . , ls) =

span
(
{1A} ∪

{
li1 · · · liml∗j1 · · · l∗jn

m,n ≥ 0, m + n ≥ 1,
1 ≤ i1, . . . , im, j1, . . . , jn ≤ s

} )
.

As a consequence: if ϕ is a linear functional on A, normalized by
ϕ(1A) = 1, then a prescription like the one in Equation (21.2) gives us
how ϕ acts on ∗-alg(l1, . . . , ls).

3) Let (A, ϕ) be a ∗-probability space, and let l1, . . . , ls ∈ A be
a free family of Cuntz isometries. The use of the adjective “free” is
justified by the fact that in this case the sets {l1, l∗1}, . . . , {ls, l∗s} are
indeed freely independent with respect to ϕ (cf. Exercise 21.19).

We are now ready to present the “model” announced in the intro-
duction of the lecture – that is, a canonical construction for an s-tuple
with a prescribed joint R-transform. The next theorem deals with the
case when the prescribed joint R-transform is a polynomial.

Theorem 21.4. Let (A, ϕ) be a ∗-probability space, and l1 . . . , ls
∈ A be a free family of Cuntz isometries. Let f ∈ Θs be a polynomial,
i.e a series for which only finitely many coefficients are different from
0:

(21.4) f(z1, . . . , zs) =
k∑

n=1

s∑
i1,...,in=1

α(i1,...,in)zi1 · · · zin .

Consider the element

(21.5) a =
k∑

n=1

s∑
i1,...,in=1

α(i1,...,in) lin · · · li1 ∈ A,

and set:

(21.6) ai = l∗i ( 1A + a), 1 ≤ i ≤ s.

Then Ra1,...,as = f.

Proof. In view of the relation between moment series and R-
transforms, the statement to be proved is equivalent to showing that
Ma1,...,as = f ? Zeta. The latter equality is in turn equivalent (upon
identification of coefficients on both sides) to the fact that:

(21.7) ϕ(ai1 · · · ain) =
∑

π∈NC(n)

Cf(i1,...,in);π(f),

for every n ≥ 1 and every 1 ≤ i1, . . . , in ≤ s. For the remainder of the
proof we fix n and i1, . . . , in for which we will show that (21.7) holds.
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We will consider the set of all “words” of finite length (including
an empty word φ of length 0) which can be made with letters from
{1, . . . , s}. This set of words is usually denoted as [s]∗:

(21.8) [s]∗ := {φ} ∪
( ∞⋃

n=1

{1, . . . , s}n
)
.

The length (i.e. number of letters) of a word w ∈ [s]∗ will be denoted
by |w|. For w = (j1, . . . , jm) ∈ [s]∗ we will consider the element lw ∈ A
and the number α̃(w) ∈ C defined by

lw := lj1 · · · ljm , α̃(w) = Cf(jm,...,j1)(f)

(with the convention that if w = φ, then we take lw := 1A and α̃(w) :=
1). With these notations, the element a ∈ A from (21.5) satisfies:

(21.9) 1A + a =
∑

w∈[s]∗, |w|≤k

α̃(w)lw.

Since we have that ai1 · · · ain = l∗i1(1A + a) · · · l∗in(1A + a), we get (by
substituting 1A + a from (21.9) and by using the linearity of ϕ):
(21.10)

ϕ(ai1 · · · ain) =
∑

w1,...,wn∈[s]∗

|w1|,...,|wn|≤k

α̃(w1) · · · α̃(wn) ϕ(l∗i1lw1 · · · l∗inlwn).

Now, for every w1, . . . , wn ∈ [s]∗, we have that l∗i1lw1 · · · l∗inlwn either
is 0 or it simplifies to one of the elements listed on the right-hand side
of Equation (21.3). But with the exception of 1A, all those elements
belong to the kernel of ϕ. It follows that:

(21.11) ϕ(l∗i1lw1 · · · l∗inlwn) =





0 if (w1, . . . , wn) 6∈ [s]∗i1,...,in

1 if (w1, . . . , wn) ∈ [s]∗i1,...,in
,

where we denoted

(21.12) [s]∗i1,...,in
:=

{
(w1, . . . , wn)

w1, . . . , wn ∈ [s]∗

l∗i1lw1 · · · l∗inlwn = 1A

}
.

The conclusion drawn from (21.10) and (21.11) is hence that:

(21.13) ϕ(ai1 · · · ain) =
∑

(w1,...,wn)∈[s]∗i1,...,in

α̃(w1) · · · α̃(wn).

(Note: in the definition of [s]∗i1,...,in we dropped the length restrictions
|w1| ≤ k, . . . , |wn| ≤ k. It is immediate that this does not introduce
an error in the calculation of the moment ϕ(ai1 · · · ain), due to the fact
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that the products of the form α̃(w1) · · · α̃(wn) vanish whenever it is not
true that |w1|, . . . , |wn| ≤ k.)

Now, the point to observe is that one has a natural bijection
Φ : NC(n) → [s]∗i1,...,in

. For π ∈ NC(n), the n-tuple Φ(π) =:

(w1, . . . , wn) ∈ [s]∗i1,...,in is described as follows:
• if m ∈ {1, . . . , n} belongs to the block V = {b1 < b2 < · · · < bp}

of π, and if m is the maximal element of V (i.e. m = bp), then wm =
(ibp , . . . , ib2 , ib1);

• if m ∈ {1, . . . , n} belongs to the block V of π, but m is not the
maximal element of V , then wm = φ.

[As a numerical example, let us take n = 5 and consider π =
{(1, 5), (2, 3), (4)}; then Φ(π) = ( φ, φ, (i3, i2), (i4), (i5, i1) ). The latter
5-tuple of words really belongs to [s]∗i1,...,i5

, since the Cuntz relations

imply that l∗i1(1A)l∗i2(1A) l∗i3(li3li2) l∗i4(li4)l
∗
i5
(li5li1) is indeed equal to 1A.]

The verification of the bijectivity of Φ will be left for the exercises at
the end of lecture (cf. Exercises 21.20–21.22).

Finally, the only thing left to be noticed is that if π ∈ NC(n)
has Φ(π) = (w1, . . . , wn) ∈ [s]∗, then α̃(w1) · · · α̃(wn) = Cf(i1,...,in);π(f)
(this follows directly from the explicit description of how Φ works). So
if we use the bijection Φ to convert the right-hand side of Equation
(21.13) into a summation over NC(n), then the desired formula (21.7)
is obtained. ¤

The applicability of Theorem 21.4 can sometimes be enhanced by
using the following simple trick:

Exercise 21.5. Let (A, ϕ) be a ∗-probability space, let l1, . . . , ls ∈
A be a free family of Cuntz isometries, and let λ1, . . . , λs be in C\{0}.
Then the family:

λ1l1,
1

λ1

l∗1, . . . , λsls,
1

λs

l∗s

has the same joint distribution as l1, l
∗
1, . . . , ls, l

∗
s . As a consequence: if

instead of a from Equation (21.5) we use in Theorem 21.4 the element

a′ :=
k∑

n=1

s∑
i1,...,in=1

α(i1,...,in)λi1 · · ·λin lin · · · li1 ∈ A,

and if we set

a′i :=
1

λi

l∗i (1A + a′), 1 ≤ i ≤ s,

then it will still be true that Ra′1,...,a′s = f .
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Remark 21.6. The Theorem 21.4 can be easily generalized to the
case when f is an arbitrary series in Θs (instead of a polynomial), as
long as we can give a meaning to the infinite sum in the formula:

a =
∞∑

n=1

( s∑
i1,...,in=1

α(i1,...,in) lin · · · li1
)

which would have to replace the Equation (21.5) (with α(i1,...,in) =
Cf(i1,...,in)(f) for every i1, . . . , in). Thus we need to move to a set-
ting where we can talk about convergent sequences (and, consequently,
about convergent series). This could be the setting of a C∗-probability
space – but quite a bit less structure than that is really needed. In
fact, all we need is the setting of a non-commutative probability space
(A, ϕ) where on the algebra A we have a concept of convergence of
sequences, such that the algebra operations on A and the linear func-
tional ϕ : A → C do respect the convergence of sequences. In the next
theorem we will refer to this kind of setting by the ad-hoc name of
topological non-commutative probability space.

So, the next theorem contains in particular the situation when (in
the notations of the theorem) we have

(A, ϕ) = ( Ã, ϕ̃ ) = C∗-probability space.

But the next theorem can also refer to a situation which is rigged in
such a way that the series appearing in (21.14) below is convergent
for any choice the coefficients α(i1,...,in). A precise description of how
this can happen is given in the Remark 21.8; the interest in displaying
such a situation is that it completes our Fock space model for the R-
transform (in the sense that the R-transform Ra1,...,as which appears
from the construction can now be an arbitrary series f ∈ Θs).

We conclude this remark with a note for the reader who may find the
framework of Theorem 21.7 as being a bit too intricate – the good news
here is that in applications one can often arrange the arguments so that
the Theorem 21.4 applies directly, without having to be generalized.
(For an illustration of this, see e.g. Remark 21.14 in the next section.)

Theorem 21.7. Suppose that we are given:

(a) A topological non-commutative probability space (Ã, ϕ̃).

(b) A ∗-operation defined on a unital subalgebra A ⊂ Ã, such that
(A, ϕ̃|A) is a ∗-probability space.

(c) A free family of Cuntz isometries l1, . . . , ls ∈ A.



DESCRIPTION OF THE FOCK SPACE MODEL 357

(d) A family of complex numbers {(α(i1,...,in) | n ≥ 1, 1 ≤
i1, . . . , in ≤ s} such that the series

(21.14)
∞∑

n=1

( s∑
i1,...,in=1

α(i1,...,in) lin · · · li1
)

is convergent in Ã.

Let a ∈ Ã denote the sum of the convergent series in (21.14), and
let us denote

ai := l∗i (1A + a) ∈ Ã, (1 ≤ i ≤ s).

Then the joint R-transform of a1, . . . , as in ( Ã, ϕ̃ ) is:

(21.15) Ra1,...as =
∞∑

n=1

s∑
i1,...,in=1

α(i1,...,in) zi1 · · · zin .

Proof. Let us denote the series on the right-hand side of Equation
(21.15) by f , and for every k ≥ 1 let us denote by fk the truncation of
f to terms of length up to k. On the other hand, for every k ≥ 1 let
us denote by a(k) the element of A which is obtained by truncating the

first summation in (21.14) to its first k terms; and let us denote a
(k)
i :=

l∗i (1 eA + a(k)), 1 ≤ i ≤ s.
The Theorem 21.4 gives us that R

a
(k)
1 ,...,a

(k)
s

= fk, ∀ k ≥ 1. But on

the other hand we have that limk→∞ a(k) = a (by how the a(k)’s are

defined), and consequently that limk→∞ a
(k)
i = ai, ∀ 1 ≤ i ≤ s, since

the operations in Ã respect the convergence of sequences. The same

continuity of the operations on Ã together with the continuity of ϕ̃ will
then imply that the series R

a
(k)
1 ,...,a

(k)
s

converge coefficient-wise, as k →
∞, to the series Ra1,...,as . The conclusion is that Ra1,...,as = f (since both
series can be expressed as the coefficient-wise limit limk→∞ fk). ¤

Remark 21.8. We conclude this section by outlining how a con-
struction with the properties (a), (b), (c) of Theorem 21.7 can be made,
so that a series as in (21.14) is convergent for an arbitrary choice of the
coefficients α(i1,...,in). The idea is to use a certain algebra of matrices
of infinite size (defined with inspiration from looking at matrices of
operators on the full Fock space F(Cs), which in turn correspond to
some “formal power series in Cuntz isometries”).

For the positive integer s appearing in Theorem 21.7(c), we will use
again the set [s]∗ of words over the alphabet {1, . . . , s} which appeared
in the proof of Theorem 21.4 (cf. Equation (21.8)). Moreover, a family
of complex numbers (αv,w)v,w∈[s]∗ will be called a matrix over [s]∗.
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Let Ã be the set of matrices (αv,w)v,w over [s]∗ which have the
property that:

(21.16) sup{|w| − |v| | v, w ∈ [s]∗, αv,w 6= 0} < ∞;

and let ϕ̃ : Ã → C be the linear functional defined by the formula:

(21.17) ϕ̃( (αv,w)v,w∈[s]∗ ) = αφ,φ.

On Ã we consider the vector space operations defined entry-wise, and
the multiplication defined by the formula:

(21.18)

{
(αv,w)v,w · (βv,w)v,w = (γv,w)v,w,
where γv,w :=

∑
u∈[s]∗ αv,uβu,w, ∀ v, w ∈ [s]∗.

(Note that the sum appearing in (21.18) has only finitely many non-
zero terms, and hence presents no convergence problems, due to the

finiteness of sup{|u| − |v| | αv,u 6= 0}.) If on Ã we also consider the
topology of entry-wise convergence for matrices, it is immediately ver-

ified that ( Ã, ϕ̃ ) becomes a topological non-commutative probability
space, in the sense discussed in Remark 21.6.

Let now A ⊂ Ã be the subset consisting of the matrices (αv,w)v,w

which (in addition to (21.16)) also have the property that:

(21.19) inf{|w| − |v| | v, w ∈ [s]∗, αv,w 6= 0} > −∞.

It is immediate that A is a unital subalgebra of Ã, on which a natural
∗-operation is defined by the formula:(

(αv,w)v,w

)∗
= ( αw,v )v,w.

Denoting ϕ = ϕ̃|A, we have that (A, ϕ) is a ∗-probability space. (This
statement also contains the assertion that ϕ is positive on A. The
reader should have no difficulty to check that this follows immediately
from the formula (21.17) – indeed, ϕ simply selects a diagonal entry of
the considered matrix, and such a functional is always positive, when
considered on a ∗-algebra of matrices.)

Finally, for 1 ≤ i ≤ s, let li ∈ A be the matrix (λ
(i)
v,w)v,w with entries

defined by the formula:

λ(i)
v,w =





1 if v = (i) · w, i.e. v is obtained from w
by adding the letter i on its left

0 otherwise.

Direct calculations show that l1, . . . , ls form a free family of Cuntz
isometries in (A, ϕ).

So now we have constructed objects as indicated in (a), (b), (c)
of Proposition 21.7. It is easy to verify that in the framework of this
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construction, a series like the one in (21.14) is convergent in Ã, for any
choice of the coefficients α(i1,...,in). The sum of the series is the matrix

(βv,w)v,w ∈ Ã which has entries:

βv,w =

{
α(i1,...,in) if v = (in, . . . , i1) · w
0 otherwise.

An application: revisiting free compressions

In order to illustrate how the full Fock space model can be put to
work, we present in this section how modeling can be used to derive the
free compression formulas which were obtained by direct combinatorial
analysis in the Lecture 14.

We start by reviewing the framework where our compressions are
considered (cf. also the sections about compressions in Lecture 14).

Notations 21.9. Consider a non-commutative probability space
(A, ϕ), and suppose that in A we have a d×d matrix unit – i.e. a family
{eij | 1 ≤ i, j ≤ d} such that eijekl = δjkeil, for every 1 ≤ i, j, k, l ≤ d.

We do not assume that
∑d

i=1 eii = 1A. On the other hand, we make
the following assumptions on the values ϕ(eij), 1 ≤ i, j ≤ d:

(21.20)

{
ϕ(eij) = 0, ∀i 6= j in {1, . . . , d}
ϕ(eii) =: λi > 0, 1 ≤ i ≤ d, where λ1 + · · ·+ λd ≤ 1.

We will denote by (C, τ) the non-commutative probability space ob-
tained by compressing (A, ϕ) with the projection e11; that is,

C := e11Ae11, τ :=
1

λ1

ϕ|C.
An s-tuple a1, . . . , as of elements from A can then be compressed to an
d2s-tuple {cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} of elements in C, where:

cij;r := e1iarej1, 1 ≤ i, j ≤ d, 1 ≤ r ≤ s.

Remarks 21.10. 1) If in Notations 21.9 the functional ϕ were as-
sumed to be a trace, then the fact that ϕ(eij) = 0 for i 6= j would be
automatic, since we could write

ϕ(eij) = ϕ(eiieij) = ϕ(eijeii) = ϕ(0) = 0.

In the tracial case we would also obtain that λ1 = · · · = λd, because:

λi = ϕ(ei) = ϕ(eijeji) = ϕ(ejieij) = ϕ(ej) = λj, ∀ 1 ≤ i, j ≤ d.

2) In the Notations 21.9, let us assume that {a1, . . . , as} is free
from {eij | 1 ≤ i, j ≤ d}. It is then immediate from general freeness
considerations that the joint distribution of the compressed (d2s)-tuple
{cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} depends only on the joint distribution of
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a1, . . . as and on the numbers λ1, . . . , λd appearing in Equation (21.20).
Our goal is to make this dependency precise, by indicating an exact
formula for the R-transform of {cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s}, in
terms of Ra1,...,as and of λ1, . . . , λd. This formula is given in the next
theorem.

Theorem 21.11. Let (A, ϕ), {eij | 1 ≤ i, j ≤ d}, (C, τ),
{a1, . . . , as}, and {cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} be as in Notations
21.9, and let us denote:

(21.21) Ra1,...,as(z1, . . . , zs) =:
∞∑

n=1

s∑
r1,...,rn=1

α(r1,...,rn)zr1 · · · zrn .

We suppose in addition that {a1, . . . , as} is free from {eij | 1 ≤ i, j ≤ d}
in (A, ϕ). Then the R-transform of the family {cij;r | 1 ≤ i, j ≤ d, 1 ≤
r ≤ s}, calculated in the compressed space (C, τ), has the formula:

(21.22) Rc11;1,...,cij;r,...,cdd;s
(z11;1, . . . , zij;r, . . . , zdd;s) =

∞∑
n=1

∑

1≤r1,...,rn≤s

1≤i1,...,in≤d

λi1 · · ·λin−1α(r1,...,rn)zini1;r1zi1i2;r2 · · · zin−1in;rn .

Remark 21.12. One sees without difficulty that Equation (21.22)
of Theorem 21.11 contains in a concentrated form the results of the
Theorems 14.10 and 14.18 of Lecture 14.

Indeed, if d = 1 then the matrix unit {eij | 1 ≤ i, j ≤ d} reduces
to the projection e := e11, having ϕ(e) = λ := λ1. In this case the
Equation (21.22) takes the form:

(21.23) Rc1,...,cs(z1, . . . , zs) =
1

λ
Ra1,...,as(λz1, . . . , λzs),

where cr := eare ∈ eAe, 1 ≤ r ≤ s, and where the R-transform on
the right-hand side of (21.23) is calculated in the compressed space
(eAe, λ−1ϕ|eAe). In terms of free cumulants, (21.23) means that:

κn(cr1 , . . . , crn) = λn−1κn(ar1 , . . . , arn),

for every n ≥ 1 and 1 ≤ r1, . . . , rn ≤ s, as stated in the Theorem 14.10.
On the other hand, if d ≥ 1 is arbitrary, and we ask that λ1 = · · · =

λd =: λ > 0, then by extracting coefficients in the Equation (21.22) we
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obtain that:

κn(ci1j1;r1 , . . . , cinjn;rn)

=

{
λn−1κn(ar1 , . . . , arn) if j1 = i2, . . . , jn−1 = in, jn = i1
0 otherwise,

exactly as stated in Theorem 14.18.

Remark 21.13. A concise writing of Equation (21.22) in Theorem
21.11 can be obtained if we use “matrix notations” for the variables,
in the way described as follows.

Let the family of d2s indeterminates {zi,j;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s}
and the numbers λ1, . . . , λd > 0 be given. We will use the notation
“Θd2s” for the set of series of the type introduced in Lecture 16, and
which act in the indeterminates zij;r. Note that we will use Θd2s in
parallel with Θs (which is, same as in the preceding lectures, a set of
series acting in indeterminates z1, . . . zs).

Now, for every 1 ≤ r ≤ s let us denote by Zr the matrix of indeter-
minates defined as follows:

(21.24) Zr := (λjzij;r)
d
i,j=1.

Note that for every n ≥ 1 and 1 ≤ r1, . . . , rn ≤ s it makes sense to form
the product Zr1 · · ·Zrn which is a d× d matrix having as entries some
homogeneous polynomials of degree n in the zij;r’s. And moreover, for
a series:

f(z1, . . . , zs) =
∞∑

n=1

s∑
r1,...,rn=1

α(r1,...,rn)zr1 · · · zrn ∈ Θs

it makes sense to look at:

(21.25) f(Z1, . . . , Zs) :=
∞∑

n=1

s∑
r1,...,rn=1

α(r1,...,rn)Zr1 · · ·Zrn ,

which is a d× d matrix with entries from Θd2s. (The expression on the
right-hand side of (21.25) does not pose any convergence problems, pre-
cisely because its part “

∑s
r1,...,rn=1 α(r1,...,rn)Zr1 · · ·Zrn” is homogeneous

of degree n, for every n ≥ 1.)
With these notations, the right-hand side of Equation (21.22) can

be given the form:

(21.26)
d∑

i=1

1

λi

× [ (i, i)-entry of Ra1,...,as(Z1, . . . , Zs) ].



362 21. THE FULL FOCK SPACE MODEL FOR THE R-TRANSFORM

Or even more concisely, one can just write:

(21.27) Rc11;1,...,cdd;s
(z11;1, . . . , zdd;s) = Tr

(
Λ−1 ·Ra1,...,as(Z1, . . . , Zs)

)
,

where

Λ :=




λ1

. . .
λd


 ∈ Md(C).

Remark 21.14. As announced at the beginning of this section, we
will show a proof of the Theorem 21.11 which is obtained by modeling
on the full Fock space (in the sense discussed in the first part of the
lecture). In order to fall back on the simpler setting of Theorem 21.4,
we first observe the following reduction:

“It suffices to prove the Theorem 21.11 in the case
when the R-transform Ra1,...,as is a polynomial.”

Indeed, if this is proved, then the general case of the theorem
is obtained as follows. For every k ≥ 1, one can construct a
non-commutative probability space (Ak, ϕk) and families of elements

{e(k)
ij | 1 ≤ i, j ≤ d}, {a(k)

1 , . . . , a
(k)
s } in Ak, such that:

(i) {e(k)
ij | 1 ≤ i, j ≤ d} is freely independent from {a(k)

1 , . . . , a
(k)
s }.

(ii) {e(k)
ij | 1 ≤ i, j ≤ d} is a matrix unit with the same distribution

as {eij | 1 ≤ i, j ≤ d};
(iii) the R-transform R

a
(k)
1 ,...,a

(k)
s

is the truncation to terms of length

not exceeding k of the R-transform Ra1,...,as .
(The possibility of finding such elements is a particular case of the fact
that one can construct families of elements with any prescribed joint
R-transform, which was seen in Exercise 16.21 and then was repeatedly
used in the subsequent lectures.)

But now, the particular case of Theorem 21.11 which is assumed

here to be true can be applied to the compressions {c(k)
ij;r | 1 ≤ i, j ≤

d, 1 ≤ r ≤ s} of a
(k)
1 , . . . , a

(k)
s by the matrix unit {e(k)

ij | 1 ≤ i, j ≤ d},
and gives us that:

(21.28) R
c
(k)
11;1,...,c

(k)
dd;s

(z11;1, . . . , zdd;s) =

k∑
n=1

∑

1≤r1,...,rn≤s

1≤i1,...,in≤d

λi1 · · ·λin−1α(r1,...,rn)zini1;r1zi1i2;r2 · · · zin−1in;rn .
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And finally, straightforward calculations show that the R-transforms
R

c
(k)
11;1,...,c

(k)
dd;s

converge coefficient-wise to Rc11;1,...,cdd;s
, as k → ∞. So

(21.22) is obtained from (21.28) by letting k →∞.

Remark 21.15. Before starting the proof of the reduced statement
of Theorem 21.11, we would like to make a comment on what is the
modeling framework which will be used. Our basic modeling pattern
says that if Ra1,...,as is a polynomial, then a1, . . . , as can be replaced in
a canonical way by ∗-polynomials in a free family of Cuntz isometries
(as shown in Theorem 21.4), such that the R-transform of the s-tuple
does not change. But note that in the case at hand this is not useful
all by itself, because it is not clear how one could arrange to also
replace – or in other words “model” – at the same time the matrix unit
{eij | 1 ≤ i, j ≤ d} by a matrix unit which lives in the same space
as the Cuntz isometries. It was observed by Shlyakhtenko that the
simultaneous modeling of a1, . . . , as and of {eij | 1 ≤ i, j ≤ d} can be
carried over if the Cuntz isometries that we start with are themselves
d × d matrices. We will follow this idea, and thus we will use the
modeling framework described as follows.

Notations 21.16. (B, ψ) will be a ∗-probability space which con-
tains a free family of (d + 1)2s Cuntz isometries {lij;r | 1 ≤ i, j ≤
d + 1, 1 ≤ r ≤ s}. We form the matrix algebra B̃ = Md+1(B). On B̃
we consider the state ψ̃ : B̃ → C defined by:

(21.29) ψ̃( (yij)
d+1
ij=1 ) :=

d+1∑
i=1

λiψ(yii), (yij)
d+1
ij=1 ∈ B̃,

where the numbers λ1, . . . , λd > 0 are taken from the Equation (21.20)
of Notations 21.9, and where we take λd+1 := 1− (λ1 + · · · + λd) ≥ 0.

Note that the choice of λd+1 ensures that ψ̃(1 eB) = 1, where 1 eB denotes

the unit of B̃ (that is, the diagonal entries of 1 eB are all equal to the
unit 1B of B, while the off-diagonal entries are all equal to 0).

We will denote by Md+1(C1B) ⊂ B̃ the subalgebra consisting of
matrices which have all their entries in C1B.

Moreover, for every 1 ≤ r ≤ s we will denote:

(21.30) Lr := (
√

λilji;r )d+1
i,j=1 ∈ B̃.

The next lemma and proposition refer to the framework which has
just been introduced.

Lemma 21.17. For Y ∈ Md+1(C1B) we have that

(21.31) L∗pY Lq = δp,q · ψ̃(Y ) · 1 eB, ∀ 1 ≤ p, q ≤ s.
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Proof. This is done by direct calculation of the entries of L∗pY Lq

(which is straightforward, and left as exercise to the reader).
¤

Proposition 21.18. 1) L1, . . . , Ls is a free family of Cuntz isome-

tries in (B̃, ψ̃).

2) {L1, L
∗
1, . . . , Ls, L

∗
s} is free from Md+1(C1B) in (B̃, ψ̃).

Proof. 1) The Cuntz relations for L1, . . . , Ls, i.e:

L∗pLq = δp,q · 1 eB, 1 ≤ p, q ≤ s,

follow by setting Y = 1 eB in Lemma 21.17. The other condition which
we need to check is that:

ψ̃( Lp1 · · ·LpmL∗q1
· · ·L∗qn

) = 0,

for every m, n ≥ 0 such that m + n ≥ 1, and for every 1 ≤
p1, . . . , pm, q1, . . . , qn ≤ s (cf. Definition 21.2.2). This is a direct conse-
quence of the corresponding property of the Cuntz family {lij;r | 1 ≤
i, j ≤ d + 1, 1 ≤ r ≤ s}. Indeed, we have:

ψ̃( Lp1 · · ·LpmL∗q1
· · ·L∗qn

) =

d+1∑
i=1

λiψ( (i, i)-entry of Lp1 · · ·LpmL∗q1
· · ·L∗qn

),

and every term of the latter sum is found to be equal to zero (by writing
explicitly the (i, i)-entry which appears, and by using the property
stated in Definition 21.2.2, for the family of lij;r’s).

2) We will appeal directly to the definition of free independence.

We will verify that ψ̃(W ) = 0 whenever W is a word of the form

(21.32) W = X1Y1 · · ·XkYk, k ≥ 1,

where X1, . . . , Xk ∈ ∗−alg(L1, . . . , Ls), Y1, . . . , Yk ∈ Md+1(C1B), and
we have that:

(21.33) ψ̃(X1) = · · · = ψ̃(Xk) = 0, ψ̃(Y1) = · · · = ψ̃(Yk) = 0.

(Note: In order to complete this freeness verification, one would also
need to consider words analogous to the above W , but which start with
a “Y ” letter instead of an “X” letter, and/or end with an “X” letter
instead of a “Y ” letter. We leave it as an immediate exercise to the
reader to check that the same argument as presented below applies to
these other types of words as well.)
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By taking into account how ∗−alg(L1, . . . , Ls) is concretely de-
scribed (cf. Remark 21.3.2), we can assume without loss of generality
that every Xh, 1 ≤ h ≤ k, is of the form:

(21.34) Xh = Lp1 · · ·Lpm(h)
L∗q1

· · ·L∗qn(h)

for some m(h), n(h) ≥ 0 with m(h) + n(h) ≥ 1, and for some 1 ≤
p1, . . . , pm(h), q1, . . . , qn(h) ≤ s.

Now, there are two possible things that can happen:
(a) There exists h ∈ {2, . . . , k} such that n(h − 1) 6= 0 6= m(h).

Then when we substitute the expressions of X1, . . . , Xk from (21.34)
into W of (21.32), we find a factorization of W which contains three
consecutive factors L∗qn(h−1)

, Yh−1, Lp1 with product:

L∗qn(h−1)
Yh−1Lp1 = δqn(h−1),p1 · ψ̃(Yh−1) · 1 eB (by Lemma 21.17)

= 0 (by (21.33)).

So in this case we actually find that W = 0, which of course implies

that ψ̃(W ) = 0.
(b) There exists no h ∈ {2, . . . , k} such that n(h− 1) 6= 0 6= m(h).

Then it is immediately seen that there exists h ∈ {1, . . . , k + 1} such
that n(1) = · · · = n(h − 1) = 0 and m(h) = · · · = m(k) = 0 (“h = 1”
corresponds to the extreme case when m(1) = · · · = m(k) = 0, while
“h = k + 1” corresponds to the case when n(1) = · · · = n(k) = 0).
Let us substitute the expressions of X1, . . . , Xk from (21.34)) into W of
(21.32), and let us insert by force an 1 eB between every two consecutive
factors from the products of (21.34). We arrive to a factorization of W
in the form:

(21.35) W = C0Lp1C1 · · ·LpM
CML∗q1

CM+1 · · ·L∗qN
CM+N ,

where M, N ≥ 0 and M + N ≥ 1, 1 ≤ p1, . . . , pM , q1, . . . , qN ≤ s,
and C0, C1, . . . , CM+N ∈ Md+1(C1B). From (21.35) it follows that

ψ̃(W ) = 0 by exactly the same argument which concluded the proof of
the statement 1 of this proposition. ¤

After all these preparations, we can now present the proof of The-
orem 21.11.

Proof of Theorem 21.11. Based on the Remark 21.14, we will
assume that Ra1,...,as is a polynomial of degree at most k (that is, we
will assume that in Equation (21.21) we have α(r1,...,rn) = 0 whenever
n > k). Consider our modeling framework, as in Notations 21.16, and
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for 1 ≤ r ≤ s let us set:

(21.36) Ar = L∗r
(

1 eB +
k∑

n=1

s∑
r1,...,rn=1

α(r1,...,rn)Lrn · · ·Lr1

)
∈ B̃.

By Theorem 21.4, the R-transform of the s-tuple A1, . . . , As coincides
with Ra1,...,as . On the other hand, for every 1 ≤ i, j ≤ d let us denote

by Eij ∈ B̃ the matrix which has its (i, j)-entry equal to 1B, and all
its other entries equal to 0. It is immediate that {Eij | 1 ≤ i, j ≤ d}
is a matrix unit which has (with respect to ψ̃) the same distribution
as the matrix unit {eij | 1 ≤ i, j ≤ d} appearing in the hypothesis of
Theorem 21.11. Since Proposition 21.18.2 gives us that {A1, . . . , As}
is free from {Eij | 1 ≤ i, j ≤ d}, it follows that the joint distribution of

{A1, . . . , As} ∪ {Eij | 1 ≤ i, j ≤ d} (in (B̃, ψ̃) )

coincides with the one of

{a1, . . . , as} ∪ {eij | 1 ≤ i, j ≤ d} (in (A, ϕ) ).

But then let us consider the compression E11B̃E11 of B̃ and the

family {Cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} ⊂ E11B̃E11, where:

(21.37) Cij;r := E1iArEj1, ∀ 1 ≤ i, j ≤ d, ∀ 1 ≤ r ≤ s.

From the conclusion of the preceding paragraph it is immediate that
the family in (21.37) has the same joint distribution as the family
{cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} from the statement of Theorem
21.11. So in order to prove the theorem, it will suffice to calculate the

joint R-transform of {Cij;r | 1 ≤ i, j ≤ d, 1 ≤ r ≤ s} (in E11B̃E11,

with respect to the functional λ−1
1 ψ̃|E11B̃E11), and verify that this R-

transform has the required form.

The compressed space E11B̃E11 is naturally identified to B; in this

identification the linear functional λ−1
1 ψ̃|E11B̃E11 becomes ψ, and the

element Cij;r ∈ B̃ becomes:

(21.38) bij;r := [ (i, j)-entry of Ar ] ∈ B, 1 ≤ i, j ≤ d, 1 ≤ r ≤ s.

Thus our task becomes to check that:

(21.39) Rb11;1,...,bij;r,...,bdd;s
(z11;1, . . . , zij;r, . . . , zdd;s) =

k∑
n=1

∑

1≤r1,...,rn≤s

1≤i1,...,in≤d

λi1 · · ·λin−1α(r1,...,rn)zini1;r1zi1i2;r2 · · · zin−1in;rn .



AN APPLICATION: REVISITING FREE COMPRESSIONS 367

Let us write the elements bij;r explicitly. First, Ar from (21.36) can
also be written as:

Ar = L∗r + α(r)1 eB +
s∑

r1=1

α(r1,r)Lr1

+
k∑

n=3

s∑
r1,...rn−1=1

α(r1,...,rn−1,r)Lrn−1 · · ·Lr1 ;

hence, by identifying the (i, j)-entry:

(21.40) bij;r =
√

λjl
∗
ij;r + α(r)δi,j1B +

s∑
r1=1

√
λilji;r1

+
k∑

n=3

∑

1≤r1,...rn−1≤s

1≤i1,...,in−2≤d

α(r1,...,rn−1,r)(
√

λilin−2i;rn−1)×

× (
√

λin−2lin−3in−2;rn−2) · · · (
√

λi2li1i2;r2)(
√

λi1lji1;r1).

At this point we use the trick described in the above Exercise 21.5
which tells us that the joint distribution of the bij;r’s will not change if

in (21.40) we replace every lhk;r by λ
1/2
k lhk;r and every l∗hk;r by λ

−1/2
k l∗hk;r.

We obtain that Rb11;1,...,bij;r,...,bdd;s
= Rb′11;1,...,b′ij;r,...,b′dd;s

, where:

(21.41) b′ij;r = l∗ij;r + α(r)δi,j1B +
s∑

r1=1

λilji;r1

+
k∑

n=3

∑

1≤r1,...rn−1≤s

1≤i1,...,in−2≤d

α(r1,...,rn−1,r)λiλi1 · · ·λin−2 lin−2i;rn−1×

× lin−3in−2;rn−2 · · · li1i2;r2lji1;r1 .

In Equation (21.41) let us now factor l∗ij;r on the left. We get:

(21.42) b′ij;r = l∗ij;r
(
1B + α(r)δi,jlij;r+

N∑
n=2

∑

1≤r1,...rn≤s, rn=r

1≤i1,...in≤d, in−1=i, in=j

α(r1,...,rn)λi1 · · ·λin−1 lin−1in;rn · · · li1i2;r2lini1;r1

)
.
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Dropping the restrictions “rn = r” and “in−1 = i, in = j” in the sum-
mations on the right-hand side of (21.42) will not change that expres-
sion, because the extra terms added to the summations are multiplied
to 0 by the factor l∗ij;r on the left of the parentheses. Hence we arrive
to the formula:

(21.43) b′ij;r = l∗ij;r(1B + x), 1 ≤ i, j ≤ d, 1 ≤ r ≤ s,

where:

(21.44) x =
s∑

r1=1

d∑
i1=1

α(r1)li1i1;r1

+
k∑

n=2

∑

1≤r1,...rn≤s

1≤i1,...in≤d

α(r1,...,rn)λi1 · · ·λin−1 lin−1in;rn · · · li1i2;r2lini1;r1 .

But the Theorem 21.4 allows us to explicitly read, from the Equations
(21.43) and (21.44), what is the R-transform of the family {b′ij;r | 1 ≤
i, j ≤ d, 1 ≤ r ≤ s}; in this way (21.39) is obtained. ¤

Exercises

Exercise 21.19. Let (A, ϕ) be a ∗-probability space, and let
l1, . . . , ls ∈ A be a free family of Cuntz isometries.

1) Show that the elements listed on the right-hand side of Equation
(21.3) in Remark 21.3 are linearly independent, hence form a linear
basis for ∗-alg(l1, . . . , ls).

2) By appealing directly to the definition of free independence, show
that {l1, l∗1}, . . . , {ls, l∗s} are freely independent in (A, ϕ).

The Exercises 21.20–21.22 are filling in the details left about the
bijection Φ : NC(n) → [s]∗i1,...,in which was used in the proof of Theorem
21.4. We refer to that proof for the definition of the set [s]∗i1,...,in , and
for the description of how Φ works.

Exercise 21.20. Verify that Φ takes indeed values into the set
[s]∗i1,...,in .

Exercise 21.21. Consider the set Luk(n) of Lukasiewicz paths
with n steps, which was introduced in Lecture 9 (cf. Definition 9.6.2).

1) Prove that if (w1, . . . , wn) ∈ [s]∗i1,...,in , then the n-tuple (|wn| −
1, . . . , |w1| − 1) is the rise-vector of a path in Luk(n).
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2) Consider the map Ψ : [s]∗i1,...,in → Luk(n) which associates to
(w1, . . . , wn) ∈ [s]∗i1,...,in the unique path γ ∈ Luk(n) with rise-vector
equal to (|wn| − 1, . . . , |w1| − 1). Prove that Ψ is injective.

[Hint for 2: Proceed by induction on n. More precisely, use the fact that
if (w1, . . . , wn) ∈ [s]∗i1,...,in , then the word wn must be of the form (in)·w′,
with |w′| = |w| − 1, and where (w1, . . . , wn−2, wn−1w

′ ∈ [s]∗i1,...,in−1
.]

Exercise 21.22. Consider the functions Φ : NC(n) → [s]∗i1,...,in and
Ψ : [s]∗i1,...,in → Luk(n) which appeared in the preceding two exercises.
Consider also the bijection Λ : NC(n) → Luk(n) which was put into
evidence in Proposition 9.8 of Lecture 9. Verify that Ψ ◦ Φ = Λ and
then (by using the facts that Λ is bijective and Ψ is injective) prove
that Φ is a bijection.

Remark 21.23. Consider the particular case s = 1 of Theorem
21.4, where we thus deal with only one isometry in a ∗-probability
space (A, ϕ). We will denote this isometry by l (rather than by l1,
as it is denoted in Theorem 21.4). So we have that l∗l = 1A and
that ϕ(lml∗n) = 0 for every non-negative integers m,n with m+n ≥ 1.
Theorem 21.4 says that for a polynomial f(z) = α1z+α2z

2+· · ·+αkz
k,

the element
a := l∗(1A + f(l)) ∈ A

has R-transform Ra = f .
The next exercise presents an analogous construction, observed by

Haagerup, which involves an S-transform instead of an R-transform.

Exercise 21.24. Let (A, ϕ) be a ∗-probability space, and let l ∈ A
be an isometry such that ϕ(lml∗n) = 0 for every non-negative integers
m,n with m+n ≥ 1. Let g(z) = β0 +β1z + · · ·+βkz

k be a polynomial
in C[z] such that β0 6= 0. Consider the element

b := g(l)(1A + l∗) ∈ A.

Prove that the S-transform of b is

Sb(z) =
1

g(z)

(where the reciprocal 1/g(z) is considered in the algebra of formal
power series in z).

[Hint: Let b̃ := (1A + l∗)g(l) ∈ A. Observe that the distributions of

b and b̃ are related by the formula ϕ(bn) = β0ϕ(̃bn−1), n ≥ 1. Use

the Theorem 21.4 to compute the R-transform of b̃, then use the con-
nections between moment series, R-transforms and S-transforms which
were presented in the section on S-transforms of Lecture 18.]





LECTURE 22

Gaussian Random Matrices

In the final two lectures we want to treat one of the most important
and inspiring realizations of free independence. Canonical examples for
free random variables appeared in the context of group algebras of free
products of groups and in the context of creation and annihilation op-
erators on full Fock spaces. These are two (closely related) examples
where the occurrence of free independence is not very surprising, be-
cause its definition was just modeled according to the situation on the
group (or von Neumann) algebra of the free group.

But there are objects from a quite different mathematical universe
which are also free (at least asymptotically) - namely special random
matrices. A priori, random matrices have nothing to do with free inde-
pendence and this surprising connection is one of the key results in free
probability theory. It establishes links between quite different fields.

We will present in this and the next lecture the fundamental results
of Voiculescu on the asymptotic free independence of special random
matrices. Our approach will be quite combinatorial and fits well with
our combinatorial description of free independence. In a sense, we will
show that the combinatorics of free probability theory arises as the
limit N → ∞ of the combinatorics of the considered N × N -random
matrices.

Moments of Gaussian random variables

Random matrices are matrices whose entries are classical random
variables, and the most important class of random matrices are the
so-called Gaussian random matrices whose entries form a Gaussian
family of classical random variables. So, before we talk about random
matrices, we should recall the basic properties of Gaussian families.

A Gaussian family is a collection of classical random variables whose
joint density has a very special form, as given in the following definition.
In this and the next lecture we will denote the states corresponding to
classical probability spaces usually by E, i.e.,

E[a] :=

∫

Ω

a(ω)dP (ω)

371
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for classical random variables a ∈ L∞−(Ω, P ).

Definition 22.1. 1) A family of selfadjoint random variables
x1, . . . , xn living in some ∗-probability space (L∞−(Ω, P ), E) is called
a (centered) Gaussian family if its joint density is of a Gaussian
form, i.e., if there exists a non-singular positive n × n matrix C such
that we have for all k ∈ N and all 1 ≤ i(1), . . . , i(k) ≤ n that

(22.1) E[xi(1) · · ·xi(k)] =

(2π)−n/2(det C)−1/2

∫

Rn

ti(1) · · · ti(k)e
− 1

2
〈t,C−1t〉dt1 · · · dtn,

where t = (t1, . . . , tn) ∈ Rn and 〈·, ·〉 denotes the standard inner prod-
uct in Rn. We call C the covariance matrix of the Gaussian family.

2) A family of classical complex-valued random variables a1, . . . , an

is a complex Gaussian family if the collection of their real and
imaginary parts <a1,=a1, . . . ,<an,=an is a Gaussian family.

Remark 22.2. The definition via Equation (22.1) is equivalent
to saying that the characteristic function of the random vector x =
(x1, . . . , xn) is of the form

E[ei〈t,x〉] = exp{−1

2
〈t, Ct〉}.

Of course, we expect that a Gaussian family should be the limit
distribution appearing in a multivariate version of the classical central
limit theorem. In Remark 8.18 we pointed out that such a limit distri-
bution has a very nice combinatorial description of its joint moments
in terms of summing over all pairings (as opposed to a semicircular
family, where we only sum over non-crossing pairings). That this com-
binatorial formula is indeed the result if one evaluates the integrals in
(22.1) goes usually under the name of “Wick formula”. This will be
the starting point for our use of Gaussian families. We will leave the
proof of this to the reader.

Theorem 22.3. (Wick formula)
Let x1, . . . , xn be a Gaussian family. Then we have for all k ∈ N and
all 1 ≤ i(1), . . . , i(k) ≤ n that

(22.2) E[xi(1) · · · xi(k)] =
∑

π∈P2(k)

∏

(r,s)∈π

E[xi(r)xi(s)].

Here, P2(k) denotes the set of all pairings of the set {1, . . . , k}.
If C = (cij)

n
i,j=1 is the covariance matrix of the Gaussian family then
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we have

E[xixj] = cij (i, j = 1, . . . , n).

Exercise 22.4. Prove Theorem 22.3.
[Hint: By diagonalizing C one can reduce the proof to the case of n
independent normal random variables and thus to Exercise 8.22.]

Remarks 22.5. 1) Of course, if k is odd, there is no pairing in P2(k)
and thus (22.2) states that each odd moment of a Gaussian family has
to vanish.

2) Strictly speaking, the Wick formula (22.2) was for real-valued
Gaussian variables x1, . . . , xn. However, the nice feature is that it re-
mains also valid for complex-valued Gaussian variables a1, . . . , an – not
only by replacing the xi by <ai or =ai, but also by replacing them by
ai or āi. (This follows directly from the multilinear structure of the
formula.) This is important for us because the entries of our Gaussian
random matrices will be complex-valued.

Random matrices in general

In Lecture 1 we shortly addressed random matrices as an exam-
ple for a non-commutative probability space. Let us repeat here the
relevant information.

Random matrices are matrices whose entries are classical random
variables. As usual, in our algebraic frame, we encode a classical prob-
ability space (Ω, P ) by the algebra L∞−(Ω, P ) of random variables for
which all moments exist and by the state E, which is given by tak-
ing the expectation with respect to P . For the matrix part, the most
canonical choice of a linear functional is given by taking the trace. Note
that one can identify N ×N -matrices over an algebra A, which we de-
note according to Exercise 1.23 by MN(A), with the tensor product
MN(C)⊗A, and so we will denote the corresponding linear functional
on MN

(
L∞−(Ω, P )

)
by tr⊗ E.

Definition 22.6. A ∗-probability space of N×N-random ma-
trices is given by (MN(L∞−(Ω, P )), tr⊗E), where (Ω, P ) is a classical
probability space,

L∞−(Ω, P ) :=
⋂

1≤p<∞
Lp(Ω, P ),

MN(A) denotes N × N -matrices with entries from A, E denotes the
expectation with respect to P and tr denotes the normalized trace on
MN(C). More concretely, this means elements in our probability space
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are of the form

A = (aij)
N
i,j=1, with aij ∈ L∞−(Ω, P )

and

(tr⊗ E)(A) = E[tr(A)] =
1

N

N∑
i=1

E[aii].

The ∗-operation is given by

A∗ = (âij)
N
i,j=1 with âij := āji.

The choice of the trace as the state for matrices might look a bit
arbitrary, so let us recall in the following remark the relevance of this.

Remarks 22.7. 1) If one is dealing with matrices, then the most
important information is contained in their eigenvalues and the most
prominent analytical object is the eigenvalue distribution. This is,
by definition, a probability measure which puts mass 1/N on each of
the N eigenvalues (counted with multiplicity) of the N×N -matrix. As-
sume we have a normal (e.g., a selfadjoint or a unitary) matrix A with
eigenvalues λ1, . . . , λN , then its eigenvalue distribution is the probabil-
ity measure

µA :=
1

N
(δλ1 + · · ·+ δλN

).

Note that the unitary invariance of the trace shows that the ∗-moments
of this measure are exactly the ∗-moments of our matrix with respect
to the trace,

tr(AkA∗l) =
1

N

N∑
i=1

λk
i λ̄

l
i =

∫

C
zkz̄ldµA(z) for all k, l ∈ N.

This says that the eigenvalue distribution µA is the ∗-distribution in
analytical sense of the matrix A with respect to the trace. So the
trace encodes exactly that kind of information in which one usually is
interested when dealing with matrices.

2) Generalizing the above argument, one sees that the ∗-distribution
in analytical sense of a normal random matrix (with respect to tr⊗E)
will usually be given by the averaged eigenvalue distribution. If A(ω) =
(aij(ω))N

i,j=1 is a normal matrix for all ω ∈ Ω, and if λ1(ω), . . . , λN(ω)
are the eigenvalues of A(ω), then the averaged eigenvalue distribu-
tion of A is defined as

µA =
1

N

∫

Ω

N∑
i=1

δλi(ω)dP (ω).
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This definition of µA by a measure-valued integral just means that we
have for all k, l ∈ N

tr⊗ E(AkA∗l) =
1

N

∫

Ω

N∑
i=1

λi(ω)kλi(ω)
l
dP =

∫

C
zkz̄ldµA(z).

For the usual random matrix ensembles the averaged eigenvalue distri-
bution µA has no compact support; however in most interesting cases
(as for Gaussian random matrices which we will consider in the next
section) it is determined by its moments, and thus we can identify
in such cases the averaged eigenvalue distribution of A with the ∗-
distribution in analytical sense of A with respect to tr⊗ E.

In the generality as considered up to now there is not much more
interesting to say about random matrices; for concrete statements we
have to specify the classical distribution P ; i.e., the joint distribution
of the entries of our matrices.

Selfadjoint Gaussian random matrices and genus expansion

A selfadjoint Gaussian random matrix A = (aij)
N
i,j=1 is a special

random matrix where the distribution of the entries is specified as
follows:

• the matrix is selfadjoint, A = A∗, which means for its entries:

aij = āji for all i, j = 1, . . . , N

• apart from this restriction on the entries, we assume that they
are independent Gaussian random variables (real on the diag-
onal, complex above the diagonal) with variance 1/N .

We can summarize this in the following form.

Definition 22.8. A selfadjoint Gaussian random matrix is a
N × N -random matrix A = (aij)

N
i,j=1 with A = A∗ and such that the

entries aij (i, j = 1, . . . , N) form a complex Gaussian family which is
determined by the covariance

(22.3) E[aijakl] =
1

N
δilδjk (i, j, k, l = 1, . . . , N).

Remarks 22.9. 1) Note that (22.3) determines together with the
selfadjointness conditions aij = āji the whole covariance matrix of the
complex entries; namely we have, for example, that

E[aij ākl] = E[aijalk] =
1

N
δikδjl (i, j, k, l = 1, . . . , N).
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2) In general, if one prescribes a covariance matrix for a Gauss-
ian family one has to think about the question whether there exists a
Gaussian family with these covariances (which amounts to the positiv-
ity of the covariance matrix C in the definition of a Gaussian family).
However, in the present case our concrete realization of the Gaussian
family in the form preceding our Definition 22.8 ensures this.

3) Note that we only consider matrices with complex entries; usu-
ally such an ensemble is addressed as GUE (Gaussian unitary ensem-
ble). There exist also GOE (Gaussian orthogonal ensemble) and GSE
(Gaussian symplectic ensemble) where the entries of the matrices are ei-
ther real or quaternionic. Note that “unitary”, “orthogonal”, or “sym-
plectic” refers here to the group under which the respective ensemble
is invariant.

4) The choice of the variance 1/N in our definition is just convention
and will become only important when we consider the limit N →∞.

One can also consider non-selfadjoint Gaussian random matrices
where all entries are independent.

Definition 22.10. A non-selfadjoint Gaussian random ma-
trix is a N ×N -random matrix B = (bij)

N
i,j=1 such that the entries bij

(i, j = 1, . . . , N) form a complex Gaussian family which is determined
by the covariance (i, j, k, l = 1, . . . , N)

E[bij b̄kl] =
1

N
δikδjl(22.4)

E[bijbkl] = 0

We will in the following restrict to the selfadjoint case; with “Gauss-
ian random matrix” we will always mean a selfadjoint Gaussian random
matrix. However, the non-selfadjoint versions are also quite interesting
and we will address them in some of the exercises.

Our main goal is to calculate the distribution of a (selfadjoint!)
Gaussian random matrix A. Calculating directly the eigenvalues of
A is not very feasible, however moments are quite accessible. In the
following we put

ϕ := tr⊗ E.

The m-th moment of A is then given by

ϕ(Am) =
1

N

N∑

i(1),...,i(m)=1

E[ai(1)i(2)ai(2)i(3) · · · ai(m)i(1)].

Now we use the fact that the entries of our matrix form a Gaussian
family with the covariance as described in (22.3), so, by using the Wick
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formula (22.2), we can continue as follows (where we count modulo m,
i.e., we put i(m + 1) := i(1)):

ϕ(Am) =
1

N

N∑

i(1),...,i(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

E[ai(r)i(r+1)ai(s)i(s+1)]

=
1

N

N∑

i(1),...,i(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1)
1

Nm/2

=
1

N1+m/2

∑

π∈P2(m)

N∑

i(1),...,i(m)=1

∏

(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1).

It is convenient to identify a pairing π ∈ P2(m) with a special per-
mutation in Sm, just by declaring the blocks of π to be cycles; thus
(r, s) ∈ π means then π(r) = s and π(s) = r. The advantage of this
interpretation becomes apparent from the fact that in this language we
can rewrite our last equation as

ϕ(Am) =
1

N1+m/2

∑

π∈P2(m)

N∑

i(1),...,i(m)=1

m∏
r=1

δi(r)i(π(r)+1)

=
1

N1+m/2

∑

π∈P2(m)

N∑

i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)),

where γ ∈ Sm is the cyclic permutation with one cycle,

γ = (1, 2, . . . , m− 1,m).

If we also identify an m-index tuple i = (i(1), . . . , i(m)) with a function
i : {1, . . . ,m} → {1, . . . , N}, then the meaning of

∏m
r=1 δi(r)i(γπ(r)) is

quite obvious, namely it says that the function i must be constant on
the cycles of the permutation γπ in order to contribute a factor 1,
otherwise its contribution will be zero. But in this interpretation

N∑

i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r))

is very easy to determine: for each cycle of γπ we can choose one of
the numbers 1, . . . , N for the constant value of i on this orbit, and all
these choices are independent from each other, which means

N∑

i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)) = Nnumber of cycles of γπ.
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Notation 22.11. For a permutation σ ∈ Sm we put

#(σ) := number of cycles of σ.

So we have finally derived the following theorem.

Theorem 22.12. For a selfadjoint Gaussian N×N-random matrix
we have for all m ∈ N that

ϕ(Am) =
∑

π∈P2(m)

N#(γπ)−1−m/2.

This type of expansion for moments of random matrices is usu-
ally called a genus expansion, because pairings in Sm can also be
identified with orientable surfaces (by gluing the edges of an m-gon
together according to π) and then the corresponding exponent of N
can be expressed (via Euler’s formula) in terms of the genus g of the
surface,

#(γπ)− 1−m/2 = −2g

Examples 22.13. Let us look at some examples. Clearly, since
there are no pairings of an odd number of elements, all odd moments
of A are zero. So it is enough to consider the even powers m = 2k.

For m = 2, the formula just gives a contribution for the pairing
(1, 2) ∈ S2,

ϕ(A2) = 1.

This reflects our normalization with the factor 1/N for the variances of
the entries to ensure that ϕ(A2) is equal to 1 (in particular, does not
depend on N).

The first non-trivial case is m = 4. Then we have three pairings,
and the relevant information about them is contained in the following
table.

π γπ #(γπ)− 3

(1, 2)(3, 4) (1, 3)(2)(4) 0

(1, 3)(2, 4) (1, 4, 3, 2) −2

(1, 4)(2, 3) (1)(2, 4)(3) 0

so that we have
ϕ(A4) = 2 ·N0 + 1 ·N−2

For m = 6, 8, 10 an inspection of the 15, 105, 945 pairings of six,
eight, ten elements yields in the end

ϕ(A6) = 5 ·N0 + 10 ·N−2
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ϕ(A8) = 14 ·N0 + 70 ·N−2 + 21 ·N−4

ϕ(A10) = 42 ·N0 + 420 ·N−2 + 483 ·N−4.

As one might suspect the pairings contributing in leading order N0

are exactly the non-crossing pairings.

Exercise 22.14. Check that in the case m = 6 the pairings con-
tributing the leading order N0 are exactly the non-crossing pairings

(1, 2)(3, 4)(5, 6), (1, 2)(3, 6)(4, 5), (1, 4)(2, 3)(5, 6)

(1, 6)(2, 3)(4, 5), (1, 6)(2, 5)(3, 4).

This fact that the leading orders correspond to non-crossing pairings
is true in general. (In the geometric language of genus expansion, the
non-crossing pairings correspond to genus zero or planar situations.)
We leave its proof for the moment as an exercise, but we will come
back to this in the next lecture in a more general context.

Exercise 22.15. Show that, for a pairing π ∈ S2k, #(γπ) can at
most be 1 + k, and this upper bound is achieved if and only if π is
non-crossing.

But this tells us that, although the moments of a Gaussian N ×N -
random matrix for fixed N are quite involved, in the limit N →∞ they
become much simpler and converge to something which we understand
quite well, namely to the number of non-crossing pairings, which is
given by the Catalan numbers,

lim
N→∞

ϕ(A2k) = Ck =
1

k + 1

(
2k

k

)
.

On the other hand, the number of non-crossing pairings counts the
even moments of semicircular elements. Thus we can rephrase the
above, by using our notion of convergence in distribution, also in the
following form.

Theorem 22.16. (Wigner’s semicircle law)
For each N ∈ N, let AN be a selfadjoint Gaussian N × N-random
matrix. Then AN converges, for N → ∞, in distribution towards a
semicircular element s,

AN
distr−→ s.

Exercise 22.17. For each N ∈ N, let BN be a non-selfadjoint
Gaussian N × N -random matrix. Show that BN converges in ∗-
distribution towards a circular element.
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Exercise 22.18. 1) Let BN be a non-selfadjoint Gaussian N ×N -
random matrix as in Definition 22.10 and put XN := B∗

NBN . Show
that XN converges in distribution towards a free Poisson element of
rate λ = 1.

2) Generalize part 1 by considering rectangular Gaussian M × N -
random matrices BM,N , where we still assume the covariance as in
(22.4), but now for i, k = 1, . . .M and j, k = 1, . . . , N . Assume that
we send M, N →∞ such that the ratio M/N has a finite limit λ > 0.
Show that B∗

M,NBM,N converges in distribution towards a free Poisson
element of rate λ.

[Matrices of the form B∗
M,NBM,N are in the random matrix liter-

ature usually called Wishart matrices. Their limiting eigenvalue dis-
tribution (which is the same as a free Poisson distribution) was calcu-
lated by Marchenko and Pastur in 1967 and is accordingly referred to
as Marchenko-Pastur distribution.]

3) By using the fact that, for a matrix A, the non-zero eigenvalues
of A∗A and of AA∗ agree, derive a relation between the density of a
free Poisson of rate λ and the density of a free Poisson of rate 1/λ.
Check your result by using the concrete form of the densities as given
in (12.14) and (12.15).

Asymptotic free independence for several independent
Gaussian random matrices

The fact that the eigenvalue distribution of Gaussian random ma-
trices converges in the limit N → ∞ to the semicircle distribution is
one of the basic results in random matrix theory; it was proved by
Wigner in 1955, and is accordingly usually termed “Wigner’s semicir-
cle law”. Thus the semicircle distribution appeared as an interesting
object long before semicircular elements were considered in free prob-
ability. This raises the question whether it is just a coincidence that
Gaussian random matrices in the limit N →∞ and the sum of creation
and annihilation operators on full Fock spaces have the same distribu-
tion or whether there is some deeper connection. Of course, our main
interest is in the question whether there is also some free independence
around for random matrices. As we see from the case of one Gaussian
random matrix, it is only in the limit N → ∞ where we can expect
a nice behavior for random matrices. Thus what we can hope for is
“asymptotic free independence” for random matrices. Let us first make
this notion precise.

Definition 22.19. Let, for each N ∈ N, (AN , ϕN) be a non-
commutative probability space. Let I be an index set and consider
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for each i ∈ I and each N ∈ N random variables a
(N)
i ∈ AN . Let

I = I1 ∪ · · · ∪ Im be a decomposition of I into m disjoint subsets. We
say that

{a(N)
i | i ∈ I1}, . . . , {a(N)

i | i ∈ Im}
are asymptotically free (for N → ∞), if (a

(N)
i )i∈I converges in dis-

tribution towards (ai)i∈I for some random variables ai ∈ A (i ∈ I)
in some non-commutative probability space (A, ϕ) and if the limits
{ai | i ∈ I1}, . . . , {ai | i ∈ Im} are free in (A, ϕ).

Remarks 22.20. 1) Thus a(N), b(N) asymptotically free means that
in the limit N → ∞ their mixed moments can be expressed in terms
of the moments of a(N) and the moments of b(N) by the same formula
which describes the corresponding mixed moment of free random vari-
ables. E.g., we must have

lim
N→∞

ϕN(a(N)b(N)) = lim
N→∞

ϕN(a(N)) · lim
N→∞

ϕN(b(N)).

2) Asymptotic free independence of sequences (a
(N)
i )i∈I can be

characterized as follows by the asymptotic form of the definition of
free independence: whenever we have, for some positive integer k,
i(1), . . . , i(k) ∈ I with i(1) 6= i(2) 6= · · · 6= i(k) and polynomials pj

(j = 1, . . . , k) such that

lim
N→∞

ϕN

(
pj(a

(N)
i(j))

)
= 0

for all j = 1, . . . , k, then we must also have the asymptotic vanishing
of the corresponding alternating moment,

lim
N→∞

ϕN

(
p1(a

(N)
i(1)) · · · pk(a

(N)
i(k))

)
= 0.

3) Note that the existence of the limits of all moments is required
as part of the definition of asymptotic free independence.

That we have indeed asymptotic free independence for random ma-
trices is one of the fundamental discoveries of Voiculescu in free prob-
ability theory.

In order to have asymptotic free independence we should consider
at least two random matrices. Let us try the simplest case, by taking
two Gaussian random matrices

A(1) = (a
(1)
ij )N

i,j=1, A(2) = (a
(2)
ij )N

i,j=1.

Of course, we must also specify the relation between them, i.e., we must
prescribe the joint distribution of the whole family

a
(1)
11 , . . . , a

(1)
NN , a

(2)
11 , . . . , a

(2)
NN .
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Again we stick to the simplest possible case and assume that all entries
of A(1) are independent from all entries of A(2); i.e., we consider now
two independent Gaussian random matrices.

To put it down more formally (and in order to use our Wick for-
mula), the collection of all entries of our two matrices forms a complex
Gaussian family with covariance

(22.5) E[a
(r)
ij a

(p)
kl ] =

1

N
δilδjkδrp (i, j, k, l = 1, . . . , N ; r, p = 1, 2).

We will see that we can extend the genus expansion to this situation.
Actually, it turns out that we can just repeat the above calculations
with putting superindices p(1), . . . , p(m) ∈ {1, 2} at our matrices. The
main arguments are not affected by this.

ϕ(A(p(1)) · · ·A(p(m))) =
1

N

N∑

i(1),...,i(m)=1

E[a
(p(1))
i(1)i(2)a

(p(2))
i(2)i(3) · · · a(p(m))

i(m)i(1)]

=
1

N

N∑

i(1),...,i(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

E[a
(p(r))
i(r)i(r+1)a

(p(s))
i(s)i(s+1)]

=
1

N

N∑

i(1),...,i(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1)δp(r)p(s)
1

Nm/2

=
1

N1+m/2

∑

π∈P2(m)

N∑

i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r))δp(r)p(π(r)).

The only difference to the situation of one matrix is now the extra
factor

∏m
r=1 δp(r)p(π(r)), which just says that we have an extra condition

on our pairings π: they must pair the same matrices, i.e., no block
of π is allowed to pair A(1) with A(2). If π has this property then
its contribution will be as before, otherwise it will be zero. Let us
introduce for this the following notation.

Notation 22.21. For p = (p(1), . . . , p(m)), we put

P(p)
2 (m) := {π ∈ P2(m) | p(π(r)) = p(r) for all r = 1, . . . , m}.

Thinking of p as a coloring of the points 1, . . . , m with colors

p(1), . . . , p(m), we will also address elements from P(p)
2 (m) as pairings

which respect the coloring p.

Then we can write the final conclusion of our calculation as follows.

Proposition 22.22. Let A(1) and A(2) be two independent self-
adjoint Gaussian random matrices. Then we have for all choices of
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m ∈ N and p(1), . . . , p(m) ∈ {1, 2} that

(22.6) ϕ(A(p(1)) · · ·A(p(m))) =
∑

π∈P(p)
2 (m)

N#(γπ)−1−m/2.

Examples 22.23. Here are a few examples for m = 4.

ϕ(A(1)A(1)A(1)A(1)) = 2 ·N0 + 1 ·N−2

ϕ(A(1)A(1)A(2)A(2)) = 1 ·N0 + 0 ·N−2

ϕ(A(1)A(2)A(1)A(2)) = 0 ·N0 + 1 ·N−2

As before, the leading term for N → ∞, is given by contributions
from non-crossing pairings, but now these non-crossing pairings must
connect an A(1) with an A(1) and an A(2) with an A(2). But this is
exactly the rule for calculating mixed moments in a semicircular system
consisting of two free semicircular elements (compare Example 8.21).
Thus we see that we indeed have asymptotic free independence between
two independent Gaussian random matrices. Of course, the same is
true if we consider n independent Gaussian random matrices instead
of two – they are becoming asymptotically free.

Theorem 22.24. Let A
(1)
N , . . . , A

(n)
N be, for each N ∈ N, an in-

dependent family of selfadjoint Gaussian N × N-random matrices.

Then (A
(1)
N , . . . , A

(n)
N ) converges in distribution to a semicircular sys-

tem (s1, . . . , sn) consisting of n free standard semicircular elements. In

particular, A
(1)
N , . . . , A

(n)
N are asymptotically free.

Exercise 22.25. Let B
(1)
N , . . . , B

(n)
N be, for each N ∈ N, an inde-

pendent family of non-selfadjoint Gaussian N × N -random matrices.

Show that (B
(1)
N , . . . , B

(n)
N ) converges in ∗-distribution towards a family

(c1, . . . , cn), where each ci is circular, and c1, . . . , cn are ∗-free.
Asymptotic free independence between Gaussian random

matrices and constant matrices

Theorem 22.24, Voiculescu’s generalization of Wigner’s semicircle
law, is on one side, a great step; we do not only find the semicircular
distribution in random matrices, but the concept of free independence
itself shows up very canonically for random matrices. However, it might
appear that in the situation considered above we find free independence
only for a very restricted class of distributions, namely for semicircular
elements. In classical probability theory, this would be comparable to
saying that we understand the concept of independence for Gaussian
families. Of course, this is only a very restricted version and we should
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aim at finding more general appearances of asymptotic free indepen-
dence in the random matrix world.

Here is the next step in this direction. Instead of looking on the
relation between two Gaussian random matrices we replace now one
of them by a “constant” or ”non-random” matrix. This just means
ordinary matrices MN(C) without any randomness, where the state is
given by taking the trace tr (the expectation acts trivially).

Definition 22.26. For a given non-commutative probability space
(MN(L∞−(Ω, P )), tr⊗E) of random matrices, we address matrices from

MN(C) ∼= MN(C · 1L∞−(Ω,P )) ⊂ MN(L∞−(Ω, P ))

as constant matrices.

Of course, we expect free independence only asymptotically, so what
we really are looking at is a sequence of constant matrices DN , which
converges in distribution for N → ∞. Thus we assume the existence
of all limits

lim
N→∞

tr(Dm
N ) (m ∈ N).

Let us denote this limit by an element d in some non-commutative

probability space (A, ψ), i.e., we assume DN
distr−→ d.

Note that we have a large freedom of prescribing the wanted mo-
ments in the limit. E.g., we can take diagonal matrices for the DN

and then we can approximate any fixed, let’s say compactly supported,
probability measure on R by suitably chosen matrices.

Exercise 22.27. Let µ be a probability measure on R for which all
moments exist. Construct an explicit sequence of selfadjoint matrices
DN ∈ MN , such that the distribution of DN with respect to the trace
converges to µ, i.e., such that we have

lim
N→∞

tr[Dm
N ] =

∫

R
tmdµ(t)

for all m ∈ N.

As for the Gaussian random matrices we will usually suppress the
index N at our constant matrices to lighten the notation. But one
should keep in mind that we are talking about sequences of N × N -
matrices and that we want to take the limit N →∞ in the end.

Let us now see how far we can go with our above calculations in
such a situation where we have a Gaussian N × N -random matrix A
and a constant N × N -matrix D. What we would like to understand
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are mixed moments in A and D. We can bring this always in the form

ϕ(ADq(1)ADq(2) · · ·ADq(m))

where each Dq(i) is some power of the matrix D.
Let us now do the calculation of such alternating moments in D’s

and A’s. We will denote the entries of the matrix Dq(i) by d
(i)
ij .

ϕ(ADq(1) · · ·ADq(m))

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

E[ai(1)j(1)d
(1)
j(1)i(2)ai(2)j(2)d

(2)
j(2)i(3) · · · ai(m)j(m)d

(m)
j(m)i(1)]

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

E[ai(1)j(1)ai(2)j(2) · · · ai(m)j(m)] · d(1)
j(1)i(2)d

(2)
j(2)i(3) · · · d(m)

j(m)i(1)

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

E[ai(r)j(r)ai(s)j(s)] · d(1)
j(1)i(γ(1)) · · · d(m)

j(m)i(γ(m))

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∑

π∈P2(m)

∏

(r,s)∈π

δi(r)j(s)δi(s)j(r)
1

Nm/2
· d(1)

j(1)i(γ(1)) · · · d(m)
j(m)i(γ(m))

Again, we identify a π ∈ P2(m) with a permutation in Sm and then it
remains to understand, for such a fixed π, the expression

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∏

(r,s)∈π

δi(r)j(s)δi(s)j(r) · d(1)
j(1)i(γ(1)) · · · d(m)

j(m)i(γ(m)) =

=
N∑

i(1),...,i(m),
j(1),...,j(m)=1

m∏
r=1

δi(r)j(π(r)) · d(1)
j(1)i(γ(1))d

(2)
j(2)i(γ(2)) · · · d(m)

j(m)i(γ(m))

=
N∑

j(1),...,j(m)=1

d
(1)
j(1)j(πγ(1))d

(2)
j(2)j(πγ(2)) · · · d(m)

j(m)j(πγ(m))

Example 22.28. In order to recognize this as a quite familiar quan-
tity, let us first look at an example. Let us denote πγ by α and take
α = (1, 3, 6)(4)(2, 5) ∈ S6. Then one has

N∑

j(1),...,j(6)=1

d
(1)
j(1)j(α(1))d

(2)
j(2)j(α(2))d

(3)
j(3)j(α(3))d

(4)
j(4)j(α(4))d

(5)
j(5)j(α(5))d

(6))
j(6)j(α(6)
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=
N∑

j(1),...,j(6)=1

d
(1)
j(1)j(3)d

(2)
j(2)j(5)d

(3)
j(3)j(6)d

(4)
j(4)j(4)d

(5)
j(5)j(2)d

(6)
j(6)j(1)

=
N∑

j(1),...,j(6)=1

d
(1)
j(1)j(3)d

(3)
j(3)j(6)d

(6)
j(6)j(1) · d(2)

j(2)j(5)d
(5)
j(5)j(2) · d(4)

j(4)j(4)

= Tr[D(1)D(3)D(6)] · Tr[D(2)D(5)] · Tr[D(4)]

= N3 · tr[D(1)D(3)D(6)] · tr[D(2)D(5)] · tr[D(4)]

Note that we denoted by Tr the unnormalized trace and we have also
used the abbreviation D(i) := Dq(i). We see that the final expression is
a product of traces along the cycles of α. It is quite suggestive to use
the notation trα to denote this product.

Up to now we have introduced the notation ϕπ only for non-crossing
partitions π. The above suggests that it might be useful to define ϕα

also in the case where α is a permutation.

Notation 22.29. Let n be a fixed positive integer and let, for all
1 ≤ k ≤ n, multilinear functionals ϕk : Ak → C on an algebra A be
given. Assume that each ϕk is tracial in its k arguments in the sense
that

ϕk(A1, . . . , Ak) = ϕk(Ak, A1, . . . , Ak−1)

for all A1, . . . , Ak ∈ A. Then we define for α ∈ Sn the expression
ϕα[A1, . . . , An] for A1, . . . , An ∈ A as a product according to the cycle
decomposition of α: Denote by c1, . . . , cr the cycles of α, then we put

(22.7) ϕα[A1, . . . , An] := ϕc1 [A1, . . . , An] · · ·ϕcr [A1, . . . , An],

where, for a cycle c = (i1, i2, . . . , ip) we define

(22.8) ϕc[A1, . . . , An] := ϕp(Ai1 , . . . , Aip).

Remark 22.30. Note that one can consider partitions as permu-
tations in the following way: if π is a partition of 1, 2, . . . , n, then we
get a corresponding permutation Pπ ∈ Sn by declaring the blocks of π
to cycles of Pπ; this means that we have to choose a cyclic order on
the blocks; the canonical choice for this is of course the restriction of
the cyclic order on (1, 2, . . . , n) to the block. (The special case of this
map P for pairings was used in all our calculations in this lecture; the
restriction of this map to non-crossing partitions was also introduced
in Notation 18.24). Via this mapping our present notation ϕα is a gen-
eralization of the corresponding notation for the case of non-crossing
partitions from Definition 11.1. Since in general, there is no natural
choice for a first or last element in the cycles of a permutation, we
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have defined ϕα only for the case where the ϕk are tracial in their k
arguments.

In our context, the multilinear functionals ϕk are given by

ϕk(D1, . . . , Dk) = tr[D1 · · ·Dk].

Thus they are tracial in their k arguments and our above definition
yields the notion trα for a product of traces along the cycles of α. That
this is exactly what shows up in our above calculations can be seen
from the next lemma, whose easy proof we leave to the reader.

Lemma 22.31. Let D(1) = (d
(1)
ij )N

i,j=1, . . . , D(m) = (d
(m)
i,j )N

i,j=1 be m
N ×N-matrices and let α ∈ Sm be a permutation of m elements. Then
we have

N∑

j(1),...,j(m)=1

d
(1)
j(1)j(α(1)) · · · d(m)

j(m)j(α(m)) = N#α · trα[D(1), . . . , D(m)]

Thus we can write the conclusion of our calculation as follows.

ϕ(ADq(1) · · ·ADq(m)) =
∑

π∈P2(m)

trπγ [D
q(1), . . . , Dq(m)] ·N#(γπ)−1−m/2.

Of course, we can do the same for several independent Gaussian
random matrices, the only effect of this is to restrict the sum over π to
pairings which respect the “color” of the matrices.

Proposition 22.32. Let A(1), . . . , A(n) be n independent selfad-
joint Gaussian N × N-random matrices, and D a constant N × N-
matrix. Then we have for all m ∈ N, all q(1), . . . , q(m) ∈ N, and all
1 ≤ p(1), . . . , p(m) ≤ n that

ϕ(A(p(1))Dq(1) · · ·A(p(m))Dq(m))

=
∑

π∈P(p)
2 (m)

trπγ[D
q(1), . . . , Dq(m)] ·N#(γπ)−1−m/2.

Now let us look at the asymptotic structure of this formula. By our

assumption that DN
distr−→ d for some d ∈ (A, ψ), the quantity

trπγ [D
q(1), . . . , Dq(m)]

has a limit, namely

ψπγ[d
q(1), . . . , dq(m)].

Since the factor N#(γπ)−1−m/2 suppresses all crossing pairings in the
limit N →∞ (see Exercise 22.15) we get finally the following result.
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Proposition 22.33. Let, for each N ∈ N, A
(1)
N , . . . , A

(n)
N be n

independent selfadjoint Gaussian N ×N-random matrices, and DN be

a constant N × N-matrix such that DN
distr−→ d for some d ∈ (A, ψ).

Then we have for all m ∈ N, for all q(1), . . . , q(m) ∈ N, and for all
1 ≤ p(1), . . . , p(m) ≤ n that
(22.9)

lim
N→∞

ϕ(A
(p(1))
N D

q(1)
N · · ·A(p(m))

N D
q(m)
N ) =

∑

π∈NC
(p)
2 (m)

ψπγ[d
q(1), . . . , dq(m)],

where NC
(p)
2 (m) denotes those pairings from P(p)

2 (m) which are non-
crossing.

This resembles our formula for alternating moments in two free
families of random variables, if one of them is a semicircular system.
Recall from Lecture 14: If d1, . . . , dm, s1, . . . , sn are elements in some
non-commutative probability space (B, φ) such that s1, . . . , sn is a semi-
circular system – i.e., each si is a standard semicircular element and
s1, . . . , sn are free – and such that {d1, . . . , dm} and {s1, . . . , sn} are
free, then we have for the alternating moments (see Equation 14.5)

φ(sp(1)d1 · · · sp(m)dm) =
∑

π∈NC(m)

κπ[sp(1), . . . , sp(m)] · φK(π)[d1, . . . , dm]

=
∑

π∈NC
(p)
2 (m)

φK(π)[d1, . . . , dm](22.10)

This matches the structure of our formula (22.9), the only difference
is that we have K(π) instead of πγ. However, it turns out that for a
non-crossing pairing π this is the same; under the canonical embedding
of partitions into permutations from Remark 22.30, the complement
of a non-crossing pairing π corresponds to the permutation πγ. The
reader was asked to prove this in Exercise 18.25. (Actually, in general
the complement of π corresponds to π−1γ; for pairings, however, π
and π−1 coincide.) Here we will be satisfied with checking this for an
example.

Example 22.34. Consider the non-crossing pairing

π = {(1, 2), (3, 6), (4, 5), (7, 8)}.
Then we have

πγ = (1), (2, 6, 8), (3, 5), (7).

That this agrees indeed with the complement K(π) can be seen from
the graphical representation
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1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

Let us collect what we have observed as final conclusion in the next
theorem. Clearly, we can be a bit more general by considering not
only one sequence of constant matrices, but several of them. In all our
calculations, this just amounts to replacing powers of D by products
of the considered constant matrices.

Theorem 22.35. Let, for each N ∈ N, A
(1)
N , . . . , A

(p)
N be p inde-

pendent Gaussian random matrices and let D
(1)
N , . . . , D

(q)
N be q constant

matrices which converge in distribution for N →∞, i.e.,

D
(1)
N , . . . , D

(q)
N

distr−→ d1, . . . , dq

for some d1, . . . , dq ∈ (A, ψ). Then

A
(1)
N , . . . , A

(p)
N , D

(1)
N , . . . , D

(q)
N

distr−→ s1, . . . , sp, d1, . . . , dq,

where each si is a standard semicircular element and where s1, . . . , sp,
{d1, . . . , dq} are free. In particular, the Gaussian random matrices and
the constant matrices are asymptotically free.

These considerations show that random matrices allow asymptotic
realizations of two free variables, if one of them has a semicircular dis-
tribution. This raises, of course, the question whether we can realize
with random matrices free independence between any two distributions
without one of them being semicircular. That this is indeed the case
relies on having similar asymptotic free independence statements for
unitary random matrices instead of Gaussian ones. This will be ad-
dressed in our final lecture.





LECTURE 23

Unitary Random Matrices

Another important random matrix ensemble is given by Haar uni-
tary random matrices – these are unitary matrices equipped with the
Haar measure as corresponding probability measure. We will see that
one can get similar asymptotic freeness results for Haar unitary random
matrices as the ones which we derived for Gaussian random matrices
in the last lecture. We will also see that we have asymptotic freeness
between constant matrices which are randomly rotated by a Haar uni-
tary random matrix. (This will follow by the fact that conjugation by a
free Haar unitary can be used to make general random variables free.)

Our calculations for the unitary random matrices will be of a similar
kind as the ones from the last lecture. The main ingredient is a Wick
type formula for correlations of the entries of the Haar unitary random
matrices.

Haar unitary random matrices

Remark 23.1. A fundamental fact in abstract harmonic analysis
is that any compact group has an analogue of the Lebesgue measure,
the so-called Haar measure, which is characterized by the fact that it
is invariant under translations by group elements. This Haar measure
is finite and unique up to multiplication with a constant, thus we can
normalize it to a probability measure – the unique Haar probability
measure on the compact group. We will use this Haar probability
measure for the case of U(N) – the compact group of unitary N ×
N -matrices. It is characterized by the fact that it is a probability
measure on U(N), and invariant under multiplication from the right
and multiplication from the left with any arbitrary unitary N × N -
matrix.

Definition 23.2. We equip the compact group U(N) of unitary
N ×N -matrices with its Haar probability measure. Random matrices
distributed according to this measure will be called Haar unitary
random matrices. Thus the expectation E over this ensemble is
given by integrating with respect to the Haar probability measure.

391
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Remarks 23.3. 1) It is not directly clear from this definition how
to generate Haar unitary random matrices. An important method is
to get them by polar decomposition from Gaussian random matrices.
If X is a non-selfadjoint Gaussian N × N -random matrix, and X =
U |X| is its polar decomposition, then U is almost surely a unitary
matrix and the induced measure on U(N) by this decomposition is
the Haar measure. Another possibility is to take the eigenvectors of a
selfadjoint Gaussian random matrix. Again, they form a Haar unitary
random matrix. These remarks show that it should be possible to
transfer asymptotic freeness results from Gaussian random matrices
via polar decomposition to Haar unitary random matrices. These ideas
can indeed be worked out rigorously and this was actually the approach
of Voiculescu to unitary random matrices.

2) We prefer here another approach that is more combinatorial in
nature and fits very well with our general combinatorial methods. In
principle, we are going to imitate in the unitary case the calculations
we did for Gaussian random matrices. Clearly, we need for this the
expectations of products of entries of a Haar unitary random matrix
U . In contrast to the Gaussian case, these are now not explicitly given.
In particular, entries of U are in general not independent from each
other. However, one expects that the unitary condition U∗U = 1 =
UU∗ and the invariance of the Haar measure under multiplication from
right or from left with an arbitrary unitary matrix should allow to
determine all mixed moments of the entries of U . This is indeed the
case; the calculation, however, is not trivial and we only describe in
the following the final result, which has the flavor of the Wick formula
for the Gaussian case.

The expectation of products of entries of Haar distributed unitary
random matrices can be described in terms of a special function Wg
on the permutation group.

Notation 23.4. For α ∈ Sn and N ≥ n we put

Wg(N,α) = E
[
u11 · · ·unnu1α(1) · · · unα(n)

]
,

where U = (uij)
N
i,j=1 is a Haar unitary N ×N -random matrix. We call

Wg the Weingarten function.

This Wg(N,α) depends on the permutation α only through its con-
jugacy class. The relevance of the Weingarten function for our purposes
lies in the fact that general matrix integrals over the unitary groups
can be reduced to the knowledge of Wg. This well-known “Wick type”
formula is the starting point for our calculations.
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Lemma 23.5. Let U = (uij)
N
i,j=1 be a Haar unitary N ×N-random

matrix. Then we have for all N ≥ n and all 1 ≤ i(1), . . . , i(n) ≤ N ,
1 ≤ i′(1), . . . , i′(n) ≤ N , 1 ≤ j(1), . . . , j(n) ≤ N , 1 ≤ j′(1), . . . , j′(n) ≤
N that

E
[
ui(1)j(1) · · · ui(n)j(n)ui′(1)j′(1) · · · ui′(n)j′(n)

]

=
∑

α,β∈Sn

δi(1)i′(β(1)) · · · δi(n)i′(β(n))δj(1)j′(α(1)) · · · δj(n)j′(α(n))Wg(N, βα−1)

=
∑

α,β∈Sn

δi(β(1))i′(1) · · · δi(β(n))i′(n)δj(α(1))j′(1) · · · δj(α(n))j′(n)Wg(N, βα−1)

Remarks 23.6. 1) Note that corresponding integrals for which the
number of u’s and ū’s is different vanish, by the invariance of such an
expression under the replacement U 7→ λU , where λ ∈ C with |λ| = 1.

2) The preceding remark also shows that we have for any Haar
unitary random matrix

tr⊗ E(Uk) = 0 if k ∈ Z\{0},
and thus a Haar unitary random matrix is a Haar unitary element in
the sense of our Definition 1.12.

3) The Weingarten function is a quite complicated object. For our
purposes, however, only the asymptotics for N →∞ is important. One
knows that the leading order of Wg(N,α) in 1/N is given by 2n−#(α)
(α ∈ Sn) and increases in steps of 2

(23.1) Wg(N, α) = φ(α)N#(α)−2n + O(N#(α)−2n−2).

One also knows the function φ, however, for our purposes this knowl-
edge is not needed. Actually, we will be able to determine this φ from
our results and the fact that φ is multiplicative (i.e., φ(α) factorizes
according to the cycles of π) and we will see that it is connected with
the Möbius function on non-crossing partitions.

4) Note that we only consider unitary matrices. Similar statements
are true for orthogonal and symplectic matrices; however, the behavior
of subleading terms in the Weingarten function becomes then more
complicated (and the decrease is not in steps of 2 any more, but in
steps of 1).

The length function on permutations

In our calculations around asymptotic freeness for Haar unitary
random matrices it will be important to control the appearing orders,
which are given in terms of number of cycles of permutations. Let us
collect here some of the basic notations and properties for later use.
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Notations 23.7. Let Sn denote the symmetric group of permuta-
tions of {1, . . . , n}.

1) The product of two permutations α, β ∈ Sn is taken in the “nat-
ural” order, αβ(k) := α(β(k)) (k = 1, . . . , n).

2) The identity element of Sn will be denoted by e.
3) Usually, we write a permutation in its cycle decomposition,

α = c1 · · · ck,

where α restricted to a cycle cj = (i1, i2, . . . , ip) acts like

α(i1) = i2, α(i2) = i3, . . . , α(ip) = i1.

Cycles of length 1, i.e., fixed points, will usually be omitted when
writing a permutation as the product of its cycles.

4) A transposition is a permutation of the form α = (ij) for i 6= j,
i.e., all points with the exception of i and j are fixed points and i and
j get exchanged under α.

5) By #(α) we denote the number of cycles of the permutation α
(also counting fixed points).

6) We consider on Sn also the length function | · |, where |α|
(α ∈ Sn) is the minimal non-negative integer k such that α can be
written as product of k transpositions,

|α| := min{k ∈ N | α = τ1 · · · τk for some transpositions τ1, . . . ,τk}.
By convention, |e| = 0.

7) In the following, γn will always denote the cyclic permutation

γn = (1, 2, 3, . . . , n) ∈ Sn

of order n.

Remarks 23.8. 1) We have #γn = 1 and |γn| = n− 1.
2) | · | is clearly invariant under conjugation, i.e.,

|β−1αβ| = |α| for all α, β ∈ Sn.

This means that
|αβ| = |β(αβ)β−1| = |βα|,

i.e., | · | is tracial on Sn.

Note that | · | is actually a length function, in particular, it satisfies
a triangle inequality.

Proposition 23.9. 1) We have that |α| = 0 for α ∈ Sn if and only
if α = e.

2) We have for all α, β ∈ Sn that

(23.2) |αβ| ≤ |α|+ |β|.
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Proof. This is clear by the definition of | · |. ¤
Actually, our two quantities # and | · | are just two sides of the

same coin; this follows easily from the fact that we can control very
precisely what happens to the number of cycles when we multiply with
a transposition τ . Namely, the number of cycles will either increase by
1 or decrease by 1, corresponding to whether τ cuts a cycle into two or
glues two cycles together.

Lemma 23.10. Let α ∈ Sn be an arbitrary permutation and τ ∈ Sn

a transposition, i.e., τ = (ij) with 1 ≤ i, j ≤ n, i 6= j. Then we have

(23.3) #(ατ) =

{
#α + 1, if i and j belong to the same cycle of α

#α− 1, if i and j belong to different cycles of α

Proof. We only have to look on the cycles of α containing i and
j; the other cycles are not affected by the multiplication with τ .

Let us first assume that i and j are both contained in the same
cycle c of α, say

c = (i, i1, . . . , ik, j, j1, . . . , jl).

Then we have

c · (i, j) = (i, j1, . . . , jl)(j, i1, . . . , ik),

and thus the multiplication by τ increases the number of cycles by 1.
If one the other hand i and j are contained in different cycles, say

c1 and c2, of α,

c1c2 = (i, i1, . . . , ik)(j, j1, . . . , jl)

then we have

c1c2 · (ij) = (i, j1, . . . , jl, j, i1, . . . , ik),

and thus the multiplication by τ reduces the number of cycles by 1. ¤
Proposition 23.11. For any α ∈ Sn we have

|α| = n−#(α).

Proof. If |α| = k, then we can write α = τ1 · · · τk for transposi-
tions τ1, . . . , τk. By the above lemma, the multiplication of k transpo-
sitions can reduce the number of cycles, starting from the identity e
with n cycles, at most by k, thus we have

#(α) ≥ n− k = n− |α|.
On the other hand, we can write each cycle of length k as a product of
k − 1 transpositions,

(i1, i2, . . . , ik) = (i1, i2) · (i2, i3) · · · (ik−1, ik),
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and thus we can write any permutation α ∈ Sn with r cycles as a
product of n− r transpositions, thus

|α| ≤ n− r = n−#(α).

¤
Remark 23.12. By Proposition 23.11, the leading order (23.1) of

the Weingarten function can be written in terms of | · | as

Wg(N,α) = φ(α)N−|α|−n + O(N−|α|−n−2).

Asymptotic freeness for Haar unitary random matrices

By using Lemma 23.5 instead of the Wick formula (22.2), one can
show that one has the same kind of asymptotic freeness results for Haar
unitary random matrices as for Gaussian random matrices.

The main result is the analogue of Theorem 22.35

Theorem 23.13. Let, for each N ∈ N, U
(1)
N , . . . , U

(p)
N be p inde-

pendent Haar unitary random matrices and let D
(1)
N , . . . , D

(q)
N be q con-

stant matrices which converge in ∗-distribution (with respect to tr) for
N →∞, i.e.,

D
(1)
N , . . . , D

(q)
N

∗-distr−→ d1, . . . , dq

for some d1, . . . , dq ∈ (A, ψ). Then

U
(1)
N , . . . , U

(p)
N , D

(1)
N , . . . , D

(q)
N

∗-distr−→ u1, . . . , up, d1, . . . , dq,

where u1, . . . , up, {d1, . . . , dq} are ∗-free and where each ui is a Haar
unitary element. In particular, the Haar unitary random matrices are
asymptotically ∗-free from the constant matrices.

We will not prove the theorem in this generality, but will restrict to
a special case. In order to motivate this, let us return to our question
whether we can model by random matrices free independence between
any two distributions. The above theorem does not seem to provide an
answer to this question, since it tells us that we get asymptotic freeness
between a constant matrix (which can have an arbitrary distribution)
and a Haar unitary random matrix (which has a very special distribu-
tion). However, one has to notice that one can use conjugation by a
free Haar unitary to make general random variables free. (The reader
was asked to prove this in Exercise 5.24.) Thus, the above Theorem
23.13 contains in particular the statement that if we have constant
matrices AN and BN such that AN , BN have a limit distribution for
N → ∞, then UNANU∗

N and BN are asymptotically free. In this for-
mulation we can prescribe the limiting distributions of AN (which is
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the same as the distribution of UNANU∗
N) and of BN quite arbitrarily

and we thus get a random matrix realization for free independence be-
tween general distributions. In what follows we will focus on this latter
consequence about randomly rotated matrices. The proof of the more
general Theorem 23.13 is along the same lines and will be left to the
reader.

Note also, that we have to ask for the existence of all mixed mo-
ments in AN and BN in the limit N →∞ in order to be able to apply
Theorem 23.13 to the situation of randomly rotated matrices. One
could satisfy this by a more careful asymptotic realization of two given
distributions by a pair of diagonal constant matrices; however, as we
will see in the following section, this assumption is actually not needed.

Asymptotic freeness between randomly rotated constant
matrices

What we want to prove is the asymptotic freeness between two
sequences of constant matrices which are randomly rotated against
each other with the help of a Haar unitary random matrix. Here is the
precise statement.

Theorem 23.14. Let (AN)N∈N and (BN)N∈N be sequences of N×N-
matrices such that AN converges in distribution (with respect to tr) for
N →∞, and such that BN converges in distribution (with respect to tr)
for N →∞. Furthermore, let (UN)N∈N be a sequence of Haar unitary
N ×N-random matrices. Then, UNANU∗

N and BN are asymptotically
free for N →∞.

As in the case of Gaussian random matrices the proof of this con-
sists mainly in calculating mixed moments in our random matrices and
realizing that in the limit N → ∞ this converges to an expression
which we recognize as corresponding to a free situation.

As usual, we suppress in the following calculations the subindex N .
Thus we have to look at expressions like

tr⊗ E(UAq(1)U∗Bp(1) · · ·UAq(n)U∗Bp(n)),

involving some powers (which might also be zero) of our matrices A
and B. We will denote these powers by

A(k) = Aq(k) = (a
(k)
ij )N

i,j=1, B(k) = Bp(k) = (b
(k)
ij )N

i,j=1

and use also the abbreviation

γ := γn = (1, 2, . . . , n) ∈ Sn
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in the following. Then we have (by using Lemma 23.5 for the expecta-
tion of products of entries of our Haar unitary matrix) that

tr⊗ E
(
UA(1)U∗B(1) · · ·UA(n)U∗B(n)

)

=
1

N

N∑
i(1),...,i(n),i′(1),...,i′(n),

j(1),...,j(n),j′(1),...,j′(n)=1

E
[
ui(1)j(1)a

(1)
j(1)j′(1)ūi′(1)j′(1)b

(1)
i′(1)i(2) · · ·

· · · ui(n)j(n)a
(n)
j(n)j′(n)ui′(n)j′(n)b

(n)
i′(n)i(1)

]

=
1

N

N∑
i(1),...,i(n),i′(1),...,i′(n),

j(1),...,j(n),j′(1),...,j′(n)=1

a
(1)
j(1)j′(1) · · · a(n)

j(n)j′(n)b
(1)
i′(1)i(2) · · · b(n)

i′(n)i(1)·

· E[
ui(1)j(1)ūi′(1)j′(1) · · · ui(n)j(n)ūi′(n)j′(n)

]

=
1

N

N∑
i(1),...,i(n),i′(1),...,i′(n),

j(1),...,j(n),j′(1),...,j′(n)=1

a
(1)
j(1)j′(1) · · · a(n)

j(n)j′(n)b
(1)
i′(1)i(2) · · · b(n)

i′(n)i(1)·

·
∑

α,β∈Sn

δi(β(1))i′(1) · · · δi(β(n))i′(n)δj(α(1))j′(1) · · · δj(α(n))j′(n)Wg(N,α−1β)

=
1

N

∑

β,α∈Sn

Wg(N, α−1β)·

·
N∑

i′(1),...,i′(n),
j(1),...,j(n)=1

a
(1)
j(1)j(α(1)) · · · a(n)

j(n)j(α(n))b
(1)

i′(1)i′(β−1γ(1)) · · · b(n)

i′(n)i′(β−1γ(n))

=
1

N

∑

α,β∈Sn

Wg(N, α−1β) · Trα[A(1), . . . , A(n)] · Trβ−1γ[B
(1), . . . , B(n)]

=
∑

α,β∈Sn

Wg(N,α−1β)N#(α)+#(β−1γ)−1 · trα[A(1), . . . , A(n)]·

· trβ−1γ[B
(1), . . . , B(n)].

According to our assumption on the existence of a limit distribution
for the A’s and for the B’s, the expressions

trα[A(1), . . . , A(n)] and trβ−1γ[B
(1), . . . , B(n)]

have a limit for N → ∞. Furthermore, we know that the Weingarten
function has the asymptotics

Wg(N, α−1β) = φ(α−1β)N#(α−1β)−2n + O(N#(αβ−1)−2n−2).
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Thus the leading order in our above calculation is of the form

(23.4) N#(α−1β)+#(α)+#(β−1γ)−2n−1 = Nn−1−|α−1β|−|α|−|β−1γ|.

Now note that by the triangle inequality (23.2) we have

n− 1 = |γ| = |α(α−1β)β−1γ| ≤ |α|+ |α−1β|+ |β−1γ|,
hence the highest possible order in (23.4) is N0 and in the limit N →∞
we will remain exactly with those pairs (α, β) for which we have equality
|α−1β| + |α| + |β−1γ| = n − 1 . So we have proved the following
proposition.

Proposition 23.15. Let, for each N ∈ N, N × N-matrices

A
(1)
N , . . . , A

(n)
N and N × N-matrices B

(1)
N , . . . , B

(n)
N in (MN(C), tr) be

given such that

A
(1)
N , . . . , A

(n)
N

distr−→ a1, . . . , an

for a1, . . . , an in some probability space (A, ϕ) and such that

B
(1)
N , . . . , B

(n)
N

distr−→ b1, . . . , bn

for b1, . . . , bn in some probability space (B, ψ). Let, for each N ∈ N,
UN be a Haar unitary N ×N-random matrix. Then we have

(23.5) lim
N→∞

tr⊗ E[UNA
(1)
N U∗

NB
(1)
N · · ·UNA

(n)
N U∗

NB
(n)
N ]

=
∑

α,β∈Sn
|α−1β|+|α|+|β−1γ|=n−1

ϕα[a1, . . . , an] · ψβ−1γ[b1, . . . , bn] · φ(α−1β).

In order to come back to the proof of our Theorem 23.14, we extend,
by multilinearity, the formula (23.5) from powers to general polynomi-
als in our matrices AN and BN .

Corollary 23.16. Let (AN)N∈N be a sequence of N ×N-matrices
AN , which converges in distribution (with respect to tr) for N →∞,

AN
distr−→ a for a in some probability space (A, ϕ),

and let (BN)N∈N be a sequence of N ×N-matrices BN which converges
(with respect to tr) in distribution for N →∞,

BN
distr−→ b for b in some probability space (B, ψ).

Furthermore, let (UN)N∈N be a sequence of Haar unitary N × N-
random matrices UN . Then we have for all n ∈ N and all polynomials
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f1, . . . , fn, g1, . . . , gn that

(23.6) lim
N→∞

tr⊗ E[UNf1(AN)U∗
Ng1(BN) · · ·UNfn(AN)U∗

Ngn(BN)] =
∑

α,β∈Sn
|α−1β|+|α|+|β−1γ|=n−1

ϕα[f1(a), . . . , fn(a)]·ψβ−1γ[g1(b), . . . , gn(b)]·φ(α−1β).

This explicit formula for the limit of the mixed moments in our
randomly rotated matrices gives us directly the wanted asymptotic
freeness, if we make also the following small observation.

Lemma 23.17. Consider α, β ∈ Sn. If |α−1β|+ |α|+ |β−1γ| = n−1,
then at least one of the permutations α and β−1γ must have a fixed
point.

Proof. The assumption implies that we have |α| ≤ (n − 1)/2 or
|β−1γ| ≤ (n−1)/2. But the product of at most (n−1)/2 transpositions
can move at most n−1 elements, hence we get the existence of at least
one fixed point as asserted. ¤

Proof of Theorem 23.14. We will show the asymptotic free-
ness directly by verifying the asymptotic form of free independence, as
in Remark 22.20. So assume that we have polynomials f1, . . . , fn and
g1, . . . , gn such that for k = 1, . . . , n

(23.7) lim
N→∞

tr⊗ E[fj(UNANU∗
N)] = 0

and

(23.8) lim
N→∞

tr⊗ E[gj(BN)] = 0.

We have to show that the corresponding alternating products tend to
zero, too. Since we are working with respect to a trace, we can always
assume that our alternating product starts with an f . We have to
distinguish the cases that it ends with an f or with an g, i.e., we have
to show that

(23.9) tr⊗ E[f1(UNANU∗
N)g1(BN) · · · fn(UNANU∗

N)gn(BN)]

and

(23.10) tr⊗ E[f1(UNANU∗
N)g1(BN) · · · gn−1(BN)fn(UNANU∗

N)]

tend to zero. We will only prove (23.9). The other case is similar and
will be left to the reader, see Exercise 23.25.

In order to prove (23.9) note that

lim
N→∞

tr[fj(AN)] = lim
N→∞

tr⊗ E[fj(UNANUN)] = 0
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and

lim
N→∞

tr[gj(BN)] = lim
N→∞

tr⊗ E[gj(BN)] = 0.

Thus our assumptions (23.7) and (23.8) on the fj and gj mean that
ϕ(fj(a)) = 0 and ψ(gj(b)) = 0 for all j = 1, . . . , n. Furthermore, we
have

tr⊗ E
[
f1(UNANU∗

N)g1(BN) · · · fn(UNANU∗
N)gn(BN)

]
=

tr⊗ E
[
UNf1(AN)U∗

Ng1(BN) · · ·UNfn(AN)U∗
Ngn(BN)

]
.

But according to Corollary 23.16 we know how to calculate the limit of
the latter quantity. We have to sum in (23.6) over all pairs (α, β) in Sn

which fulfill |α−1β|+ |α|+ |β−1γ| = n− 1. Thus, by Lemma 23.17, at
least one of the partitions α and β−1γ has a fixed point, implying that at
least one of the factors ϕα[f1(a), . . . , fn(a)] and ψβ−1γ[g1(b), . . . , gn(b)]
is equal to zero. Hence the whole sum (23.6) vanishes and we get the
assertion. ¤

Remark 23.18. By our combinatorial description of freeness we
know that we can describe the mixed moments of two free sets
{a1, . . . , an}, {b1, . . . , bn} as follows:

ϕ(a1b1 · · · anbn) =
∑

π∈NC(n)

κπ[a1, . . . , an] · ϕK(π)[b1, . . . , bn]

=
∑

π,σ∈NC(n)
σ≤π

ϕσ[a1, . . . , an] · ϕK(π)[b1, . . . , bn] · µ(σ, π).(23.11)

According to formula (23.5) in Proposition 23.15 (and the knowl-
edge that these randomly rotated matrices are asymptotically free) we
have now also the formula

(23.12) ϕ(a1b1 · · · anbn)

=
∑

α,β∈Sn
|α−1β|+|α|+|β−1γ|=n−1

ϕα[a1, . . . , an] · ϕβ−1γ[b1, . . . , bn] · φ(αβ−1).

Of course, these two formulas should coincide. That this is indeed
the case, relies on the embedding P of non-crossing partitions NC(n)
into the symmetric group Sn, which we introduced in Notation 18.24.
In order to see that this mapping P transforms indeed (23.11) into
(23.12), we still have to recognize the image of NC(n) in Sn under P .
This will be done in the next section.
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Embedding of non-crossing partitions into permutations

In order to understand better the condition

|α−1β|+ |α|+ |β−1γ| = n− 1,

which appears in (23.12), we will discuss it in connection with a natural
distance function on the symmetric group.

Definition 23.19. With the help of the length function | · | we can
define a distance d on Sn in the canonical way

d(α, β) := |α−1β| = |βα−1|. (α, β ∈ Sn)

Proposition 23.20. The function d on Sn is a distance function,
i.e., we have

(1) d(α, β) = 0 if and only if α = β.
(2) d(α, β) = d(β, α) for all α, β ∈ Sn

(3) d satisfies the triangle inequality, i.e, for all α1, α2, α3 ∈ Sn

we have

d(α1, α3) ≤ d(α1, α2) + d(α2, α3).

Proof. The first and third part follow directly from the corre-
sponding properties of | · |, see Proposition 23.9. The second part
follows from the fact that the number of cycles of α agrees with the
number of cycles of α−1 ¤

One sees now that the condition |α−1β|+ |α|+ |β−1γn| = n− 1 on
α and β in (23.12) is actually the geodesic condition

d(e, α) + d(α, β) + d(β, γn) = d(e, γn).

Thus the permutations α and β appearing in (23.12) are those lying
on the same geodesic from the identity element e to the cycle γn, such
that α lies before β on this geodesic. Let us introduce some notation
to describe these properties.

Notation 23.21. 1) We denote the permutations from Sn which
lie on a geodesic from e to γn by

SNC(γn) : = {α ∈ Sn | d(e, α) + d(α, γn) = d(e, γn)}(23.13)

= {α ∈ Sn | |α|+ |α−1γn| = n− 1}.
2) For α, β ∈ SNC(γn) we say that α ≤ β if α and β lie on the same

geodesic and if α comes before β; this means d(e, α)+d(α, β) = d(α, β),
i.e.,

|α|+ |α−1β| = |β|.
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Proposition 23.22. 1) If α ∈ SNC(γn), then α−1γn, γnα
−1 ∈

SNC(γn), too.
2) The set SNC(γn) consists exactly of those α ∈ Sn for which there

exist n− 1 transpositions τ1, . . . , τn−1 ∈ Sn such that

γn = τn−1 · · · τ1 and α = τk · · · τ1

for some 1 ≤ k ≤ n− 1 (and then necessarily, k = |α|).
3) The condition α ≤ β is equivalent to: there exist n− 1 transpo-

sitions τ1, . . . , τn−1 such that γn = τn−1 · · · τ1 and

α = τk · · · τ1 and β = τl · · · τk+1 τk · · · τ1︸ ︷︷ ︸
α

for some 1 ≤ k ≤ l ≤ n− 1.,

Proof. 1) Put α̂ := α−1γn. Then we have α = γnα̂
−1, so that the

condition |α|+ |α−1γn| = n− 1 reads as |γnα̂
−1|+ |α̂| = n− 1 in terms

of α̂. The assertion follows now from Remark 23.8 that | · | is a trace,
i.e., that |γnα̂

−1| = |α̂−1γn|.
2) Let γn = τn−1 · · · τ1 and α = τk · · · τ1. Then |α| ≤ k and

|α−1γn| = |γnα−1| = |τn−1 · · · τk+1| ≤ n− k.

Since |γn| = n − 1, this implies, by the triangle inequality, that we
actually have equality in both these estimates and thus |α|+ |α−1γn| =
n− 1.

The other way around, consider an α ∈ Sn with |α|+|α−1γn| = n−1.
Let us put k := |α|, then we have

|γnα
−1| = |α−1γn| = n− k.

Thus we can write α as a product of k transpositions and γnα−1 as a
product of n− k transpositions, let’s say,

α = τk · · · τ1 and γnα−1 = τn−1 · · · τk+1.

But then we also get

γn = (γnα−1)α = τn−1 · · · τ1.

3) The third part is proved in the same way as the second one. ¤
With the relation “≤”, SNC(γn) becomes a poset, and in the light

of the correspondence between (23.11) and (23.12) we expect that this
poset should be isomorphic to NC(n). This is indeed the case, and the
isomorphism is given by our embedding

P : NC(n) → Sn

π 7→ Pπ,



404 23. UNITARY RANDOM MATRICES

which we introduced in Notation 18.24. Recall that P was defined by
declaring the blocks of π ∈ NC(n) to become cycles of Pπ ∈ Sn. The
only non-trivial point is to choose an order on the block to change it
to a cycle, and for this we just take the induced order coming from the
cycle γn = (1, 2, . . . , n) ∈ Sn.

Proposition 23.23. We have P (NC(n)) = SNC(γn) and

P : NC(n) → SNC(γn)

is an isomorphism of posets.

Proof. Note that, by Proposition 23.22, any α ∈ SNC(γn) is, for
some k and some transpositions τ1, . . . , τk, of the form τk · · · τ1γn, such
that each multiplication with a transposition reduces the length by 1,

|τl(τl−1 · · · τ1γn)| = |τl−1 · · · τ1γn)| − 1.

However, by Lemma 23.10 together with Proposition 23.11, this means
that in each multiplication step, starting at γn = (1, . . . , n), we split
exactly one of the present cycles into two. But this is exactly the way
one can produce non-crossing partitions by successively dividing blocks
into two, starting from 1n = {(1, 2, . . . , n)}. Clearly, every non-crossing
partition can arise in this way. The fact that P preserves the order is
also clear from this picture. ¤

Remarks 23.24. The bijection P between the posets NC(n) and
SNC(γn) transforms now the equation (23.11) term by term into the
equation (23.12), according to the following observations.

i) A pair σ, π in NC(n) with σ ≤ π is mapped to a pair

α := Pσ, β := Pπ

in SNC(n) with α ≤ β (i.e., |α−1β|+ |α|+ |β−1γn| = n− 1).
ii) Under this mapping, ϕσ goes over to ϕα.
iii) By Exercise 18.25 we have that

PK(π) = P−1
π γn,

and thus ϕK(π) goes over to ϕβ−1γn
.

iv) By Lemma 18.9, the interval [σ, π] is isomorphic to the interval
[0, Kπ(σ)] and thus

µ(σ, π) = µ(0n, Kπ(σ)].

Furthermore, by Exercise 18.25 we have

P−1
σ Pπ = PKπ(σ).

v) Define on NC(n) the function µ̃ by

µ̃(π) := φ(Pπ).
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Since φ is multiplicative, this µ̃ is a multiplicative function on NC.
Then (23.12) is mapped under P into the equation

ϕ(a1b1 · · · anbn) =
∑

π,σ∈NC(n)
σ≤π

ϕσ[a1, . . . , an] · ϕK(π)[b1, . . . , bn] · µ̃(Kπ(σ)).

(23.14)

Note that by running over all natural n and putting a1 = · · · = an = a
and b1 = . . . bn = b this can also, by using our boxed convolution and
denoting by Wg the formal power series corresponding to µ̃ , be written
as

Mab = Ma ? Wg ? Mb = Ma ? Mb ? Wg.

But (23.11), on the other hand, tells us that this also has to be equal
to

Mab = Ma ? Mb ? Möb.

The equality
Ma ? Mb ? Möb = Ma ? Mb ? Wg

for all moment series Ma and Mb however implies that Wg = Möb and
thus we see that leading order in the Weingarten function is given by
the Möbius function on non-crossing partitions,

φ(Pπ) = µ(0, π).

vi) Having identified φ with µ under P , we see that everything fits
together and also the third factors in our sums (23.11) and (23.12) are
getting mapped to each other,

φ(αβ−1) = φ(P−1
σ Pπ) = φ(PKπ(σ)) = µ(0n, Kπ(σ)) = µ(σ, π).

Exercises

Exercise 23.25. Prove Equation (23.10) in the proof of Theorem
23.14.
[It might be helpful to strengthen Lemma 23.17 to the statement that
α and β−1γ have together at least two fixed points.]

Exercise 23.26. Prove Theorem 23.13.





Notes and Comments

Our emphasis in these lectures is on the combinatorial side of free
probability theory. We only touch lightly the operator algebraic side
and say nothing about operator-valued free probability or free entropy.
For more information about these topics we refer to the survey articles
[84, 85, 86] and the monographs [38, 73, 87]. For applications of free
probability in wireless communications we refer to [77].

Lecture 1. The idea of “non-commutative analogues” is a recur-
ring theme in operator algebras, and goes back all the way to the
beginnings of quantum physics. The particular direction of develop-
ing a systematic free non-commutative analogue for results in classical
probability was initiated by Voiculescu’s seminal paper [78].

In this lecture (same as throughout the whole book) the framework
used most of the time is an algebraic one. The basic measure-theoretic
background invoked in the section on ∗-distributions for normal ele-
ments is covered for instance by the first two chapters of [64].

The name “Haar unitary” (cf. Definition 1.12) was coined by
Voiculescu in [81]. Haar unitaries play an important role in free prob-
ability (which is why they keep re-appearing time and again in this
book).

Lecture 2. The Toeplitz algebra is a fundamental example in op-
erator algebras, and has a very well-developed theory – see e.g. the
Chapter 7 of [24].

For the bicyclic semigroup, see e.g. the monograph [60].
Dyck paths are a fundamental example in the theory of lattice

paths, see e.g. Chapter 5 in [32] or Chapter 6 in [76]. The sequence
of Catalan numbers is also of fundamental importance in enumerative
combinatorics – see Exercise 6.19 in [76], which gives more than 50
ways of how Catalan numbers can occur in enumeration problems.

The fact that the real part of the one-sided shift S has semicircular
distribution with respect to the vacuum-state was observed in Section
4.5 of [78]. The method used there does not rely on computations of
moments, but rather on an analytic formula of Helton and Howe.

407
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For more details on Cauchy transforms and on the Stieltjes inversion
formula see e.g. [1].

Lecture 3. The general facts about C∗-algebras presented in this
lecture can be found in any introductory textbook on C∗-algebras, and
are covered for instance by the first three chapters of [49]. For more de-
tails about the reduced C∗-algebra of a discrete group see the Chapter
VII of [22]. The purpose of the lecture is to collect a few of these basic
facts, and streamline them so that the emphasis is on C∗-probability
spaces and on random variables in such spaces.

Lecture 4. The main point of this lecture is that one can define
a C∗-algebra by giving a family of generators which have a prescribed
∗-distribution (with respect to a faithful state). This fact and its coun-
terpart taking place in von Neumann algebra framework are well-known
and lie at the basis of many of the applications of free probability to
operator algebras. When one looks at freely independent generators,
these facts are contained in the reduced free product constructions from
[78].

The formula (4.9) for the number of closed walks on the free group
with two generators goes back to Kesten [41].

For more details on the rotation C∗-algebra appearing in Example
4.13, see e.g. the survey by Rieffel [62].

Lecture 5. The study of free independence was initiated in [78].
A standard reference for the derivation of the basic properties of free
independence is Section 2.5 of the monograph [87].

The last section of this lecture follows the paper [72]; for a more
axiomatic treatment see [7]. The additional example of universal prod-
uct referred to in Exercise 5.26 is called “Boolean product”, and can
be traced back to the work of Bozejko [16].

Lecture 6. Free product constructions are studied systematically
in Chapter 1 of [87]. In that approach, the construction of the free
product functional ∗i∈Iϕi is preceded by studying free products of rep-
resentations. In this lecture we use a direct approach to the construc-
tion of ∗i∈Iϕi, which follows [73].

Lecture 7. GNS is a fundamental construction in the C∗-algebra
theory. For more details see for instance Section 3.4 of [49].

In the section about free products of C∗-probability spaces we only
discuss the technically simpler case of a free product of C∗-probability
spaces (Ai, ϕi), i ∈ I, where every ϕi is a faithful trace. The construc-
tion of the C∗-reduced free product ∗i∈I(Ai, ϕi) can be done without
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these extra assumptions on the ϕi’s – see [87], Section 1.5. In [25] it is
proved that if one assumes every ϕi to be faithful (without assuming
that it is a trace), then the free product state ∗i∈Iϕi is faithful on the
reduced free product C∗-algebra ∗i∈IAi.

The important example of how free independence appears in the
framework of the full Fock space was observed in [78], where it is
shown that we a have a free analogue of the so-called “second quanti-
zation functor” from mathematical physics. For the description of this
functor see Section 3 of [78], or the presentation made in Section 2.6
of the monograph [87]. The name “semicircular system” comes from
the paper [81]. For an “incomplete” version of a semicircular system,
see [61].

Lecture 8. The free central limit theorem, Theorem 8.10, was
proved by Voiculescu [78] (under the more general assumptions as ad-
dressed in part 2 of the Remark 8.11) with the help of the R-transform
(which was introduced in that paper for that purpose). The combinato-
rial proof as presented here is due to Speicher [70] (where “non-crossing
partitions” were called “admissible partitions”) - there also the multi-
dimensional case, Theorem 8.17, was treated for the first time.

For other examples of non-commutative central limit theorems and
a general frame to treat them, see [75].

For more information about the method of moments in classical
probability theory we refer to the book of Billingsley [15], Section 30.
In particular, the two statements in part 2 of our Remark 8.4 can be
found there in Example 30.1 and Theorem 30.2.

Lecture 9. The systematic study of the lattices of non-crossing
partitions was initiated by the paper of Kreweras [43]. For a survey
of the range of problems about these lattices which are of interest to
combinatorialists, see Simion [68].

For Lukasiewicz paths see the Chapter 6 of [76], or Chapter 11 of
[48].

The enumeration formula (9.19) given without proof in Remark 9.24
appears (with proof) as Theorem 2.2 in the paper [33] by Goulden and
Jackson, in an equivalent formulation given in terms of factorizations
of a long cycle in a symmetric group. (The relevant relation between
NC(n) and the symmetric group Sn is exactly the one presented in the
last section of Lecture 23 of this book.)

The canonical factorization of intervals in NC(n) was done in [71],
where its applications to free probability were also started (cf. also the
notes to Lecture 11).
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The uniqueness of the factorization presented in Proposition 9.38
was observed by Bormashenko, Li (undergraduate students at the Uni-
versity of Waterloo) and Nica, while reviewing a preliminary version of
this book.

Lecture 10. The theory of Möbius inversion in lattices was started
by Rota in the 60’s, see the part 1 in the collection of papers [63]. The
computation of the Möbius function for the lattice NC(n) goes back
to the original paper of Kreweras [43]. A very good introduction to
Möbius inversion on posets can be found in the monograph by Stanley,
[76], Chapter 3.

Multiplicative functions on non-crossing partitions were introduced
in [71]. The functional equation in Theorem 10.23 and its application
to counting multi-chains in NC(n) are also from [71]. For a direct
bijective method of counting multi-chains in NC(n), see the paper of
Edelman [28].

Lecture 11. Multiplicative functionals on NC and the free cu-
mulants were introduced by Speicher in [71]. There the relation be-
tween free independence and the vanishing of mixed cumulants, The-
orem 11.16, was also established. For this, only a special case of the
formula for free cumulants with products as entries was needed. The
general form of that formula, Theorem 11.12, was found by Krawczyk
and Speicher [42]. Simpler proofs of that result were given in [18, 74].

Circular elements (and, more generally, circular families) were in-
troduced by Voiculescu in [81].

Proposition 11.25 on the form of cumulants of squares of even ele-
ments was proved by Nica and Speicher [55] in a more general context,
for so-called “diagonally balanced pairs”. (It is puzzling how much
more complicated such calculations get if one tries to treat non-even
distributions; even for the simple case (constant + even)2 there is no
general nice formula; for the case (constant+ semicircle)2 see [39].)

For more details on classical cumulants, in particular their defini-
tion, and relations with Fourier transform, classical independence and
partitions we refer to Chapter II, §12 of the book of Shiryaev [65].
(Note that cumulants are there addressed as semi-invariants.) The
Theorem 11.30 on classical cumulants with products as entries is due
to Leonov and Shiryaev [47]. In [45], Lehner develops a general theory
of non-commutative cumulants which allows to treat many aspects of
classical and free (and some other variants of non-commutative) cumu-
lants in a uniform way. In this paper one can also find more references
for classical cumulants.
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Exercise 11.34 for the case of pairings was essentially treated in
[17]. The general case for all partitions can be found in [46], in the
form of a relation between free and classical cumulants of a random
variable.

Lecture 12. The free convolution and the R-transform were intro-
duced by Voiculescu in [78]; in [79] he proved Theorem 12.7 by analytic
methods, relying on Toeplitz operator constructions. Our combinato-
rial approach to the R-transform via Theorem 12.5 is due to Speicher
[71].

The free Poisson distribution appeared in [70, 82].
The compound free Poisson distribution was introduced in a more

general, operator-valued, context in [73]; Proposition 12.18 and Exam-
ple 12.19 are from [53].

The “master equation” (12.20) was derived in [50].
The Kesten measures from Exercise 12.21 appeared in [41], in the

context of random walks on free groups.

Lecture 13. The general multi-dimensional limit theorem in 13.1
was proved in [70]

There exists by now a well developed theory on limit theorems
and infinitely divisible distributions for free convolution. Our presen-
tation only covers compactly supported probability measures, but by
using analytic tools around the Cauchy transform (which exists for any
probability measure on R) one can extend the definition of and most
results on free convolution to all probability measures on R; for more
details and references see [8, 10, 19].

The Levy-Khintchine type characterization of the R-transform of
infinitely divisible distributions for compactly supported distributions
was proved by Voiculescu in [79] with analytical methods; our ap-
proach using conditionally positive definite sequences and realizations
of infinitely divisible distributions on a full Fock space follows [31].

The relations between compound free Poisson distributions and in-
finitely divisible distributions, as addressed in Exercise 13.18, were
treated in [73].

For more information on free Levy processes (Exercise 13.19), we
refer to [2, 14].

Lecture 14. The multiplicative free convolution was introduced by
Voiculescu in [78]. Again, by analytical methods this can be extended
to a binary operation on all probability measure supported on the pos-
itive real line. Similar as for the additive free convolution, there exists
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an extensive literature around £, see [9, 19] for details and further
references.

Our combinatorial approach to the free multiplication, as well as
the applications to free compressions are due to Nica and Speicher [53].
The existence of the general convolution semigroup (µ¢t)t≥1 was shown
in [53]. Earlier, Bercovici and Voiculescu [11] had shown by analytic
methods that for each µ there is a real T such that µ¢t exists for
t ≥ T . In [17], the semigroup for µ = 1/2(δ−1 + δ+1) was constructed
explicitly by Fock space like constructions. For analytic properties
of the semigroup (µ¢t)t≥1 see [5], for a version for multiplicative free
convolution see [6].

The result stated in Exercise 14.22 was observed by Shlyakhtenko
in [67].

Lecture 15. The cumulants of a Haar unitary were calculated in
[73].

R-diagonal elements in the tracial case were introduced and inves-
tigated by Nica and Speicher in [55], the general case was treated in
[42, 57]. Our presentation here follows mostly [42].

The polar decomposition of a circular element, Example 15.15, was
proved by Voiculescu in [81] using random matrix approximations. An
elementary combinatorial proof was given by Banica in [3].

Polar decomposition results for R-diagonal elements with non-
trivial kernel, as addressed in Remark 15.16, were obtained in [4].

The result on the product of two free even elements and the anti-
commutator is from [56].

The result on powers of R-diagonal elements, Proposition 15.22, is
due to Haagerup and Larsen [36].

For analytic properties of R-diagonal operators, see also [27, 69].
Exercise 15.26 covers results of Oravecz [59] (on moments) and

Larsen [44] (on norm estimates) for powers of circular elements.
Haar partial isometries from Exercise 15.27 were introduced in [57].

The generalized circular element and its polar decomposition from Ex-
ercise 15.28 is due to Shlyakhtenko [66].

Lecture 16. The approach of considering multi-variable R-trans-
forms in the space Θs of power series in several non-commuting inde-
terminates was started in the paper [51] by Nica. The behavior of the
R-transform under linear transformations and its consequence stated
in Exercise 16.23 were also discussed in that paper. For the classical
probability statement which is paralleled by Exercise 16.23, see e.g. the
treatise of Feller [30], Section III.4.
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The functional equation presented in Theorem 16.15 is a general-
ization of the Theorem 10.23 from Lecture 10, using the same kind of
idea for proof. The first occurrence of this multi-variable generalization
was in a preliminary version of this book.

For the proof of the Lagrange inversion formula via Lukasiewicz
paths see e.g. [48], Chapter 11. As mentioned in the lecture, this is
very close to the proof shown here for Proposition 16.20.

Lecture 17. The operation of boxed convolution ? was introduced
by Nica and Speicher in [53]. That paper also studies the basic proper-
ties of ?, and gives a number of applications to free probability, includ-
ing Proposition 17.21, and a derivation based on ? for the Theorem
14.10 of Lecture 14.

Lecture 18. The considerations on relative Kreweras complements
used in the first section of this lecture are taken from the Section 2 of
the paper [53].

The S-transform was introduced by Voiculescu in [80]. The multi-
plicativity of the S-transform is proved there by studying a Lie group
structure on Rn, which formalizes how the first n moments of ab are
expressed in terms of the first n moments of a and of b, where a is free
from b (in some non-commutative probability space).

The “combinatorial Fourier transform” F for the operation of boxed
convolution ?1 was introduced in [54]. The proof for the multiplicativ-
ity of the S-transform which is shown in this lecture is also following
the arguments from [54].

Another proof for the multiplicativity of the S-transform is due to
Haagerup [35]; this relies on an approach to the S-transform as outlined
in Exercise 21.24.

Combinatorial interpretations of the coefficients of 1/S were pro-
vided in recent work of Dykema [26].

Lecture 19. The results presented in this lecture are from the
paper [56]. The argument shown in the section about the cancelation
phenomenon is simpler than the one originally given in [56], and avoids
the concept of “generalized complementation map on NC(n)” which is
used in that paper.

Lecture 20. R-cyclic matrices were introduced in [58], in an at-
tempt to better understand the fundamental example of matrices with
free circular/semicircular entries from [81]. The results about R-cyclic
matrices presented in the lecture are all from [58].

The paper [58] also has a part concerning freeness with amalgama-
tion, which is not covered by this book. Roughly, this goes as follows.
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The Exercise 20.24 shows that the R-cyclicity of a family A1, . . . , As is
really a property of the unital algebra C generated by {A1, . . . , As}∪D,
where D is the algebra of scalar diagonal matrices. In [58] this prop-
erty of C is identified precisely: it is the property of being free from the
algebra Md(C) of all scalar d× d matrices, with amalgamation over D.

Lecture 21. The full Fock space model for the multivariable R-
transform was introduced by Nica in [51]. This is a direct extension
of how the 1-dimensional R-transform was introduced by Voiculescu in
[79].

The idea of how to use modeling on the full Fock space for com-
puting R-transforms of free compressions appeared in the paper of
Shlyakhtenko [67]. The applications shown in that paper are Theo-
rem 14.10, and the particular case of Theorem 21.11 which is stated as
Exercise 14.22. Another particular case of Theorem 21.11 is derived via
the same method in [52]. The full statement of this theorem does not
seem to have appeared in a research paper (but all the ideas required
for the proof are present in [67]).

The approach to the S-transform outlined in Exercise 21.24 is from
the paper of Haagerup [35].

Lecture 22. Random matrices have been studied in statistics and
in physics since the influential papers of Wishart [89] and Wigner [90],
respectively. Random matrices appear nowadays in different fields of
mathematics and physics (such as combinatorics, probability theory,
statistics, operator theory, number theory, quantum field theory) or
applied fields (as electrical engineering). For more information and
references we refer to the recent surveys [29, 34, 37, 77].

For more information about Gaussian families and a proof of the
Wick formula, see [40].

The genus expansion for Gaussian random matrices is a folklore
result in physics; for a mathematical exposition see, for example, [92].

The notion of “asymptotic free independence” was introduced by
Voiculescu in [82]. Our presentation of the asymptotic freeness re-
sults for Gaussian random matrices follows essentially the ideas of
Voiculescu’s original proofs in [82, 83]; however, our presentation is
more streamlined by using the Wick formula and the genus expansion
to make contact with our combinatorial description of free indepen-
dence.

Lecture 23. For more information and references about Haar uni-
tary random matrices, we refer to [23, 29, 34].
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The asymptotic freeness results on Haar unitary random matrices
from this lecture are due to Voiculescu [81]. His proof used polar de-
composition of non-selfadjoint Gaussian random matrices to transfer
asymptotic freeness results from Gaussian to unitary matrices. The
idea of a more direct proof, by using the Wick type formula for cor-
relations of the entries, goes back to Xu [91]. Our presentation here
follows quite closely the work of Biane [13], who also considered in [12]
the embedding of non-crossing partitions into the symmetric group.

Asymptotic evaluation of integrals for classical groups were ob-
tained by Weingarten [88]. The full proof in the unitary group case,
our Wick type Lemma 23.5, can be found in [91]. The term “Wein-
garten function” was coined by Collins in [20]. We refer to [20, 21]
for more information about the Weingarten function.
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almost-rising path, 148
alternating (arguments), 252
annihilation operator

left, 114
arcsine law, 25, 213
asymptotically free, 381
averaged eigenvalue distribution, 22,

374

Bell number, 218, 222
Bernoulli variable, 205, 263
bicyclic semigroup, 30
block (of partition), 145
boxed convolution, 285

c.c.w., 246
canonical factorization, 159

uniqueness, 162
Catalan number

and Möbius function of NC, 173
as moment of semicircle, 38
counting

Dyck paths, 34
non-crossing pairings, 134
non-crossing partitions, 147

definition, 34
recurrence relation, 34

Cauchy transform, 210
definition, 40
Stieltjes inversion, 41

Cauchy-Schwarz inequality, 16, 27
centering of random variable, 80
central limit theorem

classical, 131
free, 134

multidimensional version, 139
general version, 130

chain in poset, 182
circular element, 199

generalized, 267
of radius r, 336

classical cumulant, 203
coloring, 382
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complement, see also Kreweras
complement

complementation map, 157
complex Gaussian family, 372
compound free Poisson distribution,

218
compression, 241
conditionally positive definite, 228
constant matrix, 384
convergence

in ∗-distribution, 136
in distribution, 126, 136

convolution
boxed, 285
free, 207
incomplete boxed, 307
multiplicative free, 236
of functions in poset, 166

couple in a cyclic way, 246
couple the blocks, 193
covariance matrix

of Gaussian family, 372
covers, 169
creation operator

left, 113
crossing partition, 145
C∗-algebra

functional calculus, 46
of semicircular system, 113
positive element, 48
reduced C∗-algebra of group, 52
reduced free product, 112
rotation algebra, 68
spectral mapping theorem, 47
spectrum, 45
definition, 45

cumulant
free, 185
vanishing of mixed cumulants, 195
classical, 203

Cuntz relations, 352
cycle decomposition of permutation,

394
cyclic permutation trick, 151
cyclic vector, 107

determined by moments, 127
determining sequence

of R-diagonal element, 253

of even element, 200
determining series

of R-diagonal element, 275
of R-diagonal pair, 316
of entries of R-cyclic

family of matrices, 341
matrix, 334

of even element, 294, 316
direct product of posets, 159
distance on Sn, 402
distribution

convergence in, 126, 136
joint, 60

∗-distribution
and norm, 55
convergence in, 136
in algebraic sense, 26
in analytic sense, 26
joint, 64
of classical random variable, 21
of matrix, 22
of normal element, 20

in C∗-algebra, 53
of random variable, 26
of selfadjoint element, 21

Dyck path, 32
irreducible, 35

eigenvalue distribution
of matrix, 22, 374
of random matrix, 22, 374

element, see also random variable
even element, 200

determining sequence, 200

faithful, 17
family

Gaussian, 139, 372
semicircular, 138

family of Cuntz isometries, 352
family of matrix units, 245
Fourier transform, 206
free, 76

asymptotically, 381
∗-free, 76
free binomial distribution, 213, 221
free convolution, 207
free cumulant, 185, 187

of random variables, 197
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free family of Cuntz isometries, 352
free group, 76
free independence, 76
free Levy process, 234
free limit theorem

central limit theorem, 134
multidimensional version, 139

compound Poisson limit, 218
for triangular array, 223
Poisson limit, 215

free Poisson distribution, 216
compound, 218

free product
of ∗-probability spaces, 98
of C∗-probability spaces, 111
of groups, 77
of non-commutative probability

spaces, 94
of unital algebras, 91
reduced (of C∗-algebras), 112

∗-freely independent, 75
freely independent, 74
freeness, 76

of subgroups, 76
full Fock space, 113
functional

faithful, 17
positive, 16
selfadjoint, 16
vector-state, 19
vacuum-state, 31

functional calculus in C∗-algebra, 46
Fuss-Catalan number, 161

gauge operator, 120
Gaussian family, 139, 372

complex, 372
covariance matrix, 372
Wick formula, 139, 372
moments of, 372

Gaussian random matrix
orthogonal ensemble, 376
symplectic ensemble, 376
unitary ensemble, 376
non-selfadjoint, 376
selfadjoint, 375

genus expansion, 378
moments of, 378

genus expansion, 378

geodesic, 402
GNS representation, 106
GOE, 376
graded poset, 182
group algebra, 18
grow faster than exponentially , see

also not grow faster than
exponentially

GSE, 376
GUE, 376

Haar measure, 391
(α, β)-Haar partial isometry, 267
Haar unitary, 22
Haar unitary random matrix, 391

incomplete boxed convolution, 307
independence

boolean, 74
classical, 73
concept of, 85
free, 76
tensor, 73

infinitely divisible, 227
interval in poset, 158
interval partition, 164
isometry, 29, 119

join, 154
joint
∗-distribution, 64
∗-moment, 64
distribution, 60
moment, 60

jump distribution (of compound free
Poisson), 218

jump size (of free Poisson), 216

Kreweras complement, 157
relative, 300

Lagrange inversion formula, 282
lattice, 154
left annihilation operator, 114
left creation operator, 113
left regular representation, 51
length function on Sn, 394
length of inverval in poset, 169
Levy-Khintchine formula, 232
Lukasiewicz path, 148
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Möbius function, 165, 168
of P(n), 182
of NC(n), 173

Möbius inversion, 165, 168
partial, 170

Möbius series, 292
Marchenko-Pastur distribution, 380
matrices over non-commutative

probability space, 333
matrix

constant, 384
random, 373

matrix units, 245
mean, 27
meet, 154
moment, 27

determined by moments, 127
joint, 60

∗-moment
joint, 64
of random variable, 25

moment series, 272
moment-cumulant formula, 185, 188
morphism, 19
multi-chain in poset, 161
multiplicative family

of functionals on P, 202
of functionals on NC, 186
of functions on NC, 176
of functions on NC(2), 175

multiplicative free convolution, 236

Narayana number, 154
NE-SE path, 32
non-commutative

probability space, 15
random variable, 15

non-crossing
pairing, 133
partition, 145

normal, 16
not grow faster than exponentially,

230
number

Catalan, 34
Fuss-Catalan, 161
Narayana, 154

number of
multi-chains in NC(n), 161

non-crossing pair partitions, 134
non-crossing partitions, 147

with k blocks, 154
with given block sizes, 153

pairings, 130, 218
partitions, 218, 222

odd-marked interval, 330
one-sided shift, 31
orbit, 313

p-Haar unitary, 23
pair partition, 129
pairing, 129

non-crossing, 133
parity-alternating block, 330
partial isometry, 119

(α, β)-Haar, 267
partial Möbius inversion, 170
partial summation condition, 343
partially ordered set, see also poset
partition, 128, 145

interval, 164
non-crossing, 145

path
almost-rising, 148

rise-vector, 148
Dyck, 32
Lukasiewicz, 148
NE-SE, 32

Poisson limit theorem
classical, 222
free, 215

polar decomposition, 259
of R-diagonal element, 260
of circular element, 260

poset, 154
chain in, 182

length of, 182
saturated, 182

direct product of, 159
graded, 182
interval in, 158

length of, 169
Möbius function, 168
multi-chain in, 161
rank in, 182
zeta function, 168

positive
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element of C∗-algebra, 48
functional, 16

positive definite, 228
C∗-probability space, 50
*-probability space, 16
probability space

non-commutative
topological, 356

of random matrices, 373
non-commutative, 15

matrices over, 333
process with free increments, 234
projection, 119

quarter-circular distribution, 260

R-cyclic family of matrices, 341
R-cyclic matrix, 334
R-diagonal pair, 316
R-diagonal element, 253

tracial, 253
R-transform, 272
R-transform, 211
radial series, 289
random matrix, 18, 373

Gaussian
non-selfadjoint, 376
selfadjoint, 375

Haar unitary, 391
Wishart, 380

random variable
p-Haar unitary, 23
R-diagonal, 253
circular, 199

of radius r, 336
classical, 17
compound free Poisson, 218
even, 200
free ∗-cumulant, 197
free cumulant, 197
free Poisson, 216
Haar unitary, 22
isometry, 119
matrix, 17
normal, 16
partial isometry, 119
projection, 119
quarter-circular, 260
random matrix, 18, 373

selfadjoint, 16
semicircular, 39
symmetric Bernoulli, 205, 263
unitary, 16
non-commutative, 15

random variables
R-cyclic matrix, 334
R-diagonal pair, 316
free, 76

Raney’s lemma, 151
rank in poset, 182
rate (of compound free Poisson), 218
rate (of free Poisson), 216
refinement order, see also reversed

refinement order
relative Kreweras complement, 300
representation, 19

GNS, 106
respect the coloring, 382
reversed refinement order, 154
right regular representation, 52
rise vector, 148
rotation algebra, 64, 68

S-transform, 306
saturated chain in poset, 182
Schur product, 97
self-duality of NC(n), 157
selfadjoint

functional, 16
Gaussian random matrix, 375
random variable, 16

semi-invariant, 203
semicircle law, 380
semicircular

family, 138
random variable, 39
system

C∗-algebra of, 113
definition, 112

separating vector, 108
spectral mapping theorem, 47
spectrum, 45
Stieltjes inversion formula, 41
stochastic process, 221

tensor independence, 73
Toeplitz algebra, 30
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topological non-commutative
probability space, 356

trace, 15
tracial R-diagonal element, 253
transform
F-, 305
R-, 211
R-, 272
S-, 306
Cauchy, 210
Fourier, 206

transposition, 394
triangle inequality for permutations

for distance, 402
for length function, 394

unitary, 16
p-Haar, 23
Haar, 22

unitary random matrix, see also
Haar unitary random matrix

vacuum
expectation state, 113
vector, 113

vacuum-state, 31
vanishing of mixed cumulants, 195
variance, 27
vector

cyclic, 107
separating, 108

vector-state, 19

Weingarten function, 392
asymptotics, 393, 396

Wick formula, 139, 372
analogue for unitary matrices, 392

Wigner’s semicircle law, 379, 380
Wishart matrix, 380

zeta function, 168
zeta series, 286


