
FREE PROBABILITY THEORY

ROLAND SPEICHER

Lecture 1
Free Group Factors and Freeness

1.1. Motivation: the free group factors L(Fn). Let G be a discrete
group, then one can construct out of G canonical C∗- and von Neumann
algebras by completing the left regular representation of the group G
on its group algebra CG in appropriate topologies; more precisely: let

C(G) := {
∑
finite

αgδg | αg ∈ C}

be the group algebra of G, consisting of finite linear combinations of
group elements – a group element g is here identified with the formal
symbol δg in the group algebra. If one prefers, one can identify the
group algebra CG with finitely supported functions G → C, and δg is
then what it ought to be, namely

δg(h) =

{
1, g = h

0, g 6= h
.

We can introduce an inner product on CG by declaring any two differ-
ent group elements as orthonormal

〈δg, δh〉 :=

{
1, g = h

0, g 6= h.

and extend this sesquilinearly. This gives us a corresponding l2-norm
on the group algebra

‖a‖2 :=
√
〈a, a〉, a ∈ CG,

and completing the group algebra with respect to this norm gives us a
Hilbert space

l2(G) := CG‖·‖2
.
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In the function picture this is just the usual L2-norm for complex-
valued functions on G with respect to the discrete counting measure
on G.

We can now let the group G or its group algebra CG act on this
Hilbert space l2(G) by left multiplication, i.e., this action λ is defined
through linear extension and continuity by

λ(g)δh := δgh (g, h ∈ G).

One sees quite easily that the linear mapping

λ(a) : l2(G) → l2(G)

is, for any a ∈ CG, bounded, thus our left regular representation λ
represents the group algebra of G by bounded operators on l2(G),

λ : CG→ B(l2(G)).

(In the function picture, our operators act of course as convolution
operators.) Note that we have

λ(e) = 1

and, for any g ∈ G, that

λ(g−1) = λ(g)∗

thus
λ(g)λ(g)∗ = 1 = λ(g)∗λ(g)

and our group elements are represented on l2(G) by unitary operators.
If we now take the closure of λ(CG) in B(l2(G)) with respect to the

operator norm or with respect to the strong operator topology then we
get the reduced C∗-algebra C∗

red(G) or the von Neumann algebra L(G),

C∗
red(G) := CG‖·‖ ⊂ B(l2(G))

and

L(G) := CGstrong operator topology ⊂ B(l2(G)).

(As usual, one identifies CG with λ(CG), so that the formulas don’t
look to overloaden.)

(On the C∗-algebra level there is also a full C∗-algebra C∗(G), which
is not built from the left regular representation of G, but from all
representations and which is in general different from the reduced one.
However, in our context, C∗

red(G) is the more interesting object.)
L(G) is a type II1 von Neumann algebra, which means that it has

a trace, i.e., a linear functional τ : L(G) → C which is tracial in the
sense that

τ(ab) = τ(ba) for all a, b ∈ L(G).
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This trace τ encodes the information about the neutral element e ∈ G.
It is given as the vector state associated with δe (which is defined on
all of B(l2(G))), i.e.,

τ(a) := 〈δe, aδe〉.
It is easy to see that restricted to CG this is a trace (which just states
that in a group being a left-inverse is equivalent to being a right-
inverse), and by continuity this trace property also goes over to the
C∗-algebra and the von Neumann algebra.

If G is i.c.c. (which means that for each non-trivial g ∈ G, g 6= e its
conjugacy class {hgh−1 | h ∈ G} has infinitely many elements), then
L(G) is also a factor.
L(G) for amenable i.c.c groups G is well-understood, namely, it al-

ways gives the so-called hyperfinite II1-factor R. Recent interest in von
Neumann algebra theory lies in going beyond the hyperfinite situation.

Of particular interest is the case of the free group factors L(Fn).
G = Fn is here the free group on n generators; for n ≥ 2 this is an i.c.c.
non-amenable group, and it was proved by Murray and von Neumann
that L(Fn) is not isomorphic to the hyperfinite factor R. However,
not much more was known about these free group factors, in the mid
1980’s when Voiculescu started to study their structure and for this
purpose introduced free probability theory. Of particular interest in
this context is the Free Group Isomorphism Problem: Are L(Fn) and
L(Fm) isomorphic as von Neumann algebras for n 6= m (n,m ≥ 2)?

Note in this respect, that Fn and Fm are clearly not isomorphic as
groups, and, by results of Voiculescu and Pimsner using K-theory, the
same remains true on the level of the reduced C∗-algebras. Going over
to von Neumann algebras, however, is a much bigger step and the
answer to this question is still open. Since von Neumann algebras are
very big objects, it is very hard to distinguish them, and there are not
many invariants for von Neumann algebras. The operator algebraic
side of free probability theory can be seen as trying to find new tools
(and in particular, invariants) for dealing with classes of von Neumann
algebras which are related to free group factors, or more general, von
Neumann algebras coming from free products of groups.

1.2. Going over to moments. Concretely the isomorphism problem
asks whether we can realize in an invertible way the generators of the
free group Fn as function in the generators of the free group Fm. Clearly
one cannot do this on an algebraic level (i.e., in terms of finite sums
over group elements); however, if one allows infinite sums this is not
so clear any more. Since it is quite hard to deal with infinite sums
(there is no direct way of deciding whether an infinite sum converges
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in the strong operator topology or not) it is of advantage to shift our
emphasis from the algebraic properties of operators to their moments
under the canoncial trace τ .

Definition 1. Let a1, . . . , ak be operators in our von Neumann algebra
L(Fn).
1) We call the numbers

τ(ai(1) · · · ai(l)),

for any possible choice

l ∈ N, 1 ≤ i(1), . . . , i(l) ≤ k

joint moments of a1, . . . , ak. The collection of all possible joint mo-
ments constitutes the distribution of a1, . . . , ak.
1) We call the numbers

τ(a
ε(1)
i(1) · · · a

ε(l)
i(l) ),

for any possible choice

l ∈ N, 1 ≤ i(1), . . . , i(l) ≤ k, ε(1), . . . , ε(l) ∈ {∗, 1}

(aε just means we are looking either on a1 = a or on a∗), joint ∗-
moments of a1, . . . , ak. The collection of all possible joint ∗-moments
constitutes the ∗-distribution of a1, . . . , ak.

If our operators are selfadjoint, then of course ∗-moments and mo-
ments are the same. In the general case, we can restrict to talking
about moments by going over to the real and imaginary part of our
operators (and thus doubling the number of considered operators): the
joint moments of the selfadjoint operators (a+ a∗)/2 and (a− a∗)/(2i)
contain the same information as the ∗-moments of the operator a.

It is on first sight of course not clear whether we gain any advantage
by looking on moments instead of dealing with the operators more
directly in the usual way; however, at least one should notice that we
do not have any disadvantage. It might seem that moments contain
less information than knowing how the operator acts on the Hilbert
space, but the GNS-construction allows us to reconstruct at least some
Hilbert space whenever we feel like doing so, and for all questions which
have an answer affiliated to the von Neumann algebra the concrete
form of the Hilbert space and the action of our operators there are
not really important. This is a quite simple observation, but also very
fundamental from a more philosophical point of view, since it justifies
our shift to the moments, so let us state this a bit more explicitely.
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Theorem 1. Let M be a von Neumann algebra which is generated
by generators a1, . . . , ak and let N be another von Neumann algebra
which is generated by generators b1, . . . , bk. Let ϕ be a faithful normal
state on M and let ψ be a faithful normal state on N and assume that
the ∗-distribution of the a1, . . . , ak with respect to ϕ is the same as the
∗-distribution of the b1, . . . , bk with respect to ψ – which means that

ϕ(a
ε(1)
i(1) · · · a

ε(l)
i(l) ) = ψ(b

ε(1)
i(1) · · · b

ε(l)
i(l) )

for all choices of l ∈ N, 1 ≤ i(1), . . . , i(l) ≤ k, and ε(1), . . . , ε(l) ∈
{∗, 1}. Then the mapping

ai 7→ bi (i = 1, . . . , k)

extends to a ∗-isomorphism from M to N . In particular, M and N
are isomorphic von Neumann algebras.

Recall that faithful for a state ϕ on a ∗-algebra means that ϕ(aa∗) =
0 implies that a = 0.

The main observation to be made for the proof of this theorem is
that faithfulness of the states implies that we cannot have relations
between elements on one side which we do not have on the other side.
Namely, assume p is a polynomial in 2k non-commuting variables and
that we have q := p(a1, a

∗
1, . . . , ak, a

∗
k) = 0. But then also qq∗ = 0 and

hence ϕ(qq∗) = 0. Since ϕ(qq∗) is a ∗-moment of a1, . . . , ak, it must
agree with the corresponding ∗-moment of b1, . . . , bk, hence this must
also be zero,

ψ
(
p(b1, b

∗
1, . . . , bk, b

∗
k) · p(b1, b∗1, . . . , bk, b∗k)∗

)
= 0,

which implies, by the faithfulness of ψ, that also p(b1, b
∗
1, . . . , bk, b

∗
k) = 0.

This shows that we get a ∗-isomorphism on the level of ∗-algebras, and
by approximating and normality we can extend this to the level of von
Neumann algebras.

Of course, if we are using a state which is not faithful then we will
loose some information about our operators by just looking on mo-
ments. However, for a faithful normal state, each question about a
von Neumann algebra can in principle be decided by the knowledge of
the joint ∗-moments of generators of the von Neumann algebra. Note
that in many situations there are canonical faithful states around. In
particular, in the group von Neumann algebra case L(G), the canoni-
cal trace τ is always faithful (and normal). The big question of course
is whether the fact that moments determine in principle the structure
of von Neumann algebras can be translated into concrete statements.
In general, it is probably quite hard to get some concrete information
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out of the moments, however, in the context of free group factors this
approach will turn out to be quite succesful.

1.3. Free products on the level of moments. We want to under-
stand the structure of L(Fn). It is tempting to do this by reduction,
in a similar way as one can understand the group Fn as a free product
of n copies of F1 = Z. Let us concentrate on the reduction step, i.e.,
consider the free group G = Fm+n, as generated by m + n free gen-
erators f1, . . . , fm+n. Then G contains in a canonical way G1 := Fm

(generated by the first m generators f1, . . . , fm) and G2 := Fn (gen-
erated by the last n generators fm+1, . . . , fm+n) as subgroups and G
is built out of G1 and G2 as a free product. This means that we can
write any element from G as a product of factors coming alternatingly
from G1 and from G2 and furthermore, we have no non-trivial relations
betweens elements from G1 and elements from G2. (A trivial relation
comes from the fact that both G1 and G2 contain the neutral element
e of G.) To put it more formally, the fact that G1 and G2 are free as
subgroups in G means that

g1 ∈ Gi(1), . . . , gk ∈ Gi(k)

with
i(j) 6= i(j + 1) for all j = 1, . . . , k − 1

and
gj 6= e for all j = 1, . . . , k

implies that
g1 · · · gk 6= e.

We can extend the same algebraic description to the group algebras:
we have that CG1 and CG2 are free as subalgebras in CG in the sense
that

a1 ∈ CGi(1), . . . , ak ∈ CGi(k)

with
i(j) 6= i(j + 1) for all j = 1, . . . , k − 1

and
aj does not contain e (j = 1, . . . , k)

implies that
a1 · · · ak does not contain e.

Here it is of course clear, what it means that a ∈ CG does not contain
the identity e, namely such an element is a finite sum

a =
∑

finitely many g ∈ G

αgδg (αg ∈ C)
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and not containing e just means that αe = 0.
Next we would like to extend the same freeness property to the object

in which we are really interested, namely to the von Neumann algebra
L(G). We should have the same kind of description as above, however,
now we have to deal with infinite sums, so that the statement “contain-
ing e” is getting problematic. In particular, for the product a1 · · · ak

multiplying infinite sums and rearranging terms is not so straighfor-
ward. However, let us notice that we can use our canonical trace τ
on CG for checking whether an element contains the identity or not;
namely for

a =
∑

g

αgδg ∈ CG

we have

τ(a) = αe

{
= 0, if a does not contain e

6= 0, if a contains e
.

Since the trace is continuous with respect to the strong operator topol-
ogy, it is clear how we should rewrite the above freeness characterization
in a form which is also valid for the von Neumann algebras:

a1 ∈ L(Gi(1)), . . . , ak ∈ L(Gi(k))

with
i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k)

and
τ(aj) = 0 for all j = 1, . . . , k

implies that
τ(a1 . . . ak) = 0.

1.4. Voiculescu’s concept of “freeness”. What the above tells us
is that in the case of a free group factor there are quite a lot of very
specific relations between the joint moments of the generators of the
algebra (just reflecting the fact that we are dealing with free products
of groups). If we take the idea serious to understand a von Neumann
algebra by understanding moments of its generators, then it is surely
important to understand these relations better, hoping that this will
in the end yield a better understanding of the free group factors them-
selves. That was exactly the starting point of Voiculescu. The above
observation was his motivation for defining the concept of “freeness”,
formalizing abstractly the specific relations which we have observed to
be satisfied for moments in the free group factors.

However, in order to understand these relations better, it is not re-
ally important (and maybe even distracting) that these moments are
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coming from a trace in a von Neumann algebra, so let us forget about
this specific frame for the moment and make the definiton in the more
general frame of unital algebras and unital linear functionals.

Definition 2. Let A be a unital algebra and

ϕ : A → C with ϕ(1) = 1

a unital linear functional on A. We say that unital subalgebras

A1, . . . ,An ⊂ A
are free if we have that

ϕ(a1 · · · ak) = 0

whenever we have

a1 ∈ Ai(1), . . . , ak ∈ Ai(k)

such that neighboring elements in a1 · · · ak are from different subalge-
bras, i.e.,

i(j) 6= i(j + 1) for all j = 1, . . . , k − 1

and such that all aj are centered under ϕ, i.e.,

ϕ(aj) = 0 for all j = 1, . . . , k.

Clearly, this freeness concept is not purely algebraic anymore, but
it depends on the choosen ϕ, thus to be precise we should talk about
freeness with respect to ϕ. Subalgebras which are free with respect so
one functional, are usually not free with respect to some other func-
tional. However, in most cases there is a fixed canonical ϕ and all our
statements will then be with respect to this fixed functional.

Note that we have defined freeness for subalgebras of A, but it will
also be useful to be able to talk about freeness of elements of A (as e.g.
freeness of the generators of our free group factors) or, more general,
freeness of subsets of A. This can easily be achieved by going over to
the generated algebras.

Definition 3. Let A be a unital algebra and

ϕ : A → C with ϕ(1) = 1

a unital linear functional on A. We say that subsets

X1, . . . ,Xn ⊂ A
are free if we have that A1, . . . ,An are free, where Ai is the unital sub-
algebra generated by all elements from Xi. If instead of the generated
algebras we take the generated ∗-algebras (in the case where A is a
∗-algebra), then we say that X1, . . . ,Xn are ∗-free.
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In the case that a set consists only of one element we will also speak
about freeness of that element instead of freeness of the set. Thus, e.g.,
a1, a2, {b1, b2} free means that the three sets {a1}, {a2}, {b1, b2} are free

Of course, for selfadjoint elements ∗-free means the same as just
free. For general non-selfadjoint elements, however, being ∗-free is a
stronger condition than just being free. Again we can reduce ∗-freeness
to freeness by taking the real and imaginary part. Note, however, that
this forces us to go over from elements to sets; namely we have, e.g.,
that

a and b are ∗-free ⇔ {a+ a∗

2
,
a− a∗

2i
} and {b+ b∗

2
,
b− b∗

2i
} are free

In the context of our interest in von Neumann algebras it might
look more meaningful to define freeness of elements or subsets by free-
ness of their generated von Neumann algebras. However, the following
statement shows that this does not make a difference.

Proposition 1. Let M be a von Neumann algebra with a normal state
ϕ. Let A1, . . . ,An be unital ∗-subalgebras of M and denote by Mi :=
vN(Ai) the generated von Neumann subalgebras of M. Then, freeness
of A1, . . . ,An is equivalent to freeness of M1, . . . ,Mn.

1.5. The probabilistic perspective. Free probability deals with un-
derstanding the concept of freeness as defined above, and it should
by now be clear what “free” means in this context. But what about
“probability”. We mainly want to understand special operators on
Hilbert spaces and not some kind of random variables. However, we
have shifted our emphasis to values of products of our operators under
some state and it is no accident that we call these numbers “moments”,
in analogy with the concept of moments of random variables (which are
expectation values of products of the random variables). We are not
doing some kind of probability theory in the genuine classical sense,
but we see our main objects in analogy with corresponding objects
from classical probability theory. In particular, the notion of freeness
has some kind of probabilistic flavour. Namely, what freeness comes
down in the end are prescriptions how to calculate joint moments of our
operators out of the knowledge of the moments of the single operators.
But that is comparable to the fundamendal notion of “independence”
from classical probability theory - this is defined by the requirement
that expectations of products of independent random variables factor-
ize into the product of the expectations of those variables.

Note that our freeness for subalgebras corresponds to the indepen-
dence of σ-algebras, whereas the freeness of elements corresponds to
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the independence of random variables. Going a step further in this
direction, one usually makes the following definitions.

Definition 4. A pair (A, ϕ) consisting of a unital algebra and a uni-
tal linear functional is called a non-commutative probability space and
elements from A are addressed as non-commutative random variables.
If M is a von Neumann algebra and ϕ is a faithful normal state then
we call the pair (M, ϕ) a W ∗-probability space.

Note that “non-commutative” here is used in the sense “not neces-
sarily commutative”, thus allows also commutative situations as special
cases. Often, we will just drop the adjective “non-commutative” and
talk about probability spaces and random variables. If a probability
space (A, ϕ) is fixed, then freeness of random variables is of course with
respect to this ϕ.

It might not be clear at this point whether this analogy with no-
tions from classical probability theory is just a superficial similarity or
whether it will lead to some deeper insight to consider our freeness con-
cept in analogy with the probabilistic independence concept. In any
case it was the point of view which Voiculescu took when he set out to
investigate the notion of freeness. And as it has turned out since then,
the analogy really goes very deep.

1.6. First properties of freeness. We will now forget for a while
that our motivation comes from special von Neumann algebras and we
just want to see whether there is something interesting to say about
our notion of freeness.

We mentioned above that freeness is a rule for calculating mixed
moments of random variables out of the moments of single random
variables. Let us elaborate a bit on this.

Proposition 2. Let (B, ϕ) be a non-commutative probability space and
consider unital subalgebras A1, . . . ,An ⊂ B which are free. Denote by
A the unital subalgebra of B which is generated by all A1, . . . ,An. Then
the restriction of ϕ to A is determined by the restrictions of ϕ to each
of the Ai (for i = 1, . . . , n) and by the freeness condition.

The proof of this proposition goes by reduction of the length of con-
sidered words and by going over to centered elements. Namely, what
one has to show is how to calculate ϕ on words of the form a1 · · · ak

where the aj come alternatingly from different subalgebras Ai(j). In
order to be able to use the freeness condition we go over to the cor-
responding product in centered variables, on which ϕ is zero by the
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definiton of freeness, i.e.,

ϕ
(
(a1 − ϕ(a1)1) · · · (ak − ϕ(ak)1)

)
= 0.

(Note that here it is important that ϕ(1) = 1.) However, if we multiply
out the terms on the left hand side we get the term ϕ(a1 · · · ak), in
which we are interested, and many other terms, which are of smaller
length and thus can be treated by induction hypothesis. This gives a
recursive way of reducing ϕ(a1 · · · ak) to the knowledge of ϕ restricted
to the subalgebras.

In order to get a feeling for this it is instructive to look at some
simple examples.

Assume that a and b are free random variables. Then the above says
that the freeness condition allows us to express any mixed moment in
a’s and b’s in terms of moments of a and moments of b.

The simplest case of a mixed moment is ϕ(ab). The above proof tells
us that we should look at

ϕ
(
(a− ϕ(a)1)(b− ϕ(b)1)

)
= 0,

which we can multiply out to

ϕ(ab)− ϕ(a)ϕ(b)− ϕ(a)ϕ(b) + ϕ(a)ϕ(b) = 0,

and thus
ϕ(ab) = ϕ(a)ϕ(b).

In the same way we get

ϕ(aba) = ϕ(aa)ϕ(b).

This does not look too exciting and in particular is the same as for
classical random variables. However, looking on ϕ(abab) is getting
more interesting. Multiplying out

ϕ
(
(a− ϕ(a)1)(b− ϕ(b)1)(a− ϕ(a)1)(b− ϕ(b)1)

)
= 0

and using the above formulas for ϕ(ab) and ϕ(aba) yields after some
work and some cancellations that

ϕ(abab) = ϕ(aa)ϕ(b)ϕ(b) + ϕ(a)ϕ(a)ϕ(bb)− ϕ(a)ϕ(b)ϕ(a)ϕ(b).

This shows us a few things. First of all, this is different from the
result for classical independent random variables (where a and b would
commute and the expectation would just factorize into ϕ(abab) =
ϕ(aa)ϕ(bb)). Thus, freeness might be analogous to independence, but
it is really different and not some kind of non-commutative generaliza-
tion.

Even worse (or better), it is a structure which is genuinely non-
commutative and only trivial shadows of it can be seen in the classical
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commutative world. Namely, assume that we have classical (let’s say,
real) random variables a and b which are free (with respect to the
functional given by taking the expectation). Then on one hand we
have the above formula for ϕ(abab), but, since a and b commute, we
also have

ϕ(abab) = ϕ(aabb) = ϕ(aa)ϕ(bb).

(The later is the formula ϕ(ãb̃) = ϕ(ã)ϕ(b̃) for free variables applied to

ã = aa and b̃ = bb.) Taken together this yields

ϕ(aa)ϕ(bb) = ϕ(aa)ϕ(b)ϕ(b) + ϕ(a)ϕ(a)ϕ(bb)− ϕ(a)ϕ(b)ϕ(a)ϕ(b)

or

ϕ
(
(a−ϕ(a)1)2

)
·ϕ

(
(b−ϕ(b)1)2

)
=

(
ϕ(a2)−ϕ(a)2

)
·
(
ϕ(b2)−ϕ(b2)

)
= 0.

Thus one of the factors must vanish, let’s say

ϕ
(
(a− ϕ(a)1)2

)
= 0.

However, this says that the variance of a is zero, which means that a is
almost surely a constant. Thus classical random variables can only be
free if at least one of them is a constant. This is not a very interesting
situation and thus non-trivial features of freeness cannot be seen in the
classical world. In particular, it is a wrong idea to think of freeness as
some special kind of dependence between classical random variables.

Another thing we see from the above calculation of ϕ(abab) is that
the complexity of the result and even more the complexity of the cal-
culation grows very fast with the length of the considered word. The
expression for ϕ(ababab) in terms of moments of a and moments of b
consists of 12, the expression for ϕ(abababab) of 55 terms; we have an
exponential growth in the length. Just based on the recursive proce-
dure as outlined above one does not see a clear structure for the final
formulas. Thus, freeness allows in principle to calculate all mixed mo-
ments, but the concrete structure of these formulas is not obvious at
all and one of the basic tasks of free probability theory is to reveal this.
More about this in the second lecture.

One fundamental simple statement about free variables which we can
make right now is the fact that constants are free from everything. The
above considerations showed this essentially on the level of moments of
short length, but the full proof for all moments is also very easy.

Proposition 3. Let (A, ϕ) be a probability space. Then the unital
subalgebra C1 of “constants” is free from any unital subalgebra B ⊂ A.

The proof of this is easy. Namely consider words a1 · · · ak as in the
defintion of freeness; we have to show that ϕ applied to them is zero.
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However, k = 1 is trivial, and if k ≥ 2 then at least one of the aj must
be from C1, i.e., it must be of the form aj = α1 for some α ∈ C. Since
the aj are centered, we necessarily have α = 0, and then of course
a1 · · · ak = 0.

1.7. How can freeness help to investigate von Neumann alge-
bras. Before we start in the next lecture a more systematic investiga-
tion of the structure of freeness, I want to come back for the moment
to the question what freeness can offer for the investigation of von
Neumann algebras. Typically we are looking on von Neumann alge-
bras generated by some generators; these are in general not selfadjoint
(e.g., in the group case they are unitary operators), thus all relevant
information is contained in their ∗-moments. Let us recall the following

• von Neumann algebras with the same joint ∗-moments for the
generators are isomorphic

• if the generators are ∗-free then mixed ∗-moments are deter-
mined by ∗-moments of each generator

Thus if we have some operators a1, . . . , an on one side and some other
operators b1, . . . , bn on the other side such that

• a1, . . . , an are ∗-free and b1, . . . , bn are ∗-free
• the ∗-moments of ai are the same as the ∗-moments of bi, for

each i = 1, . . . , n

then we know that all mixed ∗-moments in the a’s are the same as
the corresponding mixed ∗-moments in the b’s and thus (provided our
states are faithful and normal, as they usually are) the von Neumann
algebra generated by the a’s is isomorphic to the von Neumann algebra
generated by the b’s. Let’s take for the a’s the generators of the free
goup factor L(Fn). Can we find any b’s with the same ∗-moments, but
different from the usual representation, so that they can tell us some-
thing about L(Fn) which we do not see so easily in the representation
given by the a’s?

We want to relax a bit the above question by noticing that we can
give up on the quite restrictive condition that the ∗-moments of ai

must be the same as the ∗-moments of bi. Namely, it is enough that
the von Neumann algebra Mi generated by ai is isomorphic (via an
isomorphism which preserves the state) to the von Neumann algebra
Ni generated by bi. If we have this, then this isomorphism gives us an
element b̃i inNi which has the same moments as ai and which generates
Ni. If we have this for each i, then the von Neumann algebra generated
by all ai is isomorphic to the von Neumann algebra generated by all b̃i,
because we still have freeness between b̃1, . . . , b̃n. However, the latter
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algebra is isomorphic to the von Neumann algebra generated by the
b1, . . . , bn.

Theorem 2. Consider a W ∗-probability space (M, ϕ) and a W ∗-probability
space (N , ψ). Assume that we have vN-subalgebras M1, . . . ,Mn ⊂M
which generate M and vN-subalgebras N1, . . . ,Nn ⊂ N which gener-
ate N . Assume that M1, . . . ,Mn are free with respect to ϕ and that
N1, . . . ,Nn are free with respect to ψ. Furthermore, we assume that,
for each i = 1, . . . , n, we have a ∗-isomorphism

κi : Mi → Ni with ψ ◦ κi = ϕ.

Then the von Neumann algebras M and N are isomorphic.

In many cases the generator of Mi or Ni is either unitary or self-
adjoint, in which case it is quite easy to find out whether we have a
κi as asked for in the theorem. More general, if Mi is generated by a
normal operator, then it is commutative, thus of the form L∞(µ) for
some measure µ and all such L∞(µ) for which the measure µ has no
atoms can be transformed into each other by a κi as above. Essentially
this tells us that the exact form of each generator is not so important
as long as they are non-atomic and we have freeness between them. An
example of this will be presented in the next section.

1.8. Fock space models for freeness and free group factors.
We present now another situation where we also have in a canonical
way free operators and which plays quite an important role in many
investigations in free probability theory. This situation is quite close to
the original definition of the free group factors, however, it realizes these
von Neumann algebras in a bit different way - by replacing the unitary
generators of L(Fn) by sums of creation and annihilation operators on
full Fock spaces (which are selfadjoint operators).

Definition 5. Let H be a Hilbert space.
1) The full Fock space over H is the Hilbert space

F(H) := CΩ⊕
⊕
n≥1

H⊗n,

where Ω is a distinguished unit vector, called vacuum.
2) The vacuum expectation is the state

B(F(H)) → C
a 7→ 〈Ω, aΩ〉.

3) For each f ∈ H we define the (left) annihilation operator l∗(f) and
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the (left) creation operator l(f) by

l∗(f)Ω = 0

l∗(f)f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn

and
l(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn.

One should note that in different communities there are different
conventions in regard of whether we denote by l(f) the annihilation
or the creation operator. We follow here the usual operator theoretic
convention which is also used by Voiculescu; namely the creation op-
erator is an isometry, thus it is the basic object denoted by l whereas
the annihilation operator is a co-isometry, getting the ∗. (Let me point
out that in most of my papers I use the opposite convention, following
the physical or quantum probabilistic dictum that a creation operator
should get a ∗.) In any case, l∗(f) is the adjoint of l(f) for any f ∈ H.

Direct checking shows now that orthogonality of vectors in H trans-
lates into freeness between the corresponding creation and annihilation
operators.

Proposition 4. LetH1 andH2 be Hilbert spaces and putH := H1⊕H2.
Consider the full Fock space over H and the corresponding creation and
annihilation operators l(f) and l∗(f) for f ∈ H. Put

A1 := ∗-algebra generated by l(f) for all f ∈ H1

and
A2 := ∗-algebra generated by l(f) for all f ∈ H2

Then A1 and A2 are free with respect to the vacuum expectation.

The key observation for the proof of this is that for a1, a2, . . . , an

which come alternatingly from A1 and A2 and for which 〈Ω, aiΩ〉 = 0
for all i = 1, . . . , n, we have

a1a2 · · · anΩ = a1Ω⊗ a2Ω⊗ · · · ⊗ anΩ.

Note that the vacuum expectation state is not faithful for these al-
gebras, as we have, e.g., that

〈Ω, l(f)l∗(f)Ω〉 = 0.

So this realization of freeness might look not so useful for finding
realizations of the free group factors. However, if we go over to sums
of creation and annihilation operators, things are getting much nicer.
Namely, for f ∈ H, let us denote

ω(f) := l(f) + l∗(f).
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Then, as above, ω(f) and ω(g) are free with respect to the vacuum
expectation if f and g are orthogonal. But in this case the vacuum
expectation state is also faithful on the von Neumann algebra generated
by ω(f) and ω(g). Furthermore, each ω(f) has with respect to the
vacuum expectation a very nice distribution (which is one of the basic
distributions in free probability theory and about which we will say
more in Lecture 2); in particular, the von Neumann algebra generated
by a single ω(f) is non-atomic and thus isomorphic to the von Neumann
algebra generated by a canonical generator of a free group factor. Thus
the considerations from the last section apply and we get the following
realization of free group factors.

Proposition 5. Let H be an n-dimensional Hilbert space with or-
thonormal basis f1, . . . , fn. Then the von Neumann algebra generated
by ω(f1), . . . , ω(fn) in B(F(H)) is isomorphic to the free group factor
L(Fn).

Creation and annihilation operators provide a very important tool
for dealing with many aspects of freeness and Fock space constructions
were used by Voiculescu for proving many of the basic properties of
freeness. I will concentrate more on combinatorial approaches to free-
ness in the next lecture, but at least I want to point out that in many
cases there are alternate routes relying on creation and annihilation
operators.

Let me finally remark that the above realization of the free group
factors in terms of sums of creation and annihilation operators instead
of the free group generators is, though quite nice, still quite close to
the original one and does not provide any direct new insight into the
structure of the free group factors. In order to gain more insight, we
first have to understand freeness better, allowing us to obtain really
non-standard realizations.
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