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Abstract A fundamental problem in free probability theory is to understand distri-
butions of “non-commutative functions” in freely independent variables. Due to the
asymptotic freeness phenomenon, which occurs for many types of independent ran-
dom matrices, such distributions can describe the asymptotic eigenvalue distribution
of corresponding random matrix models when their dimension tends to infinity. For
non-commutative polynomials and rational functions, an algorithmic solution to this
problem is presented. It relies on suitable representations for these functions.

1 Introduction

We want to understand distributions of functions in non-commuting variables. This
phrase needs some explanations.

Firstly, let us specify what our “non-commuting variables” will usually be. We
are mostly interested in either (random) matrices of size N×N or in operators on
Hilbert spaces; one of our main points later will be that such operators correspond
usually to the limit N→ ∞ of our random matrices.

Then, which “functions” of those variables do we want to consider? Since our
variables do in general not commute, taking functions in such non-commuting
variables is not a straightforward thing. In fact, we see that this question actually
splits into two: we first need to clarify what our non-commutative functions should
be as objects in their own right and secondly, we must explain how these non-
commutative functions can be evaluated in the given collection of non-commuting
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variables. Everything which goes beyond polynomials is a non-trivial issue. Here,
we will mostly address non-commutative polynomials and non-commutative ra-
tional functions, but our hope is that in the long run we will also have access to
non-commutative analytic functions. The basis for a non-commutative analogue of
complex function theory, intended to provide some sort of multivariate functional
calculus in analogy to the well-known analytic functional calculus for a single op-
erator, was laid in the 1970’s in work of Joseph L. Taylor [33, 34]; but only recently
this was revived and is under heavy development (with motivations coming from
different directions, in particular free probability theory, but also control theory).
We refer the reader who is interested in this subject to [25]. In this article we will
not go beyond non-commutative rational functions.

Finally, we should be precise what we mean by “distribution” of our functions in
our variables. There are essentially two versions of this. In the most general setting,
we have to talk about algebraic/combinatorial distributions, which is just given by
the collection of moments of our considered random variables. In more restricted
analytic settings this might be identified with an analytic distribution, which is just
a probability measure. To make this more precise we first have to set our frame.

Definition 1. A non-commutative probability space (A ,ϕ) consists of a complex
algebra A with unit 1A and a linear functional ϕ : A → C satisfying ϕ(1A ) = 1.
Elements x ∈ A are called non-commutative random variables and ϕ is usually
addressed as expectation.

Example 1. Let us give some examples for this.

1. The classical setting is captured in this algebraic form via (L∞(Ω ,P),E), where
(Ω ,Σ ,P) is a classical probability space and E the usual expectation that is given
by E[X ] =

∫
Ω

X(ω)dP(ω).
2. A typical genuine non-commutative example is (MN(C), trN), where trN is the

normalized trace on MN(C); i.e., tr((ai j)
N
i, j=1) =

1
N ∑

N
k=1 akk.

3. The combination of the two examples leads to one of our most important exam-
ples, given by random matrices (L∞(Ω)⊗MN(C),E⊗ trN). More on this later.

Definition 2. We call (A ,ϕ) a C∗-probability space if A is a unital C∗-algebra and
ϕ is a state (i.e. ϕ(x∗x) ≥ 0 for all x ∈ A ). The former means that A consists of
bounded operators on some Hilbert space H and a state on A can, via the GNS
construction, be realized in the form ϕ(x) = 〈Ω ,xΩ〉 for some unit vector Ω ∈H .

Now we can be more precise on what we mean with “distributions” in such a
setting. In the general algebraic frame, we can only talk about the collection of mo-
ments, whereas in the analytic setting, we can identify this in the case of one self-
adjoint operator with a probability measure. Usually, it is clear which of the two we
are using; if we want to be precise, we should distinguish between “combinatorial”
and “analytic” distribution.

Definition 3. 1. Let (A ,ϕ) be a non-commutative probability space. Let (xi)i∈I
be a family of non-commutative random variables. We call the collection of all
mixed moments
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{ϕ(xi1 · · ·xik) | k ∈ N, i1, . . . , ik ∈ I}

their (joint) distribution and denote it by µ(xi)i∈I .
2. Let (A ,ϕ) be a C∗-probability space. For any x = x∗ ∈A , the distribution of x

can be identified with the unique Borel probability measure µx on the real line R
that satisfies

ϕ(xk) =
∫
R

tk dµx(t) for all k ∈ N0.

Note that in the classical multivariate case (for several commuting selfadjoint
variables x1, . . . ,xn in a C∗-setting) we can identify the combinatorial distribution
µx1,...,xn also with an analytic object, which is then just a probability measure on Rn.
In the general case, where our variables x1, . . . ,xn do not commute, this is not possi-
ble any more. It is tempting to think of the distribution µx1,...,xn in such a situation as
a “non-commutative probability measure”, but actually we have no idea what this
should mean. As a kind of analytic substitute, we will try to analyze the distribution
of (x1, . . . ,xn) by investigating the analytic distributions of all p(x1, . . . ,xn) for a
large class of selfadjoint functions of x1, . . . ,xn. Clearly, the more functions we can
deal with, the better we understand µx1,...,xn . Looking on polynomials and rational
functions is a first step in this direction.

2 Random Matrices

Random matrices are N×N matrices, whose entries are chosen randomly (according
to a prescribed distribution). Usually, one looks on sequences of such matrices for
growing N. One of the basic observations in the subject is that for N→∞ something
interesting happens. Before becoming more concrete on this, let us give a bit of
history of the subject.

2.1 Some History

1928 Wishart introduced random matrices in statistics, for finite N;
1955 Wigner introduced random matrices in physics, for a statistical

description of nuclei of heavy atoms, and investigated the N→∞

asymptotics of these “Wigner matrices”;
1967 Marchenko and Pastur described the N → ∞ asymptotics of

“Wishart matrices”;
1972 Montgomery and Dyson discovered relation between zeros of the

Riemann zeta function and eigenvalues of random matrices;
since 2000 random matrix theory developed into a central subject in mathe-

matics, with many different connections.



4 Tobias Mai and Roland Speicher

Fig. 1 The Oberwolfach workshop “Random Matrices” in 2000 was one of the first general appear-
ances of the subject in mathematics. Source: Archives of the Mathematisches Forschungsinstitut
Oberwolfach.

2.2 Wigner’s semi-circle law

As said before, random matrices are sequences of N×N matrices whose entries are
chosen randomly (according to a prescribed distribution). A fundamental observa-
tion in the subject is that many random matrices show for N → ∞ almost surely a
deterministic (and interesting) behaviour. Let us give an example for this via one
of the most important random matrix ensembles, the Wigner matrices, which were
introduced by Eugene Wigner in 1955 [38].

Definition 4. A Wigner random matrix XN = 1√
N

(
xi j
)N

i, j=1 is a real random matrix,
which is symmetric (X∗N = XN , i.e. xi j = x ji for all i, j = 1, . . . ,N) and apart from this
symmetry condition all its entries {xi j | 1≤ i≤ j ≤ N} are chosen independent and
identically distributed.

Surprisingly, the common distribution of the entries does not matter for many
results. The nicest distribution is the Gaussian (which leads to what is called “Gaus-
sian orthogonal ensemble” GOE). We will here instead produce our random matri-
ces by independent coin tosses for the entries; i.e., our common distribution for the
entries is the symmetric Bernoulli distribution 1

2 δ−1 +
1
2 δ+1. Here is one realization

(via independent coin tosses by the authors) for such a 10×10 Wigner matrix:

1√
10



1 −1 −1 1 −1 1 −1 −1 −1 1
−1 1 −1 −1 1 1 −1 1 1 1
−1 −1 1 1 −1 1 1 1 −1 1
1 −1 1 −1 1 1 −1 −1 −1 1
−1 1 −1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 1 1 −1 1 1
−1 −1 1 −1 −1 1 1 1 −1 1
−1 1 1 −1 −1 −1 1 −1 −1 −1
−1 1 −1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 −1 −1 1


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The main quantity one is usually interested in for (random) matrices are the
eigenvalues. For a matrix A∈MN(C), the information about its eigenvalues λ1, . . . ,λN
(counted with multiplicity) is encoded in the empirical eigenvalue distribution

µA =
1
N

N

∑
i=1

δλi .

Note that this probability measure is nothing but the analytical distribution of A with
respect to the normalized trace trN .

The left picture in Figure 2 shows the histogram of the 10 eigenvalues for the
above matrix. Of course, since the matrix is random, the eigenvalue distribution is
also random, so depends on the chosen realization. The right picture in Figure 2 is
the histogram of the 10 eigenvalues of another such matrix created by coin tosses.
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Fig. 2 The histogram of the 10 eigenvalues of a 10×10-Wigner matrix; for two different realiza-
tions of the matrix.

Clearly, the two pictures do not have much similarity. But now let’s do the same
for two different realizations of a 100×100 matrix, see Figure 3, and for two differ-
ent realizations of a 3000×3000 matrix, see Figure 4. (Instead of tossing coins we
preferred in those cases to use matlab for producing the matrices.)
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Fig. 3 The histogram of the 100 eigenvalues of a 100× 100-Wigner matrix; for two different
realizations of the matrix.
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Fig. 4 The histogram of the 3000 eigenvalues of a 3000×3000-Wigner matrix; for two different
realizations of the matrix.

Those histograms should make clear what we mean with the statement that for
N→ ∞ the eigenvalue distribution of a Wigner matrix converges almost surely to a
deterministic limit µ (which is called “semicircle distribution”); more precisely, we
have that µXN converges in the weak topology for probability measures to µ (and
this happens for almost all realizations of XN). This almost sure convergence is a
concrete instance of concentration phenomena in high dimensions and is usually
not too hard to prove. What is more interesting is the determination and description
of this deterministic limit µ . Let us address the question how we can describe the
limit.

2.3 Convergence in distribution to the large N limit

In the above treated one-matrix case XN , the usual classical way of describing the
almost sure limit of µXN is by a probability measure µ . Here is an alternative to this,
which we will favor in the following: instead of just describing µ , we try to find
some nice operator x on a Hilbert space H with state ϕ such that the distribution
of x with respect to ϕ coincides with µ; i.e. that µ = µx; then we can say that XN
converges to x in distribution. Note that this is like in the classical central limit
theorem where often one prefers to talk about the convergence of normalized sums
to a normal variable instead of just saying that the distribution of the normalized
sums converge to a normal distribution.

Of course, this is just language. However, in the multi-variate non-commutative
case this shift in perspective is more fundamental. So let us consider two indepen-
dent copies XN ,YN of our Wigner matrices. As those do not commute, there is no
nice analytic object describing their joint distribution (which is given by all mixed
moments with respect to trN) and hence the determination of the almost sure limit of
µXN ,YN would consist in trying to find some (combinatorial) description of the limits
of the moments. Again, we propose an alternative: try to find some nice operators
x,y on a Hilbert space with some state ϕ , such that almost surely
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lim
N→∞

trN(q(XN ,YN)) = ϕ(q(x,y))

for all monomials, and hence for all polynomials, q. Then we can say again that the
pair (XN ,YN) converges in distribution to the pair (x,y).

The question is of course how big are our chances to have such nice limiting
operators. Note that the important point here is “nice”; by the GNS-construction
we can always find some abstract operators somewhere out there with the correct
limiting moments. What we really want are operators, which can be handled and are
useful.

The surprising fact in this context is the fundamental observation of Voiculescu
[35] from 1991 that indeed limits of random matrices can often be described by
“nice” and “interesting” operators on Hilbert spaces. (Actually, those operators de-
scribe usually interesting von Neumann algebras; which was the initial starting point
of Voiculescu.)

2.4 Semi-circle law and one-sided shift

Here is again the histogram of our large Wigner matrices compared to the semicircle
density.

Fig. 5 Wigner’s Theorem
[38] says that the empirical
eigenvalue distribution of
Wigner matrices converges
to the semicircle distribution;
the Theorem of Füredi and
Komlós [15] says that we also
have almost sure convergence
of the operator norms; i.e.,
there are no outlier eigenval-
ues outside the limit spectrum.
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We claim that the real part of one of the most important Hilbert space operators
– if suitably rescaled – has actually this semicircle distribution. More precisely, in
this case our limit operator x can be written in the form x = l + l∗, where l is the
one-sided shift on the Hilbert space

⊕
n≥0Cen with orthonormal basis (en)n∈N0 ; the

action of the shift is given by the action on the basis: len = en+1 for all n ∈ N0;
this implies that the action of the adjoint operator l∗ is given by: l∗en+1 = en for all
n ∈ N0 and l∗e0 = 0. A canonical state on the algebra generated by those operators
is the vector state ϕ(a) = 〈e0,ae0〉, corresponding to the distinguished basis element
e0. It turns out (and is actually a nice exercise) that the moments of x with respect to
ϕ are given by the moments of the semicircle distribution; namely both are equal to
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the famous Catalan numbers. More concretely, odd moments are zero in both cases
and for even moments we have

ϕ(x2n) =
1

2n+1

(
2n
n

)
=

1
2π

∫ +2

−2
t2n
√

4− t2 dt.

In our language, we can now express the theorem of Wigner from 1955 [38] by
saying that XN → x. Wigner did not equate the limiting moments of the Wigner
matrices to the moments of our operator x, but just calculated them as the Catalan
numbers.

We want to point out that the eigenvalue distribution µXN gives only the averaged
behaviour over all eigenvalues and its limiting behaviour does not allow to infer
what happens to the largest eigenvalues of our Wigner matrices. Wigner’s semir-
circle law would still allow that there is one exceptional large eigenvalue which
has nothing to do with the limiting spectrum [−2,+2]. The mass 1/N of such an
eigenvalue would disappear in the limit. However, there have been strengthenings of
Wigner’s result, which also tell us that such outliers are almost surely non-existent.
More precisely, Füredi and Komlós showed in 1981 [15] that almost surely the
largest eigenvalue of XN converges to the edge of the spectrum, namely 2. Since
the operator norm of the limit operator is 2, ‖x‖ = 2, we can paraphrase the result
of Füredi and Komlós in our language as ‖XN‖→ ‖x‖ almost surely.

2.5 Several independent Wigner matrices and full Fock space

Let us now consider the multi-variate situation. Voiculescu showed in [35] that the
limit of two independent Wigner matrices XN ,YN can be described by a canonical
multi-dimensional version of the one-sided shift; namely, by two copies of the one-
sided shift in different directions. More precisely, we consider now the full Fock
space F (H ) over an underlying Hilbert space H , given by

F (H ) :=
∞⊕

n=0

H ⊗n,

where H ⊗0 is a one-dimensional Hilbert space which we write in the form H ⊗0 =
CΩ for some distinguished unit vector of norm one; Ω is usually called the vacuum
vector. On this full Fock space one has, for each f ∈H , a creation operator l( f )
given by

l( f )Ω = f , l( f ) f1⊗·· ·⊗ fn = f ⊗ f1⊗·· ·⊗ fn.

The adjoint of l( f ) is the annihilation operator l∗( f ), i.e. l( f )∗ = l∗( f ), which is
given by

l∗( f )Ω = 0, l∗( f ) f1⊗·· ·⊗ fn = 〈 f , f1〉 f2⊗ . . . fn,
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where, in particular, l∗( f ) f1 = 〈 f , f1〉Ω . Let g1 and g2 be two orthogonal unit vec-
tors in H ; then we put x := l(g1)+ l∗(g1) and y := l(g2)+ l∗(g2). Again, we have
a canonical state given by the vacuum vector Ω , ϕ(a) = 〈Ω ,aΩ〉. It turns now out
(as a special case of Voiculescu’s result [35] on asymptotic freeness) that we have
(XN ,YN)→ (x,y). Note that both x and y have with respect to ϕ a semicircular distri-
bution; the basis vectors en from the one-sided shift correspond in the present setting
to g⊗n

1 (for x) or to g⊗n
2 (for y).

Let us point out that in the same way as the one sided-shift l is one of the most
important operators in single operator theory, the creation operators l(g1) and l(g2)
are actually important (and nice) operators in the theory of operator algebras; they
are closely related to the Cuntz algebra, which is one of the most important C∗-
algebras and their real parts generate as von Neumann algebra the free group factor
L(F2), which is a main object of interest in Voiculescu’s free probability theory.

As indicated at the end of Section 1, in order to get a better understanding of the
limit distribution µx,y we will now try to deal with selfadjoint polynomials p(x,y)
in x and y. The convergence in distribution of (XN ,YN) to (x,y) implies that also
p(XN ,YN) converges to p(x,y) for all such polynomials. For example, consider the
polynomial p(x,y) = xy + yx + x2. Then the theorem of Voiculescu tells us that
p(XN ,YN)→ p(x,y). This is again something which can be visualized by comparing
the histogram of eigenvalues of p(XN ,YN) = XNYN +YNXN +X2

N with the analytic
distribution of the selfadjoint operator p(x,y) = xy+ yx+ x2; see Figure 6. At the
moment it should not be clear to the reader how to get the distribution of p(x,y)
explicitly; understanding how we can get the dotted curve in Figure 6 will be one of
the main points of the rest of this article.

Again, the behavior of the largest eigenvalue of p(XN ,YN) is not captured by
Voiculescu’s result on the convergence in distribution of (XN ,YN) to (x,y). As in the
classical case, there is some strengthening, which addresses this question. Namely,
Haagerup and Thorbjørnsen have shown in [18] that we have almost sure conver-
gence of the largest eigenvalue ‖p(XN ,YN)‖ to the corresponding limit quantity
‖p(x,y)‖. Whereas in the one-dimensional case we are only dealing with one limit-
ing probability measure, for which the edge of the spectrum is clear, in the present,
multivariate case we want now a statement covering a whole family of probability
measures µp varying with the considered polynomial p; since we have no concrete
description of those measures, there is also no explicit description of the edge of
the support of those measures in useful classical terms – in the non-commutative
setting, however, this can be easily described as the operator norm of p(x,y).

2.6 Are those limit operators x,y really useful?

Still one might have the feeling that talking about operators as the limit of the XN ,YN
instead of distributions of limits of p(XN ,YN) might be more an issue of language
than real insights. So the question remains: What are those limit operators good for?
Here are some supporting facts in favour of their relevance.
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Fig. 6 Voiculescu’s multivariate version of Wigner’s Theorem says that the empirical eigenvalue
distribution of p(XN ,YN) for two independent Wigner matrices converges to the distribution of
p(x,y); the Theorem of Haagerup and Thorbjørnsen says that we also have almost sure convergence
of the operator norms; i.e., there are no outlier eigenvalues outside the limit spectrum. Here we have
p(x,y) = xy+ yx+ x2.

Theorem 1 (Voiculescu 1991). For many random matrix models XN ,YN (like for
independent Wigner matrices) the limit operators x,y are free in the sense of
Voiculescu’s free probability theory

We are not going to explain how “freeness” is defined (for this the reader should
consult some of the references [21, 30, 31, 36] for the subject); instead we want
to emphasize that free probability theory has developed a couple of tools to work
effectively with free random variables. In particular, for x and y free we have

• free convolution: the distribution of x+ y can effectively be calculated in terms
of the distribution of x and the distribution of y;

• matrix-valued free convolution: the matrix-valued distribution of α0⊗ 1+α1⊗
x+α2⊗ y (where the coefficients α0,α1,α2 are now not just complex numbers,
but matrices of arbitrary size) can be calculated in terms of the distribution of x
and the distribution of y.

Still, this does not sound like a convincing argument in favour of x,y. What we
want is to be able to deal with arbitrary polynomials in x and y. The above tells
us that we can deal with linear polynomials in x and y, which seems to be much
less. However, the fact the we have included the matrix-valued version above has
striking consequences if we combine this with some powerful techniques of purely
algebraic nature, which we summarize here for the seek of simplicity under the name
“linearization”. The latter is of such a fundamental relevance that we will treat it in
a section of its own.
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3 Linearization and the calculation of the distribution of p(x,y)

3.1 Idea of linearization

The linearization philosophy says that we can transform a non-linear problem into
a matrix-valued linear problem. More precisely, if we want to understand a non-
linear polynomial p(x1, . . . ,xm) in non-commuting variables x1, . . . ,xm, then we can
assign to this (in a non-unique way) a linear polynomial p̂ :=α0⊗1+α1⊗x1+ · · ·+
αm⊗ xm (where we have to allow matrix-valued coefficients), such that p̂ contains
all “relevant information” about p(x1, . . . ,xm). Relevant information for us is the
spectrum of the operators, hence we would like to decide whether p(x1, . . . ,xm), and
more generally z− p(x1, . . . ,xm) for z ∈ C, is invertible. To see how such questions
on invertibility can be shifted from p(x1, . . . ,xm) to some p̂ let us consider some
examples.

Example 2. Consider first the simple polynomial p(x,y) = xy. We try to decide for
which z ∈ C the element z− xy is invertible. For this we write(

z− xy 0
0 1

)
=

(
1 x
0 1

)(
z −x
−y 1

)(
1 0
y 1

)
. (1)

Of course, z−xy is invertible if and only if the matrix on the left-hand side is invert-
ible. On the right-hand side we have a product of three matrices; however, the first
and the third are always invertible, as one has for all x and all y(

1 x
0 1

)−1

=

(
1 −x
0 1

)
,

(
1 0
y 0

)−1

=

(
1 0
−y 1

)
.

Hence z− xy is invertible if and only if the middle matrix(
z −x
−y 1

)
=

(
z 0
0 0

)
−
(

0 x
y −1

)
= Λ(z)− p̂

is invertible, where we put

Λ(z) =
(

z 0
0 0

)
and p̂ =

(
0 x
y −1

)
=

(
0 0
0 −1

)
⊗1+

(
0 1
0 0

)
⊗ x+

(
0 0
1 0

)
⊗ y.

But this p̂ is now a matrix-valued linear polynomial in x and y. Furthermore, we
infer from the identity (1) that the resolvent (z−xy)−1 appears as the (1,1)-entry of
the 2×2-matrix (Λ(z)− p̂)−1.

Example 3. Let us consider now the more interesting p(x,y) = xy+ yx+ x2 and ask
for which z ∈ C the element z− p(x,y) becomes is invertible. Again we have a
factorization into linear terms on matrix level
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0 0 1
0 1 0

=

1 y+ x
2 x

0 1 0
0 0 1

 z −x −y− x
2

−x 0 1
−y− x

2 1 0

 1 0 0
y+ x

2 1 0
x 0 1

 . (2)

As before the first and third term are triangular matrices which are always invertible;
indeed, 1 0 0

y+ x
2 1 0

x 0 1

−1

=

 1 0 0
−y− x

2 1 0
−x 0 1

 and

1 y+ x
2 x

0 1 0
0 0 1

−1

=

1 −y− x
2 −x

0 1 0
0 0 1

 .

Hence p(x,y) = xy+yx+x2 is invertible if and only if the 3×3-matrix valued linear
polynomial z −x −y− x

2
−x 0 1
−y− x

2 1 0

=

z 0 0
0 0 0
0 0 0

−
 0 x y+ x

2
x 0 −1

y+ x
2 −1 0

= Λ(z)− p̂

is invertible, where we put

Λ(z) =

z 0 0
0 0 0
0 0 0


and

p̂ =

 0 x y+ x
2

x 0 −1
y+ x

2 −1 0

=

0 0 0
0 0 −1
0 −1 0

⊗1+

0 1 1
2

1 0 0
1
2 0 0

⊗ x+

0 0 1
0 0 0
1 0 0

⊗ y.

One should note that also the value of the inverse can be read of from inverting p̂.
Namely, we can easily infer from (2) that the resolvent (z− p(x,y))−1 is the (1,1)-
entry of the 3×3-matrix (Λ(z)− p̂)−1.

All the above can now actually be generalized to any polynomial p(x,y). In view
of the previous examples, this requires, of course, to have some general rule to
produce matricial factorizations like in (1) and (2). For clarifying these relations, it
is helpful to consider a block decomposition of the considered linearization p̂ of the
form

p̂ =

(
0 u
v Q

)
, (3)

where the zero block in the upper left corner is of size 1×1 and all other blocks are
of appropriate size. In each of the previous examples, we may observe

1. that the block Q is invertible without any conditions on x and y and
2. that its inverse Q−1 satisfies p(x,y) =−uQ−1v.

Furthermore, we see that with these notations, the factorizations (1) and (2) take
now the general form
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z− p(x,y) 0

0 −Q

)
=

(
1 −uQ−1

0 1

)(
z −u
−v −Q

)(
1 0

−Q−1v 1

)
. (4)

In this abstract frame, we can repeat the computations, which were carried out in
the previous examples; this yields(

(z− p(x,y))−1 0
0 −Q−1

)
=

(
1 0

Q−1v 1

)((
z 0
0 0

)
− p̂
)−1(1 uQ−1

0 1

)
(5)

and finally

(z− p(x,y))−1 =
[
(Λ(z)− p̂)−1]

1,1 with Λ(z) =
(

z 0
0 0

)
. (6)

In fact, the validity of the factorization (4) and thus the validity of the formulas in
(5) and (6) only depend on the properties formulated in Item 1 and Item 2. This is
known under the name Schur-complement formula and it allows us to generalize our
arguments given above to any non-commutative polynomial p(x1, . . . ,xm) in finitely
many variables x1, . . . ,xm. For this, however, we need to be sure that p(x1, . . . ,xm)
enjoys a representation of the form

p(x1, . . . ,xm) =−uQ−1v (7)

with vectors u,v and an invertible matrix Q of compatible sizes, which are (affine)
linear in the variables x1, . . . ,xm. According to (3), finding such a representation of
p(x1, . . . ,xm) is all we need in order to produce a linearization p̂.

Theorem 2. Each non-commutative polynomial p(x1, . . . ,xm) admits a representa-
tion of the form (7). It can be constructed in the following way:

1. If p(x1, . . . ,xm) is a monomial of the form

p(x1, . . . ,xm) = λxi1xi2 · · ·xik

with λ ∈ C, k ≥ 1, and i1, . . . , ik ∈ {1, . . . ,m}, then

p(x1, . . . ,xm) =−
(
0 0 . . . 0 λ

)


xi1 −1
xi2 −1

. .
.
. .
.

xik −1
−1


−1

0
0
...
0
1

 .

2. If polynomials p1(x1, . . . ,xm), . . . , pk(x1, . . . ,xm) have representations

p j(x1, . . . ,xm) =−u jQ−1
j v j for j = 1, . . . ,k,

then their sum
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p(x1, . . . ,xm) := p1(x1, . . . ,xm)+ · · ·+ pk(x1, . . . ,xm)

is represented by

p(x1, . . . ,xm) =−
(
u1 . . . uk

)Q1 0
. . .

0 Qk


−1v1

...
vk

 .

3. If p is selfadjoint and
p(x1, . . . ,xm) =−uQ−1v

any representation, then

p(x1, . . . ,xm) =−
( 1

2 u v∗
)(0 Q∗

Q 0

)−1( 1
2 u∗

v

)
yields another representation, which induces via (3) a self-adjoint linearization
p̂ of p(x1, . . . ,xm).

The previous theorem constitutes the alternative approach of Anderson [2] to the
“linearization trick” of [18, 17]. Whereas the original algorithm in [18, 17] was quite
complicated and did not preserve selfadjointness, Anderson’s version streamlines
their arguments and respects also selfadjointness. Let us summarize.

Theorem 3 (Haagerup, Thorbjørnsen 2005 (+Schultz 2006); Anderson 2012).
Every polynomial p(x1, . . . ,xm) has a (non-unique) linearization

p̂ = α0⊗1+α1⊗ x1 + · · ·+αm⊗ xm,

such that

(z− p(x1, . . . ,xm))
−1 =

[
(Λ(z)− p̂)−1]

1,1, where Λ(z) =


z 0 . . . 0
0 0 . . . 0
...
...
. . .

...
0 0 . . . 0

 .

If p is selfadjoint, then p̂ can also be chosen selfadjoint (meaning that the matrices
α0,α1, . . . ,αm appearing in p̂ are all hermitian).

3.2 Calculation of the distribution of p(x,y)

Let us now come back to our problem of calculating the distribution of a selfadjoint
polynomial p(x,y) in two free variables x and y. The distribution µp of p = p(x,y) is
a probability measure and the information about such probability measures is often
encoded in certain functions: whereas in classical probability theory the function of
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our choice is usually the Fourier transform, in free probability and random matrix
theory it is more adequate to use the so-called Cauchy transform; for any Borel
probability measure µ on the real line R, this is the analytic function

Gµ : C+→ C−, z 7→
∫
R

1
z− t

dµ(t),

which is defined on the upper complex half plane C+ = {z∈C|ℑ(z)> 0} and whose
values lie all in the lower complex half plane C− = {z ∈ C|ℑ(z) < 0}. Note that
the Cauchy transform Gµ differs only by a minus sign from the so-called Stieltjes
transform Sµ :C+→C+, which is the more familiar object in random matrix theory.
It is an important fact that the measure µ can be recovered from Gµ by the so-
called Stieltjes inversion formula: for each ε > 0, we have an absolutely continuous
probability measure µε given by

dµε(t) =−
1
π

ℑ(Gµ(t + iε))dt,

and µε converges weakly to µ as ε ↘ 0, meaning that∫
R

f (t)dµ(t) = lim
ε↘0

∫
R

f (t)dµε(t)

for all bounded continuous functions f : R→ C. In this sense, knowing the Cauchy
transform of a probability measure is as good as the measure itself. Note that for the
analytic distribution µx of some selfadjoint x in a C∗-probability space (A ,ϕ) we
have Gµx(z) = ϕ((z− x)−1); we often write Gx instead of Gµx .

The method of linearization formulated in Theorem 3 now allows us to connect
the wanted Cauchy transform of p(x,y) with its selfadjoint linearization p̂ according
to

Gp(x,y)(z) = ϕ
(
(z− p(x,y))−1)= [(ϕ⊗1)

(
(Λ(z)− p̂)−1)]

1,1, (8)

where ϕ⊗1 acts entrywise as ϕ on each entry of the corresponding matrix. This puts
the original scalar-valued problem concerning p(x,y) into the setting of operator-
valued free probability, where the expression (ϕ ⊗ 1)

(
(Λ(z)− p̂)−1

)
can be in-

terpreted as (a boundary value of) the operator-valued Cauchy transform of p̂: an
operator-valued non-commutative probability space (A ,E,B) consists of a com-
plex unital algebra A with a distinguished subalgebra 1A ∈B ⊆ A and a linear
map E : A → B, called conditional expectation, which satisfies E[b] = b for all
b ∈ B and E[b1ab2] = b1E[a]b2 for all a ∈ A , b1,b2 ∈ B; this generalizes Def-
inition 1. If A and B are even C∗-algebras and if E is positive in the sense that
E[a∗a] ≥ 0 holds for each a ∈A , then (A ,E,B) is called an operator-valued C∗-
probability space, in analogy to Definition 2. In the latter case, if we take any self-
adjoint X ∈A , then the B-valued Cauchy transform of X is defined by

GX : H+(B)→H−(B), b 7→ E
[
(b−X)−1],

where the upper respectively lower half plane in B are given by
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H+(B) = {b ∈B | ℑ(b)> 0} and H−(B) = {b ∈B | ℑ(b)< 0}

with ℑ(b) = 1
2i (b− b∗). Below, we will also use the so-called h-transform of X ,

which is given by

hX : H+(B)→H+(B), b 7→ GX (b)−1−b.

Now, if N is the matrix size of the linearization p̂, then the underlying C∗-probability
space (A ,ϕ) induces via (MN(C)⊗A ,ϕ ⊗ 1,MN(C)) an operator-valued C∗-
probability space, in which we may interpret (8) as

Gp(x,y)(z) = lim
ε↘0

[
G p̂(Λε(z))

]
1,1, where Λε(z) =


z 0 . . . 0

0 iε
. . .

...
...
. . .

. . . 0
0 . . . 0 iε

 .

Note that the only reason for having introduced the limit ε↘ 0 is that we can move
the point Λ(z) to Λε(z), which clearly belongs to the natural domain H+(MN(C))
of the MN(C)-valued Cauchy transform G p̂. Hence, what we need in order to cal-
culate the distribution of the non-linear scalar polynomial p(x,y) is to calculate
the operator-valued distribution (via its operator-valued Cauchy transform) of the
operator-valued linear polynomial

p̂ = α0⊗1+α1⊗ x+α2⊗ y.

But this is exactly the realm of operator-valued free convolution, for which we have
a well-developed analytic theory [4]. We only need to note that if x and y are free,
then X = α0⊗1+α1⊗ x and Y = α2⊗ y are free in the operator-valued sense with

GX (b) =
∫
R
(b−α0− tα1)

−1 dµx(t) and GY (b) =
∫
R
(b− tα2)

−1 dµy(t).

Theorem 4 (Belinschi, Mai, Speicher, 2013). Consider an operator-valued C∗-
probability space (A ,E,B) and self-adjoint variables X ,Y ∈ A , which are free
in the operator-valued sense. Then the operator-valued Cauchy transform of X +Y
can be calculated from the operator-valued Cauchy transforms GX and GY in the
following way: there exists a unique pair of (Fréchet-)holomorphic maps ω1,ω2 :
H+(B)→H+(B), such that

GX (ω1(b)) = GY (ω2(b)) = GX+Y (b), b ∈H+(B)

holds, where the subordination functions ω1 and ω2 can easily be computed via the
following fixed point iterations on H+(B)

w 7→ hY (b+hX (w))+b for ω1(b),

w 7→ hX (b+hY (w))+b for ω2(b).
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By applying this algorithm to p(x,y) = xy+ yx+ x2 and its linearization p̂ =
X +Y with

X =

0 0 0
0 0 −1
0 −1 0

⊗1+

0 1 1
2

1 0 0
1
2 0 0

⊗ x, Y =

0 0 1
0 0 0
1 0 0

⊗ y

we produced the distribution of p(x,y) as shown in Figure 6. One should realize
that the solution of the fixed point equations has to be done by numerical methods.
Usually there is no hope of finding explicit solutions of those equations. Hence
it is important to have a description of the solution which is amenable to easily
implementable and controllable numerical methods. The fixed point equations from
Theorem 4 provide such a controllable convergent scheme.

3.3 Historical remark

After the successful implementation of the above program it was brought to our
attention by J. William Helton and Victor Vinnikov that the linearization trick is not
new at all, but a well-known idea in many other mathematical communities, known
under various names like

• Higman’s trick (“The units of group rings”: Higman 1940 [22])
• recognizable power series (automata theory: Kleene 1956 [28]; Schützenberger

1961 [32]; Fliess 1974 [14]; Berstel and Reutenauer 1984 [7])
• linearization by enlargement (ring theory: Cohn 1985 [10, 11]; Cohn and Reutenauer

1994 [12, 13]; Malcolmson 1978 [29])
• descriptor realization (control theory: Kalman 1963 [26, 27]; Ball, Malakorn, and

Groenewald 2005 [3]; Helton, McCullough, and Vinnikov 2006 [20]; Kaliuzhnyi-
Verbovetskyi and Vinnikov 2009/2012 [23, 24]; Volcic 2015 [37])

However, in most of those contexts dealing with polynomials is (in contrast to our
application in free probability) kind of trivial and the real domain for the lineariza-
tion idea are non-commutative rational functions. Since our algorithm for calculat-
ing the distribution of a polynomial in free variables is actually an algorithm on the
level of linearizations, this implies right away that all we have said before should
work equally well for non-commutative rational functions in free variables. Let us
address these issues in the next section.

4 Distributions of non-commutative rational functions in free
variables

Let us start with giving a bit of background on non-commutative rational functions
before we address their distributions.
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4.1 Non-commutative rational functions

Non-commutative rational functions were introduced by Amitsur [1] in 1966, whose
methods were developed further by Bergman [6] in 1970, and they were studied
extensively by Cohn [10, 11], Cohn and Reutenauer [12, 13], and Malcolmson [29];
see also [23, 24, 37].

Roughly speaking, non-commutative rational functions are given by rational ex-
pressions in non-commuting variables, like

r(x,y) := (4− x)−1 +(4− x)−1y
(
(4− x)− y(4− x)−1y

)−1y(4− x)−1,

where two expressions are considered to be identical, when they can be transformed
into each other by algebraic manipulations. The set of all non-commutative rational
functions forms a skew field, the so-called free field. This – although it conveys
the right idea – does not provide a rigorous definition of non-commutative rational
functions to work with, since we presuppose here the existence of the free field as
an algebraic frame, in which we can perform our algebraic manipulations. As a kind
of substitute for this we can use matrix evaluations:

• Given a non-commutative rational expression r in m variables, we denote by
dom(r) the subset of ∏

n∈N Mn(C)m consisting of all m-tuples (X1, . . . ,Xm), for
which the evaluation r(X1, . . . ,Xm) is defined; if dom(r) 6= /0, we call the rational
expression r non-degenerate.

• Two non-degenerate rational expressions r1 and r2 in m variables are considered
to be equivalent if we have

r1(X1, . . . ,Xm) = r2(X1, . . . ,Xm) for all (X1, . . . ,Xm) ∈ dom(r1)∩dom(r2).

One can show that the free field is obtained as the set of all equivalence classes of
non-degenerate rational expressions, with operations defined on representatives; we
refer the reader to [24] for more details.

In the terminology of [10, 11], the free field is more precisely the universal
skew field of fractions for the ring of non-commutative polynomials in the variables
x1, . . . ,xm. That non-commutative rational functions form a skew field means that
each r(x1, . . . ,xm) 6= 0 is invertible. However, deciding whether r(x1, . . . ,xm) = 0 is
not an easy task. For example, one has non-trivial rational identities, like

x−1
2 + x−1

2 (x−1
3 x−1

1 − x−1
2 )−1x−1

2 − (x2− x3x1)
−1 = 0.

In the commutative situation, every rational function can be written as a fraction, i.e.,
the quotient of two polynomials. This is not true any more in the non-commutative
case, and in general nested inversions are needed. So in the expression r(x,y) from
above we have a two-fold nested inversion. There are other ways of writing r(x,y),
but none of them can do without such a nested inversion. Whereas dealing with
non-commutative rational functions just on the scalar level seems to be be quite
involved, going over to a matrix-level makes things again easier. In fact, it turns out
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that any non-commutative rational function can always be realized in the form of (7),
namely in terms of matrices of polynomials, such that only one inverse is involved;
in addition, we can achieve that the polynomials in the realization are linear. More
precisely, we can always find a representation of the form

r(x1, . . . ,xm) =−uQ(x1, . . . ,xm)
−1v, (9)

where u,v are scalar row and column vectors, respectively, and Q(x1, . . . ,xm) is a
matrix of corresponding size, whose entries are affine linear polynomials in the
variables x1, . . . ,xm. For example, our r(x,y) from above can be represented as

r(x,y) =
( 1

2 0
)(−1+ 1

4 x 1
4 y

1
4 y −1+ 1

4 x

)−1( 1
2
0

)
. (10)

Such representations appear for instance in [29, 13]; in [13], where they go under
the name pure linear representations, they were used for an alternative construc-
tion of the free field. For non-commutative rational functions r(x1, . . . ,xm), which
are regular at zero (meaning that 0 ∈ dom(r) holds – at least after suitable alge-
braic manipulations), such representations are called non-commutative descriptor
realizations; see [26, 27, 3, 20, 23, 24, 19, 37].

4.2 Linearization for non-commutative rational functions

As we have learned above, a realization like in (9) is according to (3) more or less the
same as a linearization; the realization (10) of r(x,y) yields directly a linearization
r̂ of the form

r̂ =

0 1
2 0

1
2 −1+ 1

4 x 1
4 y

0 1
4 y −1+ 1

4 x

 .

Since this fits into the frame of our machinery for the calculation of distributions,
one is tempted to believe that these methods extend also to non-commutative ratio-
nal functions. This is indeed the case, but there is one hidden subtlety, which requires
clarification: representations like in (10) provide formulas for the non-commutative
rational function r(x1, . . . ,xm) and are thus valid only over the free field; it is not
clear, if those formulas remain valid under evaluation of the involved rational ex-
pression r, i.e., when the variables x1, . . . ,xm of the free field are replaced by ele-
ments from any non-commutative probability space (A ,ϕ).

Such questions were addressed in [19]. The focus there was mainly on the case
of non-commutative rational functions regular at zero, but most of the arguments
pass directly to the frame of [13]. In any case, it turns out that rational identities
are not necessarily preserved under evaluations on general algebras A . However,
it works well for the important class of stably finite algebras A (sometimes also
addressed as weakly finite): if for (X1, . . . ,Xm) ∈ A m both r(X1, . . . ,Xm) is defined
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and Q(X1, . . . ,Xm) is invertible over A , then r(X1, . . . ,Xm) = −uQ(X1, . . . ,Xm)
−1v

holds true. Notably, it was proven in [19] that, under certain conditions on the rep-
resentation (9), the invertibility of Q(X1, . . . ,Xm) is automatically given, whenever
r(X1, . . . ,Xm) is defined. It can be shown that if (A ,ϕ) is a C∗-probability space,
endowed with a faithful tracial state ϕ , then A must be stably finite.

When working in such a setting, our machinery applies. For the given r, the
linearization r̂ splits into a term X depending only on x and a term Y depending only
on y: i.e., we have r̂ = X +Y with

X =

0 1
2 0

1
2 −1 0
0 0 −1

⊗1+

0 0 0
0 1

4 0
0 0 1

4

⊗ x, Y =

0 0 0
0 0 1

4
0 1

4 0

⊗ y.

If x and y are free, then X and Y are free in the operator-valued sense, and this is
again an operator-valued free convolution problem, which can be solved as before
by applying Theorem 4. The dotted curve in Figure 7 shows the result of such a
calculation for our r from above.

4.3 Rational functions of random matrices and their limit

In Figure 7 we compare again the distribution of r(x,y) with the histogram of the
eigenvalues of r(XN ,YN) for independent Wigner matrices XN , YN . One point one
has to realize in the context of rational functions is that they cannot be evaluated on
all operators. Clearly, we should only plug in operators for which all needed inverses
make sense. So we have chosen an r which has two free semicirculars x and y in its
domain. (For example, we have to invert 4− x; this is okay, because the spectrum
of x is [−2,2].) If we approximate x,y by XN ,YN we hope that r(XN ,YN) also makes
sense, at least for sufficiently large N. This is indeed the case, but relies on the fact
that we also have good control on the largest eigenvalues. More precisely we have
the following statement [39].

Proposition 1 (Yin 2017). Consider selfadjoint random matrices XN ,YN which con-
verge to selfadjoint operators x,y in the following strong sense: for any selfadjoint
polynomial p we have almost surely

• p(XN ,YN)→ p(x,y) in distribution,
• limN→∞ ‖p(XN ,YN)‖= ‖p(x,y)‖.

Then this strong convergence remains also true for rational functions: Let r be a
selfadjoint non-commutative rational expression, such that r(x,y) is defined. Then
we have almost surely that

• r(XN ,YN) is defined eventually for large N,
• r(XN ,YN)→ r(x,y) in distribution,
• limN→∞ ‖r(XN ,YN)‖= ‖r(x,y)‖.
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Fig. 7 As in Figure 6, we consider the convergence of two independent Wigner matrices XN ,YN
to two free semicircular operators x,y. We have then also for non-commutative rational functions
r the almost sure convergence of r(XN ,YN) to r(x,y) in distribution as well as the convergence of
the operator norms - again, there are no outlier eigenvalues outside the limiting spectrum. Here we
have r(x,y) = (4− x)−1 +(4− x)−1y

(
(4− x)− y(4− x)−1y

)−1y(4− x)−1.

5 Non-selfadjoint case: Brown measure

The reader might wonder about our restriction to the case of self-adjoint polyno-
mials (or rational functions). Why not consider arbitrary polynomials in random
matrices or their limit operators, like

p(x1,x2,x3,x4) = x1x2 + x2x3 + x3x4 + x4x1?

Of course, we can (say for four independent Wigner matrices) just plug in our ran-
dom matrices and calculate their eigenvalues. Those are now not real anymore, we
will get instead a number of points in the complex plane, as in the right plot of
Figure 8.

The limit of such four independent Wigner matrices is given by four free semi-
circular elements s1,s2,s3,s4. The relevant information about p := p(s1,s2,s3,s4)
is given by its ∗-distribution, i.e., all moments in p and p∗. As p and p∗ do not
commute, this information cannot fully be captured by an analytic object, like a
probability measure on C. There is no straightforward substitute for the eigenvalue
distribution for a non-normal operator. The full information about the non-normal
operator p is given by its ∗-distribution, which is a highly non-trivial algebraic ob-
ject. There is however a projection of this non-commutative algebraic object into the
analytic classical world; namely, there exists a probability measure νp on C, which
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captures some information about the ∗-distribution of p, and which is a canonical
candidate for the limit of the eigenvalue distribution for the corresponding random
matrix approximations. This νp is was introduced by Brown [9] in 1981 for opera-
tors in finite von Neumann algebras and is called the Brown measure of the operator
p: let (M,τ) be a tracial W ∗-probability space, i.e., a non-commutative probability
space build out of a von Neumann algebra M and a faithful normal tracial state τ on
M; for any given x ∈M,

• the Fuglede-Kadison determinant ∆(x) is determined by

log(∆(x)) =
∫
R

log(t)dµ|x|(t) ∈ R∪{−∞},

where µ|x| denotes the analytic distribution of the operator |x| = (x∗x)
1
2 in the

sense of Definition 3, Item 2;
• the Brown measure νx is the compactly supported Radon probability measure on

C, which is uniquely determined by the condition∫
C

ψ(z)dνx(z) =
1

2π

∫
C

∇
2
ψ(z) log(∆(x− z))dℜ(z)dℑ(z)

for all compactly supported C∞-functions ψ : C→ C, where ∇2ψ denotes the
Laplacian of ψ , i.e., ∇2ψ = ∂ 2ψ

∂ℜ(z)2 +
∂ 2ψ

∂ℑ(z)2 .

It can be shown that the support of νx is always contained in the spectrum of the
operator x. For matrices, the Brown measure coincides with the eigenvalue distribu-
tion. For self-adjoint operators, the Brown measure is just the analytic distribution
of the operator.

It turns out that we can refine the algorithm for selfadjoint polynomials or rational
functions also to the non-selfadjoint case in order to calculate the Brown measure
of arbitrary polynomials or rational functions in free variables. The result of this
machinery for the polynomial p(s1,s2,s3,s4) from above is shown in the left plot of
Figure 8. For more facts about the Brown measure as well as for the details on how
free probability allows to calculate it, see [16, 8, 5, 19].

One problem in this context is that the construction of the Brown measure is
not continuous with respect to convergence in ∗-distribution, i.e., knowing that our
independent Wigner matrices X1,X2,X3,X4 converge in ∗-distribution to s1,s2,s3,s4
does not guarantee that the Brown measure of p(X1,X2,X3,X4) converges to the
Brown measure of p(s1,s2,s3,s4). It is an open conjecture that this is indeed the
case for all polynomials or even rational functions in independent Wigner matrices.
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Fig. 8 The right plot shows the complex eigenvalues of the polynomial p(X1,X2,X3,X4) in four
independent Wigner matrices, each of size N = 4000. The left plot shows the Brown measure of the
corresponding limit operator p(s1,s2,s3,s4), calculated with our operator-valued free probability
machinery. Here we have p(x1,x2,x3,x4) = x1x2 + x2x3 + x3x4 + x4x1.
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