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1 Introduction

Here we will address the relevance of quantum symmetries in non-commutative
and free probability theory. In particular, the quantum permutation and the quantum
orthogonal group, which we already encountered in Chapters ?? and ?? as important
examples of compact quantum groups, will feature prominently and give rise to
the notion of “easy quantum groups”, which present general classes of quantum
symmetries.

First we will give a concise introduction to free probability theory, with an em-
phasis on its combinatorial side. Then we will present the main link between free
probability theory and quantum groups: the free de Finetti theorem. It shows that
freeness arises quite canonically via non-commutative symmetries. Finally we will
examine the representation theory of (quantum) orthogonal and (quantum) permu-
tation groups in terms of their intertwiner spaces and use this as motivation for the
defintion of easy quantum groups. We survey the classification of easy quantum
groups and show how the Weingarten formula for integration with respect to the
Haar functional on those quantum groups can be used to derive various asymptotic
properties.

2 Free Probability Theory

Free probability was introduced in the mid 1980’s by Voiculescu [21] as a tool to
attack the notorious free group isomorphism problem for von Neumann algebras.
Since then there have emerged connections to quite different subjects in mathemat-
ics and also physics and engineering. Here we will give a concise introduction to
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free probability which puts its emphasis on the combinatorial side of free probabil-
ity; this combinatorics will be instrumental for the relation to quantum symmetries.
For general literature on free probability we refer to [25, 11, 24], for the combina-
torial approach to [15].

2.1 The origin of freeness: free group factors

The moment point of view on von Neumann algebras

Free (and more generally, non-commutative) probability theory investigates opera-
tors on Hilbert spaces by looking at moments of those operators. Many methods and
concepts for understanding those moments are inspired by analogues from classical
probability theory.

Here is a bit of non-commutative language: A non-commutative probability space
(A,ϕ) consists of a unital algebraA and a unital linear functional ϕ ∶A→C, ϕ(1)=
1. Consider (non-commutative) random variables a1, . . . ,an ∈A. Expressions of the
form ϕ(ai(1)⋯ai(k)) for k ∈N, 1≤ i(1), . . . , i(k)≤ n are called moments of a1, . . . ,an.

Remark 1. 1) It is an easy but quite fundamental observation that moments of gen-
erators with respect to a faithful normal state determine a von Neumann algebra.
Namely, let A, B be two von Neumann algebras sucht that A = vN(a1, . . . ,an),
B = vN(b1, . . . ,bn), with selfadjoint generators ai and bi. Furthermore, let ϕ ∶A→C
and ψ ∶ B → C be faithful and normal states, and assume that for all k ∈ N and
1 ≤ i(1), . . . , i(k) ≤ n we have ϕ(ai(1)⋯ai(k)) =ψ(bi(1)⋯bi(k)). ThenA is isomorph
to B via the mapping ai↦ bi (i = 1, . . . ,n).

2) As a consequence of this we have the motto: moments can be useful. All
questions on operators, which depend only on the generated operator algebra – like:
spectrum, polar decomposition, existence of hyperinvariant subspaces, inequalities
for Lp-norms – can in principle be answered by the knowledge of the moments of
the operators with respect to a faithful normal state.

3) This insight is in general not very helpful, since moments are usually quite
complicated. However, in many special (and interesting) situations moments have a
special structure; this is the realm of free probability theory.

A main difference between measure theory and classical probability theory is
given by the notion of independence. Similarly, a difference between von Neu-
mann algebra theory and free probability theory is given by the notion of freeness
or free independence. Freeness describes the special structure of moments arising
from group von Neumann algebras L(G), if G is the free product of subgroups
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The structure of a group von Neumann algebra L(G)

Let G be a discrete group. The corresponding group von Neumann algebra is the
closure of the left regular representation (where the group algebra acts on the group
algebra by left multiplication) in the strong operator topology,

L(G) ∶=CG
STOP

.

If G is i.c.c. (all non-trivial conjugacy classes are infinite), then L(G) is a II1-factor.
In particular, the neutral element e of G induces a trace τ on L(G), which is

faithful and normal, via τ(a) ∶= ⟨ae,e⟩.
If G is amenable then L(G) is the hyperfinite II1-factor.
If G = Fn is the free group on n generators, then L(Fn) is, as already shown by

Murray and von Neumann, not hyperfinite. It is Voiculescu’s philosophy that those
free group factors L(Fn) are the next interesting class of von Neumann algebras
after the hyperfinite one.

Free probability theory was created in order to understand L(Fn) and similar von
Neumann algebras; in particular, to attack the most famous, and still open, problem
in this context, the isomorphism problem of the free group factors: Is it true or false
that L(Fn) ≅ L(Fm) for n /=m (n,m ≥ 2).

The notion of freeness

It makes sense to say that a group is on an algebraic level the free product of
subgroups, G = G1 ∗G2, just by requiring that there are no non-trivial relations
between elements from G1 and G2. This can be extended to the group algebras,
CG = CG1 ∗CG2. But how about if we go over to the weak closure and the cor-
responding von Neumann algebras. Since elements in the von Neumann algebras
are given by infinite sums, it is not apriori clear what we actually mean with
L(G) = L(G1)∗L(G2). In order to make sense out of this we should rewrite the
algebraic condition “absence of relations” in a form which can be extended to the
von Neumann algebra closure.

That G1, G2 are free in G (as subgroups) means: If we consider gi ∈ G j(i), such
that gi /= e for all i and such that j(1) /= j(2) /= ⋅ ⋅ ⋅ /= j(k), then this implies that g1⋯gk /=
e. This can be reformulated with the help of the trace τ . Recall that τ is on G only
different from zero if applied to e, thus g /= e can be rewritten as τ(g) = 0, and the
above characterization reads then as: If we consider gi ∈ G j(i), such that τ(gi) = 0
for all i and such that j(1) /= ⋅ ⋅ ⋅ /= j(k), then this implies that τ(g1⋯gk) = 0.

This characterisation goes now over not only to finite but as well to infinite sums
in the von Neumann algebra; note that τ is normal.
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2.2 Freeness

The considerations from the previous section motivated Voiculescu [21] to make the
following definition.

Definition 1 (Voiculescu 1983). Let (A,ϕ) be non-commutative probability space,
i.e., A is a unital algebra and ϕ ∶A→C is unital linear functional, ϕ(1) = 1.

Unital subalgebrasAi (i ∈ I) are free or freely independent, if ϕ(a1⋯an)= 0 when-
ever we have: ai ∈A j(i), where j(i) ∈ I for all i; j(1) /= j(2) /= ⋅ ⋅ ⋅ /= j(n); ϕ(ai) = 0
for all i.

Random variables x1, . . . ,xn ∈ A are free, if their generated unital subalgebras
Ai ∶= algebra(1,xi) are so.

Freeness between a and b is, by definition, an infinite set of equations relating
various moments in a and b:

ϕ(p1(a)q1(b)p2(a)q2(b)⋯) = 0.

A basic observation is that freeness between a and b is actually a rule for calculating
mixed moments in a and b from the moments of a and the moments of b:

ϕ(an1bm1an2bm2⋯)= polynomial(ϕ(ai),ϕ(b j)).

Example 1. By the definition of freeness we have

ϕ((an−ϕ(an)1)(bm−ϕ(bm)1)) = 0,

thus

ϕ(anbm)−ϕ(an ⋅1)ϕ(bm)−ϕ(an)ϕ(1 ⋅bm)+ϕ(an)ϕ(bm)ϕ(1 ⋅1) = 0,

and hence
ϕ(anbm) = ϕ(an) ⋅ϕ(bm)

In the same way any mixed moment can be reduced to moments of a and mo-
ments of b. So we see that freeness is a rule for calculating mixed moments, anal-
ogous to the concept of independence for random variables. This is the reason that
freeness is also called free independence.

One should, however, note that free independence is a different rule from clas-
sical independence; free independence occurs typically for non-commuting random
variables, like operators on Hilbert spaces or (random) matrices

Example 2. As before, we have by definition

ϕ((a−ϕ(a)1) ⋅(b−ϕ(b)1) ⋅(a−ϕ(a)1) ⋅(b−ϕ(b)1)) = 0,

which results (after some cancellations) in the formula
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ϕ(abab) = ϕ(aa) ⋅ϕ(b) ⋅ϕ(b)+ϕ(a) ⋅ϕ(a) ⋅ϕ(bb)−ϕ(a) ⋅ϕ(b) ⋅ϕ(a) ⋅ϕ(b).

This latter result is very different from the factorisation ϕ(abab) = ϕ(aa)ϕ(bb) for
classically independent random variables.

Whereas freeness was introduced in the context of free group von Neumann al-
gebras, Voiculescu discovered later [22] that also random matrices become asymp-
totically free (if their size tends to infinity) with respect to the trace. This unexpected
relation between operator algebras and random matrices had a big effect on the de-
velopment of the theory and is at the basis of many spectacular results. We will here
not say more on the random matrix side of free probabilty; for more information on
this one might consult [20].

2.3 The emergence of the combinatorics of freeness

We will motivate the combinatorial structure of freeness by the free central limit
theorem; and also contrast this to the classical central limit theorem.

Consider a1,a2, ⋅ ⋅ ⋅ ∈ (A,ϕ) which are identically distributed, centered and nor-
malized (ϕ(ai) = 0 and ϕ(a2

i ) = 1) and either classically independent or freely inde-
pendent. A central limit theorem asks the question: What can we say about

Sn ∶=
a1+⋯+an√

n
n→∞Ð→ ???

We say that Sn converges (in distribution) to s if

lim
n→∞

ϕ(Sm
n ) = ϕ(sm) ∀m ∈N.

We have

ϕ(Sm
n ) = 1

nm/2 ϕ[(a1+⋯an)m] = 1
nm/2

n

∑
i(1),...,i(m)=1

ϕ[ai(1)⋯ai(m)].

Now note that ϕ[ai(1)⋯ai(m)] = ϕ[a j(1)⋯a j(m)] whenever ker i = ker j, where ker i
denotes the maximal partition of {1, . . . ,m} such that i is constant on the blocks. (For
a precise definition of “partition” and “block” see Definition 2 in the next section.)
We denote the common value of those moments by κker i.

For example, for i = (1,3,1,5,3) and j = (3,4,3,6,4) we have

ϕ[a1a3a1a5a3] = ϕ[a3a4a3a6a4],

because independence/freeness allows to express (with the same polynomial)
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ϕ[a1a3a1a5a3] = polynomial(ϕ(a1),ϕ(a2
1),ϕ(a3),ϕ(a2

3),ϕ(a5))
ϕ[a3a4a3a6a4] = polynomial(ϕ(a3),ϕ(a2

3),ϕ(a4),ϕ(a2
4),ϕ(a6))

and, by the identical distribution, we have ϕ(a1) = ϕ(a3), ϕ(a2
1) = ϕ(a2

3), ϕ(a3) =
ϕ(a4), ϕ(a2

3) = ϕ(a2
4), ϕ(a5) = ϕ(a6). We put in this case κπ ∶= ϕ(a1a3a1a5a3),

where π ∶=ker i=ker j ={{1,3},{2,5},{4}}. π ∈P(5) is here a partition of {1,2,3,4,5}.
In our general calculation we can now continue as follows, where P(m) denotes

the partitions of the set {1, . . . ,m}.

ϕ(Sm
n ) = 1

nm/2

n

∑
i(1),...,i(m)=1

ϕ[ai(1)⋯ai(m)] =
1

nm/2 ∑
π∈P(m)

κπ ⋅#{i ∶ ker i = π}.

Note that
#{i ∶ ker i = π} = n(n−1)⋯(n−#π −1) ∼ n#π

for large n, and so we get

ϕ(Sm
n ) ∼ ∑

π∈P(m)
κπ ⋅n#π−m/2.

Now consider a π ∈ P(m) with singleton, π = {. . . ,{k}, . . .}. Note that both for
classical as well as for free independence we have the factorization rule ϕ(abc) =
ϕ(ac)ϕ(b) if b is independent/free from {a,b}. Thus we have for such a π:

κπ = ϕ(ai(1)⋯ai(k)⋯ai(m)) = ϕ(ai(1)⋯ai(k−1)ai(k+1)⋯ai(m)) ⋅ϕ(ai(k)) = 0.

Thus: κπ = 0 if π has singleton; i.e., in order to have κπ /= 0 we need that π =
{V1, . . . ,Vr} with #Vj ≥ 2 for all j, which implies r = #π ≤ m

2 .
So in

ϕ(Sm
n ) ∼ ∑

π∈P(m)
κπ ⋅n#π−m/2

only those π survive for n→∞ with

• π has no singleton, i.e., no block of size 1,
• π has exactly m/2 blocks.

Such π are exactly those, where each block has size 2, i.e.,

π ∈P2(m) ∶= {π ∈P(m) ∣ π is pairing}.

Thus we finally have:
lim

n→∞
ϕ(Sm

n ) = ∑
π∈P2(m)

κπ .

This means in particular that odd moments are zero (because there are no pairings
of an odd number of elements), thus the limit distribution is symmetric.

The main question is now: What are the even moments? This depends on the
κπ ’s. The actual value of those is now different for the classical and the free case!
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Classical CLT

If the ai commute and are independent, then κπ = ϕ(ai(1)⋯ai(2k)) = 1 for all π ∈
P2(2k); recall our normalization ϕ(a2

i ) = 1. Thus

lim
n→∞

ϕ(Sm
n ) = #P2(m) =

⎧⎪⎪⎨⎪⎪⎩

0, m odd
(m−1)(m−3)⋯5 ⋅3 ⋅1, m even

.

Those limit moments are the moments of a Gaussian distribution of variance 1.

Free CLT

If the ai are free, then, for π ∈P2(2k), we have

κπ =
⎧⎪⎪⎨⎪⎪⎩

0, π is crossing
1, π is non-crossing

.

as made plausible by the following two examples:

κ{1,6},{2,5},{3,4} = ϕ(a1a2a3a3a2a1) = ϕ(a3a3) ⋅ϕ(a1a2a2a1)
= ϕ(a3a3) ⋅ϕ(a2a2) ⋅ϕ(a1a1) = 1,

but

κ{1,5},{2,3},{4,6}} = ϕ(a1a2a2a3a1a3) = ϕ(a2a2) ⋅ϕ(a1a3a1a3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0

.

The vanishing of the last term is by the definition of freeness.
We put now (for formal definition, see Definition 2)

NC2(m) ∶= {π ∈P2(m) ∣ π is non-crossing}.

Then we have

lim
n→∞

ϕ(Sm
n ) = #NC2(m) =

⎧⎪⎪⎨⎪⎪⎩

0, m odd
ck = 1

k+1(
2k
k ), m = 2k even

.

Those limit moments are the moments of a semicircular distribution of unit variance,

lim
n→∞

ϕ(Sm
n ) = 1

2π
∫

2

−2
tm

√
4− t2dt.

The even moments ck ∶= #NC2(2k) satisfy the recursion
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ck = ∑
π∈NC2(2k)

1 =
k

∑
i=1

∑
π={1,2i}∪π1∪π2

1 =
k

∑
i=1

ci−1ck−i.

This recursion, together with c0 = 1,c1 = 1, determines the sequence of Catalan num-
bers: 1,1,2,5,14,42,132,429, ....

2.4 Free cumulants

For a better understanding of the freeness rule it is advantageous to consider “free
cumulants”. Those are given as monomials in moments, the precise nature of this
connection is given by summing over “non-crossing partitions”. It will turn out that
freeness is much easier to describe on the level of free cumulants, by the “vanishing
of mixed cumulants”. Free cumulants were introduced by Speicher [18], and used
quite extensively in work of Nica and Speicher, see [15].

Definition 2. 1) A partition of {1, . . . ,n} is a decomposition π = {V1, . . . ,Vr} with
Vi /= ∅, Vi ∩Vj = ∅ for i /= j, and ⋃iVi = {1, . . . ,n}. The Vi are the blocks of π . By
P(n) we denote the set of all partitions of {1, . . . ,n}.

2) π is non-crossing if we do not have p1 < q1 < p2 < q2 such that p1, p2 are in
same block, q1,q2 are in same block, but those two blocks are different. By NC(n)
we denote the non-crossing partitions of {1, . . . ,n}.

Definition 3 (Speicher 1994). For a unital linear functional ϕ ∶ A→ C we define
cumulant functionals κn ∶An → C (for all n ≥ 1) as multi-linear functionals by the
moment-cumulant relations

ϕ(a1⋯an) = ∑
π∈NC(n)

κπ[a1, . . . ,an],

where κπ denotes a product of κi according to the block structure of π .

Note: classical cumulants are defined by a similar formula, where only NC(n) is
replaced by P(n).

Example 3. 1) For n = 1, we have one element in NC(1), whichs gives ϕ(a1) =
κ1(a1)

2) For n = 2, we have two elements in NC(2), which gives

ϕ(a1a2) = + = κ2(a1,a2)+κ1(a1)κ1(a2)

and thus
κ2(a1,a2) = ϕ(a1a2)−ϕ(a1)ϕ(a2).

3) For n = 3, we have 5 elements in NC(3), which gives
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ϕ(a1a2a3) = + + + +
= κ3(a1,a2,a3)+κ1(a1)κ2(a2,a3)
+κ2(a1,a2)κ1(a3)+κ2(a1,a3)κ1(a2)+κ1(a1)κ1(a2)κ1(a3).

4) For n = 4, there are 14 elements in NC(4) (one of the 15 partitions is crossing),
so we get

ϕ(a1a2a3a4) = + + + +

+ + + + +

+ + + +
= κ4(a1,a2,a3,a4)+κ1(a1)κ3(a2,a3,a4)
+κ1(a2)κ3(a1,a3,a4)+κ1(a3)κ3(a1,a2,a4)
+κ3(a1,a2,a3)κ1(a4)+κ2(a1,a2)κ2(a3,a4)
+κ2(a1,a4)κ2(a2,a3)+κ1(a1)κ1(a2)κ2(a3,a4)
+κ1(a1)κ2(a2,a3)κ1(a4)+κ2(a1,a2)κ1(a3)κ1(a4)
+κ1(a1)κ2(a2,a4)κ1(a3)+κ2(a1,a4)κ1(a2)κ1(a3)
+κ2(a1,a3)κ1(a2)κ1(a4)+κ1(a1)κ1(a2)κ1(a3)κ1(a4).

The main point of making such a definiton is that free cumulants can be used to
describe freeness very effectively, namely it corresponds to the vanishing of mixed
cumulants.

Theorem 1 (Speicher 1994). The fact that x1, . . . ,xm are free is equivalent to the
fact that κn(xi(1), . . . ,xi(n)) = 0 whenever: n ≥ 2 and there are p,r such that i(p) /=
i(r).

2.5 Operator-valued extension of free probability

Voiculescu defined from the very beginning a more general version of free prob-
ability theory, where the expectation onto scalars is replaced by more general ex-
pectations onto subalgebras, see [21, 23]. This corresponds to taking conditional
expectations onto sub-σ -algebras in the classical setting. The combinatorial theory
of this operator-valued version of free probability was developed in [19].

Definition 4 (Voiculescu 1983). 1) Let B ⊂A. A linear map E ∶A→ B is a condi-
tional expectation if E[b] = b for all b ∈ B and

E[b1ab2] = b1E[a]b2 ∀a ∈A, ∀b1,b2 ∈ B.

2) An operator-valued probability space consists of B ⊂ A and a conditional
expectation E ∶A→B. The operator-valued distribution of a random variable a ∈A
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is then given by all operator-valued moments

E[ab1ab2⋯bn−1a] ∈ B (n ∈N,b1, . . . ,bn−1 ∈ B).

3) Random variables xi ∈A (i ∈ I) are free with respect to E (or free with amal-
gamation over B) if E[a1⋯an] = 0 whenever ai ∈ B⟨x j(i)⟩ are polynomials in some
x j(i) with coefficients from B and E[ai] = 0 for all i and j(1) /= j(2) /= ⋅ ⋅ ⋅ /= j(n).

Note that in an operator-valued setting the “scalars” from B and our random
variable x do not commute in general! This has the consequence that operator-valued
freeness works mostly like ordinary freeness, but one has to take care of the order
of the variables; in all expressions they have to appear in their original order!

Example 4. 1) Assume that x1,x2,x3,x4,x5 are free. Then one has, as in the scalar-
valued case, a factorizaton of “non-crossing” moments, but this cannot be separated
into a product, but one has to respect the nested structure of the non-crossing parti-
tions. So for a moment like

x1 x2 x3 x3 x2 x4 x5 x5 x2 x1

we have the factorization:

E[x1x2x3x3x2x4x5x5x2x1] = E[x1 ⋅E[x2 ⋅E[x3x3] ⋅x2 ⋅E[x4] ⋅E[x5x5] ⋅x2] ⋅x1].

2) For ”crossing” moments one also has analogous formulas as in the scalar-
valued case, modulo respecting the order of the variables. For example, the formula

ϕ(x1x2x1x2)=ϕ(x1x1)ϕ(x2)ϕ(x2)+ϕ(x1)ϕ(x1)ϕ(x2x2)−ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)

has now to be written as

E[x1x2x1x2]=E[x1E[x2]x1] ⋅E[x2]+E[x1] ⋅E[x2E[x1]x2]−E[x1]E[x2]E[x1]E[x2].

Definition 5 (Speicher 1998). Consider an operator-valued probability space E ∶
A→ B. We define the (operator-valued) free cumulants κ

B
n ∶An→ B by

E[a1⋯an] = ∑
π∈NC(n)

κ
B
π [a1, . . . ,an].

The arguments of κ
B
π are distributed according to the blocks of π , but now the

cumulants are nested inside each other according to the nesting of the blocks of π .

Example 5. For the partition π = {{1,10},{2,5,9},{3,4},{6},{7,8}} ∈NC(10)
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

we have

κ
B
π [a1, . . . ,a10] = κ

B
2 (a1 ⋅κB3 (a2 ⋅κB2 (a3,a4),a5 ⋅κB1 (a6) ⋅κB2 (a7,a8),a9),a10).

One should note that elements from B can be moved over the commas, e.g., for b ∈B
one has κ

B
2 (a1b,a2) = κ

B
2 (a1,ba2).

Again one has the characterization that freeness is equivalent to the vanishing of
mixed cumulants.

3 Non-Commutative de Finetti Theorem, Quantum Permutation
Group and Non-Crossing Partitions

Now we will switch to the side of quantum symmetries. In classical probability
theory one has a huge body of results characterizing distributional symmetries, see
[12]. The most fundamental of those is the de Finetti theorem, which says that in-
variance of the joint distribution of a sequence of random variables is equivalent to
the conditional independence of those variables. We will aim at getting statements
of this kind in a non-commutative setting.

3.1 The classical de Finetti theorem

Let us first recall the classical de Finetti theorem. Consider a probability space
(Ω ,A,P). We denote the expectation by ϕ ,

ϕ(Y) = ∫
Ω

Y(ω)dP(ω).

We say that random variables X1,X2, . . . are exchangeable if their joint distribu-
tion is invariant under finite permutations, i.e. if

ϕ(Xi(1)⋯Xi(n)) = ϕ(Xπ(i(1))⋯Xπ(i(n)))

for all n ∈N, all i(1), . . . , i(n) ∈N, and all permutations π .
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For example, for an exchangeable sequence we have ϕ(Xn
1 ) = ϕ(Xn

7 ) for all
n ∈ N (i.e., the variables are in particular identically distributed), or ϕ(X3

1 X7
3 X4) =

ϕ(X3
8 X7

2 X9).
Note that the Xi might all contain some common component; e.g., if all Xi are the

same, then clearly the sequence X ,X ,X ,X ,X . . . is exchangeable.
The classical theorem of de Finetti says that an infinite sequence of exchangeable

random variables is independent modulo its common part.
We formalize the common part via the tail σ -algebra of the sequence X1,X2, . . .

Atail ∶=⋂
i∈N

σ(Xk ∣ k ≥ i).

We denote by E the conditional expectation onto this tail σ -algebra

E ∶ L∞(Ω ,A,P)→ L∞(Ω ,Atail,P).

Now we can formulate the classical theorem of de Finetti.

Theorem 2 ( de Finetti 1931; Hewitt, Savage 1955). The following are equivalent
for an infinite sequence of random variables:

• the sequence is exchangeable
• the sequence is independent and identically distributed with respect to the con-

ditional expectation E onto the tail σ -algebra of the sequence

3.2 Symmetries for non-commutative random variables

Now we want to investigate analogues of the classical de Finetti theorem in a
non-commutative context. So we replace random variables by operators on Hilbert
spaces, and the expectation by a state on the algebra generated by those operators.
Since now analysis will be important, we will consider in the following always a
W∗-probability space.

Definition 6. A W∗-probability space (A,ϕ) is a non-commutative probability
space with:

• A is von Neumann algebra, i.e., a weakly closed subalgebra of bounded operators
on Hilbert space,

• ϕ ∶A→C is a faithful state onA, i.e., ϕ(aa∗) ≥ 0 for all a ∈A and ϕ(aa∗) = 0 if
and only if a = 0.

Clearly, we can also extend the notion of exchangeability to such a non-commutative
setting.

Definition 7. Consider non-commutative random variables x1,x2, ⋅ ⋅ ⋅ ∈A. They are
exchangeable if

ϕ(xi(1)⋯xi(n)) = ϕ(xπ(i(1))⋯xπ(i(n)))
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for all n ∈N, all i(1), . . . , i(n) ∈N, and all permutations π .

So we are now facing the question: Does exchangeability imply anything like in-
dependence in this general non-commutative setting? The answer is: only partially.
Exchangeability gives, by work of Koestler [13], some weak form of independence
(special factorization properties), but does not fully determine all mixed moments;
there are just too many possibilities out there in the non-commutative world, and
exchangeability is too weak a condition!

However, one should realize that invariance under permutations is in a sense also
a commutative concept – and should be replaced by a non-commutative counterpart
in the non-commutative world! It should not come as a surprise here that we should
replace the permutation group by its quantum group analogue.

We have already seen this object in Chapter ??. Let us recall the basic facts.
The permutation group Sk can be identified with k×k permutation matrices, and

by dualizing we get the functions on Sk as

C(Sk) = { f ∶ Sk →C;g↦ ((ui j(g))k
i, j=1

}.

(Here, ui j ∶ Sk →C is the coordinate function mapping a matrix g to its (i, j)-entry.)
This C(Sk) can also be described as the universal commutative C∗-algebra generated
by ui j (i, j = 1, . . . ,k), subject to the relations

u∗i j = ui j = u2
i j ∀i, j and ∑

j
ui j = 1 =∑

j
u ji ∀i.

The group structure of Sk is, in this dual picture, captured by the Hopf algebra
structure, which can be described on the algebra alg(ui j ∣ i, j = 1, . . . ,k) (which is
dense in C(Sk)) by coproduct ∆ , co-unit ε , and antipode S:

∆ui j =∑
k

uik⊗uk j, ε(ui j) = δi j, S(ui j) = u ji.

The non-commutative analogue of this was introduced by S. Wang [27].

Definition 8 (Wang 1998). The quantum permutation group is given by the univer-
sal unital C∗-algebra As(k) generated by ui j (i, j = 1, . . . ,k) subject to the relations:

• u2
i j = ui j = u∗i j for all i, j = 1, . . . ,k;

• each row and column of u = (ui j)k
i, j=1 is a partition of unity:

k

∑
j=1

ui j = 1 ∀i and
k

∑
i=1

ui j = 1 ∀ j.

(Note: elements within a row or within a column are orthogonal.)

As(k) is a compact quantum group in the sense of Woronowicz [29], with the
same formulas for coproduct, co-unit, and antipode as above. We will also write:
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As(k) = C(S+k ), and think of As(k) as functions on the (non-existing) “quantum
space” S+k .

Informally, we also think of a quantum permutation as any matrix u = (ui j) of
operators on a Hilbert space satisfying the relations from Definition 8. If

u1 = (u(1)i j )k
i, j=1 and u2 = (u(2)i j )k

i, j=1

are quantum permutations, then so is

u1⊙u2 ∶= (∑
k

u(1)ik ⊗u(2)k j )k
i, j=1.

Example 6. Examples of u = (ui j)k
i, j=1 satisfying the quantum permutation relations

are:

• permutation matrices
• the basic non-commutative example is of the form (for k = 4):

⎛
⎜⎜⎜
⎝

p 1− p 0 0
1− p p 0 0

0 0 q 1−q
0 0 1−q 1

⎞
⎟⎟⎟
⎠

for (in general, non-commuting) projections p and q

Note: S+2 = S2, S+3 = S3, but S+k /= Sk for k ≥ 4.

Definition 9 (Köstler, Speicher 2009). A sequence x1, . . . ,xk in (A,ϕ) is quan-
tum exchangeable if its distribution does not change under the action of quan-
tum permutations S+k , i.e., if we have the following. Let the quantum permutation
u = (ui j) ∈C(S+k ) act on (x1, . . . ,xk) by

yi ∶=
k

∑
j=1

ui j⊗x j ∈C(S+k )⊗A (i = 1, . . . ,k).

Then, for each k, (x1, . . . ,xk) ∈ (A,ϕ) has the same distribution as (y1, . . . ,yk) ∈
(C(S+k )⊗A, id⊗ϕ). This means that we have

ϕ(xi(1)⋯xi(n)) ⋅1C(S+k )
= id⊗ϕ(yi(1)⋯yi(n))

for all n ≥ 1 and 1 ≤ i(1), . . . , i(n) ≤ k.

Note that this condition means concretely that

ϕ(xi(1)⋯xi(n)) ⋅1 =
k

∑
j(1),..., j(n)=1

ui(1) j(1)⋯ui(n) j(n)ϕ(x j(1)⋯x j(n))

for all u = (ui j)k
i, j=1 which satisfy the defining relations for As(k).
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Since in particular permutation matrices satisfy the defining relations for the
quantum permutation group it follows that quantum exchangeability implies ex-
changeability. The latter is a stronger form of invariance than the former one. One
should, however, note that commuting variables are usually not quantum exchange-
able.

3.3 A non-commutative de Finetti theorem

The first hint of a de Finetti type theorem in this context is now given by the follow-
ing fact which shows that freeness goes together nicely with the quantum permuta-
tion group.

Proposition 1. Consider x1, . . . ,xk ∈ (A,ϕ) which are free and identically distributed.
Then x1, . . . ,xk are quantum exchangeable.

Proof. We have to show the equality of the moments of the xi’s and of the yi’s.
By the moment-cumulant formula, this is the same as showing for all n ∈ N, all
1 ≤ i(1), . . . , i(n) ≤ k and all π ∈NC(n) that

id⊗κπ(yi(1), . . . ,yi(n)) = κπ(xi(1), . . . ,xi(n))

We will give the idea of the proof of this by considering n = 3 and π = . In this
case we have for the left-hand side of the above equation

LHS = ∑
j(1), j(2), j(3)

ui(1) j(1)ui(2) j(2)ui(3) j(3) ⋅κπ(x j(1),x j(2),x j(3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
κ2(x j(1),x j(3))⋅κ1(x j(2))

= ∑
j(1), j(2), j(3)

ui(1) j(1)ui(2) j(2)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∑ j(2)→1

ui(3) j(3) ⋅κ2(x j(1),x j(3)) ⋅κ1(x j(2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

κ1(x)

= ∑
j(1), j(3)

ui(1) j(1)ui(3) j(3) ⋅κ2(x j(1),x j(3))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δ j(1) j(3)⋅κ2(x,x)

⋅κ1(x)

= ∑
j(1)= j(3)

ui(1) j(1)ui(3) j(3) ⋅κ2(x,x) ⋅κ1(x)

= ∑
j(1)

ui(1) j(1)ui(3) j(1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

δi(1)i(3)ui(1) j(1)

⋅κ2(x,x) ⋅κ1(x)

= δi(1)i(3) ⋅κ2(x,x) ⋅κ1(x)
= κ2(xi(1),xi(3)) ⋅κ1(xi(2))
= κπ(xi(1),xi(2),xi(3))
= RHS ⊓⊔
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Now we want to address the general question: What does quantum exchangeabil-
ity for an infinite sequence x1,x2, . . . imply?

As before, constant sequences are trivially quantum exchangeable, thus we have
to take out the common part of all the xi. In our non-commutative W∗-probability
space setting this common part is now given by the tail algebra of the sequence:

Atail ∶=⋂
i∈N

vN(xk ∣ k ≥ i).

One can then show that there exists a conditional expectation from all variables
onto the tail algebra, E ∶ vN(xi ∣ i ∈ N) → Atail. Then one has the following non-
commutative de Finetti theorem [14].

Theorem 3 (Köstler, Speicher 2009). The following are equivalent for an infinite
sequence of non-commutative random variables in a W∗-probability space:

• the sequence is quantum exchangeable;
• the sequence is free and identically distributed with respect to the conditional

expectation E onto the tail-algebra of the sequence.

Proof. We want to give an idea of the proof of the main direction, namely that the
quantum symmetry implies freeness. Actually, first we want to address non-crossing
expressions like E[x9x7x2x7x9]. To determine those we only need exchangeability;
namely we have

E[x9x7x2x7x9] =
1
N
(E[x9x7x10x7x9]+E[x9x7x11x7x9]+⋯+E[x9x7x9+Nx7x9])

= E [x9x7 ⋅
1
N

N

∑
i=1

x9+i ⋅x7x9] .

However, by the mean ergodic theorem, we have

lim
N→∞

1
N

N

∑
i=1

x9+i = E[x9] = E[x2].

Thus E[x9x7x2x7x9] = E[x9x7E[x2]x7x9]. We do now the same trick for x7E[x2]x7.

E[x9x7E[x2]x7x9] = lim
N→∞

E [x9(
1
N

N

∑
i=1

x13+iE[x2]x13+i)x9] = E[x9E[x7E[x2]x7]x9].

So we finally get
E[x9x7x2x7x9] = E[x9E[x7E[x2]x7]x9].

In the same way (by always working on interval blocks) one gets factorizations
for all non-crossing terms in an iterative way. Thus exchangeability implies factor-
izations for all non-crossing moments. This was shown by Köstler [13].

For commuting variables this factorizaton of non-crossing moments determines
everything. However, for non-commuting variables there are many more expres-
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sions which cannot be treated like this. The basic example for such a situation is
E[x1x2x1x2]. Exchangeability cannot make a statement for such mixed moments.
To determine those we need quantum exchangeability!

So let us consider E[x1x2x1x2] and assume, for convenience, that E[x1] =E[x2] =
0. By quantum exchangeability we have

E[x1x2x1x2] =
k

∑
j(1),..., j(4)=1

u1 j(1)u2 j(2)u1 j(3)u2 j(4)E[x j(1)x j(2)x j(3)x j(4)]

= ∑
j(1)/= j(2)/= j(3)/= j(4)

u1 j(1)u2 j(2)u1 j(3)u2 j(4)E[x j(1)x j(2)x j(3)x j(4)]

= ∑
j(1)= j(3)/= j(2)= j(4)

u1 j(1)u2 j(2)u1 j(3)u2 j(4)E[x1x2x1x2].

For the restriction of the summation in the second line we have used that uik and
u jk are orthogonal for i /= j; and in the last step we have used the fact that we al-
ready know that non-crossing moments factorize, hence the other possible cases
like E[x1x2x3x4] or E[x1x2x3x2] do all vanish.

It is now a relatively easy exercise to show that

∑
j(1)= j(3)/= j(2)= j(4)

u1 j(1)u2 j(2)u1 j(3)u2 j(4)

is not equal to 1 for a general quantum permutation matrix (ui j) and hence we must
have that E[x1x2x1x2] = 0.

Thus we have shown: if E[x1] = 0 = E[x2], then E[x1x2x1x2] = 0. In general, one
shows in the same way that E[p1(xi(1))p2(xi(2))⋯pn(xi(n))] = 0 whenever: n ∈ N
and p1, . . . , pn ∈Atail⟨X⟩ are polynomials in one variable; i(1) /= i(2) /= i(3) /= ⋅ ⋅ ⋅ /=
i(n); and E[p j(xi( j))] = 0 for all j = 1, . . . ,n. But this is exactly the definition of
freeness with respect to E. ⊓⊔

4 Quantum Symmetries in Non-Commutative Probability: Easy
Quantum Groups

4.1 Motivation and definition of easy quantum groups

Now we want to have a more general look on possible quantum symmetries in non-
commutative probability theory. Let us recall that quantum groups are generaliza-
tions of groups G (actually, of C(G)), which are supposed to describe non-classical
symmetries.
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Very often, quantum groups are deformations Gq of classical groups, depending
on some parameter q, such that for q→ 1, they go to the classical group G = G1.
In such cases, Gq and G1 are incomparable, none is stronger than the other; and,
whereas G1 is supposed to act on commuting variables, Gq is the right replacement
to act on some special non-commuting (like q-commuting) variables; i.e., we are
replacing the commutativity condition by some other non-commutative relation.

However, the quantum permutation group is not of this type. It is, quite to
the contrary, a quantum group which strengthens a classical symmetry in a non-
commutative context. More generally, there are situations where a classical group
G has a genuine non-commutative analogue G+, which is ”stronger” than G:
G ⊂ G+. Whereas G acts on commuting variables, G+ is now the right replacement
for acting on maximally non-commuting variables; we do not replace commutativity
by some other relation, but the commutativity condition is just dropped.

We will now be interested in quantum versions of real compact matrix groups.
For the latter one should think of orthogonal matrices or permutation matrices. Such
quantum versions are captured by the notion of orthogonal Hopf algebras.

Definition 10. An orthogonal Hopf algebra is a C∗-algebra A, given with a system
of n2 self-adjoint generators ui j ∈ A (i, j = 1, . . . ,n), subject to the following condi-
tions:

• The inverse of u = (ui j) is the transpose matrix ut = (u ji).
• ∆(ui j) = Σk uik⊗uk j defines a morphism ∆ ∶ A→ A⊗A.
• ε(ui j) = δi j defines a morphism ε ∶ A→C.
• S(ui j) = u ji defines a morphism S ∶ A→ Aop.

These are compact quantum groups in the sense of Woronowicz [29].
In the spirit of non-commutative geometry, we are thinking of A = C(G+) as

the continuous functions, generated by the coordinate functions ui j, on some (non-
existing) quantum group G+, replacing a classical group G.

Besides the quantum permutation group we know at least one other such quantum
symmetry, see [26].

Definition 11 (Wang 1995). The quantum orthogonal group is given by the uni-
versal unital C∗-algebra Ao(n) =C(O+

n ), generated by selfadjoint ui j (i, j = 1, . . . ,n)
subject to the relation that the matrix u = (ui j)n

i, j=1 is an orthogonal matrix. Explic-
itly, this means: for all i, j = 1, . . . ,n we have

n

∑
k=1

uiku jk = δi j and
n

∑
k=1

ukiuk j = δi j.

Since also the classical permutation and orthogonal group fit into this frame we
have now four orthogonal Hopf algebras sitting inside each other like this:

S+n ⊂ O+
n

∪ ∪
Sn ⊂ On
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We want to ask the following question: are there more non-commutative versions
G+

n of classical groups Gn. Or more general; are there more nice non-commutative
quantum groups G∗

n , stronger than Sn?

S+n ⊂ G+
n ⊂ O+

n
∪ ∪ ∪
Sn ⊂ Gn ⊂ On

S+n ⊂ O+
n

Ò
∪ G∗

n ∪
Ò

Sn ⊂ On

In the above, with having (non-classical) quantum groups sitting inside each
other, Sn ⊂ G∗

n ⊂ O+
n , we mean of course that we have homomorphisms between

the corresponding orthogonal quantum groups: C(Sn)←C(G∗
n )←C(O+

n ).
Of course, it is not apriori clear how we should describe and understand inter-

mediate quantum groups. The guiding principle of “liberation” – write down the
defining relations in the classical case and drop the commutativity requirement – is
somehow clear in the case of orthogonal and permutation group; in more general
cases, however, it is usually not so clear what the canonical form of such equations
is. A better way for dealing with such intermediate quantum groups is to look on
their representations. And a good way to deal with those is by describing them by
spaces of intertwiners.

Definition 12. Associated to an orthogonal Hopf algebra (A =C(G∗
n ),(ui j)n

i, j=1) are
the spaces of intertwiners:

IG∗n (k, l) = {T ∶ (Cn)⊗k → (Cn)⊗l ∣ Tu⊗k = u⊗lT},

where u⊗k is the nk × nk matrix (ui1 j1 . . .uik jk)i1...ik, j1... jk ; i.e., if we consider u ∈
Mn(A) as a mapping u ∶Cn→Cn⊗A, then u⊗k is a mapping

u⊗k ∶ (Cn)⊗k → (Cn)⊗k⊗A.

Note: if T ∈ IG∗n (0, l), then η ∶= T 1 ∈ (Cn)⊗l is a fixed vector unter u⊗l . Namely,
Tu⊗0 = u⊗lT implies that

η = Tu⊗01 = u⊗lT 1 = u⊗l
η .

Furthermore, we always have that ξ ∶=∑i ei⊗ei ∈ IG∗n (0,2). To check this we
have to see that (u⊗2

ξ)
i1,i2

= ξi1,i2 . That this is indeed the case follows like this:

(u⊗2∑
i

ei⊗ei)
i1,i2

=∑
i
∑
j1, j2

ui1 j1ui2 j2(ei⊗ei) j1, j2

=∑
i
∑
j1, j2

ui1 j1ui2 j2δi j1δi j2 =∑
i

ui1iui2i = δi1i2 = (∑
i

ei⊗ei)
i1,i2
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It is easy to check that the intertwiner space of our quantum groups has the fol-
lowing properties.

Proposition 2. The space of intertwiners IG∗n of an orthogonal Hopf algebra is a
tensor category with duals, i.e., it is a collection of vector spaces IG∗n (k, l) with the
following properties:

• T,T ′ ∈ IG∗n implies T ⊗T ′ ∈ IG∗n .
• If T,T ′ ∈ IG∗n are composable, then T T ′ ∈ IG∗n .
• T ∈ IG∗n implies T∗ ∈ IG∗n .
• id(x) = x is in IG∗n (1,1).
• ξ =∑ei⊗ei is in IG∗n (0,2).

It follows from Woronowicz’s fundamental Tannaka-Krein theory for compact
quantum groups [30] that the space of intertwiners contains all relevant information
about the quantum groups.

Theorem 4 (Woronowicz 1988). The compact quantum group G∗
n can actually be

rediscovered from its space of intertwiners. Thus there is a one-to-one correspon-
dence between:

• orthogonal Hopf algebras C(O+
n )→C(G∗

n )→C(Sn)
• tensor categories with duals IO+n ⊂ IG∗n ⊂ ISn .

So the question is now whether we have some concrete description of the relevant
spaces of intertwiners. Since all of them have to sit inside the space of intertwiners
for the classical permutation group, we will first take a look on those. It turns out
that they can actually be described in combinatorial terms via partitions.

We denote by P(k, l) the set of partitions of the set with repetitions {1, . . . ,k,1, . . . , l}.
Such a partition will be pictured as

p =
1 . . .k
P

1 . . . l

where P is a diagram joining the elements in the same block of the partition. Here
are two examples of such partitions.

p =
1 2 3 4 5

∈ P(0,5) q =

1 2 3

1 2 3 4

∈ P(3,4)

Associated to any partition p ∈P(k, l) is a linear map Tp ∶ (Cn)⊗k→ (Cn)⊗l given
by

Tp(ei1 ⊗ . . .⊗eik) = ∑
j1... jl

δp(i, j)e j1 ⊗ . . .⊗e jl ,
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where e1, . . . ,en is the standard basis of Cn, and where

δp(i, j) =
⎧⎪⎪⎨⎪⎪⎩

1, if all indices which are connected by p are the same
0, otherwise.

Example 7.

T∣ ∣(ea⊗eb) = ea⊗eb, T
{∣−∣}(ea⊗eb) = δab ea⊗ea,

T⎧⎪⎪⎨⎪⎪⎩
⊔
∣ ∣

⎫⎪⎪⎬⎪⎪⎭

(ea⊗eb) = δab∑
cd

ec⊗ed , T
{ }

(ea⊗eb) = eb.

One can now check that all those Tp are intertwiners for the permutation groups
Sn. Namely, take u =̂π permutation matrix, i.e., uei = eπ−1(i). Then

Tpu⊗kei1 ⊗⋅⋅ ⋅⊗eik = Tpeπ−1(i1)⊗⋅⋅ ⋅⊗eπ−1(ik)

=∑
j

δp(π
−1(i1), . . . ,π−1(ik), j1, . . . , jl)e j1 ⊗⋅⋅ ⋅⊗e jl

and

u⊗lTpei1 ⊗⋅⋅ ⋅⊗eik = u⊗l∑
r

δp(i1, . . . , ik,r1, . . . ,rl)er1 ⊗⋅⋅ ⋅⊗erl

=∑
r

δp(i1, . . . , ik,r1, . . . ,rl)eπ−1(r1)⊗⋅⋅ ⋅⊗eπ−1(rl)

=∑
j

δp(i1, . . . , ik,π( j1), . . . ,π( jl))e j1 ⊗⋅⋅ ⋅⊗e jl .

But then the two calculations give the same, because we have

δp(π
−1(i1), . . . ,π−1(ik), j1, . . . , jl) = δp(i1, . . . , ik,π( j1), . . . ,π( jl)).

Actually, the Tp form a basis and we have

ISn(k, l) = span(Tp∣p ∈ P(k, l)).

Also for the other three basic orthogonal Hopf algebras their intertwiner space is
spanned by the Tp; in those cases we are, however, not running over all p, but only
over some subsets in P(k, l).

Let NC(k, l) ⊂ P(k, l) be the subset of noncrossing partitions and denote by P2
the subset of all pairings and by NC2 the subset of non-crossing pairings. Then we
have
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span(Tp∣p ∈NC(k, l)) = IS+n (k, l) ⊃ IO+n (k, l) = span(Tp∣p ∈NC2(k, l))
∩ ∩

span(Tp∣p ∈ P(k, l)) = ISn(k, l) ⊃ IOn(k, l) = span(Tp∣p ∈ P2(k, l))

These observations led to the following definition, see [5].

Definition 13 (Banica, Speicher 2009). A quantum group Sn ⊂ G∗
n ⊂ O+

n is called
easy if its associated tensor category is of the form

ISn = span(Tp ∣ p ∈ P) ⊂ IG∗n = span(Tp ∣ p ∈ PG∗) ⊂ IO+n = span(Tp ∣ p ∈NC2)

for a certain collection of subsets PG∗ ⊂ P.

There are now several questions arising canonically in this context. We are inter-
ested in

• classification of easy (and more general) quantum groups,
• understanding of meaning/implications of symmetry under such quantum groups;

in particular, under quantum permutations S+n , or quantum rotations O+
n ,

• treating series of such quantum groups (like S+n or O+
n ) as fundamental examples

of non-commuting random matrices.

4.2 Classification results for easy quantum groups

The subsets PG∗ ⊂ P of partitions, which appear in the definition of easy quantum
groups, cannot be arbitrary, but they must have quite some structure. Namely they
are “category of partitions” in the following sense.

Definition 14 (Banica, Speicher 2009). A category of partitions PG∗ is a subset of
P which satisfies:

• PG∗ is stable by tensor product.
• PG∗ is stable by composition.
• PG∗ is stable by involution.
• PG∗ contains the “unit” partition ∣.
• PG∗ contains the “duality” partition ⊓.

Example 8. The only operation which is not selfexplanatory is the composition. Two
partitions are composed by identifying the lower line of the first with the upper line
of the second (which have to agree, in order to be defined); possibly appearing loops
will be removed. Here is an example of a composition P(2,4)×P(4,1)→ P(2,1):
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1 2 3 4

1 2

1

1 2 3 4 =

1

1 2

The classification of the free and the classical easy quantum groups is relatively
straightforward and was achieved in [5, 28].

Theorem 5 (Banica, Speicher 2009; Weber 2011). 1) There are

• 7 categories of noncrossing partitions and
• 6 categories of partitions containing the basic crossing.

In the non-crossing case the seven categories are given by

{singletons
pairings } ⊃

⎧⎪⎪⎪⎨⎪⎪⎪⎩

singletons
pairings

(even part)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

singletons
pairings

(resp. parity)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⊃ { all

pairings}

∩ ∩ ∩

{ all
partitions} ⊃ {all partitions

(even part) } ⊃ {blocks of
even size}

,

in the classical case the middle upper two collapse to one.
2) Thus there are seven free easy quantum groups S+n ⊂G+

n ⊂O+
n :

B+n ⊂ B′+n ⊂ B#+
n ⊂ O+

n

⊂ ⊂ ⊂

S+n ⊂ S′+n ⊂ H+
n

and six classical easy groups Sn ⊂Gn ⊂On; in the classical case B′n and B♯n collapse
to one group. The six classical easy groups are:

• On and Sn,
• Hn = Z2 ≀ Sn: the hyperoctahedral group, consisting of monomial matrices with
±1 nonzero entries,

• Bn ≃On−1: the bistochastic group, consisting of orthogonal matrices having sum
1 in each row and each column,

• S′n =Z2×Sn: permutation matrices multiplied by ±1,
• B′n =Z2×Bn: bistochastic matrices multiplied by ±1.
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The general case of easy quantum groups, which are not necessarily free nor
classical, but just sitting between Sn and O+

n , is much harder and it took a while
before a complete classification was achieved. After some first results by Banica,
Curran and Speicher [2], this picture was completed in a series of impressive papers
by Raum and Weber [16, 17]. We present here only the final picture.

4.3 Non-commutative random matrices

Weingarten formula

The philosophy behind easy quantum groups is that they are defined in combina-
torial terms and thus their description and properties should also rely essentially
on these combinatorial data. One instance where this philosophy could be imple-
mented successfully is [10], where the representation theory and fusion rules of
easy quantum groups were described in terms of the underlying category of parti-
tions. Other instances are de Finetti theorems and more stochastic properties of the
“random matrices” u. Those rely on the Haar state. There exists, as for any compact
quantum group, a unique Haar state on the easy quantum groups, thus one can inte-
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grate/average over those quantum groups. In accordance with the philosophy above
there exists for easy quantum groups a nice and “concrete” combinatorial formula
for the calculation of this Haar state.

Theorem 6 (Weingarten formula for an easy quantum group). Denote by D =
(D(k))k∈N the category of partitions for the easy quantum group G∗

n ; where D(k) ∶=
D(0,k). Then

∫
G∗n

ui1 j1⋯uik jk du = ∑
p,q∈D(k)

p≤ker i
q≤ker j

Wn(p,q),

where Wk,n = (Wn(p,q))p,q∈D(k) =G−1
k,n is the inverse of the Gram matrix

Gk,n = (Gn(p,q))p,q∈D(k) where Gn(p,q) = n∣p∨q∣.

Note: p∨q is here always the supremum in the lattice of all partitions; i.e., p∨q is
not necessarily in D.

This theorem is from [5]. For earlier special cases see [1, 6]. Compare also Chap-
ter ??.

Example 9. We want to integrate u21u23. Then i = (2,2), j = (1,3), hence

ker i = , ker j =

and thus
∫

Gn
u21u23du =W( , )+W( , )

Similarly,

∫
Gn

u23u23du =W( , )+W( , )+W( , )+W( , )

All probabilistic properties are now encoded in this Weingarten function. For
finite n this is a quite complicated object, which is not easy to handle. Much more
can be said asymptotically if n goes to infinity. In particular, we have the asymptotics

Wn(p,q) =O(n∣p∨q∣−∣p∣−∣q∣).

Based on this one can derive de Finetti theorems for various easy quantum
groups, see [7, 8, 4].

Distribution of traces of powers

Equipped with the Haar state one can now treat our matrix u = (ui j) as a non-
commutative analogue of a random matrix and address questions – in analogy to
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classical work of Diaconis and Shahshahani [9] – about the distribution (with re-
spect to the Haar state) of traces of u. The following basic result was derived in
[3].

Theorem 7 (Banica, Curran, Speicher 2011). Let G be an easy quantum group.
Consider s ∈N, k1, . . . ,ks ∈N, k ∶=∑s

i=1 ki, and denote

γ ∶= (1,2, . . . ,k1)(k1+1,k1+2, . . . ,k1+k2)⋯(⋯,k) ∈ Sk

Then we have, for any n such that Gkn is invertible:

∫
Gn

Tr(uk1) . . .Tr(uks)du = #{p ∈D(k) ∣ p = γ(p)}+O(1/n).

If G is a classical easy group, then this formula is exact, without any lower order
corrections in n.

Proof. By using the Weingarten formula we can calculate the expectation as fol-
lows.

I ∶= ∫
G

Tr(uk1) . . .Tr(uks)du

= ∑
i1...ik

∫
G
(ui1i2 . . .uik1 i1) . . .(uik−ks+1ik−ks+2 . . .uikik−ks+1)

= ∑
i1...ik

∫
G

ui1iγ(1) . . .uikiγ(k)

=
n

∑
i1...ik=1

∑
p,q∈Dk

p≤ker i,q≤ker i○γ

Wkn(p,q)

=
n

∑
i1...ik=1

∑
p,q∈Dk

p≤ker i,γ(q)≤ker i

Wkn(p,q)

= ∑
p,q∈Dk

n

∑
i1...ik=1

p≤ker i,γ(q)≤ker i

Wkn(p,q)

= ∑
p,q∈Dk

n∣p∨γ(q)∣Wkn(p,q)

= ∑
p,q∈Dk

n∣p∨γ(q)∣n∣p∨q∣−∣p∣−∣q∣(1+O(1/n)).

The leading order of n∣p∨γ(q)∣+∣p∨q∣−∣p∣−∣q∣ is n0, which is achieved if and only p = q =
γ(q).

In the classical case, instead of using the approximation for Wnk(p,q), we can
write n∣p∨γ(q)∣ as Gnk(γ(q), p). (Note that this only makes sense if we know that
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γ(q) is also an element in Dk; and this is only the case for the classical partition
lattices.) Then one can continue as follows:

I = ∑
p,q∈Dk

Gnk(γ(q), p)Wkn(p,q) = ∑
q∈Dk

δ(γ(q),q) = #{q ∈Dk∣q = γ(p)}.

⊓⊔

This description can be used to calculate the distribution of ur ∶= limn→∞Tr(ur).
We list here some prominent cases from [3].

Variable On O+
n

u1 real Gaussian semicircular
u2 real Gaussian semicircular
ur (r ≥ 3) real Gaussian circular

Variable Sn S+n
u1 Poisson free Poisson
u2−u1 Poisson semicircular
ur −u1 (r ≥ 3) sum of Poissons circular

One should note that in the non-commutative situation traces of powers are not
selfadjoint in general. Whereas Tr(u) and Tr(u2) are selfadjoint, this is not true
for Tr(u3) in the general non-commutative situation! We have u1 =∑uii = u∗1 and
u2 =∑ui ju ji =∑u jiui j = u∗2 , but u3 =∑ui ju jluli /=∑uliu jlui j = u∗3 .

Eigenvalues: The final frontier

One should also note that in the classical case, knowledge about traces of powers of
the matrices is the same as knowledge about the eigenvalues of the matrices. This
raises our final question:

What actually are eigenvalues of a non-commutative matrix?

Unfortunately, at the moment we have nothing to say about this, and we have to
remain with Wittgenstein’s dictum:

”Whereof one cannot speak, thereof one must be silent”.
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