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Abstract This article is an invitation to the world of free probability the-
ory. This theory was introduced by Dan Voiculescu at the beginning of the
1980’s and has developed since then into a vibrant and very active theory
which connects with many different branches of mathematics. We will moti-
vate Voiculescu’s basic notion of “freeness”, and relate it with problems in
representation theory, random matrices, and operator algebras. The notion of
“non-commutative distributions” is one of the central objects of the theory
and awaits a deeper understanding.
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1 Introduction

This article is an invitation to the world of free probability theory. This theory
was introduced by Dan Voiculescu at the beginning of the 1980’s and has
developed since then into a vibrant and very active theory which connects with
many different branches of mathematics. However, instead of following the
historical development (which started in the subject of operator algebras), we
will begin our journey into the free world by looking on some classical type of
problems around the asymptotics of the representation theory of the symmetric
group Sn or of summing large matrices. We will then show that asymptotically
there is some precise and interesting structure present, which will be captured
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by Voiculescu’s notion of “freeness”. By viewing this notion in paralled to
the concept of “independence”, but now for non-commuting variables, we will
realize that we are actually dealing with some non-commutative version of
a probability theory, and questions like a free central limit theorem become
meaningful and have a nice answer. We will give the basics of the machinery
for calculating “free convolutions”, and will then finally give some precise
statements for the heuristic observations we made in the beginning about
the asymptotics of representation theory and sums of large matrices. We will
also outline the original operator algebra context where Voiculescu introduced
free probability theory, by saying a few words about the famous “free group
factor isomorphism” problem. We will then end with summarizing what we
have observed and alert the reader to the fact that free probability should
actually be seen as a central piece of a more general program, which tries
to develop a non-commutative counterpart of classical mathematics (related
with commuting variables) for maximal non-commuting variables. The notion
of “non-commutative distributions” is one of the central objects of the theory
and awaits a deeper understanding.

2 The asymptotics of representation theory and sums of large
matrices

Many problems in mathematics concern properties of a series of objects, like
the representation theory of the symmetric groups Sn or the Horn problem
about the eigenvalues of sums of n × n-matrices. Often one has a complete
description of the solution for each n; however, for large n this solution might
become very complicated and unmanageable and hence one is trying to un-
derstand the typical or dominant properties of the solution for large n. A
typical phenomenon in high dimension is concentration, which says that al-
though there are many possibilities, they will typically concentrate around
one specific situation. The challenge in a concrete context is to prove this con-
centration and, maybe even more interesting, to isolate and understand this
typical configuration.

A lot of recent progress in mathematics has been about such large n asymp-
totics; Voiculescu’s free probability theory, in particular, is a subject which
allows to deal with typical configurations in an effective way.

We will first clarify the above statements with two concrete examples of
an asymptotic nature and then move on to free probability.

2.1 Two examples for asymptotic statements

Example 1 (Representation theory of Sn)
The irreducible representations of the symmetric group Sn are parametrized

by the partitions of n. A partition λ of n (usually denoted by λ ` n), is a de-
composition of n as a non-increasing sum of positive integers; partitions are
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usually depicted in a graphical way by Young diagrams. For example, for n = 4,
we have five irreducible representations of S4, corresponding to the following
five partitions of 4, respectively the five Young diagrams with 4 boxes:

4 = 4 (4) =

4 = 3 + 1 (3, 1) =

4 = 2 + 2 (2, 2) =

4 = 2 + 1 + 1 (2, 1, 1) =

4 = 1 + 1 + 1 + 1 (1, 1, 1, 1) =

Let us denote the repesentation corresponding to the partition λ by πλ.
We will not give a precise description of this representation, the main question
we are interested in is how we can construct new representations out of given
ones.

There is a basic construction which makes out of a representation π1 of
Sn and a representation π2 of Sm a representation of Sm+n. This is given by
inducing the tensor product representation π1 ⊗ π2 of Sm × Sn ⊂ Sm+n from
Sm×Sn to Sm+n. However, irreducibility gets lost by doing so. So the induced

representation Ind
Sm+n

Sm×Sn
π1 ⊗ π2 of the tensor product of an irreducible rep-

resentation π1 of Sm and an irreducible representation π2 of Sn decomposes
into the direct sum of several irreducible representations σi of Sn+m. There is
a precise combinatorial rule, the Littlewood-Richardson rule, for determining
which Young diagrams appear in this direct sum. This is a bit complicated,
so we do not state its precise form; in any case it is algorithmic and can be
implemented on a computer easily. In the following we use the Littlewood-
Richardson Calculator lrcalc by Anders Buch for calculating such decompo-
sitions. Here is, for example, the decomposition of the induced representation
IndS8

S4×S4
π(2,2) ⊗ π(2,2) of S8:

IndS8

S4×S4
π(2,2)⊗π(2,2) = π(3,2,2,1)⊕π(3,3,1,1)⊕π(4,4)⊕π(2,2,2,2)⊕π(4,2,2)⊕π(4,3,1),

or in terms of Young diagrams

× = + + + + +
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Let us consider now the same “shape” of the two starting Young diagrams,
but in a bigger group, namely IndS18

S9×S9
π(3,3,3) ⊗ π(3,3,3):

× = + + + +

+ + + + +

+ + + + +

+ + + + +

There is no clear structure in this decomposition visible for large n. How-
ever, if we give up to understand all the fine details of this decomposition and
are only interested in the typical behaviour for large n, then there is some
structure appearing. Since we want to compare Young diagrams which corre-
spond to different n, it is advantegeous to renormalize the size of our Young
diagrams so that the total area of all boxes of a Young diagram is always equal
to 2. (That we choose 2 and not 1 is just convenience to avoid some factors√

2 in our examples.) We also rotate our Young diagrams by 135 degrees from
the original “English” representation to the “Russian” one, see Figure 1.

In this scaling, for large n, most of the diagrams appearing in the decom-
position look very similar and there seems to be one dominant limiting shape.
In Figure 1 we have randomly chosen two Young diagrams from each decom-
position arising from the induced tensor product of the square Young diagram
with itself for growing size and one sees a clear limit shape for a typical com-
ponent. This limit shape, however, is not a Young diagram anymore; it is a
kind of continuous version of a Young diagram. It turns out that it is advanta-
geous to encode the information about Young diagrams (and their continuous
generalizations) in probability measures on the real line. Such ideas go back
to the work of Vershik and Kerov [19,32].

First we associate with our normalized Young diagram λ the interlacing
sequences x1, . . . , xm and y1, . . . , ym−1 of x-values of the minima and of the
maxima, respectively, of the enveloping curve of λ in its Russian representa-
tion, see the left diagram in Figure 2. Then we put

µλ =

m∑
k=1

αkδxk
, (1)
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× = · · ·+ + + · · ·

× = · · ·+ + + · · ·

× = · · ·+ + + · · ·

y

× =

Fig. 1 Two typical Young diagrams appearing in the decomposition of the induced
tensor product of a square Young diagram with itself, for the diagrams (6, 6, 6, 6, 6, 6),
(9, 9, 9, 9, 9, 9, 9, 9, 9), (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15); and the apparent
limit shape

where δx is the Dirac measure at x, and the weights αk are given by

αk =

∏m−1
i=1 (xk − yi)∏
i6=k(xk − xi)

. (2)

This might look a bit arbitrary, but this measure has some representation
theoretic relevance; we will give a precise meaning to this in Section 5. In
particular, one might notice that the xk are exactly the positions where we
can add another box in our Young diagram for Sn to get a valid diagram for
Sn+1.

Let us calculate this measure in the case of our square Young diagrams:
we have m = 2, x1 = −1, x2 = 1, y1 = 0 (see the right diagram in Figure 2)
and thus

α1 =
x1 − y1
x1 − x2

=
−1

−2
=

1

2
, α2 =

x2 − y1
x2 − x1

=
1

2
.

Hence the corresponding measure in this case is given by the symmetric
Bernoulli measure with atoms at −1 and +1, each with mass 1/2;

µ = µ(1) = µ(2,2) = µ(3,3,3) = · · · = 1

2
(δ−1 + δ+1).
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For the dominating triangular limit shape we can calculate a correspond-
ing measure µ as the limit of probability measures for Young diagrams which
approximate this limit shape. Let us take for this, for m even, the most “tri-
angular” Young diagram with m2/2 boxes:

λm = (m− 1,m− 2, . . . ,
m

2
+ 2,

m

2
+ 1,

m

2
,
m

2
,
m

2
− 1,

m

2
− 2, . . . , 4, 3, 2, 1)

λ8 = λ12 = λ16 =

For m → ∞ this converges to our triangular limit shape, thus we can assign
to the latter continuous Young diagram the measure

µ = lim
m→∞

µλm
.

The interlacing sequences for these λm are given by

− 2 − 2 +
4

m
. . . −

4

m

2

m
. . . 2−

6

m
2−

2

m

−2 +
2

m
−2 +

6

m
. . . −

2

m

4

m
. . . 2−

4

m

It is quite straightforward to check that the corresponding measure, given by
(1) and (2) converges, for m→∞, to the arcsine distribution on [−2, 2] which
has the density

µ =

{
1

π
√
4−t2 , |t| ≤ 2

0, |t| > 2.
(3)

What we have seen here for a special situation remains true in general. If
we have two sequences of Young diagrams, whose limit shapes correspond to
probability measures µ and ν, respectively, then in the induced tensor rep-
resentation of these, there dominates asymptotically one shape, which is also
associated to a probability measure. Under suitable domains of convergence
for the two sequences of Young diagrams, the limit shape depends only on µ
and ν. We will denote this dominating measure by µ� ν. In our example, we
have seen that for the symmetric Bernoulli distribution µ and for the arcsine
distribution µ we have:

µ = µ � µ

Example 2 (Addition of matrices)
The assignment (µ, ν) 7→ µ � ν in the previous example was quite in-

direct and the notation as a sum might look strange. We will now present
another asymptotic situation where the same operation on probability mea-
sures appears much more directly, and corresponds indeed to taking a sum. A
discrete probability measure with atoms of equal weights 1/n at the positions
λ1, . . . , λn ∈ R will now be realized by a symmetric n × n matrix which has
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x1 x2 x3 x4y1 y2 y3 −1 = x1 x2 = 1y1 = 0

Fig. 2 left: we identify the rescaled Young diagram (5, 3, 1) with the enveloping black curve
and encode this via the x-values of its minima, x1, x2, x3, x4, and the x-values of its maxima,
y1, y2, y3; right: the same for the rescaled square Young diagram

these λi as eigenvalues. We will try to understand, at least asymptotically,
what happens with the eigenvalues if we add two matrices.

Consider two selfadjoint n× n matrices X and Y . Denote the eigenvalues
of X by ν = (ν1 ≤ · · · ≤ νn) and the eigenvalues of Y by µ = (µ1 ≤ · · · ≤
µn). We ask about the possible eigenvalues λ = (λ1 ≤ · · · ≤ λn) of X + Y .
Again, for given ν and µ there are many possibilities for λ, depending on the
relation between the eigenspaces of X and Y . The Horn conjecture (proved by
Klyachko, and Knutson and Tao about 15 years ago) gives precise conditions
on which λ are possible. As before, for large n this description is not very
helpful. However, if we ask for the typical behaviour then we have again a
concentration phenomenon: for large n the eigenvalues of the sum concentrate
on one distribution. And this dominating distribution is determined by the
same operation � that we observed in the asymptotics of representations of
Sn.

Let us look again at the concrete example from before. The distributions
µ = ν = µ will be realized, for even n, by n×n matrices X and Y , for which
half of their eigenvalues are equal to +1 and the other half are equal to -1.

We choose now “randomly” two such matrices and add them. To make this
precise we need to put a probability measure on all possibilities for choosing the
position between the eigenspaces of X and the eigenspaces of Y . This position
is determined by a unitary matrix; since the space of all unitary n×n-matrices
is a compact group there exists a Haar measure on this space; this is finite, so
we can normalize it to a probability measure. All our statements are now with
respect to this measure. So if we want to add our two matrices, we can assume
that X is diagonal and the eigenspace of Y is given by a random unitary matrix
U . In Figure 3 we show, for n = 2000, the histogram of the n eigenvalues of
X + Y for two such a random choices of U and compare this with the arcsine
distribution. This shows quite clearly that for generic choices of U we will get
similar eigenvalue distributions, which are close to the deterministic arcsine
distribution µ = µ � µ .
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Fig. 3 Histogram of the n eigenvalues of X + Y for X diagonal and two random choices of
the eigenspace of Y ; both X and Y have eigenvalue distribution µ ; the eigenvalue histogram
of X + Y is in both cases compared to µ = µ � µ ; n = 2000

2.2 Capturing the structure of the asymptotics

In the previous section we have seen a realization of the asymptotic operation
µ�ν for the representations of permutation groups via the sum of two matrices
X+Y , whereX has eigenvalue distribution µ and Y has eigenvalue distribution
ν. However, this representation is still an asymptotic one, for n → ∞. We
ask now whether we can also find non-asymptotic concrete operators which
realize the asymptotic situations which we encountered before? We will try to
understand the structure which survives for our n × n-matrices X, Y , when
n→∞. Again we will examine the example µ = µ � µ .

A selfadjoint matrix X with eigenvalues +1 and −1 should clearly cor-
respond to an operator x with x2 = 1. Hence the algebra which describes
asymptotically the structure of our matrix X is given by C1+Cx with x2 = 1;
this is the group algebra CZ2, where Z2 is the group with 2 elements; we iden-
tify here the neutral element e in our group with the identity 1 in the algebra.
With this algebraic description we can capture the possible eigenvalues of x as
+1 and −1; for also getting a hold on the multiplicities of the eigenvalues we
have to consider a concrete representation of this group algebra; or alterna-
tively, to specify a state (i.e., a positive linear functional) τ : CZ2 → C on the
algebra. If we want the eigenvalues to have the same multiplicities we clearly
should have a symmetric state, given by τ(1) = 1 and τ(x) = 0. Note that in
the group algebra this state τ is nothing but the canonical state which singles
out the coefficient of the neutral element, i.e., τ(α11 + αxx) = α1.

For the asymptotic description of Y we can take another copy of the group
algebra CZ2 and the corresponding generator y. However, if we want to build
x+y we have to realize the two copies of CZ2 in the same algebra. There are two
canonical general constructions how we can embed two algebras in a bigger one;
one is the tensor product (corresponding to the direct product of the groups)
the other one is the free product (corresponding to the free product of the
groups). The first possibility is a commutative construction and corresponds
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in some sense to the notion of independence in classical probability theory; the
second possibility on the other hand is a very non-commutative construction
and is the appropriate one in our present context.

So let us take the free product Z2 ? Z2 of our two copies of Z2. This is
the (non-commutative!) group which is generated by two generators x and y,
subject to the relations x2 = 1 and y2 = 1. This is an infinite group with
elements

1, x, y, xy, yx, xyx, yxy, xyxy, yxyx, · · ·

(Note that the inverses are of course given by x−1 = x, y−1 = y and extension
of this, like (xy)−1 = y−1x−1 = yx.) We consider now the corresponding
group algebra C(Z2 ?Z2), which is given by finite linear combinations of group
elements. This contains of course the group algebras of the two copies of Z2

as the unital subalgebra generated by x and the unital subalgebra generated
by y, respectively.

The canonical state τ on C(Z2 ?Z2), which picks out the coefficient of the
neutral element

τ(
∑
g

αgg) = α1,

is an extension of the corresponding states on the two copies of CZ2, hence
both x and y have with respect to this still the symmetric distribution on +1
and −1. But now x and y live in the same space and we can ask about the
distribution of x+ y.

For this we want to calculate the moments of x + y with respect to our
state τ , τ((x + y)k). If we draw the Cayley graph of the group Z2 ? Z2 with
respect to the generators x and y,

· · · xyx yx x 1 y xy yxy · · ·
. . . ◦ ←→ ◦ ←→ ◦ ←→ ◦ ←→ ◦ ←→ ◦ ←→ ◦ ←→ ◦ ←→ ◦ . . .

y x y x y x y x

then the words appearing in the expansion of (x+ y)k correspond to all walks
in this graph of length k, starting at 1. Applying τ counts then exactly those
walks which end also at 1. These walks, however, are exactly those for which
the number of steps to the left is the same as the number of steps to the right
(in particular, k must be even, to have such walks), and those closed walks
can bijectively be encoded by the position of the k/2 steps to the left. Hence
the number of such walks, and thus the k-th moment of x+ y is given by

ϕ
(
(x+ y)k

)
=

{(
k
k/2

)
, k even

0, k odd
.

One might suspect that those numbers are actually the moments of our arcsine
distribution (3). In order to see this we can write the central binomial coef-
ficients also in terms of integrating a complex variable z over the unit circle
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T = {z ∈ C | |z| = 1} as (
k

k/2

)
=

∫
T
(z + z̄)kdz.

This equation is true, since we need again the same number of z and z̄ to make
a contribution; note that we have

∫
T z

pdz = δp0 for all p ∈ Z. But now we can
rewrite this complex integral as∫

T
(z + z̄)kdz =

1

2π

∫ 2π

0

(eix + e−ix)kdx

=
1

2π

∫ 2π

0

(2 cosx)kdx

=
1

π

∫ π

0

(2 cosx)kdx

=
1

π

∫ +2

−2
tk

1√
4− t2

dt.

In the last step we used the substitution 2 cosx = t, hence dx = d(arccos(t/2)) =
−dt/

√
4− t2.

So we see that the moments of our element x+ y with respect to the state
τ are exactly the moments of the arcsine distribution

τ((x+ y)k) =

∫ +2

−2
tkdµ (t).

3 Free Probability Theory

3.1 The notion of freeness

In the previous section we have seen that we can realize our asymptotic sit-
uations — showing up in taking induced representations of tensor products
or random sums of matrices — by operators in the group algebra of the free
product of groups. The main information was actually not given by the alge-
braic properties of our operators, but was encoded in a probability measure
or a state on our algebra. Let us formalize the essentials of this setting.

Definition 1 A pair (A, ϕ) consisting of a unital algebra A and a linear
functional ϕ : A → C with ϕ(1) = 1 is called a non-commutative probabil-
ity space. Often the adjective “non-commutative” is just dropped. Elements
from A are referred to as (non-commutative) random variables, the numbers
ϕ(ai(1) · · · ai(k)) for such random variables a1, . . . , am ∈ A are called moments,
the collection of all moments is called the (non-commutative) distribution of
a1, . . . , am.
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If the algebra A is a ∗-algebra, then we usually require ϕ to be a state
on A, which means that it is positive in the sense that ϕ(aa∗) ≥ 0 for all
a ∈ A. The reader might want to check that for a group algebra CG with
the canonical state τ this is indeed the case if the ∗ is given by the inverse
on group elements: (

∑
αgg)∗ =

∑
ᾱgg

−1. In many cases A is a ∗-algebra of
operators on a Hilbert space H, and the relevant states are vector-states, i.e.
of the form ϕ(a) = 〈aξ, ξ〉 for a unit vector ξ ∈ H; for more on this see Section
6.

If the random variables commute, then we are in the classical setting.
Usually, one has some positivity structure around — i.e., ϕ is the expectation
with respect to a probability measure and the random variables x1, . . . , xm are
real-valued — and then the joint distribution in the sense of the collection of
all moments can be identified with the analytic distribution of classical random
variables as a probability measure µx1,...,xm on Rm via

ϕ(xi(1) · · ·xi(k)) =

∫
Rk

ti(1) · · · ti(k)dµx1,...,xm
(t1, . . . , tm) (4)

for all k ∈ N and all 1 ≤ i(1), . . . , i(k) ≤ m. In particular, in the case of one
real-valued random variable x we can identify the distribution of x with the
probability measure µx via

ϕ(xk) =

∫
tkdµx(t).

In our algebraic setting we are restricted to situations where all moments
exist; and in order that (4) determines µx1,...,xm

uniquely we need that the
latter is determined by its moments. This is, for example, the case if our
random variables are bounded, in which case µx1,...,xm or µx are compactly
supported.

If we have two representations or two matrices then we assign to them
operators x and y, and asymptotically our relevant operations correspond to
taking the sum x+y. However, in order to make sense out of the sum we must
embed x and y in the same space. If we have x and y living in some group
algebra CG1 and CG2, respectively, then embedding both in the free product
C(G1 ∗G2) seemed to do the job. In general, we can take the free product of
the algebras in which x and y live. The crucial point, however, is that we do
not only consider this embedding in the free product on the algebraic level,
but we also have to extend our states, as the main information is contained
in the distributions of our operators. But again we can take our lead for this
extension from what we learned in the group case.

For a discrete group G we have the canonical state τ on the group algebra
CG, given by singling out the coefficient of the neutral element e,

τ : CG→ C,
∑
g∈G

αgg 7→ αe.

Calculations with respect to this state seem to correspond to the asymptotic
operations on representations or matrices. In order to get a better grasp on
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how we can extend this to more general situations, it is important to anwer
the following question: Can we express the fact that G1 and G2 are free (in
the algebraic sense) in the free product G1 ∗ G2 also in terms of τ? For this
we should note:

– G1 and G2 free in G1∗G2 means, by definition: whenever we have elements
g1, . . . , gk coming alternatingly from G1 and G2 (i.e., gj ∈ Gi(j) with i(j) ∈
{1, 2} and i(1) 6= i(2) 6= · · · 6= gk−1 6= gk) and such that each gj is not the
neutral element of Gi(j), then g1 · · · gk can also not be the neutral element
of G1 ∗G2;

– the condition that gj or g1 · · · gk are not the neutral element can be ex-
pressed in terms of τ by τ(gj) = 0 or τ(g1 · · · gk) = 0, respectively;

– the above statement goes also over to the group algebra: whenever we have
elements a1, . . . , ak coming alternatingly from CG1 and CG2 and such that
τ(aj) = 0 for all j = 1, . . . , k, then also τ(a1 · · · ak) = 0.

As it turns out the latter description is a fundamental importance. It was
isolated by Voiculescu in the 1980’s in the operator algebraic variant of the
above situation and termed “freeness”.

Definition 2 Let (A, ϕ) be a non-commutative probability space and let I
be an index set.

1) Let, for each i ∈ I, Ai ⊂ A, be a unital subalgebra. The subalgebras
(Ai)i∈I are called free or freely independent, if ϕ(a1 · · · ak) = 0 whenever we
have: k is a positive integer; aj ∈ Ai(j) (with i(j) ∈ I) for all j = 1, . . . , k;
ϕ(aj) = 0 for all j = 1, . . . , k; and neighboring elements are from different
subalgebras, i.e., i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

2) Let, for each i ∈ I, xi ∈ A. The random variables (xi)i∈I are called
free or freely independent, if their generated unital subalgebras are free, i.e., if
(Ai)i∈I are free, where, for each i ∈ I, Ai is the unital subalgebra of A which
is generated by xi. In the same way, subsets (Xi)i∈I of A are free, if their
generated unital subalgebras are so.

The notion of freeness allows now a precise definition of the operation �
which we encountered in the previous section.

Definition 3 Let µ and ν be probability measures on R which are determined
by their moments. Then the probability measure µ� ν is defined as follows.

– Find a non-commutative probability space (A, ϕ) and random variables
x, y ∈ A such that x and y are free and such that µ = µx and ν = µy, i.e.,
for all k ∈ N

ϕ(xk) =

∫
R
tkdµ(t), ϕ(yk) =

∫
R
tkdν(t).

– Then µ�ν is the distribution of x+y; i.e., it is determined by its moments
via ∫

R
tkd(µ� ν)(t) = ϕ((x+ y)k) (t ∈ N).
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For this definition to make sense one has to make the following basic ob-
servations about freeness.

– There exists a free product construction which allows to embed any given
non-commutative probability spaces (A1, ϕ1), . . . , (Am, ϕm) in a bigger
non-commutative probability space (A, ϕ) such that ϕ restricted to the
image of Ai coincides with ϕi and such that the images of A1, . . . ,Am are
free in (A, ϕ). This construction preserves also special features of the linear
functionals, like positivity or traciality.

– If x and y are free, then the distribution of x+ y does only depend on the
distribution of x and the distribution of y, but not on the way how x and
y are concretely realized.

Example 3 (Calculation of mixed moments for free variables)
In order to see the last point — i.e., how freeness determines mixed moments
in x and y out of the moments of x and the moments of y — let us consider the
simplest mixed moment, ϕ(xy). If ϕ(x) and ϕ(y) are zero then the definition of
freeness says that ϕ(xy) also has to vanish. In the general case we can reduce it
to the definition via ϕ[(x−ϕ(x)1)(y−ϕ(y)1)] = 0, because the argument of ϕ
is now a product of centered elements which come alternatingly from the unital
algebra generated by x and the unital algebra generated by y. Multiplying out
terms and using linearity of ϕ and ϕ(1) = 1 gives then ϕ(xy) = ϕ(x)ϕ(y) in
general. In the same way one can deal with any mixed moment in x and y.
Whereas for moments of the form ϕ(xnym) = ϕ(xn)ϕ(ym) one gets the same
result as for classical independent random variables, genuine non-commutative
moments are quite different (and more complicated); e.g.,

ϕ[(x− ϕ(x)1)(y − ϕ(y)1)(x− ϕ(x)1)(y − ϕ(y)1)] = 0

results in

ϕ(xyxy) = ϕ(x2)ϕ(y)2 + ϕ(x)2ϕ(y2)− ϕ(x)2ϕ(y)2.

The above conveys to the reader hopefully the feeling that we have here a
kind of non-commutative version of classical probability theory in the following
respects:

– Even if we are dealing with abstract elements in algebras or with oper-
ators on Hilbert spaces, the concrete realization of these elements is not
important, the main quantities of interest are their distributions;

– the notion of “freeness” is very much in analogy to the notion of “indepen-
dence” in classical probability theory; thus “freeness” is also referred to as
“free independence”.

Investigating the concept of freeness, its realizations and implications in
various contextes constitutes the subject of free probability theory. We are
dealing with non-commuting operators in the spirit of classical probability
theory, in a context where the notion of freeness is, explicitly or implicitly, of
relevance.
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3.2 The calculation of the free convolution �

In the last section we gave a precise definition of the free convolution �.
However, it remains to develop a machinery which allows to calculate the free
convolution. Up to now we have defined µ � µ , but can we also calculate
somehow directly that this is actually the arcsine distribution µ from (3)?

In the case of the classical convolution (which describes the sum of inde-
pendent random variables) the Fourier transform provides a powerful analytic
tool for doing calculations (and also for proving theorems). It turns out that
the role of the Fourier transform is taken over by the Cauchy transform in free
probability theory.

Definition 4 For any probability measure µ on R we define its Cauchy trans-
form G by

G(z) :=

∫
R

1

z − t
dµ(t). (5)

This is an analytic function G : C+ → C−. In particular in the random matrix
context, one prefers to work with −G : C+ → C+, which is called the Stieltjes
transform.

Formally, if one expands the geometric series in the definition of G, then
one gets the power series expansion

G(z) =
∑
k≥0

∫
R t

kdµ(t)

zk+1
;

if µ is compactly supported, this converges for sufficiently large |z|. Hence
the Cauchy transform is, like the Fourier transform, a generating function
for the moments of the considered distribution. As in the case of the Fourier
transform one can also invert the mapping µ 7→ G; one can recover µ from G
by the Stieltjes inversion formula

dµ(s) = − 1

π
lim
ε→0
=G(s+ iε)dt. (6)

This follows formally by observing that

− 1

π
=G(s+ iε) = − 1

π

∫
R
= 1

(s− t) + iε
dµ(t) =

∫
R

1

π

ε

(s− t)2 + ε2
dµ(t)

and that the latter integral is the (classical) convolution of µ with the Poisson
kernel (or Cauchy distribution), which converges weakly for ε→ 0 to δs.

A crucial role for dealing with free convolution will now be played by the
functional inverse K(z) of the Cauchy transform G(z). Observe that K(z) has
a simple pole at zero. Accordingly, let us split K(z) into this singular part 1/z
and the remaining analytic part R(z), which we call the R-transform. So we
write K(z) = 1/z +R(z) and have G[1/z +R(z)] = z.
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We will now rewrite this in the language of a random variable x in some
probability space (A, ϕ) with distribution µx = µ, henceG(z) = ϕ

(
(z − x)−1

)
.

(We will in the following encounter not only polynomials in x, but also power
series. At least if x is bounded, i.e., if µ is compactly supported, these make
sense for |z| sufficiently large and the following formal calculations can be
rigorously justified.) In terms of x the equation G[1/z +R(z)] = z reads as

ϕ

(
1

1
z (1 + zR(z))− x

)
= z, hence ϕ

(
1

1− (zx− zR(z))

)
= 1.

Let us put r(z) = z(x−R(z)) and expand the resolvent as a Neumann series

q(z) =
∑
k≥1

r(z)k =
1

1− r(z)
− 1 =

1

1− (zx− zR(z))
− 1.

Then the above tells us that ϕ(q(z)) = 0.
Consider now x1, . . . , xn which are free in (A, ϕ). For each xi we have the

corresponding Ki(z), Ri(z), ri(z), and qi(z) as above. We can now calculate

ϕ

(
1

1− (r1(z) + · · · rn(z))

)
= 1 +

∑
k≥1

∑
1≤i(1),...,i(k)≤n

ϕ
(
ri(1)(z) · · · ri(k)(z)

)
= 1 +

∑
k≥1

∑
1≤i(1) 6=i(2) 6=
i(3) 6=···6=i(k)≤n

ϕ
(
qi(1)(z) · · · qi(k)(z)

)
= 1.

For the last equation we used that all terms of the form ϕ(qi(1)(z) · · · qi(k)(z))
vanish, because the argument of ϕ is an alternating product in centered free
variables. Thus, with

G(z) = ϕ

(
1

z − (x1 + · · ·+ xn)

)
being the Cauchy transform of x1 + · · ·+ xn, we have seen that

G

[
1

z
+R1(z) + · · ·+Rn(z)

]
= ϕ

(
z

(1 + zR1(z) + · · ·+ zRn(z))− z(x1 + · · ·+ xn)

)
= zϕ

(
1

1− (r1(z) + · · ·+ rn(z))

)
= z,

i.e., the R-transform of x1 + · · ·+ xn is given by R(z) = R1(z) + · · ·+Rn(z).
Let us phrase our conclusion formally in the following theorem. This is due

to Voiculescu [34]; his original proof was much more operator theoretic, the
quite elementary and direct proof we presented above follows Lehner [20] (see
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also [14,41]). Other proofs were given by Haagerup [16] (using operator mod-
els) and Speicher [23,29] (relying on the combinatorial approach to freeness,
which will be outlined in the next section).

Theorem 1 For a compactly supported probability measure we define its R-
transform Rµ as the analytic function in some disk about 0, which is uniquely
determined by

Gµ[1/z +R(z)] = z, (7)

where Gµ is the Cauchy transform of µ.

Then we have the additivity of the R-transform under free convolution,
i.e., for compactly supported probability measures µ and ν, we have in the
intersection of their domain

Rµ�ν(z) = Rµ(z) +Rν(z). (8)

In [6], the free convolution as well as this theorem was extended to all
probability measures on R. Whereas the Cauchy transform is always defined on
all of the upper complex half-plane, the domain of theR-transform needs some
more careful analysis. An alternative approach to this is via subordination
functions, which writes Gµ�ν in the form Gµ�ν(z) = Gµ(ω(z)), where the
subordination function ω is always analytic on all of the upper half plane,
and depends both on µ and ν via some fixed point equation in terms of Gµ
and Gν . We will not follow up more on this, but want to point out that this
subordination approach, though equivalent to the R-transform approach, is
much better behaved from an analytic point of view and is the modern state
of the art for dealing with questions on free convolutions. For more information
on this, see [4,10,21,30].

Example 4 (Calculation of µ � µ via R-transform)
Recall that µ := µ = 1/2(δ−1 + δ+1). Hence its Cauchy transform is given by

Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

Now we apply the relation (7) between Cauchy and R-transform to get the
following algebraic equation for the R-transform of µ

z = Gµ[Rµ(z) + 1/z] =
Rµ(z) + 1/z

(Rµ(z) + 1/z)2 − 1
.

This quadratic equation can easily be solved and we get as a solution Rµ(z) =
(
√

1 + 4z2 − 1)/(2z). (The other solution can be excluded by looking at the
asymptotic behavior for z →∞.) By the additivity (8) of the R-transform, we
get for theR-transform of ν := µ�µ thatRν(z) = 2Rµ(z) = (

√
1 + 4z2 − 1)/z.

Using again the relation (7) gives now a quadratic equation for the Cauchy
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transform of ν, which can be solved to yield Gν(z) = 1/
√
z2 − 4. Applying the

Stieltjes inversion formula to this gives then finally

dν(t) = − 1

π
= 1√

t2 − 4
dt =


1

π
√
4−t2 , |t| ≤ 2

0, otherwise

,

i.e., we have indeed that µ � µ = ν is the arcsine distribution µ .

Example 5 (Free central limit theorem)
If one has the notion of a convolution, then one of the first questions which
come to mind is about the analogue of a central limit theorem: what can
one say about the limit of (D1/

√
nµ)�n if n goes to ∞; Drν denotes here the

dilation of the measure ν by the factor r. To put the same question in terms of
the random variables: assume x1, x2, . . . are free and identically distributed;
what can we say about the limit distribution of (x1 + · · · + xn)/

√
n? With

the R-transform machinery this is easy to answer. Let us denote by Rn the
R-transform of (D1/

√
nµ)�n. By the additivity of the R-transform for free

variables and by the scaling behaviour of theR-transformRDrν(z) = rRν(rz),
we get

Rn(z) = n
1√
n
R1(z/

√
n),

where R1 is the R-transform of µ. If we expand the R-transforms into a power
series about 0

Rn(z) = κ
(n)
1 + κ

(n)
2 z + κ

(n)
3 z2 + · · ·

(the R-transform is an analytic function in a sufficiently small ball about zero,
if the measure has compact support), then we see that those coefficients scale

as κ
(n)
i = (

√
n)i−2κ

(1)
i ; this means κ

(1)
1 should better be zero (this corresponds

to the assumption that µ has mean zero, which always is assumed in a central
limit theorem) and, if this is the case, the only surviving coefficient in the

limit is κ
(1)
2 (which is actually the variance of µ). Hence, under the usual

assumptions κ
(1)
1 = 0 and κ

(1)
2 = 1, we get limn→∞Rn(z) = z. It is easy to see

that pointwise convergence of theR-transform is the same as weak convergence
of the corresponding measures. So what we get in the central limit is a measure,
whose R-transform is given by R(z) = z. Plugging this into (7) gives for the
corresponding Cauchy transform the equation zG(z) = 1 + G(z)2, which has
the solution G(z) = (z −

√
z2 − 4)/2. By the Stieltjes inversion formula this

gives a measure µs with support [−2, 2] and density dµs(t) =
√

4− t2/(2π)dt.
According to the form of its density, this is usually referred to as a semicircular
distribution.

This free central limit theorem was one of the first theorems in free prob-
ability theory, proved by Voiculescu [33] around 1983. The appearance of the
semicircular distribution in this limit pointed to connections with random ma-
trix theory, we will come back to this in Section 4.
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3.3 The combinatorics of freeness

The coefficients in the power series expansion of the Cauchy transform of a
probability measure µ are essentially the moments of µ. The coefficients of the
R-transform (which already played a role in our proof of the free central limit
theorem) are, via the relation (7) between the Cauchy and the R-transform,
some polynomials in the moments and are of quite some importance for the de-
velopment of free probability theory. We denote them by (κi)i≥1 and call them
free cumulants (in analogy to the classical cumulants, which are essentially the
coefficients in the expansion of the logarithm of the Fourier transform). The
relation between moments and cumulants has a beautiful combinatorial struc-
ture, which was discovered in [29] (see also [25]) and is governed by the lattice
of non-crossing partitions. Here we mean partitions of sets, not of numbers as
we encountered them in Section 1 in the context of Young diagrams.

Definition 5 A partition of {1, . . . , k} is a decomposition π = {V1, . . . , Vr}
with Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= j), and

⋃
i Vi = {1, . . . , k}. The Vi are the blocks

of π. If each block of π has exactly two elements, then we call π a pairing. A
partition π is non-crossing if we do not have p1 < q1 < p2 < q2, such that
p1, p2 are in the same block, and q1, q2 in another, different block. By NC(k)
we will denote the set of all non-crossing partitions of {1, . . . , k}.

If we replace the Cauchy transform and the R-transform by the more
natural generating power series in the moments and the free cumulants,

M(z) := 1 +
∑
i≥1

miz
i, C(z) := 1 +

∑
i≥1

κiz
i,

then we have the relations G(z) = M(1/z)/z and C(z) = 1 + zR(z), and the
relation (7) between G and R reads now C[zM(z)] = M(z). In terms of the
coefficients this is equivalent to the recursion

mk =

k∑
s=1

∑
i1,...,is∈{0,1,...,k−s}

i1+···+is+s=k

κsmi1 · · ·mis .

Iterating this yields finally the following formula for writing the moments in
terms of the free cumulants,

mk =
∑

π∈NC(k)

κπ. (9)

Here κπ is a product of cumulants, one factor κr for each block of π of size r.
The relation between moments and classical cumulants — which is the relation
between the coefficients of an exponential generating series and the logarithm
of this seris — is exactly the same, with the only difference that the summation
runs there over all partitions of k instead over the non-crossing ones.
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Fig. 4 Histogram of the n eigenvalues
of one realization of an n × n Gaus-
sian random matrix for n = 2000; com-
pared to the semicircle distribution. A
Gaussian random matrix is selfadjoint,
and apart from this all its entries are
independent, and distributed according
the Gaussian distribution; in order to
get a limit for n → ∞ one has to
scale the matrix with 1/

√
n. This con-

vergence of the eigenvalue distribution
of a Gaussian random matrix to the
semicircle distribution was proved by
Wigner in 1955 and is usually referred
to as Wigner’s semicircle law.

Since for the semicircle distribution only the second cumulant is different
from zero, the formula (9) gives in this case that the 2k-th moment of the
normalized semicircular distribution is given by the number of non-crossing
pairings of 2k elements. This is analogous to the classical statement that the
2k-th moment of the normalized Gaussian distribution is given by the number
of all pairings of 2k elements, which is just (2k−1)!! := (2k−1)·(2k−3) · · · 5·3·1.

This combinatorial description of freeness in terms of non-crossing parti-
tions goes much further and a lot of the progress in free probability theory
relied on this description; more information on this can be found in [23]; see
also [24].

4 Free Probability and the Asymptotic Eigenvalue Distribution of
Random Matrices

The limit distribution in the free central limit theorem, the semicircle distri-
bution µs, had appeared before in the literature, namely in the random matrix
context as one of the basic limiting eigenvalue distributions; see Figure 4. This
connection motivated Voiculescu to look for some deeper relation between free
probability theory and random matrices, resulting in many asymptotic free-
ness results for random matrices. A glimpse of this we saw in Section 1. Here
we want to be a bit more precise on this connection.

One should note that our presentation of the notion of freeness is quite
orthogonal to its historical development. Voiculescu introduced this concept
in an operator algebraic context (we will say a few words on this in Section 6);
at this point, when he introduced the R-transform and proved the free central
limit theorem around 1983, there was no relation at all with random matrices
(or the asymptotics of representations); this connection was only revealed later
in [36].

Random n× n-matrices for finite n have a quite complicated distribution
and a nice and controllable structure shows up only in the limit n → ∞; in
particular, freeness cannot be found among finite matrices, one can see it in
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the random matrix world only asymptotically for n→∞. Hence we need some
notion of convergence and, in particular, the concept of “asymptotic freeness”.

Definition 6 Let (An, ϕn), for n ∈ N, and (A, ϕ) be non-commutative prob-

ability spaces. Let I be an index set. For each i ∈ I, let a
(n)
i ∈ An (n ∈ N) and

ai ∈ A. We say that (a
(n)
i )i∈I converges in distribution to (ai)i∈I , denoted by

(a
(n)
i )i∈I

distr−→ (ai)i∈I , if we have that each joint moment of (a
(n)
i )i∈I converges

to the corresponding joint moment of (ai)i∈I , i.e., if we have

lim
n→∞

ϕn(a
(n)
i1
· · · a(n)ik

) = ϕ(ai1 · · · aik) (10)

for all k ∈ N and all i1, . . . , ik ∈ I.

Definition 7 Let, for each n ∈ N, (An, ϕn) be a non-commutative probability
space. Let I be an index set and consider for each i ∈ I and each n ∈ N random

variables a
(n)
i ∈ An. Let I = I1∪· · ·∪Im be a decomposition of I into m disjoint

subsets. We say that {a(n)i | i ∈ I1}, . . . , {a(n)i | i ∈ Im} are asymptotically free

(for n → ∞), if (a
(n)
i )i∈I converges in distribution towards (ai)i∈I for some

random variables ai ∈ A (i ∈ I) in some non-commutative probability space
(A, ϕ) and if the limits {ai | i ∈ I1}, . . . , {ai | i ∈ Im} are free in (A, ϕ).

In [36] Voiculescu could show that not only one of the most basic distri-
butions in free probability theory, the semicircular distribution, shows up as
the limit of random matrices, but that also the whole concept of freeness can
be found in the random matrix world, at least asymptotically. The following
is the most basic such result [38], for independent Gaussian random matrices
and can be seen as a vast generalization of Wigner’s semicircle law to the
multivariate setting. Note that whereas Wigner’s theorem can be formulated
within classical probability theory, the multivariate situation is genuinely non-
commutative and one needs a non-commutative version of probability theory
even for its formulation.

Theorem 2 Let A
(n)
1 , . . . , A

(n)
p be p independent n×n Gaussian random ma-

trices and let D
(n)
1 , . . . , D

(n)
q be q random n × n matrices such that almost

surely

D
(n)
1 (ω), . . . , D(n)

q (ω)
distr−→ d1, . . . , dq as n→∞.

Furthermore, assume that, for each n, A
(n)
1 , . . . , A

(n)
p , {D(n)

1 , . . . , D
(n)
q } are in-

dependent. Then we have almost surely for n→∞ that

A
(n)
1 (ω), . . . , A(n)

p (ω), D
(n)
1 (ω), . . . , D(n)

q (ω)
distr−→ s1, . . . , sp, d1, . . . , dq,

where each si is semicircular and s1, . . . , sp, {d1, . . . , dq} are free. So in partic-

ular, we have that A
(n)
1 , . . . , A

(n)
p , {D(n)

1 , . . . , D
(n)
q } are almost surely asymp-

totically free.
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The independence between two matrices means that all entries of the first
matrix are independent from all entries of the second matrix; and similar for
sets of matrices.

Another important variant of this theorem is for unitary random matrices.
Let us first recall what we mean with a Haar unitary random matrix. Let U(n)
denote the group of unitary n×n matrices, i.e. n×n complex matrices U which
satisfy U∗U = UU∗ = In. Since U(n) is a compact group, one can take dU
to be Haar measure on U(n) normalized so that

∫
U(n) dU = 1, which gives a

probability measure on U(n). A Haar distributed unitary random matrix is a
matrix Un chosen at random from U(n) with respect to Haar measure. There
is a useful theoretical and practical way to construct such Haar unitaries:
take an n×n (non-selfadjoint!) random matrix whose entries are independent
standard complex Gaussians and apply the Gram-Schmidt orthogonalization
procedure; the resulting matrix is then a Haar unitary random matrix.

The distribution of each such Haar unitary random matrix is, for each n
and thus also in the limit n→∞, a Haar unitary in the sense of the following
definition.

Definition 8 Let (A, ϕ) be a non-commutative probability space such that
A is a ∗-algebra. An element u ∈ A is called a Haar unitary if u is unitary,
i.e. u∗u = 1A = uu∗ and if ϕ(um) = δ0,m for all m ∈ Z.

Here is now the version of the previous theorem for the unitary case. This
is again due to Voiculescu [36,38].

Theorem 3 Let U
(n)
1 , . . . , U

(n)
p be p independent n× n Haar unitary random

matrices, and let D
(n)
1 , . . . , D

(n)
q be q random n× n matrices such that

D
(n)
1 (ω), . . . , D(n)

q (ω)
distr−→ d1, . . . , dq as n→∞.

Furthermore, we assume that, for each n, {U (n)
1 , U

(n)∗
1 }, . . . , {U (n)

p , U
(n)∗
p },

{D(n)
1 , . . . , D

(n)
q } are independent. Then we have almost surely for n → ∞

that

U
(1)
N (ω), U

(1)∗
N (ω) . . . , U

(p)
N (ω), U

(p)∗(ω)
N , D

(1)
N (ω), . . . , D

(q)(ω)
N

distr−→ u1, u
∗
1, . . . , up, u

∗
p, d1, . . . , dq,

where each ui is a Haar unitary and {u1, u∗1}, . . . , {up, u∗p}, {d1, . . . , dq} are

free. So, in particular, {U (n)
1 , U

(n)∗
1 }, . . . , {U (n)

p , U
(n)∗
p }, {D(n)

1 , . . . , D
(n)
q } are

almost surely asymptotically free.

This theorem explains now the findings of Figure 3. There we looked on
two matrices of the form X = D1 and Y = UD2U

∗, where D1 and D2 are
diagonal matrices (each with asymptotic eigenvalue distribution µ ) and U is
a random Haar unitary (corresponding to a random choice of the eigenspaces
of Y ). Hence by the above result {U,U∗} and {D1, D2} are asymptotically
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free. It is an easy exercise (just using the definition of freeness) to see that this
implies that also D1 and UD2U

∗ are asymptotically free. Hence the asymptotic
eigenvalue distribution of X + Y is given by µ � µ , which we calculated as
µ in Example 4.

There are many more matrix examples which show asymptotic freeness
(like general Wigner matrices, see [2,22]) or some more general notions of
freeness (like “traffic independence”, see [9]).

Random matrix theory is at the moment a very active and fascinating
subject in mathematics; to get an idea of its diversity, beauty, and depth one
should have a look on the collection of survey articles on various aspects of
random matrices in [1]. Free probability has brought to this theory, with its
concept of freeness and its quite developed tool box, a very new perspective
on random matrices; resulting, among others, in new and very general calcu-
lation techniques for the asymptotic eigenvalue distribution of many classes of
random matrices; see, for example, [5,30].

Since random matrices are used in many applied fields as models for basic
scenarios, methods from random matrix theory, in particular also free probabil-
ity theory, have become an indispensible tool for calculations in such subjects.
A prominent example of this type are wireless networks, where the channels
connecting transmitter and receiver antenna are modelled by a random matrix
and where the capacity (i.e., the amount of information which can be trans-
mitted through such channels) depends on the eigenvalue distribution of the
random matrix. For more information on the use of random matrices and free
probability in such a context one should see [31,11].

5 Free Probability and the Asymptotics of Representations of the
Symmetric Groups

On an intuitive level typical representations of Sn for large n are given by
large matrices, which behave in many respects like random matrices; hence
the asymptotics of operations on representations should have some relation to
asymptotic operations on random matrices, and the latter is described by free
probability theory. This relation between the asymptotics of representations
and free probability was discovered and made precise by Biane in [7], see also
[8]. In the following we will present some of his results.

In Example 1 we encoded the information about a representation corre-
sponding to a Young diagram λ by a probability measure µλ on R according
to equations (1) and (2). The relevance of this µλ comes from the fact that it
is the eigenvalue distribution of a matrix Γ (λ), which contains the information
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about the representation πλ:

Γ (λ) =
1√
n



0 1 1 1 1 . . . 1
1 0 πλ(12) πλ(13) πλ(14) . . . πλ(1n)
1 πλ(12) 0 πλ(23) πλ(24) . . . πλ(2n)
1 πλ(13) πλ(23) 0 πλ(34) . . . πλ(3n)
1 πλ(14) πλ(24) πλ(34) 0 . . . πλ(4n)
...

...
...

...
...

. . .
...

1 πλ(1n) πλ(2n) πλ(3n) πλ(4n) . . . 0


Note that the entries in this matrix, in particular also 0 and 1, are themselves
d × d-matrices (where d is the dimension of the representation πλ); πλ(ij)
denotes the matrix representing the transposition (ij) ∈ Sn.

Taking traces of powers of this matrix gives

tr((Γ (λ)k) =
1

nk/2
1

n+ 1

∑
0≤i1 6=i2 6=···6=ik 6=i1≤n

χλ((i1i2)(i2i3) · · · (iki1)),

where χλ(σ) = tr(πλ(σ)) (σ ∈ Sn) is the normalized character corresponding
to the representation πλ and where (ij) denotes the identity permutation if ei-
ther i or j is equal to 0. Working out the asymptotics of the conjugation classes
which appear in the form (i1i2)(i2i3) · · · (iki1), gives in the end for tr((Γ (λ)k))
a formula which is in leading order of the form (9), relating moments and free
cumulants. This shows that the characters applied to the conjugation classes
are in leading order given by the free cumulants of the distribution µλ. For
making this more precise, we should note that asymptotically we are dealing
with Young diagrams which are converging to some limiting Young curve af-
ter our rescaling with

√
n in both linear directions. Hence we are dealing with

“balanced” diagrams whose linear dimensions are of order
√
n.

Definition 9 Let A > 1. We say that a Young diagram λ ` n (recall that
this means that λ has n boxes) is A-balanced if its width (i.e., the maximum
of its numbers of rows and columns) is at most A

√
n.

Very thin diagrams, like λn = (n),

, , , , , , , , , , · · ·

are not balanced and do not have a limit for n → ∞ in this scaling, and we
have nothing to say about the asymptotic behaviour of the representations
corresponding to them.

For balanced diagrams however we can say a lot. A rigorous treatment of
the above arguments yields, for example, the following theorem of Biane [7]
about the asymptotic behaviour of the characters of balanced representations.
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Theorem 4 For all A > 1 and m positive integer, there exists a constant K >
0 such that, for all A-balanced Young diagrams λ ` n, and all permutations
σ ∈ Sn satisfying |σ| ≤ m, one has∣∣∣∣∣∣χλ(σ)− |λ|−|σ|/2

∏
j≥2

κj+1(λ)lj

∣∣∣∣∣∣ ≤ K|λ|−1−|σ|/2,
if σ has l2 cycles of length 2, l3 cycles of length 3, etc., and |σ| =

∑
j≥2(j−1)lj

is the minimal number to write σ as a product of transpositions; κj(λ) (j ≥ 1)
denote the free cumulants of µλ.

For some further results on bounds for characters see [13].
Also the asymptotic behaviour of operations on representations (like in-

ductions, tensor products, etc) corresponding to balanced Young diagrams
can be described via an analysis of the matrix Γ (λ) in terms of operations
coming from free probability theory on the corresponding measures µλ. Here
is the precise statement, again due to Biane [7], concerning the induction of
the tensor product.

Theorem 5 For every A > 1 and p positive integer, there exists q0 and K,
C0 > 0 such that for all q ≥ q0, all C > C0, and all Young diagrams λ1 ` m,
λ2 ` n satisfying m,n ≥ q0 and width(λ1),width(λ2) ≤ A

√
q, the subspace of

all irreducible representations λ appearing in Ind
Sm+n

Sm×Sn
πλ1
⊗ πλ2

satisfying∣∣∣∣∫
R
tkdµλ(t)−

∫
R
tkd(µλ1 � µλ2)(t)

∣∣∣∣ ≤ Cqk/2−1/4 for all k ≤ n,

has dimension larger than (1−K/C2) · dim
(

Ind
Sm+n

Sm×Sn
πλ1 ⊗ πλ2

)
.

This theorem makes our observation from Example 1 precise that asymp-
totically most irreducible components in × look like , because we have
seen in Example 4 that µ � µ = µ .

This theorem also shows that a diagram contributes with the dimension of
its corresponding irreducible representation. Hence, when we chose a diagram
at random in Example 1 in the decomposition, this actually means that we
have to choose it with a probability which is proportional to the dimension
of its irreducible representation; there is a combinatorial formula, the hook
formula, which allows to calculate this dimension from the diagram.

6 Free Probability and Operator Algebras

In Section 3.1 we motivated and introduced the notion of freeness by rewrit-
ing the algebraic freeness of groups in a free product of groups in terms of the
canonical state τ on the group algebra. When Voiculescu created free proba-
bility theory in [33] he was essentially led by this idea, however in an operator



Free Probability Theory 25

algebraic context. Operator algebras are ∗- algebras of bounded operators on
a Hilbert space which are closed in some canonical topologies. (C∗-algebras
are closed in the operator norm, von Neumann algebras are closed in the weak
operator topology; the first topology is the operator version of uniform conver-
gence, the latter of pointwise convergence.) Since the group algebra of a group
can be represented on itself by bounded operators given by left multiplication
(this is the regular representation of a group), one can take the closure in
the appropriate topology of the group algebra and get thus C∗-algebras and
von Neumann algebras corresponding to the group. The group von Neumann
algebra arising from a group G in this way is usually denoted by L(G). This
construction, which goes back to the foundational papers of Murray and von
Neumann in the 1930’s, is, for G an infinite discrete group, a source of impor-
tant examples in von Neumann algebra theory, and much of the progress in von
Neumann algebra theory was driven by the desire to understand the relation
between groups and their von Neumann algebras better. The group algebra
consists of finite sums over group elements; going over to a closure means that
we allow also some infinite sums. One should note that the weak closure, in the
case of infinite groups, is usually much larger than the group algebra and it is
very hard to control which infinite sums are added. Von Neumann algebras are
quite large objects and their classification is notoriously difficult. Deep results
of Connes show that amenable groups satisfying an additional technical (ICC)
condition give always the same von Neumann algebra, the so-called hyperfinite
factor. Going beyond amenable groups is a challenge.

A special and most prominent case for this are the free (non-commutative!)
groups Fn on n generators, leading to the so-called free group factors L(Fn).
Already Murray and von Neumann showed that the free group factors are not
isomorphic to the hyperfinite factor; however, whether L(Fn) and L(Fm) are,
for n,m ≥ 2, isomorphic or not, is still one of the big open questions in the
subject. It was the context of this problem, in which Voiculescu introduced the
concept of “freeness”; led by the idea that Fn is the free product of n copies
of F1 = Z. Hence if one could make sense out of the corresponding phrase
“L(Fn) is the free product of n copies of L(Z)” (L(Z) is a commutative,
and thus well understood, von Neumann algebra) then one might hope for
a better understanding of L(Fn). The first step, to give rigorous meaning
to a free product of von Neumann algebras, was achieved by the definition
of freeness. Note that the canonical state τ on the group algebra extends
continously to the group von Neumann algebra; and in the setting of infinite
sums algebraic notions are usually not very helpful and we are really in need
of a characterizaton of freeness in terms of the state τ .

That this notion of freeness does then also show up for random matri-
ces, as shown later by Voiculescu in [36], was quite unsuspected and had an
tremendous impact, both on operator algebras as well as on random matrix
theory. The fact that freeness occurs for von Neumann algebras as well as
for random matrices means that the former can be modeled asymptotically
by the latter and this insight resulted in the first progress on the free group
factors since Murray and von Neumann. In particular, Voiculescu showed in
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[35] that the compression L(Fn)r := pL(Fn)p of L(Fn) by a projection p of
trace tr(p) = r results in another free group factor; more precisely, one has
(L(Fn))1/m = L(F1+m2(n−1)). By introducing interpolated free group factors
L(Ft) for all real t > 1, this formula could be extended by Dykema [12] and
Radulescu [26] to any real n,m > 1, resulting in the following dichotomy.
(The fundamental group of a von Neumann algebra M is the multiplicative
subgroup of R+ consisting of all r for which L(M)r is isomorphic to M .)

Theorem 6 We have exactly one of the following two possibilities.

(i) All interpolating free group factors are isomorphic:

L(Fs) ' L(Ft) for all 1 < s, t ≤ ∞.

In this case the fundamental group of each L(Ft) is equal to R+.

(ii) The interpolating free group factors are pairwise non-isomorphic:

L(Fs) 6' L(Ft) for all 1 < s 6= t ≤ ∞.

In this case the fundamental group of each L(Ft), for t 6=∞, is equal to {1}.

Another spectacular result of Voiculescu about the structure of the free
group factors, building on the free probability concept of “free entropy”, was
that free group factors do not have Cartan subalgebras [37]; thus settling a
longstanding open question. There have been many more consequences of free
probability arguments around subfactors [28], quantum groups [3,27], invariant
subspaces [17], or q-deformed von Neumann algebras [15], and much more.

7 Non-Commutative Distributions

During our journey through the typical asymptotic behaviour of representa-
tions or random sums of matrices we have come accross the structure of op-
erator algebras, and we have encountered the distribution of non-commuting
operators as one of the central objects.

In operator theory the shift from the concrete action of operators in the
Hilbert space or from their algebraic structure to their distributions is quite
some change of paradigm. Actually, the real part of the one sided shift has
with respect to the canonical vacuum expectation a semicircular distribution.
The one sided shift is arguably the most important operator in single operator
theory, but apparently nobody before Voiculescu ever looked on its distribu-
tion.

We have seen various incarnations of non-commutative distributions, like:

– quite combinatorially, the collection of all mixed moments of the operators;
– more analytically, the restriction of a state to the algebra generated by our

operators;
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– in the one dimensional case we have also used analytic functions, like the
Cauchy transform, for dealing with distributions; there exists also a be-
ginning of a non-commutative function theory (aka free analysis) [18,39,
40]), which is intended to provide us with analytic tools for dealing with
distributions of non-commuting operators.

However, if one compares the situation with the classical, commutative set-
ting then one still has the feeling that an important point of view is missing.
Classically, the distribution of a k-tuple of random variables is a probability
measure on Rk. Though a positive linear functional on continuous functions is,
via the Riesz representation theorem, the same as a probability measure, one
surely has the feeling that for many (in particular, probabilistic) purposes hav-
ing events and probabilities of those is maybe a better description than just be-
ing able to average over functions. In the non-commutative world we can aver-
age, but we do not (yet) have a good mental picture of non-commutative events
and probabilities. Still we are dreaming of substitutes . . . and we would like to
answer questions like: what is a good notion of density for non-commutative
distributions (see [15]) or what are non-commutative zero-one laws or . . .

The domain of free probability, free analysis, and the other theories we are
still hoping for consists in studying operators which do not commute. But this
non-commutativity is of a special type. Usually there are no algebraic relations
between our operators; the commutativity relations from the classical situation
are not replaced by some deformations of commutativity, but they are just
dropped. We like to address this as a “maximal non-commutative” situation.
It seems that in this regime there exists a maximal non-commutative world in
parallel to the classical commutative world.

We have only scratched the surface of such a theory. Starting from our
commutative world we have sailed ahead into the non-commutative, passing
some islands which show milder forms of non-commutativity, and finally we
have landed at the shore of a new maximal non-commutative continent. We
are looking forward to exploring it further.
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