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Introduction

Goal: We want to understand distributions of
functions in non-commuting variables

which “non-commuting variables”
(random) matrices of size N ×N
operators on Hilbert spaces (corresponding to N →∞)

which “functions”
non-commutative polynomials
non-commutative rational functions
(maybe even: non-commutative analytic functions)

what means “distribution”
algebraic/combinatorial distribution: collection of moments
analytic distribution: probability measure
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Introduction

Non-commutative probability spaces
Definition
A non-commutative probability space (A, ϕ) consists of

a complex algebra A with unit 1A and
a linear functional ϕ : A → C satisfying ϕ(1A) = 1 (expectation).

Elements x ∈ A are called non-commutative random variables.

Example

random matrices ((L∞(Ω)⊗Mn(C),E⊗ trn)

We call (A, ϕ) a C∗-probability space if
A is a unital C∗-algebra;
i.e., A consists of bounded operators on a Hilbert space H
ϕ is positive (i.e. ϕ(x∗x) ≥ 0 for x ∈ A) and hence a state on A;
i.e., ϕ is of the form ϕ(x) = 〈Ω, xΩ〉 for some unit vector Ω ∈ H
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Introduction

Non-commutative distributions
Definition (“combinatorial distribution”)
Let (A, ϕ) be a non-commutative probability space.
Let (xi)i∈I be a family of non-commutative random variables. We call the
collection of all mixed moments

{ϕ(xi1 · · ·xik) | k ∈ N, i1, . . . , ik ∈ I}

their (joint) distribution.

Definition (“analytic distribution”)
Let (A, ϕ) be a C∗-probability space.
For any x = x∗ ∈ A, the distribution of x can be identified with the unique
Borel probability measure µx on the real line R that satisfies

ϕ(xk) =

∫
R
tk dµx(t) for all k ∈ N0.
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Random Matrices
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Random Matrices

History
1928: Wishart introduced random matrices in statistics, for finite N

1955: Wigner introduced random matrices in physics, for a statistical
description of nuclei of heavy atoms, and investigated the N →∞
asymptotics of these “Wigner matrices”
1967: Marchenko and Pastur described N →∞ asymptotics of
“Wishart matrices”
1972: Montgomery and Dyson discovered relation between zeros of
the Riemann zeta function and eigenvalues of random matrices
since 2000: random matrix theory developed into a central subject in
mathematics, with many different connections
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Random Matrices

Oberwolfach workshop “Random Matrices” 2000

Roland Speicher (Saarland University) Free Probability and Random Matrices 8 / 32



Random Matrices

What are random matrices

random matrices are “typical” sequences of N ×N matrices, with
growing N
more precisely: random matrices are sequences of N ×N matrices
whose entries are chosen randomly (according to a prescribed
distribution)

Fundamental observation
Many random matrices show for N →∞ almost surely a deterministic
(and interesting) behavior
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Random Matrices

Wigner random matrices (Wigner 1955)

Definition

A Wigner random matrix XN = 1√
N

(
xij
)N
i,j=1

is symmetric: X∗N = XN , i.e. xij = xji for all i, j
entries {xij | 1 ≤ i ≤ j ≤ N} are chosen according to
independent coin tosses head = +1, tail =−1

Example: eigenvalue distribution for N = 3000
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Random Matrices

How to describe the deterministic limit
one-matrix case: limit of XN

the almost sure limit of µXN
is given by a probability measure µ

alternatively: try to find nice operator x on Hilbert space H with state
ϕ such that µ = µx; then we can say that XN → x

multi-matrix case: limit of XN , YN

try to find (combinatorial) description of almost sure limit of µXN ,YN

alternatively: try to find some nice operators x, y on a Hilbert space,
together with a state ϕ, such that almost surely

lim
N→∞

trN (q(XN , YN )) = ϕ(q(x, y)) for all monomials q

this means then in particular, that

p(XN , YN )→ p(x, y) for all polynomials p
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Random Matrices

Random matrices and operators

Fundamental observation of Voiculescu (1991)

limit of random matrices can often be
described by “nice” and “interesting”
operators on Hilbert spaces
(which, in the case of several
matrices, describe interesting von
Neumann algebras)
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Random Matrices

One-matrix case: classical random matrix case

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0.35

x

XN Wigner matrix,
for N = 3000

x = l + l∗,
l one-sided shift on⊕

n≥0 Cen

len = en+1

l∗en+1 = en, l
∗e0 = 0

ϕ(a) = 〈e0, ae0〉

XN → x in distribution (Wigner 1955)
‖XN‖ → ‖x‖ = 2 (Füredi, Komlós 1981)
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Random Matrices

Multi-matrix case: independent (non-commuting)
Wigner matrices

p(x, y) = xy + yx+ x2

−6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

XN , YN independent Wigner
matrices with N = 3000

x = l1 + l∗1, y = l2 + l∗2
two copies of one-sided shift
in different directions
(creation and annihilation
operators on full Fock space;
Cuntz algebra)
ϕ(a) = 〈Ω, aΩ〉
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Random Matrices

What are those limit operators x, y good for?
Basic Theorem (Voiculescu 1991)
For many random matrix models XN , YN (like for independent Wigner
matrices) the limit operators x, y are

free in the sense of Voiculescu’s free probability theory

Tools from free probability theory: for x and y free we have
free convolution: the distribution of x+ y can effectively be
calculated in terms of the distribution of x and the distribution of y
matrix-valued free convolution: the matrix-valued distribution of
α0 ⊗ 1 + α1 ⊗ x+ α2 ⊗ y can be calculated in terms of the
distribution of x and the distribution of y

Problem: we want general polynomials, not just sums!
We are actually interested not just in the distribution of x+ y, but much
more general in the distribution of non-linear polynomials p(x, y)!
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Linearization

Idea of linearization
non-linear problem→ operator-valued linear problem

p(x1, . . . , xm)→ p̂ := α0 ⊗ 1 + α1 ⊗ x1 + · · ·αm ⊗ xm

Example
Is p(x, y) = xy + yx+ x2 invertible? We have

xy + yx + x2 0 0
0 0 −1
0 −1 0



=

1 y + x
2

x
0 1 0
0 0 1

 0 x y + x
2

x 0 −1
y + x

2
−1 0

 1 0 0
y + x

2
1 0

x 0 1



Hence p = xy + yx+ x2 is invertible if and only if

p̂ =

 0 x y + x
2

x 0 −1
y + x

2
−1 0



=

0 0 0
0 0 −1
0 −1 0

 ⊗ 1 +

0 1 1
2

1 0 0
1
2

0 0

 ⊗ x +

0 0 1
0 0 0
1 0 0

 ⊗ y

is invertible.
Actually: p−1 = [p̂−1]1,1
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Linearization

Idea of linearization
non-linear problem→ operator-valued linear problem

p(x1, . . . , xm)→ p̂ := α0 ⊗ 1 + α1 ⊗ x1 + · · ·αm ⊗ xm

Example
Is p(x, y)− z = xy + yx+ x2 − z (for z ∈ C) invertible? We have

xy + yx + x2 − z 0 0
0 0 −1
0 −1 0

 =

1 y + x
2

x
0 1 0
0 0 1

 −z x y + x
2

x 0 −1
y + x

2
−1 0

 1 0 0
y + x

2
1 0

x 0 1



Hence p− z is invertible if and only if
 −z x y + x

2
x 0 −1

y + x
2

−1 0

 =

 0 x y + x
2

x 0 −1
y + x

2
−1 0

 −

z 0 0
0 0 0
0 0 0

 = p̂ − Λ(z)

is invertible.
Actually: (p− z)−1 = [p̂−Λ(z)]−1

1,1
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Linearization

Theorem (Haagerup, Thorbjørnsen 2005 (+Schultz 2006); Anderson
2012)
Every polynomial p(x1, . . . , xm) has a (non-unique) linearization
p̂ = α0 ⊗ 1 + α1 ⊗ x1 + · · ·+ αm ⊗ xm such that

(z − p)−1 = [(Λ(z)− p̂)−1]1,1, where Λ(z) =


z 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



and hence also

Gp(z) = ϕ((z − p)−1) = [ϕ⊗ 1(Λ(z)− p̂)−1]1,1 = [Gp̂(Λ(z))]1,1.

Gp(z) = ϕ[(z − p)−1] is the Cauchy transform of p
Gp̂(b) = ϕ⊗ 1[(b− p̂)−1] is the operator-valued Cauchy transform of p̂
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Linearization

Distribution of p(x, y) for x and y free
Calculation of distribution of p by linearization and operator-valued
convolution (Belinschi, Mai, Speicher 2013)

we want the distribution of p(x, y) = xy + yx+ x2

this is determined by the operator-valued distribution of its
linearization

but this is now an additive (operator-valued) problem

p̂(x, y) =

0 0 0
0 0 −1
0 −1 0

⊗ 1 +

0 1 1
2

1 0 0
1
2 0 0

⊗ x+

0 0 1
0 0 0
1 0 0

⊗ y
for this we have analytic theory of operator-valued free convolution
this allows to calculate the operator-valued Cauchy transform of p̂,
and thus the Cauchy transform of p
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Linearization

How to calculate operator-valued free convolution
Theorem (Belinschi, Mai, Speicher 2013)
Consider

p̂ = X + Y

p̂(x, y) =

0 0 0
0 0 −1
0 −1 0

⊗1+

0 1 1
2

1 0 0
1
2 0 0

⊗x+

0 0 1
0 0 0
1 0 0

⊗y =: X+Y

Then X and Y are free in the operator-valued sense and there exists a
unique pair of (Fréchet-)holomorphic maps ω1, ω2 : H+(B)→ H+(B),
such that

GX(ω1(b)) = GY (ω2(b)) = GX+Y (b), b ∈ H+(B).

Moreover, ω1 and ω2 can easily be calculated via the following fixed point
iterations on H+(B)

w 7→ hY (b+ hX(w)) + b for ω1(b)

w 7→ hX(b+ hY (w)) + b for ω2(b)

where we put hX(b) := GX(b)−1 − b and hY (b) := GY (b)−1 − b;

B = M3(C), H(B)+ := {b ∈ B | =b =
b− b∗

2i
> 0}

Roland Speicher (Saarland University) Free Probability and Random Matrices 21 / 32



Linearization

How to calculate operator-valued free convolution
Theorem (Belinschi, Mai, Speicher 2013)
Consider p̂ = X + Y Then X and Y are free in the operator-valued sense
and there exists a unique pair of (Fréchet-)holomorphic maps
ω1, ω2 : H+(B)→ H+(B), such that

GX(ω1(b)) = GY (ω2(b)) = GX+Y (b), b ∈ H+(B).

Moreover, ω1 and ω2 can easily be calculated via the following fixed point
iterations on H+(B)

w 7→ hY (b+ hX(w)) + b for ω1(b)

w 7→ hX(b+ hY (w)) + b for ω2(b)

where we put hX(b) := GX(b)−1 − b and hY (b) := GY (b)−1 − b;

B = M3(C), H(B)+ := {b ∈ B | =b =
b− b∗

2i
> 0}

Roland Speicher (Saarland University) Free Probability and Random Matrices 21 / 32



Linearization

How to calculate operator-valued free convolution
Theorem (Belinschi, Mai, Speicher 2013)
Consider p̂ = X + Y Then X and Y are free in the operator-valued sense
and there exists a unique pair of (Fréchet-)holomorphic maps
ω1, ω2 : H+(B)→ H+(B), such that

GX(ω1(b)) = GY (ω2(b)) = GX+Y (b), b ∈ H+(B).

Moreover, ω1 and ω2 can easily be calculated via the following fixed point
iterations on H+(B)

w 7→ hY (b+ hX(w)) + b for ω1(b)

w 7→ hX(b+ hY (w)) + b for ω2(b)

where we put hX(b) := GX(b)−1 − b and hY (b) := GY (b)−1 − b;

B = M3(C), H(B)+ := {b ∈ B | =b =
b− b∗

2i
> 0}

Roland Speicher (Saarland University) Free Probability and Random Matrices 21 / 32



Linearization

Distribution of p(x, y) = xy + yx+ x2
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Linearization

Historical remark
Note that this linearization trick is also a well-known idea in many other
mathematical communities, known under various names like

Higman’s trick (Higman “The units of group rings”, 1940)
recognizable power series (automata theory, Kleene 1956,
Schützenberger 1961)
linearization by enlargement (ring theory, Cohn 1985; Cohn and
Reutenauer 1994, Malcolmson 1978 )
descriptor realization (control theory, Kalman 1963; Helton,
McCullough, Vinnikov 2006)

y Linearization even works for non-commutative rational
functions!
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Non-Commutative Rational Functions

Section 4

Non-Commutative Rational Functions
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Non-Commutative Rational Functions

Non-commutative rational functions

Non-commutative rational functions (Amitsur 1966, Cohn 1971)
are given by rational expressions in non-commuting variables, like

r(x, y) := (4−x)−1 + (4−x)−1y
(
(4−x)−y(4−x)−1y

)−1
y(4−x)−1

form a skew field, so each r 6= 0 is invertible
deciding whether r = 0 is not easy, for example

x−1
2 + x−1

2 (x−1
3 x−1

1 − x
−1
2 )−1x−1

2 − (x2 − x3x1)−1 = 0

there is no standard form for a rational function
in general nested inversions are needed
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Non-Commutative Rational Functions

Non-commutative rational functions
Non-commutative rational functions

r(x, y) := (4−x)−1 + (4−x)−1y
(
(4−x)−y(4−x)−1y

)−1
y(4−x)−1

can always be realized in terms of matrices of (linear) polynomials, like

r =
(

1
2 0

)
·
(
−1 + 1

4x
1
4y

1
4y −1 + 1

4x

)−1

·
(

1
2
0

)
this gives also linearizations r̂ of any non-commutative rational
function r, like

r̂ =

0 1
2 0

1
2 −1 0
0 0 −1

⊗ 1 +

0 0 0
0 1

4 0
0 0 1

4

⊗ x+

0 0 0
0 0 1

4
0 1

4 0

⊗ y

if x and y are free, this is an operator-valued free convolution problem
and can be solved as before (Helton, Mai, Speicher 2016)
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Non-Commutative Rational Functions

Distribution of random matrices and their limit for
r(x, y) = (4− x)−1 + (4− x)−1y

(
(4− x)− y(4− x)−1y

)−1
y(4− x)−1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

1

2

3

4

5

6

7

XN , YN independent Wigner
matrices for N = 3000

x = l1 + l∗1, y = l2 + l∗2
two copies of one-sided shift
in different directions
(creation and annihilation
operators on full Fock space;
Cuntz algebra)
ϕ(a) = 〈Ω, aΩ〉

But how do we know that we also have convergence for rational functions?
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Non-Commutative Rational Functions

Rational functions of random matrices and their
limit

Proposition (Sheng Yin 2017)
Consider selfadjoint random matrices XN , YN which converge to selfadjoint
operators x, y in the following strong sense: for any selfadjoint polyomial p
we have

p(XN , YN )→ p(x, y) in distribution
limN→∞ ‖p(XN , YN )‖ = ‖p(x, y)‖

Then this strong convergence remains also true for rational functions:Let r
be a non-commutative rational function, such that r(x, y) is defined. Then
we have almost surely that

r(XN , YY ) is defined eventually for large N
r(XN , YN )→ r(x, y) in distribution
limN→∞ ‖r(XN , YN )‖ = ‖r(x, y)‖
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Non-Commutative Rational Functions

Proof
by recursion on complexity of formulas with respect to inversions
main step: controlling taking inverse, by approximations by
polynomials, uniformly in approximating matrices and limit operators

convergence for polynomials  convergence for rational functions

strong =⇒ strong
in distribution 6=⇒ in distribution
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Summary

Section 5

Summary
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Summary

Linearization is a powerful tool for reducing non-linear problems to
operator-valued linear problems
Free Probability can deal with operator-valued linear problems
This gives an effective algorithm for calculating the asymptotic
eigenvalue distribution of polynomials in random matrices
This can actually be extended to non-commutative rational functions

extend to non-selfadjoint rational functions (Helton, Mai, Speicher)

p(x1, x2, x3, x4) =

x1x2 + x2x3 + x3x4 + x4x1

extend rational functions to unbounded operators (Mai, Speicher, Yin)

Thank You!
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