Second Order Freeness: Past and Future

Roland Speicher Saarland University Saarbrücken, Germany supported by ERC Advanced Grant Non-Commutative Distributions in Free Probability

on joint work with Jamie

1 / 18

Roland Speicher

Second Order Freeness

Section 1

Motivation

*ロト *個ト *注ト *注ト

Roland Speicher

Second Order Freeness

Motivation

Goal: to understand fluctuations of eigenvalues and traces

- around the year 2000, random matrix theory became main stream in mathematics
- main interest: local/global behaviour of eigenvalues

Motivation

Goal: to understand fluctuations of eigenvalues and traces

- around the year 2000, random matrix theory became main stream in mathematics
- main interest: local/global behaviour of eigenvalues
- Jamie and I tried to understand fluctuation of global behaviour; in particular, work of Cabanal-Duvillard
- main motivation came from Jamie's prior work with Andu Nica on annular non-crossing permutations and fluctuations of Wishart matrices

Motivation

Goal: to understand fluctuations of eigenvalues and traces

- around the year 2000, random matrix theory became main stream in mathematics
- main interest: local/global behaviour of eigenvalues
- Jamie and I tried to understand fluctuation of global behaviour; in particular, work of Cabanal-Duvillard
- main motivation came from Jamie's prior work with Andu Nica on annular non-crossing permutations and fluctuations of Wishart matrices
- try to find some "free probability like" structure in those fluctuations
- $\bullet\,$ main focus: combinatorial structure $\rightarrow\,$ non-crossing objects

Section 2

History

*ロト *個ト *注ト *注ト

Roland Speicher

Second Order Freeness

Oberwolfach 2005

Roland Speicher

Banff 2004

Stochastic Eigenanalysis 2006

European Research Council

Roland Speicher

Second Order Freeness

Working hard on 2nd order freeness

European Research Council Established by the European Commission

▶ < E >

< □ > < 同 >

Oberwolfach 2015

Herstmonceux 2015

< 口 > < 同

∃ ► < ∃ ►</p>

Roland Speicher

... still working hard on 2nd order freeness

European Research Council Established by the European Commission

< 口 > < 同

Goal: Fluctuations of Eigenvalues and Traces

Fluctuations

We do not only look on the asymptotic eigenvalue distributions, but also how they fluctuate about the large ${\cal N}$ limit

Goal: Fluctuations of Eigenvalues and Traces

Second order limit distribution

An $N \times N$ random matrix ensemble $(A_N)_{N \in \mathbb{N}}$ has a second order limit distribution if for all $m, n \ge 1$ the limits

$$\alpha_n := \lim_{N \to \infty} E[\operatorname{tr}(A_N^n)]$$

and

$$\alpha_{m,n} := \lim_{N \to \infty} \mathsf{cov}\big(\mathsf{Tr}(A_N^m),\mathsf{Tr}(A_N^n)\big)$$

exist and if all higher classical cumulants of ${\rm Tr}(A_N^m)$ go to zero. This means that the family

$$\left(\mathsf{Tr}(A_N^m) - E[\mathsf{Tr}(A_N^m)]\right)_{m \in \mathbb{N}}$$

converges to a Gaussian family.

European Research Council Extensional by the European Commission 0 Q Q 10 / 18

Goal: Fluctuations of Eigenvalues and Traces

Example: Gaussian random matrix A (N = 40, trials=50.000)

 $\mathsf{Var}(\mathsf{Tr}(A)) = 1$

$$\mathsf{Var}(\mathsf{Tr}(A^2)) = 2$$

Roland Speicher

Goal: Fluctuations of Eigenvalues and Traces

Combinatorial understanding of expectation $\alpha_6 = 5$: one circle

Goal: Fluctuations of Eigenvalues and Traces

Combinatorial understanding of fluctuation $\alpha_{4,2} = 8$: two circles

Goal: Fluctuations of Eigenvalues and Traces

Isolation of the concept of "second order freeness"

Calculation of mixed fluctuations out of expectations and fluctuations of individual variables

$$\begin{split} \lim_{N \to \infty} \operatorname{cov} \big(\operatorname{Tr}(A_N B_N), \operatorname{Tr}(A_N B_N) \big) \\ &= \lim_{N \to \infty} \Big\{ E \big[\operatorname{tr}(A_N A_N) \big] \cdot E \big[\operatorname{tr}(B_N B_N) \big] \\ &- E \big[\operatorname{tr}(A_N A_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \\ &- E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(B_N B_N) \big] \\ &+ E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \\ &+ \operatorname{cov} \big(\operatorname{Tr}(A_N), \operatorname{Tr}(A_N) \big) \cdot E \big[\operatorname{tr}(B_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \\ &+ E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(B_N) \big] \\ &+ E \big[\operatorname{tr}(A_N) \big] \cdot E \big[\operatorname{tr}(A_N) \big] \cdot \operatorname{cov} \big(\operatorname{Tr}(B_N), \operatorname{Tr}(B_N) \big) \Big\} \end{split}$$

Pushing the general theory forward

"partitioned permutations" and heavy cumulants machinery joint work with Piotr Sniady and Benoit Collins We have kind of satisfactory combinatorial theory of second order freeness

Calculation of special examples

leads often to some independent nice structures (and papers with summer students!)

- combinatorics of Chebyshev polynomials (with T. Kusalik)
- non-commutative cycle lemma (with C. Armstrong, J. Wilson)

• cumulants with products as entries (with E. Tan)

Generalizations and applications

• extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)

- extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)
- investigations around second order freeness give also new insights into ordinary (first order) freeness

- extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)
- investigations around second order freeness give also new insights into ordinary (first order) freeness
 - asymptotic freeness between Wigner matrices and deterministic matrices depends on estimations for graph sums

Goal: Fluctuations of Eigenvalues and Traces

- extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)
- investigations around second order freeness give also new insights into ordinary (first order) freeness
 - asymptotic freeness between Wigner matrices and deterministic matrices depends on estimations for graph sums

$$S_{\tau} = \sum_{i_{1},i_{2},...,i_{7}=1}^{N} t_{i_{1}i_{2}}^{(1)} t_{i_{3}i_{2}}^{(2)} t_{i_{3}i_{4}}^{(3)} t_{i_{4}i_{4}}^{(4)} t_{i_{5}i_{3}}^{(5)} t_{i_{6}i_{5}}^{(6)} t_{i_{6}i_{5}}^{(8)} t_{i_{6}i_{6}}^{(9)} t_{i_{7}i_{5}}^{(10)} t_{i_{8}i_{7}}^{(11)} t_{i_{8}i_{7}}^{(12)}.$$

- extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)
- investigations around second order freeness give also new insights into ordinary (first order) freeness
 - asymptotic freeness between Wigner matrices and deterministic matrices depends on estimations for graph sums
 - asymptotic freeness of (partial) transposes
 - (Jamie with Mihai Popa)

- extension from complex to real/quaternionic case (Jamie and Mihai Popa; Emily Redelmeier)
- investigations around second order freeness give also new insights into ordinary (first order) freeness
 - asymptotic freeness between Wigner matrices and deterministic matrices depends on estimations for graph sums
 - asymptotic freeness of (partial) transposes
 - (Jamie with Mihai Popa)
- application to eigenanalysis (with Raj Rao and Alan Edelman)

Section 3

The Future?

11 / 18

*ロト *個ト *注ト *注ト

Roland Speicher

Second Order Freeness

What to do?

• find operator realizations of second order freeness: cyclic Fock space

What to do?

- find operator realizations of second order freeness: cyclic Fock space
- better understanding of analytic properties of second order moment and cumulant generating functions

What to do?

- find operator realizations of second order freeness: cyclic Fock space
- better understanding of analytic properties of second order moment and cumulant generating functions
- calculate fluctuations of products of random matrices and apply this to wireless problems

What to do?

- find operator realizations of second order freeness: cyclic Fock space
- better understanding of analytic properties of second order moment and cumulant generating functions
- calculate fluctuations of products of random matrices and apply this to wireless problems

this relies on (forthcoming) paper of Jamie and Octavio Arizmendi

around second order R-diagonal elements

Outage Capacity of Rayleigh Product Channels

(Zheng, Wei, Speicher, Müller, Hämäläinen, Corander)

y = Hx + n $H = \Psi^* \Theta$

$$\mathcal{I} = \log \det \left(I + \gamma H H^* \right) = \sum_{i} \log (1 + \gamma \lambda_i (H H^*))$$

$$\sigma_{\mathcal{I}}^2 = \frac{1}{4\pi^2} \int_{\mathcal{C}_x, \mathcal{C}_y} \log(1 + \gamma x) \log(1 + \gamma y) \cdot \operatorname{cov} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{erc}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{cov}} \big(G(x), G(y) \big) dx dy \underbrace{\operatorname{Log}(x), \operatorname{Log}(x), \operatorname{cov}}_{\operatorname{Log}(x), \operatorname{Log}(x), \operatorname{Log}(x),$$

Roland Speicher

In a Far, Far Future

Episode Infinity THE NEW HOPE directed by J. Mingo and R. Speicher It is a period of darkness and commutativity. Random Matrix spaceships have won their first victory against the Commutative Empire. Can the new weapon, FREE PROBABILITY AND RANDOM MATRICES restore Non-Commutativity in the Mathematical Universe and, most importantly, WHEN

Section 4

Conclusion

*ロト *個ト *注ト *注ト

Roland Speicher

Second Order Freeness

Second Order Freeness, Mathematics and Life in General is ...

イロト イポト イヨト イヨト

Second Order Freeness, Mathematics and Life in General is ...

... sometimes a mass event ...

월 🕨 🖈 🗒 🕨

Second Order Freeness, Mathematics and Life in General is ...

... sometimes a mass event ...

... sometimes a late lonely afternoon at the Institute ...

Council

... but nevertheless we are looking forward to what the next 60 years will bring ...

17 / 18

Roland Speicher

Second Order Freeness

Happy Birthday, Jamie!

・ロト ・聞ト ・ヨト ・ヨト