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Problem
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For a given directed graph G (multiple edges and loops allowed), with
matrices attached to the edges, denote the corresponding sum by Sg(N)
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Question: asymptotics in NV

Question: What is the optimal bound r(G) in
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What is optimal asymptotics in N?
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Motivation: Why do we care about such sums?

Such sums appear and have to be asymptotically controlled in calculations

of moments of random matrices (in particular, for products of such
matrices)

@ Yin + Krishnaiah, 1983
e Bai (+ Silverstein), 1999 (2006)
@ Mingo + Speicher, 2012 JFA
(asymptotic freeness of Wigner and deterministic matrices)
o Male, 2012 — "traffics"
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General structure

In these examples, our sum S(N) is given as inner product
S(N) = (output, stuff input)

where
e each input and each output vertex contributes factor N1/2

@ internal vertices do not contribute, summation over them corresponds
to matrix multiplication or, more general, partial isometries
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General structure: input-output graph

But how about more complicated graphs? This does not look like an
input-output graph.

@ we might have several loops

@ there might be no overall consistent flow direction in the graph
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Replace by equivalent input-output problem

@ split a vertex with a loop into 2 vertices and identify them via an

additional edge with the identity matrix i4
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@ change the direction of some edges and replace T by its transpose
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Adding additional vertices gives flow diagram

S (N) = (ein, [product of many operators of norm ||Z;|| or 1] eout ® €out)
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We have thus seen:

@) < number of input/output vertices in equivalent input-output graph
r
- 2

@ But what is the optimal equivalent input-output graph?

@ s the above choice somehow a canonical one?
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Why this equivalent input-output graph?
Because the relevant structure is given by the
forrest of two-edge-connected components F(G)




Asymptotics determined by structure of §(G)
$(G) = forrest of two-edge-connected components of G

G 3(G)




The optimal bound

Theorem (Mingo, Speicher, JFA 2012)

We have the following optimal estimate:
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Thank You!



