### Linearization and Brown measure

**Roland Speicher** 

Saarland University Saarbrücken, Germany

supported by ERC Advanced Grant "Non-Commutative Distributions in Free Probability"

Image: Image:



→ < ∃→

### $\mathsf{Section}\ 1$

### Uffe's Legacy in Free Probability Theory



2 / 27

3 × 4 3 ×

Image: Image:

Fields Institute Communications Volume 12, 1997

#### On Voiculescu's *R*- and *S*-Transforms for Free Non-Commuting Random Variables

**Uffe Haagerup** 

Department of Mathematics and Computer Science Odense University DK-5230 Odense M, Denmark

#### 1 Introduction

Voiculescu introduced in 1986-87 (cf. [8], [9]) the *R*- and *S*-transforms for the distribution of "random variables" in a non-commutative algebra  $\mathcal{A}$  with a fixed probability measure (i.e., a linear functional  $\varphi : \mathcal{A} \to \mathbb{C}$  for which  $\varphi(1) = 1$ ), and proved the addition formula for the *R*-transform

$$R_{\mu_{a+b}}(z) = R_{\mu_a}(z) + R_{\mu_b}(z), \qquad (1.1)$$

Journal of Functional Analysis 176, 331–367 (2000) doi:10.1006 jfan.2000.3610, available online at http://www.idealibrary.com/on/

#### Brown's Spectral Distribution Measure for *R*-Diagonal Elements in Finite von Neumann Algebras

Uffe Haagerup<sup>1</sup> and Flemming Larsen

Department of Mathematics and Computer Science, University of Southern Denmark, Odense University Campus, Campusvej 55, DK-5230 Odense M, Denmark E-mail: {haagerup, flemming}@imada.sdu.dk

Communicated by D. Sarason

Received August 4, 1999; accepted November 30, 1999

In 1983 L. G. Brown introduced a spectral distribution measure for non-normal elements in a finite von Neumann algebra  $\mathscr{M}$  with respect to a fixed normal faithful tracial state  $\tau$ . In this paper we compute Brown's spectral distribution measure in case T has a polar decomposition T = UH where U is a Haar unitary and U and H are \*-free. (When Ker  $T = \{0\}$  this is equivalent to that  $(T, T^*)$  is an R-diagonal pair in the sense of Nica and Speicher.) The measure  $\mu_T$  is expressed explicitly in terms of the S-transform of the distribution  $\mu_{T^*T}$  of the positive operator  $T^*T$ . In case T is a circular element, i.e.,  $T = (X_1 + iX_2) \sqrt{2}$  where  $(X_1, X_2)$  is a free semicircular system, then sp T = D, the closed unit disk, and  $\mu_T$  has constant density 1  $\pi$  on D. © 2000 Academic Press

Annals of Mathematics, 162 (2005), 711-775

### A new application of random matrices: $Ext(C^*_{red}(F_2))$ is not a group

By UFFE HAAGERUP and STEEN THORBJØRNSEN\*

Dedicated to the memory of Gert Kjærgård Pedersen

#### Abstract

In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the following extension of Voiculescu's random matrix result: Let  $(X_1^{(n)}, \ldots, X_r^{(n)})$  be a system of r stochastically independent  $n \times n$  Gaussian self-adjoint random matrices as in Voiculescu's random matrix paper [V4], and let  $(x_1, \ldots, x_r)$  be



Haagerup and Larsen

# $\rightarrow$ •

#### invariant subspaces

- with H. Schultz
- with K. Dykema

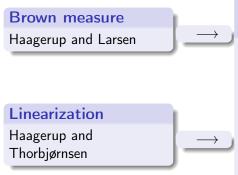
#### Linearization

Haagerup and Thorbjørnsen

### operator algebraic applications

- $Ext(C^*_{red}(FF_2) \text{ not group} with S. Thorbjørnsen$
- no projections in  $C^*(F_2)$ with S. Thorbjørnsen, H. Schultz





new ideas and concepts for dealing with limits of random matrices and functions of free random variables

- Brown measure as candidate for asymptotic eigenvalue distribution of non-Hermitean random matrices
- limits of norms of polynomials in independent random matrices
- calculation of distribution of functions of free variables



### Section 2

## Linearization



8 / 27

< □ > < □ > < □ > < □ > < □ > < □ >

#### Voiculescu, Kirchberg, Pisier, etc.

non-linear problem  $\rightarrow$  operator-valued linear problem

 $p(x_1,\ldots,x_m) \to \alpha_0 \otimes 1 + \alpha_1 \otimes x_1 + \cdots + \alpha_m \otimes x_m$ 

#### Example

Is xy invertible? We have

$$\begin{pmatrix} xy & 0\\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & x\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & x\\ y & -1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ y & 1 \end{pmatrix}$$

Hence xy is invertible if and only if

$$\begin{pmatrix} 0 & x \\ y & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \otimes 1 + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes x + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes y$$

is invertible

Theorem (Haagerup, Thorbjørnsen (+Schultz); Anderson) Every polynomial  $p(x_1, ..., x_m)$  has a (non-unique) linearization  $\hat{p} = \alpha_0 \otimes 1 + \alpha_1 \otimes x_1 + \dots + \alpha_m \otimes x_m$  such that

$$(z-p)^{-1} = [(\Lambda(z) - \hat{p})^{-1}]_{1,1}, \quad \text{where} \qquad \Lambda(z) = \begin{pmatrix} z & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

and hence also

$$G_p(z) = \varphi((z-p)^{-1}) = [\varphi \otimes 1(\Lambda(z) - \hat{p})^{-1}]_{1,1} = [G_{\hat{p}}(\Lambda(z))]_{1,1}.$$

G<sub>p</sub>(z) = φ[(z − p)<sup>-1</sup>] is the Cauchy transform of p
G<sub>p</sub>(b) = φ ⊗ 1[(b − p̂)<sup>-1</sup>] is the operator-valued Cauchy transform of p̂

#### Historical remark

Note that, as we only became aware in recent years, this linearization trick is also a well-known idea in many other mathematical communities, known under various names like

- Higman's trick (Higman "The units of group rings", 1940)
- recognizable power series (automata theory, Kleene, Schützenberger)
- linearization by enlargement (ring theory, Cohn )
- system realization (control theory, Helton, Vinnikov)

So maybe Uffe's trick is not so new, but his applications in operator algebras, free probability and random matrices are nevertheless amazing ...

11 / 27

#### Theorem (Haagerup, Thorbjørnsen)

For  $X_1^{(N)}, \ldots, X_r^{(N)}$  independent Gaussian random matrices, and  $s_1, \ldots, s_r$  free semicircular elements we have for any polynomial p in r non-commuting variables almost surely

$$\lim_{N \to \infty} \| p(X_1^{(N)}, \dots, X_r^{(N)}) \| = \| p(s_1, \dots, s_r) \|$$

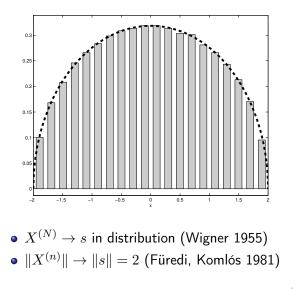
### Generalizations

This has been generalized to many other situations

- real and symplectic case (Schultz)
- other types of random matrices
  - Wigner or Wishart matrices (Capitaine, Donati-Martin; Anderson)
  - Haar unitary random matrices (Collins, Male)
  - including deterministic matrices (Male)
- "exact separation of eigenvalues" (Haagerup, Schultz, Thorbjørnsen)
- non-commutative rational functions instead of polynomials (Yin)

Linearization

### One-matrix case: classical random matrix case



$$s = l + l^*,$$

l one-sided shift on  $\bigoplus_{n\geq 0} \mathbb{C}e_n$ 

$$\varphi(a) = \langle ae_0, e_0 \rangle$$

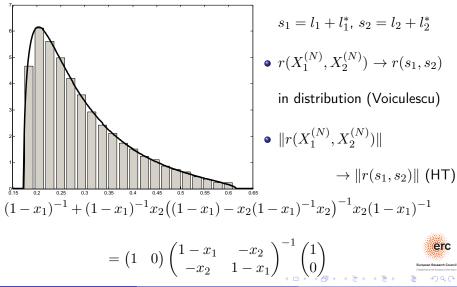
문▶ ★ 문▶

 $\mu = \varphi \circ E_s$ 



13 / 27

### Multi-matrix case: non-commutative case



#### Question

Can we actually calculate

• the distribution/norm of  $r(s_1, s_2)$ 

Solution: again by linearization (Belinschi, Mai, Speicher; Helton)

- ${\scriptstyle \bullet}$  we need the distribution of  $r(s_1,s_2)$
- this is determined by the operator-valued distribution of its linearization

$$\hat{r}(s_1, s_2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 - s_1 & -s_2 \\ 0 & -s_2 & 1 - s_1 \end{pmatrix}$$

#### Question

Can we actually calculate

• the distribution/norm of  $r(s_1, s_2)$ 

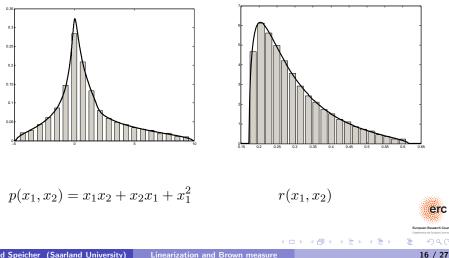
Solution: again by linearization (Belinschi, Mai, Speicher; Helton)

- ${\ensuremath{\, \bullet }}$  we need the distribution of  $r(s_1,s_2)$
- this is determined by the operator-valued distribution of its linearization
- but this is now an additive (operator-valued) problem

$$\hat{r}(s_1, s_2) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \otimes 1 + \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \otimes s_1 + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \otimes s_2$$

• for this we have analytic theory of operator-valued free convolution

This allows to calculate (by also involving some numerical solving of fixed point equations for the Cauchy transforms) the solid lines in the pictures



#### Relevance of p being selfadjoint

Note that whether p is selfadjoint or not

• is not an issue for the norm, as

$$\|p\|^2 = \|pp^*\|$$

 $\rightarrow$  the Haagerup-Thorbjørnsen Theorem is for arbitrary polynomials

- is an issue for convergence of distribution, if we want to understand the latter as a probability measure (like: eigenvalue distribution for matrices)
  - $\rightarrow$  theory of Belinschi-Mai-Speicher is only for selfadjoint polynomials



### Section 3

### **Brown Measure**



18 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Idea of Brown measure $\mu_a$ for operator a

#### Normal case

Let  $x \in (\mathcal{A}, \varphi)$  be normal operator (e.g., selfadjoint or unitary). Then there exists uniquely determined probability measure  $\mu_x$  on  $\mathbb{C}$  such that

$$\varphi(x^n x^{*m}) = \int_{\mathbb{C}} z^n \bar{z}^m d\mu_x(z) \qquad \forall m, n \ge 0$$

#### General, not necessarily normal, case

Let  $a\in (\mathcal{A},\varphi)$  be general operator. Its distribution in algebraic sense is given by collection of all \*-moments

$$\varphi(a^{i_1}\cdots a^{i_n}), \qquad n \in \mathbb{N}, i_1, \ldots, i_n \in \{1, *\}$$

This information cannot be encoded by a probability measure on  $\mathbb{C}$ , but still we would like to have such a  $\mu_a$  which captures as much information about all \*-moments of a as possible.

#### Rough idea

In principle, we want to define the Brown measure  $\mu_a$  by the requirement that  $\mu_a$  and a have the same Cauchy transform

$$\int_{\mathbb{C}} \frac{1}{\lambda - z} d\mu_a(z) = \varphi(\frac{1}{\lambda - a}).$$

- For normal a it suffices to have this outside the spectrum of a, for  $\lambda \notin \sigma(a)$ ; there both sides make sense and are analytic functions in  $\lambda$
- For non-normal *a* one needs also the information inside the spectrum; the left-hand side makes then still sense almost surely (as a non-analytic function); but the right hand side is problematic



20 / 27

#### Rough idea

Instead of

$$\int_{\mathbb{C}} \frac{1}{\lambda - z} d\mu_a(z) = \varphi(\frac{1}{\lambda - a})$$

we consider the integrated version

$$\int_{\mathbb{C}} \ln |\lambda - z| d\mu_a(z) = \varphi(\ln |\lambda - a|) = \log \Delta(|a - \lambda|)$$

where  $\Delta$  is the Fuglede-Kadison determinant (which makes sense in a tracial von Neumann algebra setting)

• The latter formulation makes sense for any  $\lambda \in \mathbb{C}$  and defines  $\mu_a$  uniquely.

21 / 27

#### History

- L. Brown 1986: Lidskii's theorem in the type II case
- Haagerup, Larsen 2000

### Impact on operator algebraic, free probabilitiy and random matrix side

- calculation of Brown measures for known and also new classes of operators
  - R-diagonal operators and variations (Haagerup, Larsen; Haagerup, Schultz; Biane, Lehner)
  - DT operators (Dykema, Haagerup)
- investigations on invariant subspaces (Dykema, Haagerup; Haagerup, Schultz)
- Brown measure gives candidate for limit of eigenvalue distribution of non-normal random matrices
  - single ring theorem (Guionnet, Krishnapur, Zeitouni)

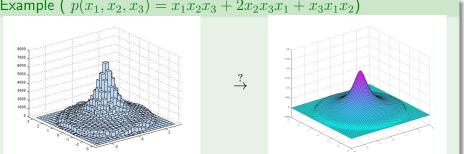
uropean nesearch Council

イロト イ得ト イヨト イヨト

## Limits of non-normal random matrices

Conjecture

Let  $X_1^{(N)}, \ldots, X_r^{(N)}$  be r independent Gaussian  $N \times N$  random matrices and  $s_1, \ldots, s_r$  be r free semicirculars. Then, for any polynomial in r non-commuting variables we have that the Brown measue (i.e., the eigenvalue distribution) of  $p(X_1^{(N)}, \ldots, X_r^{(N)})$  converges, almost surely, weakly to the Brown measure of  $p(s_1, \ldots, s_r)$ .



#### Example ( $p(x_1, x_2, x_3) = x_1x_2x_3 + 2x_2x_3x_1 + x_3x_1x_2$ )

Roland Speicher (Saarland University)

### Section 4

### **Brown Measure and Linearization**



24 / 27

イロト イポト イヨト イヨト

# Hermitization method

Idea: transform non-normal problem into operator-valued selfadjoint problem

We have

$$\int_{\mathbb{C}} \log |\lambda - z| d\mu_a(z) = \log \Delta(|a - \lambda|) = \int_0^\infty \log(t) d\mu_{|a - \lambda|}(t).$$

Hence in order to calculate the Brown measure of  $\boldsymbol{a}$ 

- we need to calculate the distribution of all hermitian operators  $|a \lambda|$ ,
- which can be gotten from the operator-valued distribution of

$$A = \begin{pmatrix} 0 & a \\ a^* & 0 \end{pmatrix}$$

# Hermitization method

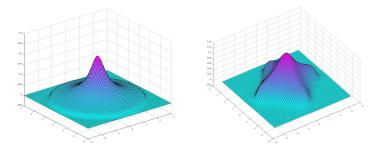
#### History

- folklore in random matrix theory (going back to Girko?) for eigenvalue distribution
- contact with free probability and operator-valued description on formal level by physicists
  - Zee, Feinberg
    - Janik, Nowak, Papp, Zahed
- first rigorous calculations using operator-valued description by
  - Aagaard, Haagerup (for quasi-nilpotent DT-operator)
- general rigorous theory by
  - Belinschi, Sniady, Speicher



26 / 27

This allows then the calculation of the Brown measure of any polynomial (or even non-commutative rational function) in free variables



### Thanks, Uffe, for the wonderful mathematics!

