
FREE PROBABILITY THEORY

ROLAND SPEICHER

Lecture 4
Applications of Freeness to Operator Algebras

Now we want to see what kind of information the idea can yield
that free group factors can be realized by random matrices. I want to
present what free probability can tell us about the fundamental group
of L(Fn). Let me first recall that notion.

4.1. Fundamental group of a II1-factor. Let M be a II1-factor
with trace τ and 0 < λ ≤ 1. Then there exists a projection p ∈ M
with τ(p) = λ. Put now

pMp := {pap | a ∈M}.
This is called a compression of M; it is again a von Neumann algebra,
with p as unit, and represented on the Hilbert space pH if M⊂ B(H).
Furthermore, pMp is also a factor and

τ̃ : pMp → C
with

τ̃(pap) :=
1

λ
τ(pap)

is a trace; thus pMp is a II1-factor.
By basic theory for equivalence of projections it follows that pMp

only depends (as isomorphism class of von Neumann algebras) on λ,
but not on the specific p. Thus we can denote

Mλ := pMp for projection p ∈M with τ(p) = λ.

One can also define Mλ for λ > 1; in particular, for λ = 1/n this
are just the n × n-matrices over M and one has that N = M1/n is
equivalent to M = Mn(N ).

Definition 1. The fundamental group of M consists of those λ > 0
for which Mλ

∼= M. This is a multiplicative subgroup of R+.
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The fundamental group (introduced by Murray and von Neumann)
is one of the few invariants which one has for von Neumann algebras.
It is usually quite hard to calculate it.

If one wants to see a concrete example for a compression, here is one
in the type I3 world of 3 × 3-matrices M3; of course, there τ(p) can
only take on the values 1/3, 2/3, 3/3. Let’s take

p =

1 0 0
0 1 0
0 0 0


Then

pM3p =
{α β 0

γ δ 0
0 0 0

}
∼= M2.

For the hyperfinite factor R, it was shown by Murray and von Neu-
mann that its fundamental group is all of R+.

4.2. The fundamental group of L(Fn). For the free groups factors
nothing was known about its compressions or fundamental group before
the work of Voiculescu. Voiculescu showed that compressions of free
group factors are again free group factors, more precisely

Theorem 1. Let k and n be natural numbers with k, n ≥ 2. Then we
have (

L(Fn)
)
1/k
∼= L(Fk2(n−1)+1).

As a concrete example take n = 3 and k = 2, then this theorem
claims that (

L(F3)
)
1/2
∼= L(F9).

Before we show the proof of this, I want to indicate its implications.
Firstly, this theorem is also valid for n = ∞, in which case k2(n −

1) + 1 = ∞, too, and thus

L(F∞)1/k
∼= L(F∞).

This tells us that the fundamental group of L(F∞) contains the numbers
of the form 1/k, and thus, since it is a group, all positive rational
numbers. This argument could be refined by Radulescu to determine
the fundamental group in this case.

Theorem 2. The fundamental group of L(F∞) is R+.

How about the case n < ∞? Since we do not know whether the free
group factors with different number of generators are isomorphic or not,
we cannot decide whether the compression (L(Fn)1/k is isomorphic to
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L(Fn) or not. However, we see that we can connect by compression
different L(Fn) with each other, which means that one isomorphism
between free group factors will imply other isomorphisms. For example,
the theorem above tells us that(

L(F3)
)
1/2
∼= L(F9) and

(
L(F2)

)
1/2
∼= L(F5).

But this means that

L(F3) ∼= L(F2) =⇒ L(F9) ∼= L(F5).

This analysis was refined by Dykema and Radulescu, resulting in the
following dichotomy.

Theorem 3. We have exactly one of the following two possibilities:

• Either all L(Fn) for 2 ≤ n < ∞ are isomorphic; in this case
the fundamental group of L(Fn) is R+

• or the L(Fn) are pairwise not isomorphic; in this case the fun-
damental group of each L(Fn) consists only of {1}.

An important ingredient of this analysis was to define L(Fr) also for
non-integer r, in such a way that the formula(

L(Fr)
)
1/k
∼= L(Fk2(r−1)+1)

remains also true in general.

4.3. Writing semi-circular elements as 2 × 2-matrices. I will
present in the following the main ideas of the proof for the compression
result (

L(Fn)
)
1/k
∼= L(Fk2(n−1)+1).

For concreteness, I will restrict to the case n = 3 and k = 2.
How can we understand the compression M :=

(
L(F3)

)
1/2

. Since

this is the same as
L(F3) = M2(M),

we should try to realize L(F3) as 2× 2-matrices.
Let us first take a look on the generators. If we realize L(F3) in its

original form, then the generators are given by the generators f1, f2, f3

of the free group F3 and it is not clear at all what a compression of
such an element by a factor 1/2 should be or how we should write
this as a 2 × 2-matrix. But let us now shift to the picture that L(F3)
is generated by 3 free semi-circulars. If we think of semi-circulars as
being the sum of creation and annihilation operator then, again, we
do not have a good idea what compressing this means. However, we
know from the last lecture that a semi-circular can also be realized,
asymptotically, by random matrices. And the compression of a matrix
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is something much more familiar. So think of a semi-circular as a big
Gaussian N ×N -random matrix

s ∼

a11 · · · a1N

. . .
. . . . . .

aN1 · · · aNN


and then of course it is clear how to write this as a 2×2-matrix, namely
just cut this matrix into 4 N/2×N/2-matrices,

s ∼



a11 · · · a1,N/2 | a1,N/2+1 · · · a1,N
...

. . .
... | ...

. . .
...

aN/2,1 · · · aN/2,N/2 | aN/2,N/2+1 · · · aN/2,N

−−− −− −−−− −− −−−− −− −−−
aN/2+1,1 · · · aN/2+1,N/2 | aN/2+1,N/2+1 · · · aN/2+1,N

...
. . .

... | ...
. . .

...
aN,1 · · · aN,N/2 | aN,N/2+1 · · · aN,N


Compressing this by 1/2 means to take the upper left corner. But

this is just another Gaussian random matrix, thus should asymptoti-
cally give another semi-circular element s1. Thus the compression of
a semi-circular should just be another semi-circular. For the compres-
sion of the algebra, and not just of the generators, we also have to
understand the other three parts in the 2× 2-realization of s. But this
is also quite clear. The lower right corner is just another Gaussian
random matrix which is independent from the upper left corner, thus
aymptotically it should give a semi-circular s2 which is free from s1.

4.4. Circular elements. How about the off-diagonal parts. They are
also Gaussian random matrices, however, without being symmetric -
all their entries are independent from each other (and of course, the
lower left corner is the adjoint of the upper right corner). If one realizes
that one can write such a non-symmetric Gaussian random matrix C
as

C = S1 + iS2,

with independent symmetric Gaussian random matrices S1 and S2

(note that, for x and y complex independent Gaussian random vari-
ables, one has that x + iy and x̄ + iȳ are also independent), then it is
clear that in the limit N →∞ the upper right corner should converge
to a circular element in the following sense.

Definition 2. A circular element c is of the form

c =
s1 + is2√

2
,
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where s1 and s2 are free semi-circular elements. (As before, all our
semi-circulars are normalized to variance ϕ(s2) = 1.)

A circular element is the non-normal relative of a semi-circular in
the same way as a complex Gaussian is the complex relative of a real
Gaussian.

In terms of creation and annihilation operators on the full Fock space,
a circular element is given by

c = l(g) + l∗(f), c∗ = l∗(g) + l(g),

where g and f are orthonormal vectors.
In terms of cumulants, a circular element is characterized by

kn(cε1 , . . . , cεn) = 0 if n 6= 2

for all ε1, . . . , εn ∈ {∗, 1} and by

k2(c, c) = k2(c
∗, c∗) = 0, k2(c, c

∗) = k2(c
∗, c) = 1.

This follows directly by the corresponding desciption of cumulants for
semi-circulars and the fact that mixed cumulants in free variables van-
ish.

Coming back to our random matrix picture of a semi-circular s,
cutting this into a 2×2-matrix should result in the following realization
of a semi-circular:

s =

(
s1 c
c∗ s2

)
,

where s1 and s2 are semi-circulars and c is a circular and furthermore
s1, s2, c are ∗-free.

4.5. Writing free group factors as 2× 2-matrices. It is also clear
from our random matrix picture that if we want to realize 3 free semi-
circulars in this form then all the entries from the various matrices
should be free. So we might want to think of our free group factor
L(F3) as being generated by three 2× 2-matrices(

s1 c1

c∗1 s2

)
,

(
s3 c2

c∗2 s4

)
,

(
s5 c3

c∗3 s6

)
,

with s1, . . . , s6 semi-circulars, c1, c2, c3 circulars, and all of them ∗-free.
However, if we want to compress our von Neumann algebra by the
projection

P :=

(
1 0
0 0

)
,
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then this projection has to belong to the von Neumann algebra, which
is not clear in the above representation. Thus we replace the third
generator in our realization of L(F3) in the following way.(

s1 c1

c∗1 s2

)
,

(
s3 c2

c∗2 s4

)
,

(
u 0
0 2u

)
,

where u is a Haar unitary which is free from the other entries. Note that
in the random matrix picture we can approximate this third generator
by diagonal matrices where we approximate the uniform distribution
on the circle of radius 1 in the upper half of the diagonal and the
uniform distribution on the circle of radius 2 in the lower half of the
diagonal. The asymptotic freeness between Gaussian random matrices
and constant matrices yields then that this third generator is indeed
free from the other two, thus we have three free generators. Since each
of them generates a non-atomic commutative von Neumann algebra,
we know (by the remarks at the end of lecture 1) that all together
generate L(F3). Of course, we could take any non-atomic distribution
as diagonal entries for our third matrix, but choosing it of the form as
above will be crucial for some of our coming arguments.

Let us state precisely what our random matrix realization of freeness
gives us.

Theorem 4. Let (M, ϕ) be a non-commutative W ∗-probability space.
Let s1, s2, s3, s4, c1, c2, u ∈M be such that

• s1, s2, s3, s4 are semi-circular elements
• c1, c2 are circular elements
• u is a Haar unitary element
• s1, s2, s3, s4, c1, c2, u are ∗-free

Then we consider in the non-commutative W ∗-probability space

(M2(M), tr⊗ ϕ)

the three random variables

X1 :=

(
s1 c1

c∗1 s2

)
, X2 :=

(
s3 c2

c∗2 s4

)
, X3 :=

(
u 0
0 2u

)
We have that X1, X2, X3 are free and they generate a von Neumann al-
gebra N ⊂ M2(M) which is isomorphic to the free group factor L(F3).

This representation is the crucial starting point for considering the
compression L(F3)1/2. Note that we provided above the main steps for
a proof of this theorem with the help of our asymptoptic random matrix
pictures; however, there exist by now also purely combinatorial proofs
of that theorem without having to rely on random matrices. Thus,
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the random matrix picture of freeness is not absolutely necessary for
proving the compression results, however, without it one would hardly
have guessed the above theorem.

Let us now see how we can use the above realization of L(F3) ∼= N
for getting its compression.

First note that the third generator X3 provides us with

X3X
∗
3 =

(
uu∗ 0
0 4uu∗

)
=

(
1 0
0 4

)
as an element in N , thus also its spectral projection

P :=

(
1 0
0 0

)
belongs to N . With the help of P we can cut out the blocks in the
2× 2-matrices, i.e., the following elements are in N :(

s1 0
0 0

)
,

(
0 0
0 s2

)
,

(
0 c1

0 0

)
,

(
s3 0
0 0

)
,(

0 0
0 s4

)
,

(
0 c2

0 0

)
,

(
u 0
0 0

)
,

(
0 0
0 u

)
.

Since we can recover X1, X2, X3 from these elements, we see that N
is generated by the above 8 elements (which are, of course, not free).

Now we are going to look on the compression(
L(F3)

)
1/2
∼= PNP.

Of course, the compressed algebra is not just generated by the com-
pressed generators; nevertheless, we can get a generating system by the
following observation.

Proposition 1. Let N ⊂ M2(M) be a von Neumann algebra which is
generated by elements Y1, . . . , Yp ∈ N . Assume that we have elements
P, V ∈ N of the form

P =

(
1 0
0 0

)
, V =

(
0 v
0 0

)
,

where v ∈ M is a unitary element. Then, PNP is generated by ele-
ments of the form (i = 1, . . . , p)

PYiP, PYiV
∗, , V YiP, V YiV

∗.

Note that all listed elements are of the form(
∗ 0
0 0

)
.
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The proof of the proposition relies just on the simple fact that

PP + V ∗V = 1.

In order to apply this we need the element V . This we get by polar
decomposition of

C1 :=

(
0 c1

0 0

)
.

If we denote the polar decomposition of c1 by

c1 = v1b1,

then we get the polar decomposition of C1 in the form(
0 c1

0 0

)
=

(
0 v1

0 0

)
·
(

0 0
0 b1

)
.

Since polar decomposition stays within a von Neumann algebra we can
replace the generator C1 of N by the two elements(

0 v1

0 0

)
and

(
0 0
0 b1

)
.

In the same way we replace the generator(
0 c2

0 0

)
by its polar decomposition(

0 v2

0 0

)
and

(
0 0
0 b2

)
.

Thus N is also generated by the 10 elements(
s1 0
0 0

)
,

(
0 0
0 s2

)
,

(
s3 0
0 0

)
,

(
0 0
0 s4

)
,

(
u 0
0 0

)
,

(
0 0
0 u

)
,

(
0 v1

0 0

)
,

(
0 0
0 b1

)
,

(
0 v2

0 0

)
,

(
0 0
0 b2

)
.

4.6. Polar decomposition of circular elements. This representa-
tion is, of course, only useful if we are able to control the distribution
of the v’s and b’s coming from the polar composition of the c’s. This
is possible since there is a very nice polar decomposition of circular
elements.

Theorem 5. Let (M, ϕ) be a W ∗-probability space and c ∈ M a cir-
cular element. Let c = vb be the polar decomposition of c. Then we
have:

• v and b are ∗-free
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• v is a Haar unitary element
• b ≥ 0 is a quarter circular element, i.e.,

ϕ(bn) =
1

π

∫ 2

0

tn
√

4− t2dt for all n ≥ 0.

For proving this one should note that it is enough to prove the re-
verse implication, namely that whenever we have a Haar unitary ṽ and
a quarter circular b̃ which are ∗-free, then c̃ = ṽb̃ is circular. (If we
have this then we argue as follows: Since the two circulars c and c̃ have
the same ∗-moments, there is an isomorphism between their generated
von Neumann algebras which preserves the ∗-moments. Furthermore,
the polar decomposition is unique and does not lead out of the von
Neumann algebra of the circular element, thus the two polar decom-
positons must be mapped onto each other, i.e., v and b have the same
joint ∗-moments as ṽ, b̃.) The fact that c̃ is circular can be proved either
by random matrix models or directly with combinatorial methods.

4.7. Calculation of the free compression. Having this polar de-
composition of circular elements we can continue our analysis of N
with the following information about the random variables showing up
in the above 10 generators: s1, s2, s3, s4 are semi-circulars, u, v1, v2 are
Haar unitaries, b1, b2 are quarter-circulars, and all elements s1, s2, s3,
s4, u, v1, v2, b1, b2 are ∗-free. Now, finally, we have all ingredients for
looking on the compression PNP . For the V from the above proposi-
tion about a generating set for PNP we can use

V =

(
0 v1

0 0

)
∈ N

and thus we get the following set of generators for PNP :(
s1 0
0 0

)
,

(
v1s2v

∗
1 0

0 0

)
,

(
s3 0
0 0

)
,

(
v1s4v

∗
1 0

0 0

)
,

(
u 0
0 0

)
,

and (
v1uv∗1 0

0 0

)
,

(
v1b1v

∗
1 0

0 0

)
,

(
v2v

∗
1 0

0 0

)
,

(
v1b2v

∗
1 0

0 0

)
.

Note that PV V ∗ = P does not produce an additional generator.
The von Neumann subalgebra of M2(M) generated by the above 9

elements is of course isomorphic to the von Neumann subalgebra of M
generated by the 9 elements

s1, v1s2v
∗
1, s3, v1s4v

∗
1, u, v1uv∗1, v1b1v

∗
1, v2v

∗
1, v1b2v1.
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Each of these elements is either a semi-circular, quarter-circular, or
Haar unitary element, thus each of them generates a non-atomic com-
mutative von Neumann algebra. So it only remains to see that all these
9 elements are ∗-free, in order to conclude that all together generate
the free group factor L(F9). This freeness property is not directly ob-
vious, but it can be checked without greater difficulties by using the
very definition of freeness

So we finally have proved that(
L(F3)

)
1/2
∼= L(F9).

Of course, the general case(
L(Fn)

)
1/k
∼= L(Fk2(n−1)+1)

can be done in exactly the same way.

4.8. The hyperinvariant subspace problem. The idea that prop-
erties of operator algebras or operators can be understood by modelling
them by random matrices is not only useful for investigating the struc-
ture of the free group factors, but it has a much wider applicability.
Let me say a few words about recent progress on another important
operator theoretic problem – the hyperinvariant subspace problem –
relying on this idea.

Let me first recall that the invariant subspace problem asks whether
every operator on a Hilbert space has a non-trivial closed invariant sub-
space, i.e., a closed subspace, different from {0} and from the whole
Hilbert space, which is left invariant by the operator. For finite dimen-
sional Hilbert spaces this is of course always true, because there exists
always at least one eigenvalue of a matrix (as zero of the characteristic
polynomial). Also for normal operators the answer is affirmative (by
the spectral theorem); however, for non-normal operators the situation
is not so clear any more and a general solution has eluded the efforts
of many. (Note that for the same problem in a Banach space setting
there are counter-examples by Enflo and Read.)

There exists als a II1-version of the invariant subspace problem.
Namely, assume that we have a II1-factor M. We say that an op-
erator a in M has a hyperinvariant subspace, if it has an invariant
subspace and the projection onto this subspace belongs to the von
Neumann algebra generated by a (this means that the subspace is not
just accidentially a subspace, but is really affiliated with the operator).
The hyperinvariant subspace problem asks whether every operator in a
II1-factor has a non-trivial closed hyperinvariant subspace.
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Recently, there has been some impressive progress on this problem
by Haagerup, relying on free probability and random matrix approx-
imation techniques. Let me just give you some very basic idea about
this work.

Essentially, there are two directions one can follow - either looking
for canonical candidates for counter examples for this conjecture or
trying to prove it for classes of operators as large as possible. There
was work of Haagerup in both directions.

4.9. Possible counter examples and DT-operators. Free prob-
ability provides some new classes of non-normal operators; the most
basic of which is the circular element. It was tempting to hope that
a circular element might have no hyperinvariant subspaces. However,
Dykema and Haagerup could show that actually there exist a lot of
hyperinvariant subspaces of a circular element. However, the proof of
this is not obvious and relies on some non-standard realization of a
circular element.

Note that asking for a hyperinvariant subspace of an operator a is –
by decomposing the Hilbert space into a sum of the invariant subspace
and its orthogonal complement – the same as realizing a as a 2 × 2-
matrix in triangular form

a =

(
a11 a12

0 a22

)
,

such that the projection onto the subspace belongs to the von Neu-
mann algebra generated by a. (Note that for non-normal operators the
orthogonal complement of an invariant subspace does not need to be
invariant.)

Think of a circular element as the limit of non-selfadjoint Gaussian
random matrices, bring such a Gaussian random matrix into a triangu-
lar form (and keep track of what this means for the joint distribution
of the entries), cut the triangular matrix into a 2 × 2-matrix and see
what this gives in the limit N →∞.

Doing all this rigorously is quite a non-trivial task, but finally it
shows that one can realize a circular element also in the form

c =

(
a1 b
0 a2

)
,

where a1 and b are circular elements and a2 is a special R-diagonal
element (this is a kind of generalization of circular elements, introduced
by Nica and myself) and where a1, b, a2 are ∗-free.

As for the 2× 2-matrix realizations which we used for the compres-
sion of the free group factors, one can also prove the above result purely
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combinatorially (this was done by Sniady and myself); however, this
is also quite complicated. The above non-symmetric realization of the
circular element is of a much more complicated nature than the sym-
metric realization of the semi-circular which we used before.

Note that the above realization does not tell directly that we have a
hyperinvariant subspace, because one still has to see that the projection
onto this space belongs to the von Neumann algebra generated by c. By
examing the spectral properties of the elements appearing in the above
2× 2-matrix representation more closely, Dykema and Haagerup could
finally show that circular operators possess a one-parameter family of
hyperinvariant subspaces.

They went even further, showed that a circular operator is strongly
decomposable in the sense of local spectral theory and introduced in
the course of this a new class of non-normal operators as generaliza-
tions of a circular element. These so-called DT-operators are inspired
by random matrix models. DT stands for diagonal + (Gaussian upper)
triangular, and these operators are defined as limits in ∗-moments of
certain triangular random matrices. First, let TN be an upper triangu-
lar Gaussian random matrix, i.e., TN = (tij)

N
i,j=1 with tij = 0 whenever

i ≥ j and the other, non-vanishing entries form an independent family
of random variables, each of which is normally distributed with mean 0
and variance 1/N . Then, as N →∞, the ∗-moments of TN converge to
a limit distribution, which we will denote by T . Next, one can consider
in addition to TN also a diagonal operator with prescribed eigenvalue
distribution. Namely, let µ be a compactly supported Borel probability
measure in the complex plane and let DN be diagonal random matri-
ces whose diagonal entries are independent and identically distributed
according to µ. Furthermore, let DN and TN be independent. Then
the pair DN , TN converges jointly in ∗-moments as N →∞ (however,
to establish the existence of these limits and to describe them in com-
binatorial terms is a quite non-trivial task). A DT-element is now an
element Z whose ∗-moments are given as the limit of the corresponding
∗-moments of ZN := DN +cTN (for some c > 0). The limiting distribu-
tion of ZN depends (in an intricate way) only on c and the distribution
µ.

The importance of the class of DT-operators (even though it did in
the end not produce counter examples to the hyperinvariant subspace
problem) lies in the fact that they form a beautiful class of non-normal
operators which is quite non-trivial, but still accessible. In particular,
the quasi-nilpotent operator T (as a quite unconventional generator of
the free group factor L(F2)) has attracted much attention, and quite
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a lot of interesting mathematics has been created around the under-
standing of its properties.

4.10. Direct attack on the hyperinvariant subspace problem.
In the other direction Haagerup could show that large classes of op-
erators possess hyperinvariant subspaces. His first approach to this
relied on random matrix approximations. The rough idea is the fol-
lowing. Consider some operator a in a II1-factor and assume that
we can approximate it in ∗-moments by matrices DN (it is an open
problem whether one can always do this – this is Connes’s well-known
embedding problem of II1-factors into the ultraproduct of the hyperfi-
nite factor). Then we have non-trivial invariant subspaces for the DN

and one might hope that something of these survives in the limit. Of
course, this is not the case in general, there is no reason that the pro-
jections onto the subspaces for the DN should converge in any sense to
anything in the limit.

This reflects a general problem with our type of converge in ∗-
moments. Most interesting operator theoretic properties are not con-
tinuous with respect to this convergence. (Clearly; otherwise the theory
of operators would not be so much more complicated – and interesting
– than the theory of matrices.) However, what seems to be the case
is that if we have ensembles of matrices approximating a, then some
properties are transfered to the limit for generic choices of the approx-
imating matrices. To put it another way: If we have only one sequence
of matrices approximating a in the limit, then this sequence might be
choosen so badly, that it does not tell us much about the limit. How-
ever, if we have many sequences approximating a, then we have a much
better chance that a randomly choosen sequence from our ensemble of
possibilities will tell us something interesting about the limit.

This is of course not a rigorous theorem (not even a precise state-
ment), but it gives some idea what one might try to do. What Haagerup
did was the following. Assume we have a sequence of matrices DN ap-
proximating a in ∗-moments. Then there is no reason that subspaces
or eigenvalue distributions of DN converge to corresponding quantities
for a. However, one can try to perturb DN a bit by a small random
matrix, to make it more generic and improve on its spectral approxi-
mation properties, however, in such a way that we do not destroy the
convergence in ∗-moments. Haagerup did this by passing from DN to

D′
N := DN + εNXNY −1

N ,

where XN , YN are independent non-selfadjoint Gaussian random ma-
trices and where limN→∞ εN = 0. (Subsequently Sniady proved that
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one can also use a random distortion by just one Gaussian random
matrix instead of the ratio of two.) Haagerup could show that this
allows indeed in many cases to pass spectral properties from matrices
to operators.

More recently, Haagerup has developed another approach to this
(together with Hanne Schultz), which avoids random matrices (and
thus also Connes’s embedding problem) and works more directly in
the limit by developing a theory of integration through the spectrum.
Again a perturbation argument as above plays an important role, this
time by adding a free perturbation.

The final result is the following: If a is an operator in a general
II1-factor M, then for every Borel set B ⊂ C, there is a unique closed
a-invariant subspace K affiliated with M, such that with respect to the
decomposition H = K ⊕K⊥, a has the form

a =

(
a11 a12

0 a22

)
,

where the Brown measures (a generalization of eigenvalue distributions
for matrices to operators in II1-factors) of a11 and a22 are concentrated
on B and C\B, respectively. In particular, if the Brown measure of a
is not a Dirac measure, then a has a non-trivial hyperinvariant closed
subspace.
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