Sharp Bounds for Sums Associated to Graphs of Matrices

Roland Speicher

Saarland University Saarbrücken, Germany

joint work with James Mingo

Question

What is the asymptotic behaviour in N of

$$\sum_{\substack{j_1,\ldots,j_{2m}\\\text{some constraints on equality of indices}}}^{N}t_{j_1j_2}^{(1)}t_{j_3j_4}^{(2)}\cdots t_{j_{2m-1}j_{2m}}^{(m)}$$

with given matrices

$$T_k = (t_{ij}^{(k)})_{i,j=1}^N$$

$$\sum_{i,j=1}^{N} t_{ij}$$

$$\sum_{i=1}^{N} t_{ii}$$

$$\sum_{i=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

$$\sum_{i,j=1}^{N} t_{ij}$$

$$\sum_{i=1}^{N} t_{ii}$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

$$\sum_{i,j=1}^{N} t_{ij}$$

$$\sum_{i=1}^{N} t_{ii}$$

$$i$$
 j

$$i\bigcirc T$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

$$\sum_{i,j=1}^{N} t_{ij}$$

$$\sum_{i=1}^{N} t_{ii}$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

$$\sum_{i,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

$$\bigcirc \qquad T \qquad \bigcirc j$$

$$\sum_{i,j=1}^{N} t_{ij}$$

$$\sum_{i=1}^{N} t_{ii}$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

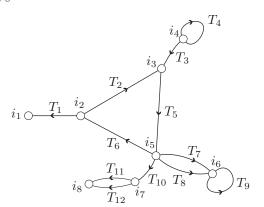
$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

That's easy? Okay, so look on this:

$$\sum_{i_1,\dots,i_8=1}^N t_{i_1i_2}^{(1)} t_{i_3i_2}^{(2)} t_{i_3i_4}^{(3)} t_{i_4i_4}^{(4)} t_{i_5i_3}^{(5)} t_{i_2i_5}^{(6)} t_{i_6i_5}^{(7)} t_{i_6i_5}^{(8)} t_{i_6i_6}^{(9)} t_{i_7i_5}^{(10)} t_{i_8i_7}^{(11)} t_{i_8i_7}^{(12)}$$

That's easy? Okay, so look on this:

$$\sum_{i_1,\dots,i_8=1}^N t_{i_1i_2}^{(1)} t_{i_3i_2}^{(2)} t_{i_3i_4}^{(3)} t_{i_4i_4}^{(4)} t_{i_5i_3}^{(5)} t_{i_2i_5}^{(6)} t_{i_6i_5}^{(7)} t_{i_6i_5}^{(8)} t_{i_6i_6}^{(9)} t_{i_7i_5}^{(10)} t_{i_8i_7}^{(11)} t_{i_8i_7}^{(12)}$$



Problem

Graph sum of matrices

For a given directed graph G (multiple edges and loops allowed), with matrices attached to the edges, denote the corresponding sum by $S_G(N)$

$$S_G(N) := \sum_{i:V \to [N]} \prod_{e \in E} t_{i_{t(e)}, i_{s(e)}}^{(e)}$$

Problem

Graph sum of matrices

For a given directed graph G (multiple edges and loops allowed), with matrices attached to the edges, denote the corresponding sum by $S_G(N)$

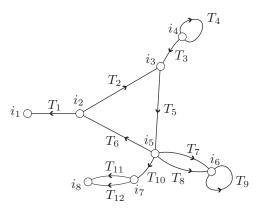
$$S_G(N) := \sum_{i:V \to [N]} \prod_{e \in E} t_{i_{t(e)}, i_{s(e)}}^{(e)}$$

Question: asymptotics in N

Question: What is the optimal bound r(G) in

$$|S_G(N)| \le N^{\mathbf{r}(\mathbf{G})} \prod_{k=1}^m ||T_k||$$

What is optimal asymptotics in N?



$$|\sum_{1}^{N} t_{i_{1}i_{2}}^{(1)} t_{i_{3}i_{2}}^{(2)} t_{i_{3}i_{4}}^{(3)} t_{i_{4}i_{4}}^{(4)} t_{i_{5}i_{3}}^{(5)} t_{i_{2}i_{5}}^{(6)} t_{i_{6}i_{5}}^{(7)} t_{i_{6}i_{5}}^{(8)} t_{i_{6}i_{6}}^{(9)} t_{i_{7}i_{5}}^{(10)} t_{i_{8}i_{7}}^{(11)} t_{i_{8}i_{7}}^{(12)}| \leq N^{\mathbf{r}(\mathbf{G})} \cdot \prod_{i=1}^{12} ||T_{i}||$$

Motivation: Why do we care about such sums?

Such sums appear and have to be asymptotically controlled in calculations of moments of random matrices (in particular, for products of such matrices)

- Yin + Krishnaiah, 1983
- Bai (+ Silverstein), 1999 (2006)
- Mingo + Speicher, 2012 JFA (asymptotic freeness of Wigner and deterministic matrices)
- Male, $2012 \rightarrow$ "traffics"

$$\sum_{i=1}^{N} t_{ii} \qquad i \bigcirc T$$

Then

$$|\sum_{i=1}^{N} t_{ii}| \leq \sum_{i=1}^{N} ||T|| = N||T||$$

$$\sum_{i=1}^N t_{ii}$$

Then

$$|\sum_{i=1}^N t_{ii}| \leq \sum_{i=1}^N \|T\| = N\|T\|$$

or

$$|\sum_{i=1}^N t_{ii}| = |\mathsf{Tr}(T)| \le N||T||$$

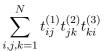
$$\sum_{i=1}^{N} t_{ii} \qquad i \bigcirc T \qquad \mathbf{r(G)} = \mathbf{1}$$

Then

$$|\sum_{i=1}^{N} t_{ii}| \le \sum_{i=1}^{N} ||T|| = N||T||$$

or

$$|\sum_{i=1}^{N} t_{ii}| = |\mathsf{Tr}(T)| \le N||T||$$

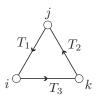


$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

$$\mathbf{r}(\mathbf{G}) = \mathbf{3}???$$

trivial estimate:
$$\sum_{i,j,k=1}^N t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)} \leq \sum_{i,j,k=1}^N \|T_1 T_2 T_3\| = N^3 \|T_1\| \|T_2\| \|T_3\|$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

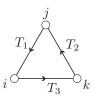


$$\mathbf{r}(\mathbf{G}) = \mathbf{3}???$$

trivial estimate:
$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)} \leq \sum_{i,j,k=1}^{N} \|T_1 T_2 T_3\| = N^3 \|T_1\| \|T_2\| \|T_3\|$$

$$|\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}| = |\mathsf{Tr}(T_1 T_2 T_3)|$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$

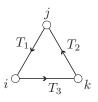


$$\mathbf{r}(\mathbf{G}) = \mathbf{3}???$$

trivial estimate:
$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)} \leq \sum_{i,j,k=1}^{N} \|T_1 T_2 T_3\| = N^3 \|T_1\| \|T_2\| \|T_3\|$$

$$|\sum_{i,j}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}| = |\mathrm{Tr}(T_1 T_2 T_3)| \le N \|T_1 T_2 T_3\| \le N \|T_1\| \|T_2\| \|T_3\|$$

$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}$$



$$\mathbf{r}(\mathbf{G}) = \mathbf{1}$$

trivial estimate:
$$\sum_{i,j,k=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)} \leq \sum_{i,j,k=1}^{N} \|T_1 T_2 T_3\| = N^3 \|T_1\| \|T_2\| \|T_3\|$$

$$|\sum_{i,j}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{ki}^{(3)}| = |\text{Tr}(T_1 T_2 T_3)| \le N \|T_1 T_2 T_3\| \le N \|T_1\| \|T_2\| \|T_3\|$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \stackrel{T}{\underset{i}{\longleftarrow}} \bigcirc$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \stackrel{T}{\underset{i}{\longleftarrow}} \bigcirc \qquad \mathbf{r}(\mathbf{G}) = \mathbf{2}???$$

trivial estimate:
$$|\sum_{i,j=1}^{N} t_{ij}| \le \sum_{i,j=1}^{N} ||T|| = N^2 ||T||$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \frac{T}{i} \qquad \bigcirc \qquad \mathbf{r(G)} = \mathbf{2}???$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

But we can also here do better ...

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \frac{T}{i} \qquad \bigcirc \qquad \mathbf{r}(\mathbf{G}) = \mathbf{2}???$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

But we can also here do better ... with using the vectors

$$e_i := (0, \dots, \frac{1}{i}, \dots, 0), \qquad e := (1, 1, \dots, 1)$$

we can write

$$|\sum_{i,j=1}^{N} t_{ij}| = |\sum_{i,j=1}^{N} \langle e_i, Te_j \rangle|$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad T \qquad \bigcirc \qquad \mathbf{r(G)} = \mathbf{2}???$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

But we can also here do better ... with using the vectors

$$e_i := (0, \dots, \frac{1}{i}, \dots, 0), \qquad e := (1, 1, \dots, 1)$$

we can write

$$|\sum_{i,j=1}^{N} t_{ij}| = |\sum_{i,j=1}^{N} \langle e_i, Te_j \rangle| = |\langle e, Te \rangle|$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \stackrel{T}{\underset{i}{\longleftarrow}} \bigcirc \qquad \mathbf{r}(\mathbf{G}) = \mathbf{2}???$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

But we can also here do better ... with using the vectors

$$e_i := (0, \dots, \frac{1}{i}, \dots, 0), \qquad e := (1, 1, \dots, 1)$$

we can write

$$|\sum_{i,j=1}^{N} t_{ij}| = |\sum_{i,j=1}^{N} \langle e_i, Te_j \rangle| = |\langle e, Te \rangle| \le ||e||^2 ||T|| = N||T||$$

since

$$||e|| = \sqrt{N}$$

$$\sum_{i,j=1}^{N} t_{ij} \qquad \bigcirc \qquad \stackrel{T}{\underset{i}{\longleftarrow}} \bigcirc \qquad \mathbf{r}(\mathbf{G}) = \mathbf{1}$$

trivial estimate:
$$|\sum_{i,j=1}^N t_{ij}| \leq \sum_{i,j=1}^N \|T\| = N^2 \|T\|$$

But we can also here do better ... with using the vectors

$$e_i := (0, \dots, \frac{1}{i}, \dots, 0), \qquad e := (1, 1, \dots, 1)$$

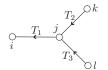
we can write

$$|\sum_{i,j=1}^{N} t_{ij}| = |\sum_{i,j=1}^{N} \langle e_i, Te_j \rangle| = |\langle e, Te \rangle| \le ||e||^2 ||T|| = N||T||$$

since

$$||e|| = \sqrt{N}$$

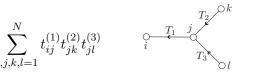
$$\sum_{ij}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$



$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} = \sum_{i,j,k,l} \langle e_i, T_1 e_j \rangle \underbrace{\langle e_j, T_2 e_k \rangle \langle e_j, T_3 e_l \rangle}_{}$$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} = \sum_{i,j,k,l} \langle e_i, T_1 e_j \rangle \underbrace{\langle e_j, T_2 e_k \rangle \langle e_j, T_3 e_l \rangle}_{\langle e_j \otimes e_j, T_2 \otimes T_3 e_k \otimes e_l \rangle}$$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$

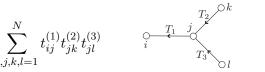


 $\mathbf{r}(\mathbf{G}) = \mathbf{4}???$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} = \sum_{i,j,k,l} \langle e_i, T_1 e_j \rangle \underbrace{\langle e_j, T_2 e_k \rangle \langle e_j, T_3 e_l \rangle}_{\langle e_j \otimes e_j, T_2 \otimes T_3 e_k \otimes e_l \rangle}$$

$$= \langle e, T_1 \underbrace{\left(\sum_{j} |e_j\rangle \langle e_j \otimes e_j|\right)}_{V:\mathbb{C}^N \otimes \mathbb{C}^N \to \mathbb{C}^N} T_2 \otimes T_3, e \otimes e \rangle$$

$$\sum_{i,i,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}$$



 $\mathbf{r}(\mathbf{G}) = 4???$

$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} = \sum_{i,j,k,l} \langle e_i, T_1 e_j \rangle \underbrace{\langle e_j, T_2 e_k \rangle \langle e_j, T_3 e_l \rangle}_{\langle e_j \otimes e_j, T_2 \otimes T_3 e_k \otimes e_l \rangle}$$

$$= \langle e, T_1 \underbrace{\left(\sum_{j} |e_j\rangle \langle e_j \otimes e_j|\right)}_{V:\mathbb{C}^N \otimes \mathbb{C}^N \to \mathbb{C}^N} T_2 \otimes T_3, e \otimes e \rangle$$

$$=\langle e, T_1V(T_2\otimes T_3) e\otimes e\rangle$$

$$\left| \sum_{i,i,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} \right| = \left| \langle e, T_1 V(T_2 \otimes T_3) e \otimes e \rangle \right|$$

 $\mathbf{r}(\mathbf{G}) = \mathbf{4}???$

$$|\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}| = |\langle e, T_1 V (T_2 \otimes T_3) e \otimes e \rangle|$$

$$\leq ||e|| \cdot ||e \otimes e|| \cdot ||T_1|| \cdot ||V|| \cdot ||T_2 \otimes T_3||$$

Example:
$$\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)} \qquad \qquad \underbrace{\tau_{2}}_{T_{3}} \overset{\circ k}{\underset{l}{\longleftarrow}} \mathbf{r(G)} = \mathbf{4???}$$

$$\mathbf{r}(\mathbf{G}) = \mathbf{4}???$$

$$|\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}| = |\langle e, T_1 V (T_2 \otimes T_3) e \otimes e \rangle|$$

$$\leq ||e|| \cdot ||e \otimes e|| \cdot ||T_1|| \cdot ||V|| \cdot ||T_2 \otimes T_3||$$

since

$$V: \mathbb{C}^N \otimes \mathbb{C}^N \to \mathbb{C}^N, \qquad e_i \otimes e_j \mapsto \begin{cases} e_i, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

is a partial isometry, and thus ||V|| = 1.

$$r(G) = 3/2$$

$$|\sum_{i,j,k,l=1}^{N} t_{ij}^{(1)} t_{jk}^{(2)} t_{jl}^{(3)}| = |\langle e, T_1 V(T_2 \otimes T_3) e \otimes e \rangle|$$

$$\leq ||e|| \cdot ||e \otimes e|| \cdot ||T_1|| \cdot ||V|| \cdot ||T_2 \otimes T_3||$$

$$= N^{3/2} \cdot ||T_1|| \cdot ||T_2|| \cdot ||T_3||$$

since

$$V: \mathbb{C}^N \otimes \mathbb{C}^N \to \mathbb{C}^N, \qquad e_i \otimes e_j \mapsto \begin{cases} e_i, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

is a partial isometry, and thus ||V|| = 1.

General structure

In these examples, our sum ${\cal S}(N)$ is given as inner product

$$S(N) \qquad \hat{=} \qquad \langle \mathsf{output}, \mathit{stuff} \, \mathsf{input} \rangle$$

where

- ullet each input and each output vertex contributes factor $N^{1/2}$
- internal vertices do not contribute, summation over them corresponds to matrix multiplication or, more general, partial isometries

General structure:

$$r(G) = 1$$

$$r(G) = 1$$

$$r(G) = 1$$

$$r(G) = 3/2$$

In the examples we could read our graph as a flow diagram from some input vertices to some output vertices, each contributing 1/2 to r(G)

$$r(G) = 1$$

$$i\bigcirc T$$

$$r(G) = 1$$

$$T_1$$
 T_2
 T_3
 T_4

$$r(G) = 1$$

$$r(G) = 3/2$$

In the examples we could read our graph as a flow diagram from some input vertices to some output vertices, each contributing 1/2 to r(G)

j input, i output

$$r(G) = 1$$

$$r(G) = 1$$

$$T_1$$
 T_2
 T_3
 T_4

$$r(G) = 1$$

$$r(G) = 3/2$$

In the examples we could read our graph as a flow diagram from some input vertices to some output vertices, each contributing 1/2 to r(G)

j input, i output

$$r(G) = 1$$

 $i \ \, {\rm both \ input \ and} \\ {\rm output}$

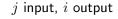
$$r(G) = 1$$

$$T_1$$
 T_2
 T_3
 T_4
 T_4
 T_4
 T_5

$$r(G) = 1$$

$$r(G)=3/2$$

In the examples we could read our graph as a flow diagram from some input vertices to some output vertices, each contributing 1/2 to r(G)



$$r(G) = 1$$

i both input and output

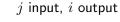
$$r(G) = 1$$

i both input and output

$$r(G) = 1$$

$$r(G) = 3/2$$

In the examples we could read our graph as a flow diagram from some input vertices to some output vertices, each contributing 1/2 to r(G)



$$r(G) = 1$$

$$i\bigcirc T$$

i both input and output

$$r(G) = 1$$

$$T_1$$
 T_2
 T_3
 T_4

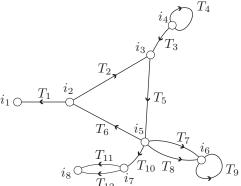
i both input and output

$$r(G) = 1$$

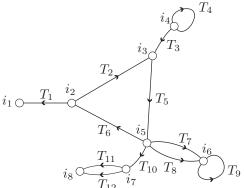
 $k \ {\rm and} \ l \ {\rm input}, \\ i \ {\rm output}$

$$r(G) = 3/2$$

But how about more complicated graphs? This does not look like an input-output graph.

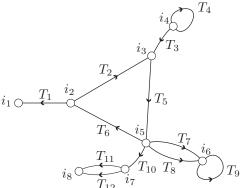


But how about more complicated graphs? This does not look like an input-output graph.



we might have several loops

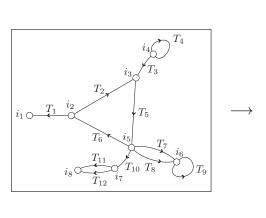
But how about more complicated graphs? This does not look like an input-output graph.

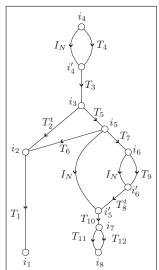


- we might have several loops
- there might be no overall consistent flow direction in the graph

Replace by equivalent input-output problem

Change the graph without changing the graph sum





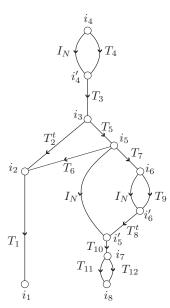
Replace by equivalent input-output problem

ullet split a vertex with a loop into 2 vertices and identify them via an additional edge with the identity matrix i_4

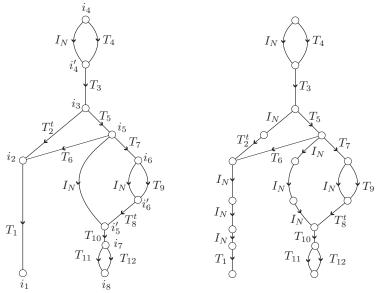
Replace by equivalent input-output problem

• split a vertex with a loop into 2 vertices and identify them via an additional edge with the identity matrix i_4

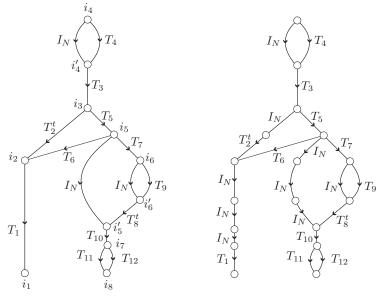
 \bullet change the direction of some edges and replace T by its transpose



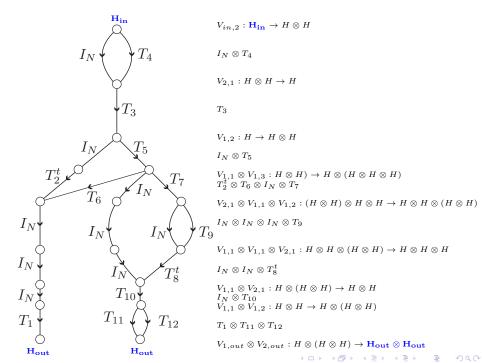
Adding additional vertices gives flow diagram



Adding additional vertices gives flow diagram



 $S_G(N) = \langle e_{in}, [ext{product of many operators of norm } \|T_i\| ext{ or } 1] \, e_{out} \otimes e_{out}
angle$



We have thus seen:

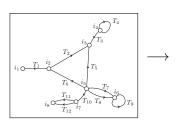
$$r(G) \leq \frac{\text{number of input/output vertices in equivalent input-output graph}}{2}$$

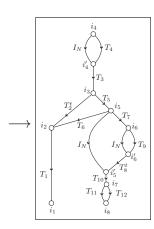
We have thus seen:

$$r(G) \leq \frac{\mathsf{number\ of\ input/output\ vertices\ in\ equivalent\ input-output\ graph}}{2}$$

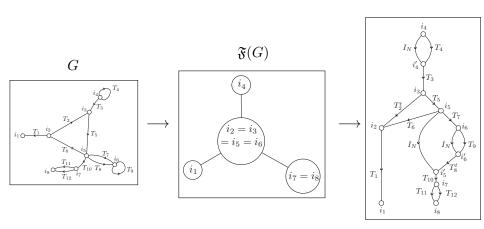
- But what is the optimal equivalent input-output graph?
- Is the above choice somehow a canonical one?

Why this equivalent input-output graph?



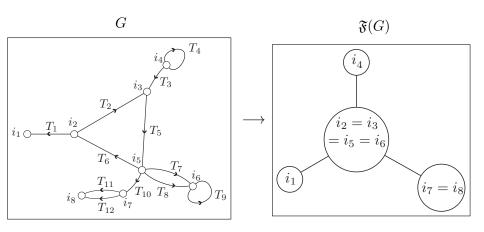


Why this equivalent input-output graph? Because the relevant structure is given by the forrest of two-edge-connected components $\mathfrak{F}(G)$



Asymptotics determined by structure of $\mathfrak{F}(G)$

 $\mathfrak{F}(G)=$ forrest of two-edge-connected components of G



The optimal bound

Theorem (Mingo, Speicher, JFA 2012)

We have the following optimal estimate:

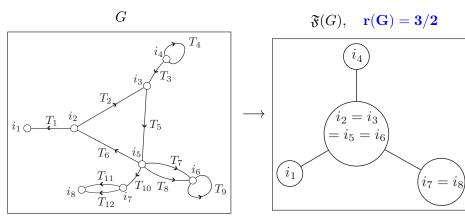
$$|\sum_{i:V \rightarrow [N]} \prod_{e \in E} \ t_{i_{t(e)},i_{s(e)}}^{(e)}| \leq N^{\frac{1}{2} \cdot \# \textit{leaves of } \mathfrak{F}(G)} \cdot \prod_{e \in E} \|T_e\|$$

thus:

$$\mathbf{r}(\mathbf{G}) = \# leaves of \mathfrak{F}(G)$$

(Trivial leaves count twice!)

Optimal asymptotics in N



Optimal asymptotics in N

 $\mathfrak{F}(G),$ r(G) = 3/2 i_1 T_{10} T_8

$$|\sum_{1}^{N} t_{i_{1}i_{2}}^{(1)} t_{i_{3}i_{2}}^{(2)} t_{i_{3}i_{4}}^{(3)} t_{i_{4}i_{4}}^{(4)} t_{i_{5}i_{3}}^{(5)} t_{i_{6}i_{5}}^{(6)} t_{i_{6}i_{5}}^{(7)} t_{i_{6}i_{5}}^{(8)} t_{i_{6}i_{5}}^{(9)} t_{i_{7}i_{5}}^{(10)} t_{i_{8}i_{7}}^{(11)} t_{i_{8}i_{7}}^{(12)}| \leq N^{3/2} \cdot \prod_{i=1}^{12} ||T_{i}||$$

The optimal bound

Theorem (Mingo, Speicher, JFA 2012)

We have the following optimal estimate:

$$|\sum_{i:V \rightarrow [N]} \prod_{e \in E} \ t_{i_{t(e)},i_{s(e)}}^{(e)}| \leq N^{\frac{1}{2} \cdot \# \textit{leaves of } \mathfrak{F}(G)} \cdot \prod_{e \in E} \|T_e\|$$

thus:

$$\mathbf{r}(\mathbf{G}) = \# leaves of \mathfrak{F}(G)$$

(Trivial leaves count twice!)

Possible extensions

Can we get similar estimates for

Possible extensions for vectors

Can we get similar estimates for

sums for vectors

$$\sum_{\substack{j_1,\ldots,j_m\\\text{some constraints on equality of indices}}} t_{j_1}^{(1)} t_{j_2}^{(2)} \cdots t_{j_m}^{(m)}$$

this seems to be trivial, but I am not really sure what the best description is

Can we get similar estimates for

sums for vectors

$$\sum_{\substack{j_1,\dots,j_m\\\text{some constraints on equality of indices}}} t_{j_1}^{(1)} t_{j_2}^{(2)} \cdots t_{j_m}^{(m)}$$

- this seems to be trivial, but I am not really sure what the best description is
- sums for tensors

$$\sum_{\substack{i_1,j_1,k_1,\ldots,i_m,j_m,k_m\\\text{some constraints on equality of indices}}} t_{i_1j_1k_1}^{(1)} t_{i_2j_2k_2}^{(2)} \cdots t_{i_mj_mk_m}^{(m)}$$

Can we get similar estimates for

sums for vectors

$$\sum_{\substack{j_1,\dots,j_m\\\text{some constraints on equality of indices}}} t_{j_1}^{(1)} t_{j_2}^{(2)} \cdots t_{j_m}^{(m)}$$

- this seems to be trivial, but I am not really sure what the best description is
- sums for tensors

$$\sum_{\substack{i_1,j_1,k_1,\ldots,i_m,j_m,k_m\\\text{some constraints on equality of indices}}} t_{i_1j_1k_1}^{(1)} t_{i_2j_2k_2}^{(2)} \cdots t_{i_mj_mk_m}^{(m)}$$

what are the relevant quantities for tensors

Can we get similar estimates for

sums for vectors

$$\sum_{\substack{j_1,\dots,j_m\\\text{some constraints on equality of indices}}} t_{j_1}^{(1)} t_{j_2}^{(2)} \cdots t_{j_m}^{(m)}$$

- this seems to be trivial, but I am not really sure what the best description is
- sums for tensors

$$\sum_{\substack{i_1,j_1,k_1,\ldots,i_m,j_m,k_m\\\text{some constraints on equality of indices}}} t_{i_1j_1k_1}^{(1)} t_{i_2j_2k_2}^{(2)} \cdots t_{i_mj_mk_m}^{(m)}$$

- what are the relevant quantities for tensors
- ▶ is there any good diagrammatic way of encoding such problems

Can we get similar estimates for

sums for vectors

$$\sum_{\substack{j_1,\dots,j_m\\\text{some constraints on equality of indices}}} t_{j_1}^{(1)} t_{j_2}^{(2)} \cdots t_{j_m}^{(m)}$$

- this seems to be trivial, but I am not really sure what the best description is
- sums for tensors

$$\sum_{\substack{i_1,j_1,k_1,\dots,i_m,j_m,k_m\\ \text{some constraints on equality of indices}}} t_{i_1j_1k_1}^{(1)} t_{i_2j_2k_2}^{(2)} \cdots t_{i_mj_mk_m}^{(m)}$$

- what are the relevant quantities for tensors
- ▶ is there any good diagrammatic way of encoding such problems

Thank You!