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Asymptotic Freeness of Random Matrices

Basic Observation (Voiculescu 1991)
Large classes of independent random matrices (like Gaussian or Wishart
matrices) become asymptoticially freely independent.
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Free Probability Theory

Section 1

Free Probability Theory
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Free Probability Theory Definition of Freeness

Definition (Voiculescu 1985)
Let (A, ϕ) be a non-commutative probability space, i.e., A is a unital
algebra and ϕ : A → C is unital linear functional (i.e., ϕ(1) = 1).

Unital subalgebras Ai (i ∈ I) are free or freely independent, if
ϕ(a1 · · · an) = 0 whenever

ai ∈ Aj(i) j(i) ∈ I ∀i
j(1) 6= j(2) 6= · · · 6= j(n)

ϕ(ai) = 0 ∀i
Random variables x1, . . . , xn ∈ A are freely independent, if their generated
unital subalgebras Ai := algebra(1, xi) are so.

Example (Commutative Probability Space)
For a classical probability space (Ω, P ) take
A = L∞(Ω, P )

ϕ(x) =
∫

Ω x(ω)dP (ω) for x ∈ A
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Free Probability Theory Freeness as rule for calculation of mixed moments

What is Freeness?

Freeness between x and y is an infinite set of equations relating various
moments in x and y:

ϕ
(
p1(x)q1(y)p2(x)q2(y) · · ·

)
= 0

Basic observation: free independence between x and y is actually a rule
for calculating mixed moments in x and y from the moments of x and
the moments of y:

ϕ
(
xm1yn1xm2yn2 · · ·

)
= polynomial

(
ϕ(xi), ϕ(yj)

)
Example
If x and y are freely independent, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)
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Free Probability Theory Freeness as rule for calculation of mixed moments

Example
If x and y are freely independent, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2
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ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

Free independence is a rule for calculating mixed moments, analogous to
the concept of independence for random variables.
Note: free independence is a different rule from classical independence; free
independence occurs typically for non-commuting random variables, like
operators on Hilbert spaces.
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Free Probability Theory Freeness as rule for calculation of mixed moments

Example
If x and y are freely independent, then we have

ϕ(xmyn) = ϕ(xm) · ϕ(yn)

ϕ(xm1ynxm2) = ϕ(xm1+m2) · ϕ(yn)

but also

ϕ(xyxy) = ϕ(x2) · ϕ(y)2 + ϕ(x)2 · ϕ(y2)− ϕ(x)2 · ϕ(y)2

This means of course that, for any polynomial p, the moments of p(x, y)
are determined in terms of the moments of x and the moments of y.
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Free Probability Theory Combinatorial Structure of Freeness

Combinatorial Structure of Freeness
Basic Observation (Speicher 1993)
The structure of the formulas for mixed moments is governed by the
lattice of non-crossing partitions.

Example (Factorization of Non-Crossing Moments)
Let x1, . . . , x5 be free. Consider Thenx1 x2 x3 x3 x2 x4 x5 x5 x2x1

ϕ(x1x2x3x3x2x4x5x5x2x1)

= ϕ(x1x1) · ϕ(x2x2x2) · ϕ(x3x3) · ϕ(x4) · ϕ(x5x5)

Many consequences of this are worked out in joint works with A. Nica
Nica, Speicher: Lectures on the Combinatorics of Free Probability,
2006
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Free Probability Theory Occurrences of Freeness

Where Does Free Independence Show Up?

Free independence can be found in different situations; some of the main
occurrences are:

generators of the free group in the corresponding free group von
Neumann algebras L(Fn)

creation and annihilation operators on full Fock spaces

for many classes of random matrices
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Free Probability Theory Asymptotic Freeness of Random Matrices

Asymptotic Freeness of Random Matrices
Theorem (Voiculescu 1991)
Large classes of independent random matrices (like Gaussian or Wishart
matrices) become asymptoticially freely independent, with respect to
ϕ = tr := 1

NTr, if N →∞.

Note that moments with respect to tr determine the eigenvalue distribution
of a matrix.
For an N ×N matrix X = X∗ with eigenvalues λ1, . . . , λN its eigenvalue
distribution

µX :=
1

N
(δλ1 + · · ·+ δλN )

is determined by∫
R
tkdµX(t) = tr(Xk) for all k = 0, 1, 2, . . .

.
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Hence we have a rule for calculating asymptotically mixed moments of our
matrices with respect to the normalized trace tr.

Note that moments with respect to tr determine the eigenvalue distribution
of a matrix.
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Free Convolution

Section 2

Free Convolution
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Free Convolution

Sum of Free Variables

Consider x, y free.
Then, by freeness, the moments of x+ y are uniquely determined by the
moments of x and the moments of y.

Notation
We say the distribution of x+ y is the

free convolution

of the distribution of x and the distribution of y,

µx+y = µx � µy.

Roland Speicher (Saarland University) Operator-Valued Free Probability 12 / 116



Free Convolution

The Cauchy Transform

Definition
For any probability measure µ on R we define its Cauchy transform by

G(z) :=

∫
R

1

z − t
dµ(t)

−G is also called Stieltjes transform.

This is an analytic function G : C+ → C− and we can recover µ from G by
Stieltjes inversion formula.

dµ(t) = − 1

π
lim
ε→0
=G(t+ iε)dt
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Free Convolution

The R-transform

Definition
Consider a random variable x ∈ A. Let G be its Cauchy transform

G(z) = ϕ[
1

z − x
] =

1

z
+

∞∑
n=1

ϕ(xn)

zn+1
.

We define its R-transform by the equation

1

G(z)
+R[G(z)] = z

Theorem (Voiculescu 1986)
The R-transform linearizes free convolution, i.e.,

Rx+y(z) = Rx(z) +Ry(z) if x and y are free.

Roland Speicher (Saarland University) Operator-Valued Free Probability 14 / 116



Free Convolution

Calculation of Free Convolution by R-transform

The relation between Cauchy transform and R-transform, and the Stieltjes
inversion formula give an effective algorithm for calculating free
convolutions; and thus also, e.g., the asymptotic eigenvalue distribution of
sums of random matrices in generic position:

x  Gx  Rx
↓

Rx + Ry = Rx+y  Gx+y  x+ y

↑
y  Gy  Ry

Roland Speicher (Saarland University) Operator-Valued Free Probability 15 / 116



Free Convolution

What is the Free Binomial
(

1
2δ−1 +

1
2δ+1

)�2

Example

µ :=
1

2
δ−1 +

1

2
δ+1, ν := µ� µ

Then Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1

and so z = Gµ[Rµ(z) + 1/z] =
Rµ(z) + 1/z

(Rµ(z) + 1/z)2 − 1

thus Rµ(z) =

√
1 + 4z2 − 1

2z

and so Rν(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z
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Free Convolution

What is the Free Binomial
(

1
2δ−1 +

1
2δ+1

)�2

Example

Rν(z) =

√
1 + 4z2 − 1

z
gives Gν(z) =

1√
z2 − 4

and thus

dν(t) = − 1

π
= 1√

t2 − 4
dt =


1

π
√

4−t2 , |t| ≤ 2

0, otherwise

So (1

2
δ−1 +

1

2
δ+1

)�2
= ν = arcsine-distribution
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Free Convolution

What is the Free Binomial
(

1
2δ−1 +

1
2δ+1

)�2

−1.5 −1 −0.5 0 0.5 1 1.5

0.15

0.2

0.25

0.3

0.35

0.4

x

1/(π (4 − x
2
)
1/2

)

2800 eigenvalues of A+UBU∗, where A and B are diagonal matrices with
1400 eigenvalues +1 and 1400 eigenvalues -1, and U is a randomly chosen
unitary matrix
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Free Convolution

The R-transform as an Analytic Object

The R-transform can be established as an analytic function via power
series expansions around the point infinity in the complex plane.

The R-transform can, in contrast to the Cauchy transform, in general
not be defined on all of the upper complex half-plane, but only in
some truncated cones (which depend on the considered variable).
The equation 1

G(z) +R[G(z)] = z does in general not allow explicit
solutions and there is no good numerical algorithm for dealing with
this.

Problem
The R-transform is not really an adequate analytic tool for more
complicated problems.
Is there an alternative?
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Free Convolution

An Alternative to the R-transform: Subordination

Let x and y be free. Put w := Rx+y(z) + 1/z, then

Gx+y(w) = z = Gx[Rx(z)+1/z] = Gx[w−Ry(z)] = Gx[w−Ry[Gx+y(w)]]

Basic Observation (Voiculescu, Biane, Götze, Chistyakov, Belinschi,
Bercovici ...)
There are nice analytic descriptions in subordination form, e.g., for x and
y free one has

Gx+y(z) = Gx
(
ω(z)

)
,

where ω : C+ → C+ is an analytic function which can be calculated
effectively via fixpoint descriptions.

Roland Speicher (Saarland University) Operator-Valued Free Probability 20 / 116
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Free Convolution

The Subordination Function

Theorem (Belinschi, Bercovici 2007)
Let x and y be free. Put

F (z) :=
1

G(z)

Then there exists an analytic ω : C+ → C+ such that

Fx+y(z) = Fx
(
ω(z)

)
and Gx+y(z) = Gx

(
ω(z)

)
The subordination function ω(z) is given as the unique fixed point in the
upper half-plane of the map

fz(w) = Fy(Fx(w)− w + z)− (Fx(w)− w)

Roland Speicher (Saarland University) Operator-Valued Free Probability 21 / 116



Free Convolution

Example: semicircle � Marchenko-Pastur
Example
Let s be semicircle, p be Marchenko-Pastur (i.e., free Poisson) and s, p
free. Consider a := s+ p.

Rs(z) = z, Rp(z) =
λ

1− z
,

thus we have
Ra(z) = Rs(z) +Rp(z) = z +

λ

1− z
,

and hence
Ga(z) +

λ

1−Ga(z)
+

1

Ga(z)
= z

Alternative subordination formulation

Gs+p(z) = Gp
[
z −Rs[Gs+p(z)]

]
= Gp[z −Gs+p(z)]

Roland Speicher (Saarland University) Operator-Valued Free Probability 22 / 116
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1−Ga(z)
+

1

Ga(z)
= z

Alternative subordination formulation

Gs+p(z) = Gp
[
z −Rs[Gs+p(z)]

]
= Gp[z −Gs+p(z)]
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Semicircular Element

Section 3

Gaussian Random Matrices and Semicircular
Element
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Semicircular Element

Gaussian Random Matrix (Wigner 1955)
Definition

A Gaussian random matrix AN = 1√
N

(
xij
)N
i,j=1

is symmetric: A∗N = AN

{xij | 1 ≤ i ≤ j ≤ N} are independent and identically distributed,
with a centered normal distribution of variance 1

Example (eigenvalue distribution for N = 3000)
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Semicircular Element

Definition
The empirical eigenvalue distribution of AN is

µAN (ω) =
1

N

N∑
i=1

δλi(ω)

where λi(ω) are the N eigenvalues (counted with multiplicity) of AN (ω)

Theorem (Wigner’s semicircle law)
We have almost surely

µAN =⇒ µW (weak convergence)

i.e., for each continuous and bounded f we have almost surely

lim
N→∞

∫
R
f(t)dµAN (t) =

∫
R
f(t)dµW (t) =

1

2π

∫ 2

−2
f(t)

√
4− t2dt
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Semicircular Element

Proof of the Semicircle Law

One shows
lim
N→∞

µAN (f) = µW (f) almost surely

in two steps:
convergence in average:

lim
N→∞

E[µAN (f)] = µW (f)

fluctuations are negligible for N →∞:∑
N

Var[µAN (f)] <∞
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Semicircular Element

Convergence of Averaged Eigenvalue Distribution

Example (eigenvalue distribution for N = 50)
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Semicircular Element

Convergence of Averaged Eigenvalue Distribution
Example (eigenvalue distribution for N = 5)
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Semicircular Element

Convergence of Averaged Eigenvalue Distribution
Example (eigenvalue distribution for N = 20)
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Semicircular Element
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Semicircular Element

Convergence in Average

For
lim
N→∞

E[µAN (f)] = µW (f)

it suffices to treat convergence of all averaged moments, i.e.,

lim
N→∞

E[

∫
tndµAN (t)] =

∫
tndµW (t) ∀n ∈ N

Note:

E[

∫
tndµAN (t)] = E[

1

N

N∑
i=1

λni ] = E[tr(AnN )]
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Semicircular Element

Calculation of Averaged Moments

Note:

E[

∫
tndµAN (t)] = E[

1

N

N∑
i=1

λni ] = E[tr(AnN )]

but

E[tr(AnN )] =
1

N

N∑
i1,...,in=1

E[ai1i2ai2i3 · · · aini1 ]︸ ︷︷ ︸
expressed in

terms of pairings
“Wick formula”

Roland Speicher (Saarland University) Operator-Valued Free Probability 30 / 116



Semicircular Element

Calculation of Averaged Moments

Note:

E[

∫
tndµAN (t)] = E[

1

N

N∑
i=1

λni ] = E[tr(AnN )]

but

E[tr(AnN )] =
1

N

N∑
i1,...,in=1

E[ai1i2ai2i3 · · · aini1 ]

but

E[tr(AnN )] =
1

N

N∑
i1,...,in=1

E[ai1i2ai2i3 · · · aini1 ]︸ ︷︷ ︸
expressed in

terms of pairings
“Wick formula”

Roland Speicher (Saarland University) Operator-Valued Free Probability 30 / 116



Semicircular Element

Calculation of Averaged Moments

Note:

E[

∫
tndµAN (t)] = E[

1

N

N∑
i=1

λni ] = E[tr(AnN )]

but

E[tr(AnN )] =
1

N

N∑
i1,...,in=1

E[ai1i2ai2i3 · · · aini1 ]︸ ︷︷ ︸
expressed in

terms of pairings
“Wick formula”

Roland Speicher (Saarland University) Operator-Valued Free Probability 30 / 116



Semicircular Element

Semicircular Element
Asymptotically, for N →∞, only non-crossing pairings survive:

lim
N→∞

E[tr(AnN )] = #NC2(n)

Definition
Define limiting semicircle element s by

ϕ(sn) := #NC2(n).

(s ∈ A, where A is some unital algebra, ϕ : A → C)

Notation
Then we say that our Gaussian random matrices AN converge in
distribution to the semicircle element s,

AN
distr−→ s

Roland Speicher (Saarland University) Operator-Valued Free Probability 31 / 116



Semicircular Element

Semicircular Element
Asymptotically, for N →∞, only non-crossing pairings survive:

lim
N→∞

E[tr(AnN )] = #NC2(n)

Definition
Define limiting semicircle element s by

ϕ(sn) := #NC2(n).

(s ∈ A, where A is some unital algebra, ϕ : A → C)

Notation
Then we say that our Gaussian random matrices AN converge in
distribution to the semicircle element s,

AN
distr−→ s

Roland Speicher (Saarland University) Operator-Valued Free Probability 31 / 116



Semicircular Element

Semicircular Element
Asymptotically, for N →∞, only non-crossing pairings survive:

lim
N→∞

E[tr(AnN )] = #NC2(n)

Definition
Define limiting semicircle element s by

ϕ(sn) := #NC2(n).

(s ∈ A, where A is some unital algebra, ϕ : A → C)

Notation
Then we say that our Gaussian random matrices AN converge in
distribution to the semicircle element s,

AN
distr−→ s

Roland Speicher (Saarland University) Operator-Valued Free Probability 31 / 116



Semicircular Element

What is Distribution of s?

ϕ(sn) = lim
N→∞

E[tr(AnN )] = #NC2(n)

Claim

ϕ(sn) =

∫
tndµW (t)

more concretely:

#NC2(n) =
1

2π

∫ +2

−2
tn
√

4− t2dt
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Semicircular Element

What is Distribution of s?

Example
n = 2: ϕ(s2) = 1

n = 4: ϕ(s4) = 2

n = 6: ϕ(s6) = 5
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Semicircular Element

What is Distribution of s?

Claim

ϕ(s2k) = Ck k-th Catalan number

What are the Catalan numbers?
Ck = 1

k+1

(
2k
k

)
Ck is determined by C0 = C1 = 1 and the recurrence relation

Ck =

k∑
l=1

Cl−1Ck−l.
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Semicircular Element

Moments of s are Given by Catalan Numbers

It is fairly easy to see that the moments ϕ(s2k) satisfy the recursion for the
Catalan numbers:

ϕ(s2k) =

k∑
l=1

ϕ(s2l−2)ϕ(s2k−2l).

Notation

M(z) :=

∞∑
n=0

ϕ(sn)zn = 1 +
∞∑
k=1

ϕ(s2k)z2k

M(z) = 1 + z2
∞∑
k=1

k∑
l=1

ϕ(s2l−2)z2l−2ϕ(s2k−2l)z2k−2l

= 1 + z2M(z) ·M(z)
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Semicircular Element

Moments of s are Given by Catalan Numbers

M(z) = 1 + z2M(z) ·M(z)

Notation (Cauchy transform)
Instead of moment generating series M(z) consider

G(z) := ϕ(
1

z − s
)

Note

G(z) =

∞∑
n=0

ϕ(sn)

zn+1
=

1

z

∞∑
n=0

ϕ(sn)
(1

z

)n
=

1

z
M(1/z),

thus
zG(z) = 1 +G(z)2
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Semicircular Element

For the basic Gaussian random matrix ensemble one can thus derive
equations for the Cauchy transform of the limiting eigenvalue distribution,
solve those equations and then get the density via Stieltjes inversion.

Example (Gaussian rm)

G(z)2 + 1 = zG(z),

which can be solved as

G(z) =
z −
√
z2 − 4

2
,

thus

dµs(t) =
1

2π

√
4− t2dt

Wigners semicircle
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Semicircular Element
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Operator-Valued Semicircular Element

Section 4

Block Random Matrices and Operator-Valued
Semicircular Elements
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Operator-Valued Semicircular Element

Eigenvalue Distribution of Block Matrices

Example
Consider the block matrix

XN =

AN BN CN
BN AN BN
CN BN AN

 ,

where AN , BN , CN are independent Gaussian N ×N -random matrices.

Problem
What is eigenvalue distribution of XN for N →∞?
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Operator-Valued Semicircular Element

Typical Eigenvalue Distribution for N = 1000

Example
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Operator-Valued Semicircular Element

Averaged Eigenvalue Distribution
Example
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Operator-Valued Semicircular Element

4 3 2 1 0 1 2 3 4
0
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N=150

Problem
This limiting distribution is not a semicircle, and it cannot be described
nicely within usual free probability theory.

Solution
However, it fits well into the frame of

operator-valued free probability theory!
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Operator-Valued Semicircular Element

What is an operator-valued probability space?

scalars −→ operator-valued scalars

C B

state −→ conditional expectation

ϕ : A → C E : A → B

E[b1ab2] = b1E[a]b2

moments −→ operator-valued moments

ϕ(an) E[ab1ab2a · · · abn−1a]
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Operator-Valued Semicircular Element

Example: M2(C)-valued probability space

Example
Let (C, ϕ) be a non-commutative probability space. Put

M2(C) :=

{(
a b
c d

)
| a, b, c, d ∈ C

}
and consider ψ := tr⊗ ϕ and E := id⊗ ϕ, i.e.:

ψ

[(
a b
c d

)]
=

1

2
(ϕ(a) + ϕ(d)), E

[(
a b
c d

)]
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)

(M2(C), ψ) is a non-commutative probability space, and
(M2(C), E) is an M2(C)-valued probability space
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Operator-Valued Semicircular Element

What is an operator-valued semicircular element?

Consider an operator-valued probability space

E : A → B

Definition
s ∈ A is semicircular if

second moment is given by

E[sbs] = η(b)

for a completely positive map η : B → B
higher moments of s are given in terms of second moments by
summing over non-crossing pairings
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Operator-Valued Semicircular Element

Moments of an Operator-Valued Semicircle

E[sbs] = η(b)

s sb

E[sb1sb2s · · · sbn−1s] =
∑

π∈NC2(n)

(
iterated application of η according to π

)
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Operator-Valued Semicircular Element

Sixth Moment of Operator-Valued Semicircle

sb1sb2sb3sb4sb5s

sb1sb2sb3sb4sb5s
sb1sb2sb3sb4sb5s

η(b1)·b2·η(b3)·b4·η(b5) η(b1)·b2·η
(
b3·η(b4)·b5

)
η
(
b1·η

(
b2·η(b3)·b4

)
·b5
)

sb1sb2sb3sb4sb5s sb1sb2sb3sb4sb5s

η
(
b1 · η(b2) · b3

)
· b4 · η(b5) η

(
b1 · η(b2) · b3 · η(b4) · b5

)
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Operator-Valued Semicircular Element

Sixth Moment of Operator-Valued Semicircle

E[sb1sb2sb3sb4sb5s] =η(b1) · b2 · η(b3) · b4 · η(b5)

+ η(b1) · b2 · η
(
b3 · η(b4) · b5

)

+ η
(
b1 · η

(
b2 · η(b3) · b4

)
· b5
)

+ η
(
b1 · η(b2) · b3

)
· b4 · η(b5)

+ η
(
b1 · η(b2) · b3 · η(b4) · b5

)
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Operator-Valued Semicircular Element

Sixth Moment of Operator-Valued Semicircle

E[ssssss] =η(1) · η(1) · η(1)

+ η(1) · η
(
η(1)

)

+ η
(
η
(
η(1)

))

+ η
(
η(1)

)
· η(1)

+ η
(
η(1) · η(1)

)
Roland Speicher (Saarland University) Operator-Valued Free Probability 50 / 116



Operator-Valued Semicircular Element

Recursion for Moments of Operator-Valued
Semicircle

As before, we have the recurrence relation

E[s2k] =

k∑
l=1

η
(
E[s2l−2]

)
· E[s2k−2l].

Notation
Put

M(z) :=

∞∑
n=0

E[sn]zn = 1 +

∞∑
k=1

E[s2k]z2k,

thus we have again

M(z) = 1 + z2η
(
M(z)

)
·M(z)
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Operator-Valued Semicircular Element

Recursion for Moments of Operator-Valued
Semicircle

M(z) = 1 + z2η
(
M(z)

)
·M(z)

Notation (operator-valued Cauchy transform)
Instead of M(z) consider

G(z) := E[
1

z − s
].

Note
G(z) = E[

1

z
· 1

1− sz−1
] =

1

z
M(z−1),

thus
zG(z) = 1 + η

(
G(z)

)
·G(z)
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Operator-Valued Semicircular Element

Thus, the operator-valued Cauchy-transform of s, G : C+ → B, satisfies

zG(z) = 1 + η
(
G(z)

)
·G(z) or G(z) =

1

z − η
(
G(z)

) .

This is equivalent to

Fz(G) = G where Fz(G) =
1

z − η(G)

Theorem (Helton, Rashidi Far, Speicher 2007)

For =z > 0 there exists exactly one solution G ∈ H−(B) to Fz(G) = G;
this G is the limit of iterates Gn = Fnz (G0) for any G0 ∈ H−(B). Here

H−(B) := {b ∈ B | b− b
∗

2i
< 0}
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Operator-Valued Semicircular Element

Back to Random Matrices

Basic Observation
Special classes of random matrices are asymptotically described by
operator-valued semicircular elements, e.g.

band matrices (Shlyakhtenko 1996)
block matrices (Rashidi Far, Oraby, Bryc, Speicher 2006)
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Operator-Valued Semicircular Element

Back to Random Matrices
Example

XN =

AN BN CN
BN AN BN
CN BN AN

 ,

where AN , BN , CN are independent Gaussian N ×N random matrices.

For N →∞, XN converges to

s =

s1 s2 s3

s2 s1 s2

s3 s2 s1

 ,

where s1, s2, s3 ∈ (C, ϕ) is free semicircular family.
This means: the asymptotic eigenvalue distribution of XN is given by the
distribution of s with respect to tr3 ⊗ ϕ.
The latter does not show any nice recursive structure! But ...
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Operator-Valued Semicircular Element

Example

But s =

s1 s2 s3

s2 s1 s2

s3 s2 s1

 (s1, s2, s3 ∈ (C, ϕ))

is an operator-valued semicircular element over M3(C) with respect to

A = M3(C), B = M3(C)

E = id⊗ ϕ : M3(C)→M3(C),
(
aij
)3
i,j=1

7→
(
ϕ(aij)

)3
i,j=1

η : M3(C)→M3(C) given by η(D) = E[sDs]

Hence asymptotic eigenvalue distribution µ of XN , which is given by
distribution of s with respect to tr3 ⊗ ϕ, can now be factorized as:

H(z) =

∫
1

z − t
dµ(t) = tr3 ⊗ ϕ

( 1

z − s
) = tr3

{
E[

1

z − s
]
}
,

and G(z) = E[ 1
z−s ] is solution of zG(z) = 1 + η

(
G(z)

)
·G(z)
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Operator-Valued Semicircular Element

Example

s =

s1 s2 s3

s2 s1 s2

s3 s2 s1

 : G(z) =

f(z) 0 h(z)
0 g(z) 0

h(z) 0 f(z)

 , η(G) = E[sGs]

η
(
G(z)

)
=

2 f(z) + g(z) 0 g(z) + 2h(z)
0 2 f(z) + g(z) + 2h(z) 0

g(z) + 2h(z) 0 2 f(z) + g(z)

 ,

zG(z) = 1 + η
(
G(z)

)
·G(z)

H(z) = tr3(G(z)) =
1

3
(2f(z) + g(z))
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Operator-Valued Semicircular Element

System of Quadratic Equations for
Operator-Valued Semicircle

Example
So

zG(z) = 1 + η
(
G(z)

)
·G(z)

means explicitly

zf(z) = 1 + g(z)(f(z) + h(z)) + 2(f(z)2 + h(z)2)

zg(z) = 1 + g(z)
(
g(z) + 2(f(z) + h(z))

)
zh(z) = 4f(z)h(z) + g(z)(f(z) + h(z))
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Operator-Valued Semicircular Element

Comparison of the Solution with Simulations
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Operator-Valued Semicircular Element

Some More Examples
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Operator-Valued Extension of Free Probability

Section 5

Operator-Valued Extension of Free Probability
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Operator-Valued Extension of Free Probability

Problem
What can we say about the relation between two matrices, when we know
that the entries of the matrices are free?

X = (xij)
N
i,j=1 Y = (ykl)

N
k,l=1

with
{xij} and {ykl} free w.r.t. ϕ

Solution
X and Y are not free w.r.t. tr⊗ ϕ in general
However: relation between X and Y is more complicated, but still
treatable in terms of

operator-valued freeness
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Operator-Valued Extension of Free Probability

Notation
Let (C, ϕ) be non-commutative probability space.
Consider N ×N matrices over C:

MN (C) := {(aij)Ni,j=1 | aij ∈ C} = MN (C)⊗ C

MN (C) is a non-commutative probability space with respect to

tr⊗ ϕ : MN (C)→ C

but there is also an intermediate level
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Operator-Valued Extension of Free Probability

Different Levels

Instead of

MN (C)

↓ tr⊗ ϕ

C

consider

MN (C) = MN (C)⊗ C

=: A

↓ id⊗ ϕ

=: E

|
|

MN (C)

=: B

| tr⊗ ϕ
|

↓ tr ↓

C
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Definition
Let B ⊂ A. A linear map E : A → B is a conditional expectation if

E[b] = b ∀b ∈ B

and
E[b1ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B

An operator-valued probability space consists of B ⊂ A and a
conditional expectation E : A → B

Example (Classical conditional expectation)
Let M be a σ-algebra and N ⊂M be a sub-σ-algebra. Then
A = L∞(Ω,M, P )

B = L∞(Ω,N, P )

E[·|N] is the classical conditional expectation from the bigger onto
the smaller σ-algebra.
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Example: M2(C)-valued probability space

Example
Let (A, ϕ) be a non-commutative probability space. Put

M2(A) :=

{(
a b
c d

)
| a, b, c, d ∈ A

}
and consider ψ := tr⊗ ϕ and E := id⊗ ϕ, i.e.:

ψ

[(
a b
c d

)]
=

1

2
(ϕ(a) + ϕ(d)), E

[(
a b
c d

)]
=

(
ϕ(a) ϕ(b)
ϕ(c) ϕ(d)

)

(M2(A), ψ) is a non-commutative probability space, and
(M2(A), E) is an M2(C)-valued probability space
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Operator-Valued Distribution
Definition (operator-valued distribution)
Consider an operator-valued probability space (A, E : A → B). The
operator-valued distribution of a ∈ A is given by all operator-valued
moments

E[ab1ab2 · · · bn−1a] ∈ B (n ∈ N, b1, . . . , bn−1 ∈ B)

Note: polynomials in x with coefficients from B are of the form
x2

b0x
2

b1xb2xb3

b1xb2xb3 + b4xb5xb6 + · · ·
etc.

b’s and x do not commute in general!
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Definition of Operator-Valued Freeness

Definition (Voiculescu 1985)
Let E : A → B be an operator-valued probability space.
Subalgebras Ai (i ∈ I), which contain B, are free over B, if
E[a1 · · · an] = 0 whenever

ai ∈ Aj(i), j(i) ∈ I ∀i
j(1) 6= j(2) 6= · · · 6= j(n)

E[ai] = 0 ∀i
Variables x1, . . . , xn ∈ A are free over B, if the generated B-subalgebras
Ai := algebra(B, xi) are so.
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Freeness and Matrices

Basic Observation
Easy, but crucial fact: Freeness is compatible with going over to matrices

Example
If {a1, b1, c1, d1} and {a2, b2, c2, d2} are free in (C, ϕ), then(

a1 b1
c1 d1

)
and

(
a2 b2
c2 d2

)
are

in general, not free in (M2(C), tr⊗ ϕ)

but free with amalgamation over M2(C) in (M2(C), id⊗ ϕ)
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Freeness and Matrices

Example

X1 :=

(
a1 b1
c1 d1

)
and X2 :=

(
a2 b2
c2 d2

)
Then

X1X2 =

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
and

ψ(X1X2) =
(
ϕ(a1)ϕ(a2) + ϕ(b1)ϕ(c2) + ϕ(c1)ϕ(b2) + ϕ(d1)ϕ(d2)

)
/2

6= (ϕ(a1) + ϕ(d1))(ϕ(a2) + ϕ(d2))/4

= ψ(X1) · ψ(X2)

but
E(X1X2) = E(X1) · E(X2)
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Freeness and Matrices

Example

X1 :=

(
a1 b1
c1 d1

)
and X2 :=

(
a2 b2
c2 d2

)
Then

X1X2 =

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
and

E(X1X2) =

(
ϕ(a1)ϕ(a2) + ϕ(b1)ϕ(c2) ϕ(a1)ϕ(b2) + ϕ(b1)ϕ(d2)
ϕ(c1)ϕ(a2) + ϕ(d1)ϕ(c2) ϕ(c1)ϕ(b2) + ϕ(d1)ϕ(d2)

)
=

(
ϕ(a1) ϕ(b1)
ϕ(c1) ϕ(d1)

)(
ϕ(a2) ϕ(b2)
ϕ(c2) ϕ(d2)

)
= E(X1) · E(X2)
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Combinatorial Description of Operator-Valued
Freeness
Operator-valued freeness works mostly like ordinary freeness, one only has
to take care of the order of the variables; in all expressions they have to
appear in their original order!

Example
Still one has factorizations of all non-crossing moments in free variables.

x1 x2 x3 x3 x2 x4 x5 x5 x2 x1

E[x1x2x3x3x2x4x5x5x2x1]

= E
[
x1 · E

[
x2 · E[x3x3] · x2 · E[x4] · E[x5x5] · x2

]
· x1

]
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Combinatorial Description of Operator-Valued
Freeness
For “crossing" moments one has analogous formulas as in scalar-valued
case, modulo respecting the order of the variables ...

Example
The formula

ϕ(x1x2x1x2) = ϕ(x1x1)ϕ(x2)ϕ(x2) + ϕ(x1)ϕ(x1)ϕ(x2x2)

− ϕ(x1)ϕ(x2)ϕ(x1)ϕ(x2)

has now to be written as

E[x1x2x1x2] = E
[
x1E[x2]x1

]
· E[x2] + E[x1] · E

[
x2E[x1]x2

]
− E[x1]E[x2]E[x1]E[x2]
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Free Cumulants

Definition
Consider E : A → B.
Define free cumulants

kBn : An → B

by

E[a1 · · · an] =
∑

π∈NC(n)

kBπ [a1, . . . , an]

arguments of kBπ are distributed according to blocks of π
but now: cumulants are nested inside each other according to nesting
of blocks of π
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Operator-Valued Extension of Free Probability Operator-Valued Freeness

Free Cumulants
Example

π =
{
{1, 10}, {2, 5, 9}, {3, 4}, {6}, {7, 8}

}
∈ NC(10),

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

kBπ [a1, . . . , a10]

= kB2

(
a1 · kB3

(
a2 · kB2 (a3, a4), a5 · kB1 (a6) · kB2 (a7, a8), a9

)
, a10

)
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Operator-Valued Extension of Free Probability Operator-Valued Free Convolution

Analytic Description of Operator-Valued Free
Convolution
Definition
For a random variable x ∈ A in an operator-valued probability space
E : A → B we define the operator-valued Cauchy transform:

G(b) := E[(b− x)−1] (b ∈ B).

For x = x∗, this is well-defined and a nice analytic map on the

operator-valued upper halfplane H+(B) := {b ∈ B | b− b
∗

2i
> 0}

Definition
We define the operator-valued R-transform by

bG(b) = 1 +R(G(b)) ·G(b) or G(b) =
1

b−R(G(b))
Roland Speicher (Saarland University) Operator-Valued Free Probability 76 / 116



Operator-Valued Extension of Free Probability Operator-Valued Free Convolution

On a Formal Power Series Level: Same Results as
in Scalar-Valued Case

Note that for an operator-valued semicircular element with covariance η we
have R(b) = η(b) and thus

bG(b) = 1 +R(G(b)) ·G(b), restricted to b = z,

is nothing but our formula from before

zG(z) = 1 + η
(
G(z)

)
·G(z)

If x and y are free over B, then
mixed B-valued cumulants in x and y vanish
Rx+y(b) = Rx(b) +Ry(b)

we have the subordination Gx+y(z) = Gx(ω(z))
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Operator-Valued Extension of Free Probability Operator-Valued Free Convolution

Subordination in the Operator-Valued Case

again, analytic properties of R transform are not so nice
the operator-valued equation G(b) = 1

b−R(G(b)) , has hardly ever
explicit solutions and, from the numerical point of view, it becomes
quite intractable: instead of one algebraic equation we have now a
system of algebraic equations
subordination version for the operator-valued case was treated by
Biane (1998) and, more conceptually, by Voiculescu (2000)
an analytic description of subordination via fixed point equations, as in
the scalar-valued case, was given by Belinschi, Mai, Speicher (2013)
a corresponding analytic description for the multiplicative case was
given by Belinschi, Speicher, Treilhard, Vargas (2013)
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Operator-Valued Extension of Free Probability Operator-Valued Free Convolution

Subordination Formulation
Theorem (Belinschi, Mai, Speicher 2013)
Let x and y be selfadjoint operator-valued random variables free over B.
Then there exists a Fréchet analytic map ω : H+(B)→ H+(B) so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and
ω(b) = lim

n→∞
f◦nb (w) for any w ∈ H+(B).

where

H+(B) := {b ∈ B | b− b
∗

2i
> 0}, h(b) :=

1

G(b)
− b
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Deterministic Equivalents

Section 6

Deterministic Equivalents
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Deterministic Equivalents

Problem
Quite often, one has a random matrix problem for (large) size N , but the
limit N →∞ is not adequate, because there is no canonical limit for some
of the involved matrices

Solution (Girko; Couillet, Hoydis, Debbah; Hachem, Loubaton, Najim)
Deterministic Equivalent: Replace the random Stieltjes transform gN of
the problem for N by a deterministic transform g̃N such that

g̃N is calculable, usually as the fixed point solution of some system of
equations
the difference between gN and g̃N goes, for N →∞, to 0
(even though gN itself might not converge)
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Deterministic Equivalents

Deterministic Equivalent

Replace the original unsolvable problem by another problem which is
I solvable
I close to the original problem (at least for large N)

The replacement is done on the level of Stieltjes transforms and there
is no clear rule how to do this
Essentially one tries to close the system of equations for the Stieltjes
transforms by keeping as much data as possible of the original situation
Replacement and solving is done in one step
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Deterministic Equivalents

Free Deterministic Equivalent (Speicher, Vargas)

We will replace the original problem by another one on the level of
operators in a quite precise way, essentially by prescribing

I replace Gaussian random matrices by semicircular variables
I replace matrices which are asymptotically free by free variables

The free deterministic equivalent is then a well-defined function in free
variables
That the free deterministic equivalent is close to the original model
(for large N) is essentially the same calculation as showing asymptotic
freeness
One can then try to solve for the distribution of this replacement in a
second step
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Deterministic Equivalents

Free Deterministic Equivalent (Speicher, Vargas)
Example
Consider AN = TN +XN where

XN is a symmetric N ×N Gaussian random matrix
TN is a deterministic matrix

We do not have a sequence TN , with N →∞, thus we only have the
distribution of TN for some fixed N .
We replace now AN by aN = tN + s, where

s is a semicircular element
tN is an operator which has the same distribution as TN
tN and s are free

In this case, the distribution of aN is given by the free convolution of the
distribution of tN and the distribution of s,

µAN ∼ µaN = µtN+s = µtN � µs = µTN � µs
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Deterministic Equivalents

Can We Calculate Free Deterministic Equivalents?

Problem
Usually, our free deterministic equivalents are polynomials in free variables.
Can we calculate their distribution out of the knowledge of the distribution
of each variable?

Solution
Yes, we can!
For this, use the combination of

the linearization trick
and our recent advances on the analytic description of operator-valued
free convolution
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The Problem of Polynomials in Free Variables

Section 7

The Problem of Polynomials in Free Variables
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The Problem of Polynomials in Free Variables

For our basic random matrix ensembles one can derive equations for the
Cauchy transform of the limiting eigenvalue distribution, solve those
equations and then get the density via Stieltjes inversion.

Example (Gaussian rm)

G(z)2 + 1 = zG(z),

which can be solved as

G(z) =
z −
√
z2 − 4

2
,

thus

dµs(t) =
1

2π

√
4− t2dt

Wigners semicircle
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The Problem of Polynomials in Free Variables

For our basic random matrix ensembles one can derive equations for the
Cauchy transform of the limiting eigenvalue distribution, solve those
equations and then get the density via Stieltjes inversion.

Example (Wishart rm)

λ

1−G(z)
+

1

G(z)
= z

which can be solved as

G(z) =
z + 1 − λ−

√
(z − (1 + λ))2 − 4λ

2z

and thus

dµ(t) =
1

2πλt

√
4λ− (t− (1 + λ))2dt

Marchenko-Pastur
distribution

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Roland Speicher (Saarland University) Operator-Valued Free Probability 89 / 116



The Problem of Polynomials in Free Variables

For our basic random matrix ensembles one can derive equations for the
Cauchy transform of the limiting eigenvalue distribution, solve those
equations and then get the density via Stieltjes inversion.

Example (Wishart rm)

λ

1−G(z)
+

1

G(z)
= z

which can be solved as

G(z) =
z + 1 − λ−

√
(z − (1 + λ))2 − 4λ

2z

and thus

dµ(t) =
1

2πλt

√
4λ− (t− (1 + λ))2dt

Marchenko-Pastur
distribution

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Roland Speicher (Saarland University) Operator-Valued Free Probability 89 / 116



The Problem of Polynomials in Free Variables

For our basic random matrix ensembles one can derive equations for the
Cauchy transform of the limiting eigenvalue distribution, solve those
equations and then get the density via Stieltjes inversion.

Example (Wishart rm)

λ

1−G(z)
+

1

G(z)
= z

which can be solved as

G(z) =
z + 1 − λ−

√
(z − (1 + λ))2 − 4λ

2z

and thus

dµ(t) =
1

2πλt

√
4λ− (t− (1 + λ))2dt

Marchenko-Pastur
distribution

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Roland Speicher (Saarland University) Operator-Valued Free Probability 90 / 116



The Problem of Polynomials in Free Variables Polynomials in Independent Random Matrices

Polynomials in Several Independent Random
Matrices

Problem
We are now interested in the limiting eigenvalue distribution of general
selfadjoint polynomials p(X1, . . . , Xk) of several independent
N ×N random matrices X1, . . . , Xk

Typical phenomena:
almost sure convergence to a deterministic limit eigenvalue distribution
this limit distribution can be effectively calculated only in very
simple situations
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The Problem of Polynomials in Free Variables Polynomials in Independent Random Matrices

For simple situations one can derive equations for the Cauchy transform of
the limiting eigenvalue distribution; those can usually not be solved
explicitly; however, as fixed point equations they have a good analytic
behaviour and can be solved numerically by iteration algorithms

Example (Gauss + Wishart)

For

G(z) := GGauss+Wishart(z)

one finds the fixed point
equation
(in subordination form)

G(z) = GWishart(z −G(z)),

which can be easily solved by
iteration.
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The Problem of Polynomials in Free Variables Polynomials in Independent Random Matrices

Existing Results for Calculations of the Limit
Eigenvalue Distribution

Marchenko, Pastur 1967: general Wishart matrices ADA∗

Pastur 1972: deterministic + Wigner (deformed semicircle)
Speicher, Nica 1998; Vasilchuk 2003: commutator or
anti-commutator: X1X2 ±X2X1

more general models in wireless communications (Tulino, Verdu 2004;
Couillet, Debbah, Silverstein 2011):

RADA∗R∗

or∑
i

RiAiDiA
∗
iR
∗
i

or
· · ·
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The Problem of Polynomials in Free Variables Polynomials in Independent Random Matrices

What Can We Say About More Complicated or
Even General Selfadjoint Polynomials?

Example
Can we calculate the
asymptotic eigenvalue
distribution of

P (X,Y ) = XY + Y X +X2

for independent Gaussian and
Wishart random matrices X
and Y , respectively?
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Can we treat general polynomials P (X1, . . . , Xk)?
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The Problem of Polynomials in Free Variables Polynomials in Independent Random Matrices

Can We Calculate Free Deterministic Equivalents?

Problem
Can we treat general polynomials P (X1, . . . , Xk)?

Solution
Yes, we can!
But for this we have to go operator-valued - even though the problem is
one about scalar-valued free variables!
For this, use the combination of

the linearization trick
and our recent advances on the analytic description of operator-valued
free convolution
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The Linearization Trick

Section 8

The Linearization Trick
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The Linearization Trick

The Linearization Philosophy
In order to understand polynomials in non-commuting variables, it suffices
to understand matrices of linear polynomials in those variables.

History (in operator algebras)
Voiculescu 1987: motivation
Haagerup, Thorbjørnsen 2005: largest eigenvalue
Anderson 2012: the selfadjoint version

(“Schur complement")

History (in other fields)
The same idea has been used in other fields under different names (like
"descriptor system" in control theory), for example:

Schützenberger 1961: automata theory
Helton, McCullough, Vinnikov 2006: symmetric descriptor realization
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The Linearization Trick

Definition
Consider a polynomial p in non-commuting variables x and y.
A linearization of p is an N ×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

u, v,Q are matrices of the following sizes: u is 1× (N − 1); v is
(N − 1)× 1; and Q is (N − 1)× (N − 1)

u, v, Q are polynomials in x and y, each of degree ≤ 1

Q is invertible and we have p = −uQ−1v

Theorem (Schützenberger; Helton, McCullough, Vinnikov; Anderson)
For each p there exists a linearization p̂
(with an explicit algorithm for finding those)
If p is selfadjoint, then this p̂ is also selfadjoint
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The Linearization Trick

Theorem (Schützenberger; Helton, McCullough, Vinnikov; Anderson)
For each p there exists a linearization p̂
(with an explicit algorithm for finding those)
If p is selfadjoint, then this p̂ is also selfadjoint

Example
A selfadjoint linearization of

p = xy + yx+ x2 is p̂ =

 0 x x
2 + y

x 0 −1
x
2 + y −1 0


because we have

(
x x

2 + y
)( 0 −1
−1 0

)−1(
x

x
2 + y

)
= −(xy + yx+ x2)
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(
x x

2 + y
)( 0 −1
−1 0

)−1(
x

x
2 + y

)
= −(xy + yx+ x2)
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The Linearization Trick

What is a Linearization Good for?

We have then

p̂ =

(
0 u
v Q

)
=

(
1 uQ−1

0 1

)(
p 0
0 Q

)(
1 0

Q−1v 1

)

Note:
(

1 0
a 1

)
is always invertible with

(
1 0
a 1

)−1

=

(
1 0
−a 1

)
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0 Q
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The Linearization Trick

What is a Linearization Good for?

More general, for z ∈ C put b =

(
z 0
0 0

)
and then

b− p̂ =

(
z −u
−v −Q

)
=

(
1 uQ−1

0 1

)(
z − p 0

0 −Q

)(
1 0

Q−1v 1

)
z − p invertible ⇐⇒ b− p̂ invertible

and actually

(b− p̂)−1 =

[(
1 uQ−1

0 1

)(
z − p 0

0 −Q

)(
1 0

Q−1v 1

)]−1

=

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1

)(
1 −uQ−1

0 1

)
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The Linearization Trick

(b− p̂)−1 =

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1

)(
1 −uQ−1

0 1

)

=

(
(z − p)−1 −(z − p)−1uQ−1

−Q−1v(z − p)−1 Q−1v(z − p)−1uQ−1 −Q−1

)

=

(
(z − p)−1 ∗
∗ ∗

)

and we can get the Cauchy transform Gp(z) = ϕ((z − p)−1) of p as the
(1,1)-entry of the matrix-valued Cauchy-transform of p̂

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =

(
ϕ((z − p)−1) · · ·

· · · · · ·

)
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The Linearization Trick

Why is p̂ better than p?

The selfadjoint linearization p̂ is now the sum of two selfadjoint
operator-valued variables

p̂ =

 0 x x
2 + y

x 0 −1
x
2 + y −1 0



0 x x
2

x 0 0
x
2 0 0

+

0 0 y
0 0 −1
y −1 0

 =: x̂+ŷ

where
we know the operator-valued distribution of x̂ and the operator-valued
distribution of ŷ
and x̂ and ŷ are operator-valued freely independent!

This is now a problem about operator-valued free convolution. This we can
do.
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and x̂ and ŷ are operator-valued freely independent!

This is now a problem about operator-valued free convolution. This we can
do.

Roland Speicher (Saarland University) Operator-Valued Free Probability 104 / 116



The Linearization Trick

Why is p̂ better than p?

The selfadjoint linearization p̂ is now the sum of two selfadjoint
operator-valued variables

p̂ =

0 x x
2

x 0 0
x
2 0 0

+

0 0 y
0 0 −1
y −1 0

 =: x̂+ŷ
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and x̂ and ŷ are operator-valued freely independent!

This is now a problem about operator-valued free convolution. This we can
do.

Roland Speicher (Saarland University) Operator-Valued Free Probability 104 / 116



The Linearization Trick

The selfadjoint linearization p̂ is now the sum of two selfadjoint
operator-valued variables

p̂ = x̂+ ŷ =

0 x x
2

x 0 0
x
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+

0 0 y
0 0 −1
y −1 0


where

we know the operator-valued distribution of x̂ and the operator-valued
distribution of ŷ
and x̂ and ŷ are operator-valued freely independent!

So we can use operator-valued free convolution to calculate the
operator-valued Cauchy transform of x̂+ ŷ.

Gp̂(b) = Gx̂(ω(b))

and from this get the Caucy transform of p(x, y).
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and x̂ and ŷ are operator-valued freely independent!

So we can use operator-valued free convolution to calculate the
operator-valued Cauchy transform of x̂+ ŷ.
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The Calculation of Polynomials in Free Variables

Section 9

The Calculation of Polynomials in Free
Variables
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The Calculation of Polynomials in Free Variables

Theorem (Belinschi, Mai, Speicher 2013)
1) The following algorithm allows the calculation of the distribution of any
selfadjoint polynomial p(x, y) in two free variables x and y, given the
distribution of x and the distribution of y:

Linearize p(x, y) to p̂ = x̂+ ŷ.
Calculate Gx̂(b) out of Gx(z) and Gŷ(b) out of Gy(z)
Get w1(b) as the fixed point of the iteration

w 7→ Gŷ(b+Gx̂(w)−1 − w)−1 − (Gx̂(w)−1 − w)

Calculate Gp̂(b) = Gx̂(ω1(b)) and recover Gp(z) as one entry of

Gp̂(b) for b =

(
z 0
0 0

)
2) Iteration of the above algorithm allows the calculation of the distribution
of any selfadjoint polynomial p(x1, . . . , xk) in k non-commuting variables,
given the distribution of each xi.
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The Calculation of Polynomials in Free Variables

Example
P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Gaussian and Y is Wishart

p̂ =

 0 x y + x
2

x 0 −1
y + x

2 −1 0



−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(x, y) = xy + yx+ x2

for free x, y; x is semicircular and y is Marchenko-Pastur
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The Calculation of Polynomials in Free Variables

Example
P (X1, X2, X3) = X1X2X1 +X2X3X2 +X3X1X3

for independent X1, X2, X3; X1, X2 Wigner, X3 Wishart

p̂ =


0 0 x1 0 x2 0 x3
0 x2 −1 0 0 0 0
x1 −1 0 0 0 0 0
0 0 0 x3 −1 0 0
x2 0 0 −1 0 0 0
0 0 0 0 0 x1 −1
x3 0 0 0 0 −1 0
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0.35

p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3
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The Calculation of Polynomials in Free Variables

A Bit on the Linearization Algorithm

Problem
We want to find selfadjoint linearization a non-commutative polynomial p.
For this consider the following steps.

1 Calculate a linearization for each monomial of p.
2 Given linearizations of monomials q1, . . . , qn, what is a linearization of
q1 + . . .+ qn?

3 Consider a polynomial p of the form q + q∗ and let q̂ be a linarization
of q. Calculate a linearization of p in terms of q̂.
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The Calculation of Polynomials in Free Variables

Solution
1 A linearization of q = xixjxk is

q̂ =

 0 0 xi
0 xj −1
xk −1 0

.

2 We consider two linearizations q̂1 =

(
0 u1

v1 Q1

)
and q̂2 =

(
0 u2

v2 Q2

)
.

A linearization q̂1 + q2 of q1 + q2 is given by 0 u1 u2

v1 Q1 0
v2 0 Q2

.

3 If q̂ =

(
0 u
v Q

)
then we can choose q̂ + q∗ =

 0 u v∗

u∗ 0 Q
v Q∗ 0

.
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The Calculation of Polynomials in Free Variables

Solution
1 Linearizations of x1x2x1, x2x3x2, x3x1x3 are 0 0 x1

0 x2 −1
x1 −1 0

 ,

 0 0 x2

0 x3 −1
x2 −1 0

 ,

 0 0 x3

0 x1 −1
x3 −1 0



2 thus a linearization of p(x1, x2, x3) = x1x2x1 + x2x3x2 + x3x1x3 is

0 0 x1 0 x2 0 x3

0 x2 −1 0 0 0 0
x1 −1 0 0 0 0 0
0 0 0 x3 −1 0 0
x2 0 0 −1 0 0 0
0 0 0 0 0 x1 −1
x3 0 0 0 0 −1 0


.
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The Calculation of Polynomials in Free Variables

The Case of Rational Functions
The linearization procedure works as well in the case of non-commutative
rational functions (work in progress with Mai, Anderson, Helton).

Example
Consider the following selfadjoint rational function r = r(x1, x2)

r = (4−x1)−1+(4−x1)−1x2

[
(4− x1)− x2(4− x1)−1x2

]−1
x2(4−x1)−1.

We have r(x1, x2) =
(

1
2 0

)(1− 1
4x1 −1

4x2

−1
4x2 1− 1

4x1

)−1(1
2
0

)
which gives us immediately a selfadjoint linearization of the form

r̂(x1, x2) =

0 1
2 0

1
2 −1 + 1

4x1 0
0 0 −1 + 1

4x1

+

0 0 0
0 0 1

4x2

0 1
4x2 0
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The Calculation of Polynomials in Free Variables

Example
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4
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