
Free Probability Theory and Random Matrices

Roland Speicher

1 Motivation of Freeness via Random Matrices

In this chapter we want to motivate the definition of freeness on the basis of random matrices.

1.1 Asymptotic Eigenvalue Distribution of Random Matrices

In many applications it’s necessary to compute the eigenvalue distribution of N × N random matrices as
N → ∞. For many basic random matrix ensembles we have almost sure convergence to some limiting
eigenvalue distribution. Another nice property is the fact that this distribution often can be efficiently
calculated.

Example 1.1. We consider an N × N Gaussian random matrix. This is a selfadjoint matrix A =
1√
N

(aij)
N
i,j=1 such that the entries {aij}i≥j are independent identically distributed complex (real for i = j)

Gaussian random variables fullfilling the relations

• E[aij ] = 0,

• E[aij āij ] = 1.

We show the eigenvalue distribution of some realizations of Gaussian random matrices of different di-
mensions:

N = 5 N = 10 N = 100 N = 1000

One sees that for large N the eigenvalue histogram looks always the same, independent of the actual realized
matrix from the ensemble. Actually, for such matrices we have almost sure convergence to Wigner’s
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semicircle law given by the densitiy

ρ(t) =
1

2π

√
4− t2.

The following picture shows two realizations of 4000 × 4000 Gaussian random matrices, compared to the
semicircle.

Example 1.2. Now we consider a Wishart random matrix; this is of the form A = XX∗, where X
is an N ×M matrix with independent Gausssian entries. If we keep the ratio M/N fixed, its eigenvalue
distribution converges almost surely to the Marchenko-Pastur distribution. The following picture shows
two realizations for N = 3000,M = 6000.

1.2 Functions of Several Random Matrices

As we saw it’s possible to calculate the eigenvalue distribution of some special random matrices. But what
happens if we take the sum or product of two such matrices? Or what happens for example if we take corners
of Wishart random matrices? Generally spoken we want to study the eigenvalue distribution of non-trivial
functions f(A,B) (like A+B or AB) of two N ×N random matrices A and B. Such a distribution will of
course depend on the relation between the eigenspaces of A and B. However we might expect that we have
almost sure convergence to a deterministic result if N → ∞ and if the eigenspaces are almost surely in a
“typical” or “generic” position. This is the realm of free probability theory.

Example 1.3. Consider N ×N random matrices A and B such that A and B have asymptotic eigenvalue
distributions for N →∞, A and B are independent (i.e., entries of A are independent from entries of B) and
B is an unitarily invariant ensemble (i.e., the joint distribution of its entries does not change under unitary
conjugation). Then, almost surely, the eigenspaces of A and of B are in generic position.

In such a generic case we expect that the asymptotic eigenvalue distribution of functions of A and B
should almost surely depend in a deterministic way on the asymptotic eigenvalue distribution of A and the
asymptotic eigenvalue distribution of B. Let us look on some examples, where we compare two different
realisations of the same situation.

Page 2 of 22



Roland Speicher Free Probability Theory and Random Matrices August 2013

Example 1.4. Sum of independent Gaussian and Wishart (M = 2N) random matrices, for N = 3000

Example 1.5. Product of two independent Wishart (M = 5N) random matrices, for N = 2000

Example 1.6. Upper left corner of size N/2×N/2 of a randomly rotated N ×N projection matrix, with
half of the eigenvalues 0 and half of the eigenvalues 1, for N = 2048

Our goal is to get a conceptual way of understanding the asymptotic eigenvalue distributions in such
cases and also to find an algorithm for calculating the corresponding asymptotic eigenvalue distributions.
Instead of eigenvalue distributions of typical realizations we will now look at eigenvalue distributions averaged
over the ensembles. One advantage of doing this is the much faster convergence to an asymptotic eigenvalue
distribution and it’s also theoretically easier to deal with the averaged situation. Note however, this is just
for convenience; the following can also be justified for typical realizations. (In order to see that averaged
convergence can be refined to almost sure convergence one has to derive sufficiently good estimates for the
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variance of the considered quantities - this can usually be achieved.)

Example 1.7. Convergence of eigenvalue distribution of N × N Gaussian random matrix, averaged over
10.000 realizations, to the semicircle,

N = 5 N = 20 N = 50

Example 1.8. Sums, products, corners, averaged over 10.000 realizations, for moderate N = 100

1.3 The Moment Method

There are different methods to analyze limit distributions. One analytical technique is the so called resolvent
method. The main idea of this method is to derive an equation for the resolvent of the limit distribution.
The advantage of this method is that there is a powerful complex analysis machinery to deal with such
equations. This method also allows us to look at probability measures without moments. On the other side
one cannot deal directly with several matrices A, B; one has to treat each function f(A,B) separately. But
there is also a combinatorical ansatz to calculate all moments of the limit distribution. This allows us, in
principle, to deal directly with several matrices A and B by looking on mixed moments. In these lectures
we will concentrate on the moment method.

By tr(A) we denote the normalized trace of an N ×N matrix A. If we want to understand the eigenvalue
distribution of a matrix A, it suffices to know the trace tr(Ak) of all powers of A. Because of the invariance
of the trace under conjugation, we have for k ∈ N that

1

N

(
λk1 + · · ·+ λkN

)
= tr(Ak).

Therefore instead of studying the averaged eigenvalue distribution of a random matrix A we can look at
expectations of traces of powers, E[tr(Ak)].
Now we consider random matrices A and B in generic position and we want to understand f(A,B) in a
uniform way for many f . The above considerations indicate that we have to understand for all k ∈ N the
moments E

[
tr
(
f(A,B)k

)]
. For example if we want to analyze the distribution of A+B, AB, AB−BA, etc.

we have to look at moments E
[
tr
(
(A+B)k

)]
, E

[
tr
(
(AB)k

)]
, E

[
tr
(
(AB −BA)k

)]
etc. Thus we need to

understand as basic objects mixed moments E [tr (An1Bm1An2Bm2 · · · )]. In the following we will use the
notation ϕ(A) := limN→∞E[tr(A)]. With this notation the goal is to understand ϕ (An1Bm1An2Bm2 · · · ) in
terms of

(
ϕ(Ak)

)
k∈N and

(
ϕ(Bk)

)
k∈N. In order to get an idea how this might look like in a generic situation,

we will consider the simplest case of two such random matrices.
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1.4 The Example of Two Independent Gaussian Random Matrices

Consider two independent Gaussian random matrices A and B. Then it is fairly easy to see (and folklore
in physics) that in the limit N → ∞ the moment ϕ (An1Bm1An2Bm2 · · · ) is given by the number of non-
crossing/planar pairings of the pattern

A ·A · · ·A︸ ︷︷ ︸
n1-times

·B ·B · · ·B︸ ︷︷ ︸
m1-times

·A ·A · · ·A︸ ︷︷ ︸
n2-times

·B ·B · · ·B︸ ︷︷ ︸
m2-times

· · · ,

which do not pair A with B.
For example we have ϕ(AABBABBA) = 2 because there are two such non-crossing pairings:

AABBABBA
AABBABBA

The following pictures shows the value of tr(ANANBNBNANBNBNAN ) as a function of N , calculated for
two indendent Gaussian random matrices AN and BN ; the first picture is for one realization of the situation,
whereas in the second we have, for each N , averaged over 100 realizations.

Let us now come back to the general situation: ϕ (An1Bm1An2Bm2 · · · ) is the number of non-crossing pair-
ings which do not pair A with B. Some musing about this reveals that this implies that ϕ[(An1 − ϕ(An1) · 1)·
(Bm1 − ϕ(Bm1) · 1) · (An2 − ϕ(An2) · 1) · · · ] is exactly the number of non-crossing pairings which do not pair
A with B and for which, in addition, each group of A’s and each group of B’s is connected with some other
group. However, since our pairs are not allowed to cross, this number is obviously zero.

1.5 Freeness and Random Matrices

One might wonder: why did we trade an explicit formula for an implicit one? The reason is that the actual
equation for the calculation of mixed moments ϕ (An1Bm1An2Bm2 · · · ) is different for different random
matrix models. However, the relation ϕ[(An1 − ϕ(An1) · 1) · (Bm1 − ϕ(Bm1) · 1) · (An2 − ϕ(An2) · 1) · · · ] = 0
between mixed moments remains the same for matrix ensembles in generic position and constitutes the
definition of freeness. This was introduced by Voiculescu in 1985 and can be regarded as the starting point
of free probability theory.

Definition 1.9. A and B are free (with respect to ϕ) if we have for all n1,m1, n2, · · · ≥ 1 that

ϕ
((
An1 − ϕ(An1) · 1

)
·
(
Bm1 − ϕ(Bm1) · 1

)
·
(
An2 − ϕ(An2) · 1

)
· · ·
)

= 0

and
ϕ
((
Bn1 − ϕ(Bn1) · 1

)
·
(
Am1 − ϕ(Am1) · 1

)
·
(
Bn2 − ϕ(Bn2) · 1

)
· · ·
)

= 0.

(With the above we mean of course a finite number of factors.)
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This definition of freeness makes our notion of “generic position” rigorous. What was just a vague idea
in Example 1.3 becomes now a theorem.

Theorem 1.10 (Voiculescu 1991). Consider N ×N random matrices A and B such that

• A and B have an asymptotic eigenvalue distribution for N →∞,

• A and B are independent,

• B is a unitarily invariant ensemble.

Then, for N →∞, A and B are free.

2 Free Probability and Non-crossing Partitions

As we mentioned in the last chapter, the theory of asymptotically large random matrices is closeley related
to free probability. The starting point of free probability was the definition of freeness, given by Voiculescu
in 1985. However, this happened in the context of operator algebras, related to the isomorphism problem
of free group factors. Only a few years later, in 1991, Voiculescu dicovered the relation between random
matrices and free probability, as outlined in the last chapter. These connections between operator algebras
and random matrices lead, among others, to deep results on free group factors. In 1994 Speicher developped
a combinatorical theory of freeness, based on free cumulants. In the following we concentrate on this
combinatorial way of understanding freeness.

2.1 Definition of Freeness

Let (A, φ) be a non-commutative probability space, i.e., A is a unital algebra and φ : A → C is a unital
linear functional (i.e., φ(1) = 1).

Definition 2.1. Unital subalgebras Ai (i ∈ I) are free or freely independent, if φ(a1 · · · an) = 0 whenever

• ai ∈ Aj(i) with j(i) ∈ I, for i = 1, . . . , n

• j(1) 6= j(2) 6= · · · 6= j(n)

• φ(ai) = 0 ∀i

Random variables x1, . . . , xn ∈ A are free, if their generated unital subalgebras Ai := algebra(1, xi) are so.

Remark 2.2. Freeness between A and B is, by definition, an infinite set of equations relating various
moments in A and B. However, one should notice that freeness between A and B is actually a rule for
calculating mixed moments in A and B from the moments of A and the moments of B. The following
example shows such a calculation. That this works also for general mixed moments should be clear. Hence,
freeness is a rule for calculating mixed moments, analogous to the concept of independence for random
variables. Thus freeness is also called free independence.

Example 2.3. We want to calculate the mixed moments ϕ(AnBm) of some free random variables A and
B. By freeness it follows that φ[(An − ϕ(An)1)(Bm − ϕ(Bm)1)] = 0. Thus we get by using the properties
of our expectation φ the equation

ϕ(AnBm)− ϕ(An · 1)ϕ(Bm)− ϕ(An)ϕ(1 ·Bm) + ϕ(An)ϕ(Bm)ϕ(1 · 1) = 0,

and hence
ϕ(AnBm) = ϕ(An) · ϕ(Bm).

Remark 2.4. The above is the same result as for independent classical random variables. However, this
is misleading. Free independence is a different rule from classical independence; free independence occurs
typically for non-commuting random variables, like operators on Hilbert spaces or (random) matrices.
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Example 2.5. Let A and B be some free random variables. By definition of freeness we get

ϕ[(A− ϕ(A)1) · (B − ϕ(B)1) · (A− ϕ(A)1) · (B − ϕ(B)1)] = 0,

which results in

ϕ(ABAB) = ϕ(AA) · ϕ(B) · ϕ(B) + ϕ(A) · ϕ(A) · ϕ(BB)− ϕ(A) · ϕ(B) · ϕ(A) · ϕ(B).

We see that this result is different from the one for independent classical random variables.

2.2 Understanding the Freeness Rule: the Idea of Cumulants

The main idea in this section is to write moments in terms of other quantities, which we call free cumulants.
We will see that freeness is much easier to describe on the level of free cumulants, namely by the vanishing
of mixed cumulants. There is also a nice relation between moments and cumulants, given by summing over
non-crossing or planar partitions

Definition 2.6. A partition of {1, . . . , n} is a decomposition π = {V1, . . . , Vr} with

Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= y),
⋃
i

Vi = {1, . . . , n}

The Vi are the blocks of π ∈ P(n). π is non-crossing if we do not have

p1 < q1 < p2 < q2

such that p1, p2 are in a same block, q1, q2 are in a same block, but those two blocks are different.
By NC(n) we will denote the set of all non-crossing partions of {1, . . . , n}.

Let us remark that NC(n) is actually a lattice with respect to refinement order.

2.3 Moments and Cumulants

Definition 2.7. For a unital linear functional ϕ : A → C we define cumulant functionals κn : An → C
(for all n ≥ 1) as multi-linear functionals by the moment-cumulant relation

ϕ(A1 · · ·An) =
∑

π∈NC(n)

κπ[A1, . . . , An].

κπ is here a product of cumulants, one term for each block of π; see the following examples.

Remark 2.8. Classical cumulants are defined by a similar formula, where only NC(n) is replaced by P(n).

Next we want to calculate some examples for cumulants:
For n = 1 there exists only one partition, , so that the first moment and the first cumulant are the same:

ϕ(A1) = κ1(A1).
For n = 2 there are two partitions, and , and also each of them is non-crossing. By the moment-

cumulant formula we get

ϕ(A1A2) = κ2(A1, A2) + κ1(A1)κ1(A2), and thus κ2(A1, A2) = ϕ(A1A2)− ϕ(A1)ϕ(A2).

In the same recursive way, we are able to compute the third cumulant. There are five partitions of three
elements; still, they are all non-crossing:

So the moment-cumulant formula gives

ϕ(A1A2A3) = κ3(A1, A2, A3) + κ1(A1)κ2(A2, A3)

+ κ2(A1, A2)κ1(A3) + κ2(A1, A3)κ1(A2) + κ1(A1)κ1(A2)κ1(A3)
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and hence

κ3(A1, A2, A3) = ϕ(A1A2A3)− ϕ(A1)ϕ(A2A3)− ϕ(A1A2)ϕ(A3)− ϕ(A1A3)ϕ(A2) + 2ϕ(A1)ϕ(A2)ϕ(A3).

The first difference to the classical theory occurs now for n = 4; there are 15 partitions of 4 elements,
but one is crossing and there are only 14 non-crossing partitions:

Hence the moment-cumulant formula yields

ϕ(A1A2A3A4) = κ4(A1, A2, A3, A4) + κ1(A1)κ3(A2, A3, A4) + κ1(A2)κ3(A1, A3, A4) + κ1(A3)κ3(A1, A2, A4)

+ κ3(A1, A2, A3)κ1(A4) + κ2(A1, A2)κ2(A3, A4) + κ2(A1, A4)κ2(A2, A3) + κ1(A1)κ1(A2)κ2(A3, A4)

+ κ1(A1)κ2(A2, A3)κ1(A4) + κ2(A1, A2)κ1(A3)κ1(A4) + κ1(A1)κ2(A2, A4)κ1(A3)

+ κ2(A1, A4)κ1(A2)κ1(A3) + κ2(A1, A3)κ1(A2)κ1(A4) + κ1(A1)κ1(A2)κ1(A3)κ1(A4).

As before, this can be resolved for κ4 in terms of moments. Whereas κ1, κ2, and κ3 are the same as the
corresponding classical cumulans, the free cumulant κ4 (and all the higher ones) is different from its classical
counterpart.

2.4 Freeness =̂ Vanishing of Mixed Cumulants

The following theorem is essential for the theory of free cumulants.

Theorem 2.9 (Speicher 1994). The fact that A and B are free is equivalent to the fact that κn(C1, . . . , Cn) =
0 whenever

• n ≥ 2,

• Ci ∈ {A,B} for all i,

• there are i, j such that Ci = A, Cj = B.

This theorem states losely spoken that the free product of some random variables can be understood as
a direct sum of cumulants. For A and B free, ϕ(An1Bm1An2 · · · ) is given by a sum over planar diagrams
where the blocks do not connect free random variables.

Example 2.10. If A and B are free, then we have

ϕ(ABAB) = κ1(A)κ1(A)κ2(B,B) + κ2(A,A)κ1(B)κ1(B) + κ1(A)κ1(B)κ1(A)κ1(B),

corresponding to the three non-crossing partitions of ABAB which connect A with A and B with B:

ABAB ABAB ABAB

2.5 Factorization of Non-Crossing Moments

The iteration of the rule

ϕ(A1BA2) = ϕ(A1A2)ϕ(B) if {A1, A2} and B free

leads to the simple factorization of all “non-crossing” moments in free variables. For example, if x1, . . . , x5
are free, then we have for the moment corresponding to

x1x2x3x3x2x4x5x5x2x1

the factorization ϕ(x1x2x3x3x2x4x5x5x2x1) = ϕ(x1x1) · ϕ(x2x2x2) · ϕ(x3x3) · ϕ(x4) · ϕ(x5x5). This is the
same as for independent classical random variables. The difference between classical and free shows only up
for “crossing moments”.
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3 Sum of Free Variables

Let A, B be two free random variables. Then, by freeness, the moments of A+ B are uniquely determined
by the moments of A and the moments of B. But is there an effictive way to calculate the distribution of
A+B if we know the distribution of A and the distribution of B?

3.1 Free Convolution

Before we answer this question we want to fix some notation: We say the distribution of A+ B is the free
convolution of the distribution µA of A and the distribution µB of B and denote it by µA+B = µA � µB .

In principle, freeness determines this, but the concrete nature of this distribution on the level of moments
is not apriori clear.

Example 3.1. We compute some moments of A+B:

ϕ
(
(A+B)1

)
= ϕ(A) + ϕ(B)

ϕ
(
(A+B)2

)
= ϕ(A2) + 2ϕ(A)ϕ(B) + ϕ(B2)

ϕ
(
(A+B)3

)
= ϕ(A3) + 3ϕ(A2)ϕ(B) + 3ϕ(A)ϕ(B2) + ϕ(B3)

ϕ
(
(A+B)4

)
= ϕ(A4) + 4ϕ(A3)ϕ(B) + 4ϕ(A2)ϕ(B2) + 2

(
ϕ(A2)ϕ(B)ϕ(B) + ϕ(A)ϕ(A)ϕ(B2)

− ϕ(A)ϕ(B)ϕ(A)ϕ(B)
)

+ 4ϕ(A)ϕ(B3) + ϕ(B4)

We see that there is no “obvious” rule to compute the moments of A+B out of the moments of A and the
moments of B.

However, by our last theorem, there is an easy rule on the level of free cumulants: if A and B are free
then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

because all mixed cumulants in A and B vanish.

Proposition 3.2. If A and B are free random variables, then the relation κA+B
n = κAn + κBn holds for all

n ≥ 1.

The combinatorial relation between moments and cumulants can also be rewritten easily as a relation
between corresponding formal power series.

3.2 Relation between Moments and Free Cumulants

We denote the n-th moment of A by mn := ϕ(An) and the n-th free cumulant of A by κn := κn(A,A, . . . , A).
Then, the combinatorical relation between them is given by the moment-cumulant formula

mn = ϕ(An) =
∑

π∈NC(n)

κπ.

Example 3.3. The third moment of a random variable A is given in terms of its free cumulants by

m3 = κ + κ + κ + κ + κ = κ3 + 3κ2κ1 + κ31

The next theorem is an important step to develop an effective algorithm for computing the distribution
of A+B.

Theorem 3.4 (Speicher 1994). Consider formal power series M(z) = 1 +
∑∞
k=1mnz

n and C(z) = 1 +∑∞
k=1 κnz

n. Then the relation mn =
∑
π∈NC(n) κπ between the coefficients is equivalent to the relation

M(z) = C[zM(z)].
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Proof. A non-crossing partition can be described by its first block and by the non-crossing partitions of the
points between the legs of the first block. This leads to the following recursive relation between cumulants
and moments.

mn =
∑

π∈NC(n)

κπ =

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

∑
π1∈NC(i1)

· · ·
∑

πs∈NC(is)

κsκπ1 · · ·κπs =

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis

Plugging this into the formal power series M(z) gives

M(z) = 1 +
∑
n

mnz
n = 1 +

∑
n

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

ksz
smi1z

i1 · · ·misz
is = 1 +

∞∑
s=1

κsz
s
(
M(z)

)s
= C[zM(z)]

Remark 3.5. Classical cumulants ck are combinatorially defined by mn =
∑
π∈P(n) cπ. In terms of ex-

ponential generating power series M̃(z) = 1 +
∑∞
n=1

mn

n! z
n and C̃(z) =

∑∞
n=1

cn
n! z

n this is equivalent to

C̃(z) = log M̃(z).

3.3 The Cauchy transform

For a free random variable A we define the Cauchy transform G by

G(z) := ϕ(
1

z −A
) =

∫
1

z − t
dµA(t).

We can expand this into a formal power series and get

G(z) :=
∑ ϕ(An)

zn+1
=

1

z
M(1/z).

Therefore, instead of M(z), we can consider the Cauchy transform. This transform has many advantages
over M(z). If µA is a probability measure, its Cauchy transform is an analytic function G : C+ → C− and
we can recover µA from G by using the Stieltjes inversion formula:

dµ(t) = − 1

π
lim
ε→0
=G(t+ iε)dt.

3.4 The R-transform

Voiculescu defined the following variant of our cumulant generating series C(z). He had shown the existence
of the free cumulants of a random variable, but without having a combinatorial interpretation for them.

Definition 3.6. For a random variable A ∈ A we define it’s R-transform by

R(z) =

∞∑
n=1

κn(A, . . . , A)zn−1.

Then by a simple application of our last theorem we get the following result. The original proof of
Voiculescu was much more analytical.

Theorem 3.7 (Voiculescu 1986, Speicher 1994). 1) For a random variable we have the relation 1
G(z) +

R[G(z)] = z between its Cauchy and R-transform.
2) If A and B are free, then we have RA+B(z) = RA(z) +RB(z).
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3.5 Calculation of Free Convolution

The relation between Cauchy transform and R-transform, and the Stieltjes inversion formula give an effective
algorithm for calculating free convolutions; and thus also for the calculation of the asymptotic eigenvalue
distribution of sums of random matrices in generic position. Let µ, ν be probability measures on R with
Cauchy-transform Gµ and Gν respectively. Then we use the first part of our last theorem to calculate the
corresponding R-transforms Rµ and Rν . Then we use the identity Rµ�ν = Rµ+Rν and go over to Gµ�ν , by
invoking once again the relation between R and G. Finally we use the Stieltjes inversion formula to recover
µ� ν itself.

Example 3.8. What is the Free Binomial
(
1
2δ−1 + 1

2δ+1

)�2
?

First we set

µ :=
1

2
δ−1 +

1

2
δ+1, ν := µ� µ.

In this example the Cauchy transform is given by

Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

Now we apply the relation between Cauchy and R-transform to get the following algebraic equation

z = Gµ[Rµ(z) + 1/z] =
Rµ(z) + 1/z

(Rµ(z) + 1/z)2 − 1
.

This quadratic equation can easily be solved and we get as a solution

Rµ(z) =

√
1 + 4z2 − 1

2z
.

(The other solution can be excluded by looking at the asymptotic behavior.) Now we use the additive
property of the R-transform to get

Rν(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z
.

Now

Rν(z) =

√
1 + 4z2 − 1

z
gives Gν(z) =

1√
z2 − 4

and thus by Stieltjes inversion formula we get the arcsine-distribution

dν(t) = − 1

π
= 1√

t2 − 4
dt =


1

π
√
4−t2 , |t| ≤ 2

0, otherwise

The following figure compares this analytic result with the histogram of 2800 eigenvalues of A+ UBU∗,
where A and B are both diagonal matrices, with 1400 eigenvalues +1 and 1400 eigenvalues -1, and U is a
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randomly chosen unitary matrix.

It is no coincidence that this figure looks similar to the ones of Example 1.6. It was shown by Nica and
Speicher that the upper left corner of a randomly rotated matrix has, up to scaling, the same distribution
as the free sum of two of such matrices.

3.6 The R-transform as an Analytic Object

In the last sections we only considered the R-transform as a formal power series. But for explicit calculations
it is necessary to study the analytic properties of this object. It’s easy to see that the R-transform can be
established as an analytic function via power series expansions around the point infinity in the complex
plane. But usually there are some problems in the context of concrete computations. One problem is that
the R-transform can, in contrast to the Cauchy transform, in general not be defined on all of the upper
complex half-plane, but only in some truncated cones (which depend on the considered variable). Another
problem is that the equation 1

G(z) + R[G(z)] = z does in general not allow explicit solutions and there is

no good numerical algorithm for dealing with this. Therefore one is in need of other tools, which allow to
compute free convolutions in an more efficient way.

3.7 An Alternative to the R-transform: Subordination

Let x and y be free. Put w := Rx+y(z) + 1/z, then

Gx+y(w) = z = Gx[Rx(z) + 1/z] = Gx[w −Ry(z)] = Gx[w −Ry[Gx+y(w)]]

Thus with ω(z) := z −Ry[Gx+y(z)]] we have the subordination Gx+y(z) = Gx
(
ω(z)

)
. It turns out that this

subordination function ω is, for selfadjoint x and y, always a nice analytic object and ameanable to robust
calculation algorithms.

Theorem 3.9 (Belinschi, Bercovici 2007). Let x = x∗ and y = y∗ be free. Put F (z) := 1
G(z) . Then there

exists an analytic ω : C+ → C+ such that

Fx+y(z) = Fx
(
ω(z)

)
and Gx+y(z) = Gx

(
ω(z)

)
The subordination function ω(z) is given as the unique fixed point in the upper half-plane of the map

fz(w) = Fy(Fx(w)− w + z)− (Fx(w)− w).

4 Selfadjoint Polynomials in several random matrices

Our motivating problem was the asymptotic eigenvalue distribution of functions (say, selfadjoint polynomials)
in several independent random matrices in generic position. A conceptual grasp on this problem was given by
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the basic result of Voiculescu (1991): Large classes of independent random matrices (like Wigner or Wishart
matrices) become asymptoticially freely independent, with respect to ϕ = 1

NTr, if N →∞.
As a consequence, this result allows us to reduce our random matrix problem to the problem of polynomi-

als in freely independent variables: If the random matrices X1, . . . , Xk are asymptotically freely independent,
then the eigenvalue distribution of a polynomial p(X1, . . . , Xk) is asymptotically given by the distribution of
p(x1, . . . , xk), where x1, . . . , xk are freely independent variables, and the distribution of xi is the asymptotic
distribution of Xi.

We have seen that free convolution gives effective tools for dealing with the simplest polynomial, the sum
of two matrices. What can we say for more general polynomials?

4.1 Existing Results for Calculations of the Limit Eigenvalue Distribution

In the random matrix literature there exist quite a bit of results for special cases. Prominent examples are:
the work of Marchenko, Pastur 1967 on general Wishart matrices ADA∗; Pastur 1972 on matrices of the form
deterministic + Wigner (called “deformed semicircle”); Vasilchuk 2003 on commutator or anti-commutator
of random matrices, X1X2 ±X2X1; more general models in wireless communications (Tulino, Verdu 2004;
Couillet, Debbah, Silverstein 2011) of the form RADA∗R∗ or

∑
iRiAiDiA

∗
iR
∗
i .

There exist also lots of results showing us that free probability can deal effectively with simple polynomials
in free variables, for example: the sum of variables p(x, y) = x+y (Voiculescu 1986, R-transform); the product
of variables p(x, y) = xy (or, if we insist on selfadjointness,

√
xy
√
x) (Voiculescu 1987, S-transform); the

commutator of variables p(x, y) = i(xy − yx) (Nica, Speicher 1998).
But there is no hope to calculate effectively more complicated or general polynomials in freely independent

variables with usual free probability theory. However there is a possible way to treat more complicated
polynomials, by the use of a linearization trick. This trick will be the main topic of the next chapter.

5 The Linearization Trick

The idea of this trick is: instead of understanding general polynomials in non-commuting variables, it suffices
to understand matrices of linear polynomials in those variables. Such linearization ideas seem to be around in
many different communities. In the context of operator algebras, Voiculescu (1987)vused such a linearization
philosophy as one motivation for his work on operator-valued free probability. A seminal concrete form is
due to Haagerup and Thorbjørnsen (2005), who used such techniques to study the largest eigenvalue of
polynomials in independent Gaussian random matrices. In 2012, based on the Schur complement, Anderson
developped a self-adjoint version of the linearization trick, which turns out as the right tool in our context.

Definition 5.1. Consider a polynomial p in non-commuting variables x and y. A linearization of p is an
N ×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

where

• u, v,Q are matrices of the following sizes: u is 1× (N −1); v is (N −1)×N ; and Q is (N −1)× (N −1)

• u, v, Q are polynomials in x and y, each of degree ≤ 1

• Q is invertible and we have
p = −uQ−1v.

In 2012 Anderson presented the following theorem.

Theorem 5.2 (Anderson 2012). For each p there exists a linearization p̂ (with an explicit algorithm for
finding those). Moreover if p is selfadjoint, then this p̂ is also selfadjoint.
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Example 5.3. We consider the selfadjoint non-commutative polynomial p = xy+yx+x2. Then a lineariza-
tion of p is the matrix

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0


because we have

(
x 1

2x+ y
)( 0 −1
−1 0

)−1(
x

1
2x+ y

)
= −(xy + yx+ x2)

At this point it might not be clear what this linearization trick has to do with our problem. What we
are interested in is the distribution of p, which can be recovered from the Cauchy transform of p, which is
given by taking expectations of resolvents of p. Thus we need control of inverses of p and of z − p. How can
the linearization p̂ give information on those?

Under the condition that Q is invertible it turns out that p is invertible iff p̂ is invertible; this is because
we can write p̂ as

p̂ =

(
0 u
v Q

)
=

(
1 uQ−1

0 1

)(
p 0
0 Q

)(
1 0

Q−1v 1

)

Remark 5.4. Note that matrices of the form

(
1 0
a 1

)
are always invertible with

(
1 0
a 1

)−1
=

(
1 0
−a 1

)
.

More general, for z ∈ C we put b =

(
z 0
0 0

)
and then it follows

b− p̂ =

(
z −u
−v −Q

)
=

(
1 uQ−1

0 1

)(
z − p 0

0 −Q

)(
1 0

Q−1v 1

)
This calculation shows that z − p is invertible iff b− p̂ is invertible. Moreover the inverse can be written as

(b− p̂)−1 =

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1
)(

1 −uQ−1
0 1

)

=

(
(z − p)−1 −(z − p)−1uQ−1

−Q−1v(z − p)−1 Q−1v(z − p)−1uQ−1 −Q−1
)

=

(
(z − p)−1 ∗
∗ ∗

)
,

and so we can get Gp(z) = ϕ((z − p)−1) as the (1,1)-entry of the matrix-valued Cauchy-transform

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =

(
ϕ((z − p)−1) ϕ(∗)

ϕ(∗) ϕ(∗)

)
.

We consider again the polynomial p = xy + yx+ x2 of our last example. Its selfadjoint linearization can be
written in the form

p̂ =

0 0 0
0 0 −1
0 −1 0

+

0 1 1
2

1 0 0
1
2 0 0

⊗ x+

0 0 1
0 0 0
1 0 0

⊗ y
It is a linear polynomial in free variables, but with matrix-valued coefficients, and we need to calculate
its matrix-valued Cauchy transform Gp̂(b) = id ⊗ ϕ((b − p̂)−1). This leads to the question if there exists
a suitable matrix-valued version of free probability theory, with respect to the matrix-valued conditional
expectation E = id⊗ ϕ.
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6 Operator-Valued Extension of Free Probability

6.1 Basic Definitions

We begin with the definition of an operator-valued probability space.

Definition 6.1. Let B ⊂ A be a unital subalgebra. A linear map E : A → B is a conditional expectation
if E[b] = b for all b ∈ B and E[b1ab2] = b1E[a]b2 for all a ∈ A and b1, b2 ∈ B. An operator-valued
probability space consists of B ⊂ A and a conditional expectation E : A → B.

Example 6.2. Let (A, ϕ) be a non-commutative probability space. Put

M2(A) :=

{(
a b
c d

)
| a, b, c, d ∈ A

}
and consider ψ := tr⊗ ϕ and E := id⊗ ϕ, i.e.:

ψ

[(
a b
c d

)]
=

1

2
(ϕ(a) + ϕ(d)), E

[(
a b
c d

)]
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)
.

Then (M2(A), ψ) is a non-commutative probability space, and (M2(A), E) is an M2(C)-valued probability
space.

Of course we should also have a notion of distribution and freeness in the operator-valued sense.

Definition 6.3. Consider an operator-valued probability space (A, E : A → B).

1. The operator-valued distribution of a ∈ A is given by all operator-valued moments
E[ab1ab2 · · · bn−1a] ∈ B (n ∈ N, b1, . . . , bn−1 ∈ B).

2. Random variables xi ∈ A (i ∈ I) are free with respect to E (or free with amalgamation over
B) if E[a1 · · · an] = 0 whenever ai ∈ B〈xj(i)〉 are polynomials in some xj(i) with coefficients from B,
E[ai] = 0 for all i, and j(1) 6= j(2) 6= · · · 6= j(n).

Remark 6.4. Polynomials in x with coefficients from B are of the form x2, b0x
2, b1xb2xb3, b1xb2xb3 +

b4xb5xb6 + · · · , etc. So we should have in mind that b’s and x do not commute in general.

One can see that operator-valued freeness works mostly like ordinary freeness, one only has to take care
of the order of the variables. This means in all expressions they have to appear in their original order.

Example 6.5. As in the usual scalar-valued theory one has factorizations of all non-crossing moments in
free variables; but now one has to respect the order of the variables, the final expression is of a nested form,
corresponding to the nesting of the non-crossing partition. Here is the operator-valued version of the example
from Section 2.5.

x1x2x3x3x2x4x5x5x2x1

E[x1x2x3x3x2x4x5x5x2x1] = E
[
x1 · E

[
x2 · E[x3x3] · x2 · E[x4] · E[x5x5] · x2

]
· x1
]

For “crossing” moments one also has analogous formulas as in the scalar-valued case. But again one has
to take care to respect the order of the variables. For example, the formula

ϕ(x1x2x1x2) =ϕ(x1x1)ϕ(x2)ϕ(x2) + ϕ(x1)ϕ(x1)ϕ(x2x2)− ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)

has now to be written as

E[x1x2x1x2] =E
[
x1E[x2]x1

]
· E[x2] + E[x1] · E

[
x2E[x1]x2

]
− E[x1]E[x2]E[x1]E[x2]

So we see that in opposite to the scalar-valued theory the freeness property in the operator valued case
uses the full nested structure of non-crossing partitions.
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6.2 Freeness and Matrices

It is an easy but crucial fact that freeness is compatible with going over to matrices. For example if

{a1, b1, c1, d1} and {a2, b2, c2, d2} are free in (A, ϕ), then

(
a1 b1
c1 d1

)
and

(
a2 b2
c2 d2

)
are in general, not free

in the scalar-valued probability space (M2(A), tr⊗ ϕ), but they are free with amalgamation over M2(C) in
the operator-valued probability space (M2(A), id⊗ ϕ).

Example 6.6. Let {a1, b1, c1, d1} and {a2, b2, c2, d2} be free in (A, ϕ), consider

X1 :=

(
a1 b1
c1 d1

)
and X2 :=

(
a2 b2
c2 d2

)
Then

X1X2 =

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
and

ψ(X1X2) =
(
ϕ(a1)ϕ(a2) + ϕ(b1)ϕ(c2) + ϕ(c1)ϕ(b2) + ϕ(d1)ϕ(d2)

)
/2

6= (ϕ(a1) + ϕ(d1))(ϕ(a2) + ϕ(d2))/4

= ψ(X1) · ψ(X2)

but

E(X1X2) =

(
ϕ(a1a2 + b1c2) ϕ(a1b2 + b1d2)
ϕ(c1a2 + d1c2) ϕ(c1b2 + d1d2)

)
=

(
ϕ(a1) ϕ(b1)
ϕ(c1) ϕ(d1)

)(
ϕ(a2) ϕ(b2)
ϕ(c2) ϕ(d2)

)
= E(X1) · E(X2).

Note that there is no comparable classical statement. Matrices of independent random variables do not
show any reasonable structure, not even in an “operator-valued” or “conditional” sense.

6.3 Operator-Valued Free Cumulants

Definition 6.7. Consider E : A → B. We define the free cumulants κBn : An → B by

E[a1 · · · an] =
∑

π∈NC(n)

κBπ [a1, . . . , an].

Remark 6.8. Note that arguments of κBπ are distributed according to the blocks of π. But now the cumulants
are also nested inside each other according to nesting of the blocks of π.

Example 6.9. We consider the non-crossing partition π =
{
{1, 10}, {2, 5, 9}, {3, 4}, {6}, {7, 8}

}
∈ NC(10):

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Then we get κBπ [a1, . . . , a10] = κB2

(
a1 · κB3

(
a2 · κB2 (a3, a4), a5 · κB1 (a6) · κB2 (a7, a8), a9

)
, a10

)
.

6.4 Operator-Valued Cauchy and R-transform

Now we are in the position to define the operator-valued analogue of the Cauchy and R-transform.
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Definition 6.10. For a ∈ A we define its operator-valued Cauchy transform

Ga(b) := E[
1

b− a
] =

∑
n≥0

E[b−1(ab−1)n]

and operator-valued R-transform

Ra(b) : =
∑
n≥0

κBn+1(ab, ab, . . . , ab, a) = κB1 (a) + κB2 (ab, a) + κB3 (ab, ab, a) + · · ·

As in the scalar-valued case we get as a relation between those two: bG(b) = 1 + R(G(b)) · G(b) or
G(b) = 1

b−R(G(b)) . If one reconsiders our combinatorial proof in the scalar-valued case, one notices that it

respects the nesting of the blocks, so it works also in the operator-valued case.
If one treats these concepts on the level of formal power series one gets all the main results as in the

scalar-valued case.

Theorem 6.11. If x and y are free over B, then

• mixed B-valued cumulants in x and y vanish,

• it holds that Rx+y(b) = Rx(b) +Ry(b),

• we have the subordination Gx+y(z) = Gx(ω(z)).

6.5 Free Analysis

In the last section we introduced the operator-valued R-transform and Cauchy transform on the level of
formal power series. Now in order to use subordination techniques in an efficient way, we want to look at
these objects in a more analytical way. This leads to the theory of “Free analysis”. This subject aims at
developping a non-commutative generalization of holomorphic functions in the setting of operator-valued
variables (or in the setting of several variables with the highest degree of non-commutativity). Free Analysis
was started by Voiculescu in the context of free probability around 2000; it builds on the seminal work of
J.L. Taylor (1976): Functions of several non-commuting variables. Similar ideas are also used in work of
Helton, Vinnikov etc around non-commutative convexity, linear matrix inequalities, or descriptor systems in
electrical engineering.

6.6 Subordination in the Operator-Valued Case

Similar to the scalar-valued theory it is hard to deal with the R transform in an analytical way. Also, the
operator-valued equation G(b) = 1

b−R(G(b)) has hardly ever explicit solutions and, from the numerical point

of view, it becomes quite intractable: instead of one algebraic equation we have now a system of algebraic
equations. However there is a subordination version for the operator-valued case which was treated by Biane
(1998) and, more conceptually, by Voiculescu (2000).

Remark 6.12. Let us present this conceptual way of looking on the subordination function. First, it is
fairly easy to check that, for x and y free in (A, ϕ), there exists a conditional expectation (which can also
be extended to formal power series) E : C〈x, y〉 → C〈x〉 which is determined by the requirements

ϕ(xnE[f(x, y)]) = ϕ(xnf(x, y)) ∀n ∈ N.

(In the Hilbert space L2(ϕ) setting this E is just the orthogonal projection from functions in x and y to
functions in x.)
Biane and Voiculescu showed now that for each z ∈ C there exists ω(z) ∈ C such that

E
[ 1

z − (x+ y)

]
=

1

ω(z)− x
.

This can be paraphrased by saying that best approximations in x to resolvents in x+ y are resolvents in x.
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The following theorem shows that the analytic properties of the subordination function in the operator-
valued situation are as nice as in the scalar-valued case.

Theorem 6.13 (Belinschi, Mai, Speicher 2013). Let x and y be selfadjoint operator-valued random variables
which are free over B. Then there exists a Fréchet analytic map ω : H+(B)→ H+(B) so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and
ω(b) = lim

n→∞
f◦nb (w) for any w ∈ H+(B).

Here, H+(B) := {b ∈ B | (b− b∗)/(2i) > 0} denotes the operator-valued upper halfplane and h(b) := 1
G(b) − b.

7 Polynomials of Independent Random Matrices and Polynomials
in Free Variables

Now we are able to solve the problem of calculating the distribution of a polynomial p in free variables. The
idea is to linearize the polynomial and use operator-valued convolution for the linearization p̂.

Example 7.1. The linearization of p = xy + yx+ x2 is given by

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0


This means that the Cauchy transform Gp(z) is given as the (1,1)-entry of the operator-valued (3 × 3

matrix) Cauchy transform of p̂:

Gp̂(b) = id⊗ ϕ
[
(b− p̂)−1

]
=

Gp(z) ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 for b =

z 0 0
0 0 0
0 0 0

 .

But

p̂ =


0 x y + x

2

x 0 −1

y + x
2 −1 0

 = x̂+ ŷ

with

x̂ =


0 x x

2

x 0 0

x
2 0 0

 and ŷ =


0 0 y

0 0 −1

y −1 0

 .

According to Section 6.2, x̂ and ŷ are free over M3(C). Furthermore, the distribution of x determines
the operator-valued distribution of x̂ and the distribution of y determines the operator-valued distribution
of ŷ. Thus we have the operator-valued Cauchy transforms of x̂ and of ŷ as input and can use our results
on operator-valued free convolution to calculate the operator-valued Cauchy transform of x̂ + ŷ in the

Page 18 of 22



Roland Speicher Free Probability Theory and Random Matrices August 2013

subordination form Gp̂(b) = Gx̂(ω(b)), where ω(b) is the unique fixed point in the upper half plane H+(M3(C)
of the iteration

w 7→ Gŷ(b+Gx̂(w)−1 − w)−1 − (Gx̂(w)−1 − w).

Letting this algorithm run for x semicircular and y having a Marchenko-Pastur distribution gives the
following distribution for p(x, y). This is compared with the histogram of a 4000 × 4000 random matrix
p(X,Y ), where X and Y are independent, X is Gaussian and Y Wishart.

Example 7.2. We consider the polynomial p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3. Then a linearization
of p is given by

p̂ =



0 0 x1 0 x2 0 x3
0 x2 −1 0 0 0 0
x1 −1 0 0 0 0 0
0 0 0 x3 −1 0 0
x2 0 0 −1 0 0 0
0 0 0 0 0 x1 −1
x3 0 0 0 0 −1 0


If x1, x2 are semicircular elements and x3 has a Marchenko-Pastur distribution, our algorithm yields the
following distribution for p(x1, x2, x3). Again, we compare this with the histogram of the corresponding
random matrix problem p(X1, X2, X3); where X1, X2, X3 are independent N ×N random matrices; X1 and
X2 are Gaussian and X3; for N = 4000.
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8 Problems (and some Solutions)

Problem 8.1. (Gaussian Random Matrices) Consider two Gaussian random matrices A and B. Prove
that lim

N→∞
1
NE[tr(An1Bm1 . . .)] is the number of non-crossing pairings which do not pair A with B.

Problem 8.2. (Wishart Random Matrices) Consider a Wishart matrix A with λ = M
N . Show that

lim
N→∞

1

N
E[tr(An)] =

∑
π∈NC(n)

λ|π|.

Problem 8.3. (Formula for classical cumulants) Recall that classical cumulants ck are combinatorially
defined by mn =

∑
π∈P(n) cπ and that we consider the power series M̃(z) = 1 +

∑∞
n=1

mn

n! z
n and C̃(z) =∑∞

n=1
cn
n! z

n. Show that C̃(z) = log M̃(z).

Solution: Note that

exp(C̃(z)) =
∑
k≥0

k∑
r=0

∑
n1+...+nr=k

1

k!

r!

n1! · · ·nr!
cn1 · · · cnrz

k

and we have by a combinatorial argument that

mk =

k∑
r=0

∑
n1+...+nr=k

r!

n1! · · ·nr!
cn1
· · · cnr

.

Problem 8.4. (R-transform of the semicircle) Consider a random variable x having the R-transform
R(z) = z. Calculate the distribution of x.

Solution: Using the identity 1
G(z) + R[G(z)] = z we get the algebraic equation 1 + G2(z) = zG(z).

One solution of this equation is G(z) = 1
2

√
z2 − 4 + z (we can ignore the other solution by looking at the

asymptotic behaviour). Applying the Stieltjes-inversion-formula gives the semicircular law.

Problem 8.5. (The Linearization Trick) We want to calculate the selfadjoint linearization of the non-
commutative polynomial p(x1, x2, x3) = x1x2x1+x2x3x2+x3x1x3. For this consider the following problems.

1. Calculate the linearization of each monomial of p.

2. Given the linearizations of monomials q1, . . . , qn, what is the linearization of q1 + . . .+ qn?

3. Consider a polynomial p of the form q+q∗ and let q̂ be the linarization of q. Calculate the linearization
of p in terms of q̂.

Solution:

1. A linearization of q = xixjxi is q̂ =

 0 0 xi
0 xj −1
xi −1 0

.

2. We consider two linearizations q̂1 =

(
0 u1
v1 Q1

)
and q̂2 =

(
0 u2
v2 Q2

)
. A linearization q̂1 + q2 of q1 + q2

is given by

 0 u1 u2
v1 Q1 0
v2 0 Q2

.

3. If q̂ =

(
0 u
v Q

)
then we can choose q̂ + q∗ =

 0 u v∗

u∗ 0 Q
v Q∗ 0

.
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Putting these steps together gives

p̂ =



0 0 x1 0 x2 0 x3
0 x2 −1 0 0 0 0
x1 −1 0 0 0 0 0
0 0 0 x3 −1 0 0
x2 0 0 −1 0 0 0
0 0 0 0 0 x1 −1
x3 0 0 0 0 −1 0


.

Problem 8.6. (Freeness over M2(C)) Let {a1, b1, c1, d1} and {a2, b2, c2, d2} be free in (A, ϕ). Show that

X1 =

(
a1 b1
c1 d1

)
and X2 =

(
a2 b2
c2 d2

)
are free with amalgamation over M2(C) in (M2(A), id⊗ ϕ).

Problem 8.7. (Calculate the conditional expectation for the simplest non-trivial situation!) For
x and y free, and E the conditional expectation from polynomials in x and y to polynomials in x, calculate
(or guess and verify)

E[xyxy] =?

Problem 8.8. (Classical analogue of conditional expectation and subordination) Let x and y be
classical, commuting random variables, which are independent. Then there exists a conditional expectation

E : C[x, y]→ C[x]

such that
ϕ(xnE[f(x, y)]) = ϕ(xnf(x, y)) ∀n ∈ N

Determine E and show that for each z ∈ C there is an ω(z) ∈ C such that

E
[
zex+y

]
= ω(z)ex

Thus, in the classical world, the best approximations in x to exponential functions in x+ y are exponential
functions in x.

Problem 8.9. Why is the exponential functional the analogue of the resolvent?

• Recall that the only solutions of d
dxf(x) = f(x) are given by f(x) = zex for some z ∈ C.

• Show that the only solutions of ∂xf(x) = f(x)⊗ f(x) are given by f(x) = 1
z−x for some z ∈ C, where

∂x : C〈x〉 → C〈x〉⊗C〈x〉 is the non-commutative derivative with respect to x, given by linear extension
of

∂x1 = 0, ∂xx = 1⊗ 1, ∂xx
n =

n−1∑
k=0

xk ⊗ xn−1−k

Solution: A simple calculation shows that the formal power series f(x) =
∑∞
k=0

1
zk+1x

k is a solution of
∂xf(x) = f(x)⊗ f(x) for given z ∈ C\{0}. On the other hand every solution of this equation, written as a
formal power series

∑∞
k=0 αkx

k has to fulfill the recursive relation αk = αk−1α0 for every k ∈ N and some
α0 ∈ C.
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