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In 1983 L. G. Brown introduced a spectral distribution measure for non-normal
elements in a finite von Neumann algebra M with respect to a fixed normal faithful
tracial state {. In this paper we compute Brown's spectral distribution measure
in case T has a polar decomposition T=UH where U is a Haar unitary and U
and H are V-free. (When Ker T=[0] this is equivalent to that (T, T*) is an
R-diagonal pair in the sense of Nica and Speicher.) The measure +T is expressed
explicitly in terms of the S-transform of the distribution +T*T of the positive
operator T*T. In case T is a circular element, i.e., T=(X1+iX2)�- 2 where
(X1 , X2) is a free semicircular system, then sp T=D , the closed unit disk, and +T

has constant density 1�? on D .  2000 Academic Press

1. INTRODUCTION

In 1995 Nica and Speicher introduced the class of R-diagonal pairs in
non-commutative probability spaces (see [10]). A pair (a, b) in the non-
commutative probability space (A, .) is called R-diagonal if the (2-dimen-
sional) R-transform R+(a, b) of the joint distribution +(a, b) of (a, b) is of the
form

R+(a, b)(z1 , z2)= :


j=1

:j (z1z2) j+ :


j=1

: j (z2z1) j

for arbitrary complex numbers :j . An R-diagonal element is a random
variable in a non-commutative V-probability space such that (a, a*) is
an R-diagonal pair. In [10] Nica and Speicher prove that if T is an
R-diagonal element in some tracial non-commutative C*-probability space
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Uffe’s Legacy in Free Probability Theory

Brown measure
Haagerup and Larsen

−→
invariant subspaces

with H. Schultz
with K. Dykema

Linearization
Haagerup and
Thorbjørnsen

−→

operator algebraic applications
Ext(C∗red(FF2) not group
with S. Thorbjørnsen
no projections in C∗(F2)
with S. Thorbjørnsen, H. Schultz
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Uffe’s Legacy in Free Probability Theory

Brown measure
Haagerup and Larsen

Linearization
Haagerup and
Thorbjørnsen

−→

−→

new ideas and concepts for dealing
with limits of random matrices and
functions of free random variables

Brown measure as candidate for
asymptotic eigenvalue
distribution of non-Hermitean
random matrices
limits of norms of polynomials in
independent random matrices
calculation of distribution of
functions of free variables
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Linearization

Section 2

Linearization
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Linearization

Voiculescu, Kirchberg, Pisier, etc.

non-linear problem→ operator-valued linear problem
p(x1, . . . , xm)→ α0 ⊗ 1 + α1 ⊗ x1 + · · ·αm ⊗ xm

Example
Is xy invertible? We have(

xy 0
0 −1

)
=

(
1 x
0 1

)(
0 x
y −1

)(
1 0
y 1

)
Hence xy is invertible if and only if(

0 x
y −1

)
=

(
0 0
0 −1

)
⊗ 1 +

(
0 1
0 0

)
⊗ x+

(
0 0
1 0

)
⊗ y

is invertible
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Linearization

Theorem (Haagerup, Thorbjørnsen (+Schultz); Anderson)
Every polynomial p(x1, . . . , xm) has a (non-unique) linearization
p̂ = α0 ⊗ 1 + α1 ⊗ x1 + · · ·+ αm ⊗ xm such that

(z − p)−1 = [(Λ(z)− p̂)−1]1,1, where Λ(z) =


z 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


and hence also

Gp(z) = ϕ((z − p)−1) = [ϕ⊗ 1(Λ(z)− p̂)−1]1,1 = [Gp̂(Λ(z))]1,1.

Gp(z) = ϕ[(z − p)−1] is the Cauchy transform of p
Gp̂(b) = ϕ⊗ 1[(b− p̂)−1] is the operator-valued Cauchy transform of p̂
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Linearization

Historical remark
Note that, as we only became aware in recent years, this linearization trick
is also a well-known idea in many other mathematical communities, known
under various names like

Higman’s trick (Higman “The units of group rings”, 1940)
recognizable power series (automata theory, Kleene, Schützenberger)
linearization by enlargement (ring theory, Cohn )
system realization (control theory, Helton, Vinnikov)

So maybe Uffe’s trick is not so new, but his applications in operator
algebras, free probability and random matrices are nevertheless amazing ...
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Linearization

Theorem (Haagerup, Thorbjørnsen)

For X(N)
1 , . . . , X

(N)
r independent Gaussian random matrices, and

s1, . . . , sr free semicircular elements we have for any polynomial p in r
non-commuting variables almost surely

lim
N→∞

‖p(X(N)
1 , . . . , X(N)

r )‖ = ‖p(s1, . . . , sr)‖

Generalizations
This has been generalized to many other situations

real and symplectic case (Schultz)
other types of random matrices

I Wigner or Wishart matrices (Capitaine, Donati-Martin; Anderson)
I Haar unitary random matrices (Collins, Male)
I including deterministic matrices (Male)

“exact separation of eigenvalues” (Haagerup, Schultz, Thorbjørnsen)
non-commutative rational functions instead of polynomials (Yin)
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Linearization

One-matrix case: classical random matrix case
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s = l + l∗,

l one-sided shift on⊕
n≥0Cen

ϕ(a) = 〈ae0, e0〉

µ = ϕ ◦ Es

X(N) → s in distribution (Wigner 1955)
‖X(n)‖ → ‖s‖ = 2 (Füredi, Komlós 1981)
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Linearization

Multi-matrix case: non-commutative case
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s1 = l1 + l∗1, s2 = l2 + l∗2

r(X
(N)
1 , X

(N)
2 ) → r(s1, s2)

in distribution (Voiculescu)

‖r(X(N)
1 , X

(N)
2 )‖

→ ‖r(s1, s2)‖ (HT)

(1− x1)−1 + (1− x1)−1x2
(
(1− x1)− x2(1− x1)−1x2

)−1
x2(1− x1)−1

=
(
1 0

)(1− x1 −x2
−x2 1− x1

)−1(
1
0

)
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Linearization

Question
Can we actually calculate

the distribution/norm of r(s1, s2)

Solution: again by linearization (Belinschi, Mai, Speicher; Helton)
we need the distribution of r(s1, s2)
this is determined by the operator-valued distribution of its
linearization

r̂(s1, s2) =

0 1 0
1 1− s1 −s2
0 −s2 1− s1



but this is now an additive (operator-valued) problem

r̂(s1, s2) =

0 1 0
1 1 0
0 0 1

⊗1+

0 0 0
0 −1 0
0 0 −1

⊗s1+
0 0 0

0 0 −1
0 −1 0

⊗s2
for this we have analytic theory of operator-valued free convolution
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Linearization

This allows to calculate (by also involving some numerical solving of fixed
point equations for the Cauchy transforms) the solid lines in the pictures
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p(x1, x2) = x1x2 + x2x1 + x21 r(x1, x2)
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Linearization

Relevance of p being selfadjoint
Note that whether p is selfadjoint or not

is not an issue for the norm, as

‖p‖2 = ‖pp∗‖

→ the Haagerup-Thorbjørnsen Theorem is for arbitrary polynomials
is an issue for convergence of distribution, if we want to understand
the latter as a probability measure (like: eigenvalue distribution for
matrices)
→ theory of Belinschi-Mai-Speicher is only for selfadjoint polynomials
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Brown Measure

Section 3

Brown Measure
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Brown Measure

Idea of Brown measure µa for operator a
Normal case
Let x ∈ (A, ϕ) be normal operator (e.g., selfadjoint or unitary). Then there
exists uniquely determined probability measure µx on C such that

ϕ(xnx∗m) =

∫
C
znz̄mdµx(z) ∀m,n ≥ 0

General, not necessarily normal, case
Let a ∈ (A, ϕ) be general operator. Its distribution in algebraic sense is
given by collection of all ∗-moments

ϕ(ai1 · · · ain), n ∈ N, i1, . . . , in ∈ {1, ∗}

This information cannot be encoded by a probability measure on C, but
still we would like to have such a µa which captures as much information
about all ∗-moments of a as possible.
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Brown Measure

Rough idea
In principle, we want to define the Brown measure µa by the requirement
that µa and a have the same Cauchy transform∫

C

1

λ− z
dµa(z) = ϕ(

1

λ− a
).

For normal a it suffices to have this outside the spectrum of a, for
λ 6∈ σ(a); there both sides make sense and are analytic functions in λ
For non-normal a one needs also the information inside the spectrum;
the left-hand side makes then still sense almost surely (as a
non-analytic function); but the right hand side is problematic
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Brown Measure

Rough idea
Instead of ∫

C

1

λ− z
dµa(z) = ϕ(

1

λ− a
)

we consider the integrated version∫
C

ln |λ− z|dµa(z) = ϕ(ln |λ− a|) = log ∆(|a− λ|)

where ∆ is the Fuglede-Kadison determinant (which makes sense in a
tracial von Neumann algebra setting)
The latter formulation makes sense for any λ ∈ C and defines µa
uniquely.
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Brown Measure

History
L. Brown 1986: Lidskii’s theorem in the type II case
Haagerup, Larsen 2000

Impact on operator algebraic, free probabilitiy and random matrix side
calculation of Brown measures for known and also new classes of
operators

I R-diagonal operators and variations (Haagerup, Larsen; Haagerup,
Schultz; Biane, Lehner)

I DT operators (Dykema, Haagerup)

investigations on invariant subspaces (Dykema, Haagerup; Haagerup,
Schultz)
Brown measure gives candidate for limit of eigenvalue distribution of
non-normal random matrices

I single ring theorem (Guionnet, Krishnapur, Zeitouni)

Roland Speicher (Saarland University) Linearization and Brown measure 22 / 27



Brown Measure

Limits of non-normal random matrices
Conjecture

Let X(N)
1 , . . . , X

(N)
r be r independent Gaussian N ×N random matrices

and s1, . . . , sr be r free semicirculars. Then, for any polynomial in r
non-commuting variables we have that the Brown measue (i.e., the
eigenvalue distribution) of p(X(N)

1 , . . . , X
(N)
r ) converges, almost surely,

weakly to the Brown measure of p(s1, . . . , sr).

Example ( p(x1, x2, x3) = x1x2x3 + 2x2x3x1 + x3x1x2)

?→
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Brown Measure and Linearization

Section 4

Brown Measure and Linearization
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Brown Measure and Linearization

Hermitization method

Idea: transform non-normal problem into operator-valued selfadjoint
problem
We have∫

C
log |λ− z|dµa(z) = log ∆(|a− λ|) =

∫ ∞
0

log(t)dµ|a−λ|(t).

Hence in order to calculate the Brown measure of a
we need to calculate the distribution of all hermitian operators |a− λ|,
which can be gotten from the operator-valued distribution of

A =

(
0 a
a∗ 0

)
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Brown Measure and Linearization

Hermitization method

History
folklore in random matrix theory (going back to Girko?) for eigenvalue
distribution
contact with free probability and operator-valued description on formal
level by physicists

I Zee, Feinberg
I Janik, Nowak, Papp, Zahed

first rigorous calculations using operator-valued description by
I Aagaard, Haagerup (for quasi-nilpotent DT -operator)

general rigorous theory by
I Belinschi, Sniady, Speicher
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Brown Measure and Linearization

This allows then the calculation of the Brown measure of any polynomial
(or even non-commutative rational function) in free variables

Thanks, Uffe, for the wonderful mathematics!
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