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ROLAND SPEICHER

Lecture 3
Freeness and Random Matrices

Now we come to one of the most important and inspiring realizations
of freeness. Up to now we have realized free random variables by gener-
ators of the free group factors or by creation and annihilation operators
on full Fock spaces. This was not very surprising because our definition
of freeness was modelled according to such situations. But there are
objects from a quite different mathematical universe which are also free
(at least asymptotically) - namely special random matrices. Random
matrices are matrices whose entries are classical random variables, and
the most important class of random matrices are the so-called Gauss-
ian random matrices where the entries are classical Gaussian random
variables. So, before we talk about random matrices, we should recall
the basic properties of Gaussian random variables.

3.1. Moments of Gaussian random variables.

Definition 1. 1) A family of classical real-valued random variables
x1, . . . , xn is a (centered) Gaussian family if its joint density is of a
Gaussian form, i.e.,

(2π)−n/2(detC)−1/2 exp{−1

2
〈x,C−1x〉},

where x = (x1, . . . , xn) and C is a non-singular n × n-matrix (which
determines the covariance of the variables). This is equivalent to saying
that the characteristic function of x is of the form

E[ei〈t,x〉] = exp{−1

2
〈t, Ct〉}.

This latter form also makes sense if C is singular.
2) A family of classical complex-valued random variables z1, . . . , zn is
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a Gaussian family if the collection of their real and imaginary parts
<z1,=z1, . . . ,<zn,=zn is a Gaussian family.

The prescription of the density allows to calculate all moments in
Gaussian variables by calculating integrals with respect to the above
density. Clearly, all mixed moments are determined by the covariance
matrix C, which is just the information about all second moments of
our variables.

A much better way of describing such a Gaussian family (at least
for our purposes) is, however, by saying very concretely how higher
moments are determined in terms of second moments. This is a very
nice combinatorial description, which usually goes under the name of
Wick formula: We have for all k ∈ N and all 1 ≤ i(1), . . . , i(k) ≤ n
that

E[xi(1) · · ·xi(k)] =
∑

π∈P2(k)

∏
(r,s)∈π

E[xi(r)xi(s)].

Here, P2 denotes the set of all pairings of the set {1, . . . , k}. Of course,
if k is odd, there is no such pairing at all and an odd moment of a
Gaussian family has to vanish.

Note that this Wick formula is very similar to the formula for mo-
ments of semi-circular elements; in the latter case we just have non-
crossing pairings instead of all pairings. This is one justification of the
claim that semi-circular elements are the free counterparts of Gaussian
random variables.

It’s probably the best to illustrate the above Wick formula by a few
examples. For k = 2, it’s just the tautology

E[xi(1)xi(2)] = E[xi(1)xi(2)],

whereas for k = 4 it says

E[xi(1)xi(2)xi(3)xi(4)] = E[xi(1)xi(2)] · E[xi(3)xi(4)]

+ E[xi(1)xi(3)] · E[xi(2)xi(4)]

+ E[xi(1)xi(4)] · E[xi(2)xi(3)]

And because it’s so nice, here is also the case k = 6:

E[xi(1)xi(2)xi(3)xi(4)xi(5)xi(6)] = E[xi(1)xi(2)] · E[xi(3)xi(4)] · E[xi(5)xi(6)]

+ E[xi(1)xi(2)] · E[xi(3)xi(5)] · E[xi(4)xi(6)]

+ E[xi(1)xi(2)] · E[xi(3)xi(6)] · E[xi(4)xi(5)]

+ E[xi(1)xi(3)] · E[xi(2)xi(4)] · E[xi(5)xi(6)]

+ E[xi(1)xi(3)] · E[xi(2)xi(5)] · E[xi(4)xi(6)]

+ E[xi(1)xi(3)] · E[xi(2)xi(6)] · E[xi(4)xi(5)]
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+ E[xi(1)xi(4)] · E[xi(2)xi(3)] · E[xi(5)xi(6)]

+ E[xi(1)xi(4)] · E[xi(2)xi(5)] · E[xi(3)xi(6)]

+ E[xi(1)xi(4)] · E[xi(2)xi(6)] · E[xi(3)xi(5)]

+ E[xi(1)xi(5)] · E[xi(2)xi(3)] · E[xi(4)xi(6)]

+ E[xi(1)xi(5)] · E[xi(2)xi(4)] · E[xi(3)xi(6)]

+ E[xi(1)xi(5)] · E[xi(2)xi(6)] · E[xi(3)xi(4)]

+ E[xi(1)xi(6)] · E[xi(2)xi(3)] · E[xi(4)xi(5)]

+ E[xi(1)xi(6)] · E[xi(2)xi(4)] · E[xi(3)xi(5)]

+ E[xi(1)xi(6)] · E[xi(2)xi(5)] · E[xi(3)xi(4)]

Note that this Wick formula gives us the even moments of one Gauss-
ian random variable x in the form

E[x2m] = #P2(2m) · σ2m,

where σ2 = E[x2]. Clearly, the number of pairings of 2m elements is
given by (2m− 1) · (2m− 3) · · · 5 · 3 · 1 (which one usually denotes by
(2m− 1)!!). You might like to check that indeed

1√
2πσ2

∫
R
t2m exp{− t2

2σ2
}dt = (2m− 1)!! · σ2m.

In many cases it is quite useful to have this combinatorial interpretation
for the moments of Gaussians.

If the covariance matrix C is diagonal then E[xixj] = 0 for i 6= j, and
this just means that the x’s are independent. So in this special case we
can describe the Gaussian family as consisting of independent Gauss-
ian random variables. By diagonalizing C, one sees that a Gaussian
family is given by linear combinations of independent Gaussian random
variables.

Strictly speaking, the above Wick formula was for real-valued Gauss-
ian variables x1, . . . , xn, however, the nice feature is that it remains the
same for complex-valued Gaussian variables z1, . . . , zn, not only by re-
placing the xi by <zi or =zi, but also by replacing them by zi or z̄i

(of course, this follows from the multilinear structure of the formula)
This is important for us because the entries of our Gaussian random
matrices will be complex-valued.

3.2. Random matrices in general. Let us now talk about random
matrices. We start here by being very general in order to fix the lan-
guage and the frame, but then we will look very quickly on the promi-
nent example of Gaussian random matrices.
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An N × N -random matrix is an N × N -matrix whose entries are
classical random variables, i.e.,

A = (aij)
N
i,j=1,

where the aij are defined on a common classical probability space
(Ω, P ).

We should formulate this in our algebraic frame of “non-commutative
probability spaces”. It’s instructive to consider the two parts, classical
probability spaces and matrices, separately, before we combine them
to random matrices.

First, we should write a classical probability space (Ω, P ) in algebraic
language. Clearly, we take an algebra of random variables, the only
question is which algebra too choose. The best choice for our purposes
are the random variables which possess all moments, which we denote
by

L∞−(P ) :=
⋂

1≤p<∞

Lp(P ).

Clearly, the linear functional there is given by taking the expectation

E : L∞−(P ) → C, Y 7→ E[Y ] :=

∫
Ω

Y (ω)dP (ω).

So a classical probability space (Ω, P ) becomes in our language a non-
commutative probability space (L∞−(P ), E) (of course, we are loosing
random variables with infinite moments, however, that’s good enough
for us because usually we are only interested in variables for which all
moments exist).

Now let’s look on matrices. N ×N -matrices MN come clearly as an
algebra, the only question is what state to take. The most canonical one
is the trace, and since we need unital functionals we have to normalize
it. We will denote the normalized trace on N ×N -matrices by tr,

tr : MN → C, A = (aij)
N
i,j=1 7→ tr(A) =

1

N

N∑
i=1

aii.

Maybe we should say a word to justify the choice of the trace. If
one is dealing with matrices, then the most important information is
contained in their eigenvalues and the most prominent object is the
eigenvalue distribution. This is a probability measure which puts mass
1/N on each eigenvalue (counted with multiplicity) of the matrix. How-
ever, note that that’s exactly what the trace is doing. Assume we have
a symmetric matrix A with eigenvalues λ1, . . . , λN , then its eigenvalue
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distribution is, by definition, the probability measure

νA :=
1

N
(δλ1 + · · ·+ δλN

).

Now note that the unitary invariance of the trace shows that the mo-
ments of this measure are exactly the moments of our matrix with
respect to the trace,

tr(Ak) =

∫
R
tkdνA(t) for all k ∈ N.

This says that the eigenvalue distribution νA is exactly the distribution
(which we denoted by µA) of the matrix A with respect to the trace.
So the trace encodes exactly the right kind of information about our
matrices.

Now let us combine the two situations above to random matrices.

Definition 2. A non-commutative probability space of N×N-random
matrices is given by (MN ⊗L∞−(P ), tr⊗E), where (Ω, P ) is a classical
probability space. More concretely,

A = (aij)
N
i,j=1, with aij ∈ L∞−(P )

and

(tr⊗ E)(A) = E[tr(A)] =
1

N

N∑
i=1

E[aii].

Of course, in this generality there is not much to say about random
matrices; for concrete statements we have to specify the classical dis-
tribution P ; i.e., we have to specify the joint distribution of the entries
of our matrices.

3.3. Gaussian random matrices and genus expansion. A selfad-
joint Gaussian random matrix A = (aij)

N
i,j=1 is a special random matrix

where the distribution of the entries is specified as follows:

• the matrix is selfadjoint, A = A∗, which means for its entries:

aij = āji for all i, j = 1, . . . , N

• apart from this restriction on the entries, we assume that they
are independent and complex Gaussians with variance 1/N .

We can summarize this in the form that the entries aij (i, j = 1, . . . , N)
form a complex Gaussian family which is determined by the covariance

E[aijakl] =
1

N
δilδjk.
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Let us try to calculate the moments of such a Gaussian random
matrix, with respect to the state

ϕ := tr⊗ E.

We have

ϕ(Am) =
1

N

N∑
i(1),...,i(m)=1

E[ai(1)i(2)ai(2)i(3) · · · ai(m)i(1)].

Now we use the fact that the entries of our matrix form a Gaussian
family with the covariance as described above, so, by using the Wick
formula, we can continue with (where we count modulo m, i.e., we put
i(m+ 1) := i(1))

ϕ(Am) =
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

E[ai(r)i(r+1)ai(s)i(s+1)]

=
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1)
1

Nm/2

=
1

N1+m/2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

∏
(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1).

It is now convenient to identify a pairing π ∈ P2(m) with a special
permutation in Sm, just by declaring the blocks of π to be cycles; thus
(r, s) ∈ π means then π(r) = s and π(s) = r. The advantage of this
interpretation becomes apparent from the fact that in this language we
can rewrite our last equation as

ϕ(Am) =
1

N1+m/2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(π(r)+1)

=
1

N1+m/2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)),

where γ ∈ Sm is the cyclic permutation with one cycle,

γ = (1, 2, . . . ,m− 1,m).

If we also identify an m-index tuple i = (i(1), . . . , i(m)) with a function
i : {1, . . . ,m} → {1, . . . , N}, then the meaning of

∏m
r=1 δi(r)i(γπ(r)) is

quite obvious, namely it says that the function i must be constant on
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the cycles of the permutation γπ in order to contribute a factor 1,
otherwise its contribution will be zero. But in this interpretation

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r))

is very easy to determine: for each cycle of γπ we can choose one of
the numbers 1, . . . , N for the constant value of i on this orbit, all these
choices are independent from each other, which means

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)) = Nnumber of cycles of γπ.

It seems appropriate to have a notation for the number of cycles of a
permutation, so let us put

#(σ) := number of cycles of σ (σ ∈ Sm).

So we have finally got

ϕ(Am) =
∑

π∈P2(m)

N#(γπ)−1−m/2.

This type of expansion for moments of random matrices is usually
called a genus expansion, because pairings in Sm can also be identified
with surfaces (by gluing the edges of an m-gon together according to
π) and then the corresponding exponent of N can be expressed (via
Euler’s formula) in terms of the genus g of the surface,

#(γπ)− 1−m/2 = −2g

Let us look at some examples. Clearly, since there are no pairings
of an odd number of elements, all odd moments of A are zero. So it is
enough to consider the even powers m = 2k.

For m = 2, the formula just gives a contribution for the pairing
(1, 2) ∈ S2,

ϕ(A2) = 1.

There is nothing too exciting about this, essentially we have made our
normalization with the factor 1/N for the variances of the entries to
ensure that ϕ(A2) is equal to 1 (in particular, does not depend on N).



8 ROLAND SPEICHER

The first non-trivial case is m = 4, then we have three pairings, the
relevant information about them is contained in the following table.

π γπ #(γπ)− 3

(12)(34) (13)(2)(4) 0

(13)(24) (1432) −2

(14)(23) (1)(24)(3) 0

,

so that we have

ϕ(A4) = 2 ·N0 + 1 ·N−2

For m = 6, 8, 10 an inspection of the 15, 105, 945 pairings of six,
eight, ten elements yields in the end

ϕ(A6) = 5 ·N0 + 10 ·N−2

ϕ(A8) = 14 ·N0 + 70 ·N−2 + 21 ·N−4

ϕ(A10) = 42 ·N0 + 420 ·N−2 + 483 ·N−4.

As one might suspect the pairings contributing in leading order N0

are exactly the non-crossing pairings; e.g., in the case m = 6 the pair-
ings

(12)(34)(56), (12)(36)(45), (14)(23)(56)

(16)(23)(45), (16)(25)(34).

This is true in general. It is quite easy to see that #(γπ) can, for
a pairing π ∈ S2k, at most be 1 + k, and this upper bound is exactly
achieved for non-crossing pairings. In the geometric language of genus
expansion, the non-crossing pairings correspond to genus zero or planar
situations.

But this tells us that, although the moments of a N × N Gaussian
random matrix for fixed N are quite involved, in the limit N →∞ they
become much simpler and converge to something which we understand
quite well, namely the Catalan numbers ck,

lim
N→∞

ϕ(A2k) = ck =
1

k + 1

(
2k

k

)
.

We should remark here that the subleading contributions in the genus
expansion are much harder to understand than the leading order. There
are no nice explicit formulas for the coefficients of N−2g. (However,
there are some recurrence relations between them, going back to a
well-known paper of Harer and Zagier, 1986.)
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This limit moments of our Gaussian random matrices is something
which we know quite well from free probability theory – these are the
moments of the most important element in free probability, the semi-
circular element. So we see that Gaussian random matrices realize, at
least asymptotically in the limit N →∞, semi-circular elements (e.g.,
the sum of creation and annihilation operator on full Fock space).

3.4. Asymptotic freeness for several independent Gaussian ran-
dom matrices. The fact that the eigenvalue distribution of Gaussian
random matrices converges in the limit N → ∞ to the semi-circle
distribution is one of the basic facts in random matrix theory, it was
proved by Wigner in 1955, and is accordingly usually termed Wigner’s
semi-circle law. Thus the semi-circle distribution appeared as an inter-
esting object long before semi-circular elements in free probability were
considered. This raised the question whether it is just a coincidence
that Gaussian random matrices in the limit N → ∞ and the sum of
creation and annihilation operators on full Fock spaces have the same
distribution or whether there is some deeper connection. Of course,
our main interest is in the question whether there is also some freeness
around (at least asymptotically) for random matrices. That this is in-
deed the case was one of the most fruitful discoveries of Voiculescu in
free probability theory.

In order to have freeness we should of course consider two random
matrices. Let us try the simplest case, by taking two Gaussian random
matrices

A(1) = (a
(1)
ij )N

i,j=1, A(2) = (a
(2)
ij )N

i,j=1.

Of course, we must also specify the relation between them, i.e., we must
prescribe the joint distribution of the whole family

a
(1)
11 , . . . , a

(1)
NN , a

(2)
11 , . . . , a

(2)
NN .

Again we stick to the simplest possible case and assume that all entries
of A(1) are independent from all entries of A(2); i.e., we consider now
two independent Gaussian random matrices. This is the most canonical
thing one can do from a random matrix perspective. To put it down
more formally (and in order to use our Wick formula), the collection of
all entries of our two matrices forms a Gaussian family with covariance

E[a
(r)
ij a

(p)
kl ] =

1

N
δilδjkδrp

Let us now see whether we can extend the above calculation to this
situation. And actually, it turns out that we can just repeat the above
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calculation with putting superindices p(1), . . . , p(m) ∈ {1, 2} to our
matrices. The main arguments are not affected by this.

ϕ(A(p(1)) · · ·A(p(m))) =
1

N

N∑
i(1),...,i(m)=1

E[a
(p(1))
i(1)i(2)a

(p(2))
i(2)i(3) · · · a

(p(m))
i(m)i(1)]

=
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

E[a
(p(r))
i(r)i(r+1)a

(p(s))
i(s)i(s+1)]

=
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

δi(r)i(s+1)δi(s)i(r+1)δp(r)p(s)
1

Nm/2

=
1

N1+m/2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r))δp(r)p(π(r)).

The only difference to the situation of one matrix is now the extra
factor

∏m
r=1 δp(r)p(π(r)), which just says that we have an extra condition

on our pairings π, namely they must pair the same matrices, i.e., no
block of π is allowed to pair A(1) with A(2). If π has this property then
its contribution will be as before, otherwise it will be zero. Thus we
might, for p = (p(1), . . . , p(m)), introduce the notation

P(p)
2 (m) := {π ∈ P2(m) | p(π(r)) = p(r) for all r = 1, . . . ,m}.

Then we can write the final conclusion of our calculation as

ϕ(A(p(1)) · · ·A(p(m))) =
∑

π∈P(p)
2 (m)

N#(γπ)−1−m/2.

Here are a few examples for m = 4.

ϕ(A(1)A(1)A(1)A(1)) = 2 ·N0 + 1 ·N−2

ϕ(A(1)A(1)A(2)A(2)) = 1 ·N0 + 0 ·N−2

ϕ(A(1)A(2)A(1)A(2)) = 0 ·N0 + 1 ·N−2

As before, the leading term for N → ∞, is given by contributions
from non-crossing pairings, but now these non-crossing pairings must
connect an A(1) with an A(1) and an A(2) with an A(2). But this is
exactly the rule for calculating mixed moments in two semi-circular
elements which are free. Thus we see that we indeed have asymp-
totic freeness between two independent Gaussian random matrices. Of
course, the same is true if we consider n independent Gaussian ran-
dom matrices, they are becoming asymptotically free. Another way
of saying this is that we cannot only realize one sum ω of creation
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and annihilation operator by a Gaussian random matrix, but we can
also realize a genuine non-commutative situation of n such operators
ω(f1), . . . , ω(fn) by n independent Gaussian random variables. Since n
free semi-circulars generate the free group factor L(Fn), we have now
suddenly an asymptotic realization of L(Fn) by n independent Gauss-
ian random matrices. This is a quite non-standard realization which
provides a quite different point of view on the free group factors. It
remains to see whether this realization allows to gain new insight into
the free group factors. Lecture 4 will mostly be about the harvest of
this approach.

But for the moment we want to continue our investigation on the
general relation between random matrices and freeness and, encouraged
by the above result, we are getting more ambitious in this direction.

3.5. Asymptotic freeness between Gaussian random matrices
and constant matrices. The above generalization of Voiculescu of
Wigner’s semi-circle law is on one side really a huge step; we do not
only find the semi-circular distribution in random matrices, but the
concept of freeness itself shows up very canonically for random ma-
trices. However, on the negative side, one might argue that in the
situation considered above we find freeness only for a very restricted
class of distributions, namely for semi-circulars. In classical probabil-
ity theory, this would be comparable to saying that we understand the
concept of independence for Gaussian families. Of course, this is only
a very restricted version and we should aim at finding more general
appearances of freeness in the random matrix world.

Here is the next step in this direction. Instead of looking on the
relation between two Gaussian random matrices we replace now one
of them by a “constant” matrix. This just means ordinary matrices
MN without any randomness, and the state there is just given by the
trace tr. Of course, we only expect asymptotic freeness in the limit
N →∞, so what we really are looking at is a sequence of matrices DN

whose distribution, with respect to tr, converges asymptotically. Thus
we assume the existence of all limits

lim
N→∞

tr(Dm
N ) (m ∈ N).

Note that we have a large freedom of prescribing the wanted moments
in the limit. E.g., we can take diagonal matrices for theDN and then we
can approximate any fixed, let’s say compactly supported, probability
measure on R by suitably choosen matrices.

As for the Gaussian random matrices we will usually supress the
index N at our constant matrices to lighten the notation. But keep in
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mind that we are talking about sequences of N × N -matrices and we
want to take the limit N →∞ in the end.

Let us now see how far we can go with our above calculations in such
a situation. What we could like to understand are mixed moments in
a Gaussian random matrix A and a constant matrix D. We can bring
this always in the form

ϕ(D(q(1))AD(q(2))A · · ·D(q(m))A)

where Dq(i) are some powers of the matrix D. It is notationally con-
venient to introduce new names for these powers and thus go formally
over from one matrix D to a set of several constant matrices (and
assuming the existence of all their joint moments), because then it suf-
fices to look on moments which are alternating in A and D’s. A power
of a constant matrix is just another constant matrix, so we are not
loosing anything. Of course, for our Gaussian random matrix A we
prefer to keep A because the power of a Gaussian random matrix is
not a Gaussian random matrix anymore, but some more complicated
random matrix.

Let us now do the calculation of such alternating moments in D’s
and A’s.

ϕ(D(q(1))A · · ·D(q(m))A)

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

E[d
(q(1))
j(1)i(1)ai(1)j(2)d

(q(2))
j(2)i(2)ai(2)j(3) · · · d(q(m))

j(m)i(m)ai(m)j(1)]

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

E[ai(1)j(2)ai(2)j(3) · · · ai(m)j(1)] · d(q(1))
j(1)i(1)d

(q(2))
j(2)i(2) · · · d

(q(m))
j(m)i(m)

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

E[ai(r)j(r+1)ai(s)j(s+1)] · d(q(1))
j(1)i(1)d

(q(2))
j(2)i(2) · · · d

(q(m))
j(m)i(m)

=
1

N

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

δi(r)j(s+1)δi(s)j(r+1)
1

Nm/2
· d(q(1))

j(1)i(1)d
(q(2))
j(2)i(2) · · · d

(q(m))
j(m)i(m)
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Again, we identify a π ∈ P2(m) with a permutation in Sm and then it
remains to understand, for such a fixed π, the expression

N∑
i(1),...,i(m),

j(1),...,j(m)=1

∏
(r,s)∈π

δi(r)j(s+1)δi(s)j(r+1) · d(q(1))
j(1)i(1)d

(q(2))
j(2)i(2) · · · d

(q(m))
j(m)i(m) =

=
N∑

i(1),...,i(m),
j(1),...,j(m)=1

m∏
r=1

δi(r)j(γπ(r)) · d(q(1))
j(1)i(1)d

(q(2))
j(2)i(2) · · · d

(q(m))
j(m)i(m)

=
N∑

j(1),...,j(m)=1

d
(q(1))
j(1)j(γπ(1))d

(q(2))
j(2)j(γπ(2)) · · · d

(q(m))
j(m)j(γπ(m))

One realizes that this factors into a product of traces; one trace for
each cycle of γπ.

To see a concrete example, consider σ = (1, 3, 6)(4)(2, 5) ∈ S6. Then
one has

N∑
j(1),...,j(6)=1

d
(1)
j(1)j(σ(1))d

(2)
j(2)j(σ(2))d

(3)
j(3)j(σ(3))d

(4)
j(4)j(σ(4))d

(5)
j(5)j(σ(5))d

(6))
j(6)j(σ(6)

=
N∑

j(1),...,j(6)=1

d
(1)
j(1)j(3)d

(2)
j(2)j(5)d

(3)
j(3)j(6)d

(4)
j(4)j(4)d

(5)
j(5)j(2)d

(6)
j(6)j(1)

=
N∑

j(1),...,j(6)=1

d
(1)
j(1)j(3)d

(3)
j(3)j(6)d

(6)
j(6)j(1) · d

(2)
j(2)j(5)d

(5)
j(5)j(2) · d

(4)
j(4)j(4)

= Tr[D(1)D(3)D(6)] · Tr[D(2)D(5)] · Tr[D(4)]

= N3tr[D(1)D(3)D(6)] · tr[D(2)D(5)] · tr[D(4)],

which is exactly a product of traces along the cycles of σ. (Note that we
denoted by Tr the unnormalized trace.) It seems, we need again some
compact notation for this kind of product. Let us put, for σ ∈ Sm,

trσ[D(1), . . . , D(m)] : =
N∑

j(1),...,j(m)=1

d
(1)
j(1)j(σ(1)) · · · d

(m)
j(m)j(σ(m))

=
∏

cycles of σ

tr(
∏

along the cycle

D(...)).

Let us summarize our calculation.

ϕ(D(q(1))A · · ·D(q(m))A) =
∑

π∈P2(m)

trγπ[D(q(1)), . . . , D(q(m))]·N#(γπ)−1−m/2.



14 ROLAND SPEICHER

Of course, we can do the same for several instead of one Gaussian
random matrix, the only effect of this is to restrict the sum over π to
pairings which respect the “colour” of the matrices.

ϕ(D(q(1))A(p(1)) · · ·D(q(m))A(p(m)))

=
∑

π∈P(p)
2 (m)

trγπ[D(q(1)), . . . , D(q(m))] ·N#(γπ)−1−m/2.

Now let’s look on the asymptotic structure of this formula. By
our assumption trγπ[D(q(1)), . . . , D(q(m))] has a limit, and the factor
N#(γπ)−1−m/2 surpreses all crossing pairings. If we denote the limit
of our moments by ψ, then we have

ψ(D(q(1))A(p(1)) · · ·D(q(m))A(p(m)))

=
∑

π∈NC
(p)
2 (m)

ψγπ[D(q(1)), . . . , D(q(m))].

This resembles our formula from the last lecture for alternating mo-
ments in two free families of random variables, if one of them is a
semi-circular family. The only difference is that there we have the in-
verse complement K−1(π) of π whereas here we have γπ. However, this
is exactly the same. For a non-crossing partition π, identified with an
element in Sn, the block structure of its complement is given by the
cycles of γ−1π. Let us just check this on an example. Consider the
partition

π := (1, 2, 7), (3), (4, 6), (5), (8) ∈ NC(8).

One has
γ−1π = (1)(2, 6, 3)(4, 5)(7, 8),

which gives us, by changing the cycles to blocks, the complement K(π),
as can be seen from the graphical representation:

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

Let us collect what we have observed about asymptotic freeness of
random matrices in the next theorem.

Theorem 1. Let AN be a Gaussian N ×N-random matrix and DN a
constant (non-probabilistic) matrix, such that all limiting moments

lim
N→∞

tr(Dk) (k ∈ N)
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exist. Then AN and DN are asymptotically free.

Of course, the meaning of asymptotic freeness should be clear, namely
all mixed moments between AN and DN compute in the limit N →∞
as for free random variable. In order to formalize this a bit more, one
can introduce a notion of convergence (in distribution), saying that ran-

dom variables a
(N)
1 , . . . , a

(N)
m converge to random variables a1, . . . , am if

each moment in the a(N)’s converges to the corresponding moment in
the a’s. We denote this formally by

a
(N)
1 , . . . , a(N)

m → a1, . . . , am.

(This is the analogue of the classical notion of “convergence in law”; as
there the variables for each N and in the limit might live on different
probability spaces.)

With this notion, we can rephrase the above theorem in the following
form: Assume that the matrices DN converge to a random variable d,
then the matrices AN , DN converge to a pair s, d, where s is a semi-
circular element and s and d are free. Let us phrase the case of more
matrices directly in this language.

Theorem 2. Let A
(1)
N , . . . , A

(p)
N be p independent Gaussian random ma-

trices and let D
(1)
N , . . . , D

(q)
N be q constant matrices which converge for

N →∞ to random variables d1, . . . , dq,i.e.,

D
(1)
N , . . . , D

(q)
N → d1, . . . , dq.

Then

A
(1)
N , . . . , A

(p)
N , D

(1)
N , . . . , D

(q)
N → s1, . . . , sp, d1, . . . , dq,

where each si is a semi-circular element and where s1, . . . , sp, {d1, . . . , dq}
are free.

These considerations show that random matrices allow to realize free-
ness between semi-circular and anything. Of course, the final question
is whether we can reach the ultimate level and realize freeness between
anything and anything else in random matrices. That this is indeed the
case relies on having similar asymptotic freeness statements for unitary
random matrices instead of Gaussian ones.

3.6. Asymptotic freeness between Haar unitary random ma-
trices and constant matrices. Another important random matrix
ensemble is given by Haar unitary random matrices. We equip the
compact group U(N) of unitary N × N -matrices with its Haar prob-
ability measure and accordingly distributed random matrices we shall
call Haar distributed unitary random matrices. Thus the expectation
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E over this ensemble is given by integrating with respect to the Haar
measure.

If we are going to imitate for this case the calculation we did for
Gaussian random matrices, then we need the expectations of products
in entries of such a unitary random matrix U . In contrast to the Gauss-
ian case, this is now not explicitly given. In particular, entries of U
won’t in general be independent. However, one expects that the uni-
tary condition U∗U = 1 = UU∗ and the invariance of the Haar measure
under multiplication from right or from left with an arbitrary unitary
matrix should allow to determine the mixed moments of the entries of
U . This is indeed the case; the calculation, however, is not trivial and
we only describe in the following the final result, which has the flavour
of the Wick formula for the Gaussian case.

The expectation of products of entries of Haar distributed unitary
random matrices can be described in terms of a special function on
the permutation group. Since such considerations go back to Wein-
garten, we call this function the Weingarten function and denotes it by
Wg. (However, it was Feng Xu who revived these ideas and made the
connection with free probability.) In the following we just recall the
relevant information about this Weingarten function.

We use the following definition of the Weingarten function. For
π ∈ Sn and N ≥ n we put

Wg(N, π) = E
(
u11 · · ·unnu1π(1) · · ·unπ(n)

)
,

where U = (uij)
N
i,j=1 is a Haar distributed unitary N × N -random

matrix. This Wg(N, π) depends on π only through its conjugacy class.
General matrix integrals over the unitary groups can then be calculated
as follows:

E
(
ui′1j′

1
· · ·ui′nj′

n
ui1j1 · · ·uinjn

)
=

∑
α,β∈Sn

δi1i′
α(1)

· · · δini′
α(n)

δj1j′
β(1)

· · · δjnj′
β(n)

Wg(N, βα−1).

(Note that corresponding integrals for which the number of u’s and ū’s
is different vanish, by the invariance of such an expression under the
replacement U 7→ λU , where λ ∈ C with |λ| = 1.) The Weingarten
function is a quite complicated object. For our purposes, however, only
the behaviour of leading orders in N of Wg(N, π) is important. One
knows that the leading order in 1/N is given by 2n − #(π) (π ∈ Sn)
and increases in steps of 2.

Using the above formula for expectations of products of entries of U
and the information on the leading order of the Weingarten function
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one can show, in a similar way as for the Gaussian random matrices,
that Haar unitary random matrices and constant matrices are asymp-
totically free. In this context one should surely first think about what
the limit distribution of a Haar unitary random matrix is. This is –
not only in the limit, but even for each N – a Haar unitary element in
the following sense.

Definition 3. Let (A, ϕ) be a non-commutative probability space with
A being a ∗-algebra. An element u ∈ A is called Haar unitary if it is
unitary and if

ϕ(uk) = 0 for all k ∈ Z\{0}.
Clearly, the distribution µu of a Haar unitary is the uniform dis-

tribution on the circle of radius 1. Note furthermore that the unitary
operators generating the free group factors in the defining (left regular)
representation of L(Fn) are Haar unitaries. Thus we can say that our
original realization of L(Fn) is in terms of n free Haar unitaries.

Let me now state the asymptotic freeness result for Haar unitary
random matrices.

Theorem 3. Let U
(1)
N , . . . , U

(p)
N be p independent Haar unitary random

matrices and let D
(1)
N , . . . , D

(q)
N be q constant matrices which converge

for N →∞ to random variables d1, . . . , dq, i.e.,

D
(1)
N , . . . , D

(q)
N → d1, . . . , dq.

Then

U
(1)
N , U

(1)∗
N , . . . , U

(p)
N , U

(p)∗
N , D

(1)
N , . . . , D

(q)
N → u1, u

∗
1, . . . , up, u

∗
p, d1, . . . , dq,

where each ui is a Haar unitary element and where u1, . . . , up, {d1, . . . , dq}
are ∗-free.
3.7. Making matrices free by random rotations. This does not
necessarily look like an improvement over the Gaussian case, but this
allows us to realize freeness between quite arbitrary distributions by
the following simple observation (to prove it, just use the definition of
freeness).

Proposition 1. Assume u is a Haar unitary and u is ∗-free from
{a, b}. Then a and ubu∗ are also free.

This yields finally the following general recipe for realizing free dis-
tributions by random matrices.

Theorem 4. Let AN and BN be two sequences of constant N × N-
matrices with limiting distributions

AN → a, BN → b.
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Let UN be a Haar unitary N ×N-random matrix. Then we have

AN , UNBNU
∗
N → a, b,

where a and b are free.

Note that conjugating by UN does not change the distribution of
BN . The effect of this “random rotation” is that any possible relation
between AN and BN is destroyed, and these two matrices are brought
in “generic” position. This gives maybe the most concrete picture for
freeness. N × N -matrices are asymptotically free, if their eigenspaces
are in generic position, have no definite relation between them.

The idea of bringing matrices in a generic, free position by random
unitary conjugation also works more general for random matrices if we
have in addition independence between the involved ensembles.

Theorem 5. Let U be a sequence of Haar distributed unitary N ×N-
random matrices. Suppose that A1, . . . , As and B1, . . . , Bt are sequences
of N ×N-random matrices each of which has a limit distribution. Fur-
thermore, assume that {A1, . . . , As}, {B1, . . . , Bt}, and {U} are inde-
pendent. Then the sequences {A1, . . . , As} and {UB1U

∗, . . . , UBtU
∗}

are asymptotically free.

3.8. Using free probability random matrix calculations. Instead
of using random matrices for modelling operator algebras (as we will
soon), one can also revert the direction and use our machinery for
calculating moments of free variables in order to calculate eigenvalue
distributions of random matrices in the limit N → ∞. Such calcula-
tions are one important part of random matrix theory (in particular,
in applications to engineering) and free probability theory has added
quite a bit to this. Here are some examples what free probability theory
can do.

• If we have two random matrices which are free (e.g., of the form
A,UBU∗ for a Haar unitary random matrix U), then we can use
our R-transform or S-transform machinery for calculating the
asymptotic eigenvalue distribution of the sum or of the product
of these matrices.

• There exist also formulas (due to Nica and myself) describing
the distribution of the commutator ab− ba of two free random
variables. This can be used for calculating the distribution of
the commutator of two random matrices in generic position.

• We have also seen in the last lecture that we have a nice descrip-
tion of the free compression of random variables. However, this
has also a very concrete meaning for random matrices. If we
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have a randomly rotated matrix UAU∗, then this is asymptoti-
cally free from diagonal projections, and taking the compression
with these diagonal projections just means to take corners of
the original matrix. Thus free probability tells us in this case
how to calculate the distribution of corners of matrices out of
the distribution of the whole matrix.
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