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Potential Shortcomings of Free Probability
Approaches to Wireless Problems
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Potential Shortcomings

Potential Shortcomings

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular

make them square (or ask Benaych-Georges)

Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)

matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular

make them square (or ask Benaych-Georges)
Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)

matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular

make them square (or ask Benaych-Georges)

Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)
matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular

make them square (or ask Benaych-Georges)

Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)

matrices without asymptotic distribution

make them converge (or do deterministic equivalents)
doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular

make them square (or ask Benaych-Georges)

Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)

matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings and Their Solutions

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular
make them square (or ask Benaych-Georges)
Wigner matrices instead of Gaussian matrices

don’t care about the difference (or try to find the relevant literature)

matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings and Their Solutions

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular
make them square (or ask Benaych-Georges)
Wigner matrices instead of Gaussian matrices
don’t care about the difference (or try to find the relevant literature)
matrices without asymptotic distribution

make them converge (or do deterministic equivalents)

doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings and Their Solutions

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular
make them square (or ask Benaych-Georges)
Wigner matrices instead of Gaussian matrices
don’t care about the difference (or try to find the relevant literature)
matrices without asymptotic distribution
make them converge (or do deterministic equivalents)
doing concrete calculations for more complicated models

try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Potential Shortcomings

Potential Shortcomings and Their Solutions

Many random matrix models can be treated by free probability methods!

Problem
However, engineers see some problems with

matrices which are rectangular
make them square (or ask Benaych-Georges)
Wigner matrices instead of Gaussian matrices
don’t care about the difference (or try to find the relevant literature)
matrices without asymptotic distribution
make them converge (or do deterministic equivalents)
doing concrete calculations for more complicated models
try harder (or use operator-valued free probability)

Roland Speicher (Saarland University) Deterministic Equivalents 3 / 28



Rectangular Matrices Versus Square Matrices

Section 2

Rectangular Matrices Versus Square Matrices

Roland Speicher (Saarland University) Deterministic Equivalents 4 / 28



Rectangular Matrices Versus Square Matrices

Problem
Free probability can deal with usual square matrices, but in engineering
problems the channel matrices are quite often rectangular.
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Rectangular Matrices Versus Square Matrices

Problem
Free probability can deal with usual square matrices, but in engineering
problems the channel matrices are quite often rectangular.

Solution
Rectangular matrices can in principle be treated within usual free
probability by introducing additional projections and cutting down square
matrices to the wanted rectangular ones.
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Problem
Free probability can deal with usual square matrices, but in engineering
problems the channel matrices are quite often rectangular.

Example
Let X be an n×m Gaussian random matrix (say, n ≤ m)

X =

x11 · · · x1n · · · x1m
. . . · · · · · · · · · . . .
xn1 · · · xnn · · · xnm
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
This is not good because X̃ is not a Gaussian random matrix, thus we do
not have asymptotic freeness results for it.
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Rectangular Matrices Versus Square Matrices

Problem
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
This is good because the full Gaussian random matrix is now asymptotically
free from deterministic matrices, in particular from the projection matrix.
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Rectangular Matrices Versus Square Matrices

Problem
Free probability can deal with usual square matrices, but in engineering
problems the channel matrices are quite often rectangular.

Solution
Rectangular matrices can in principle be treated within usual free
probability by introducing additional projections and cutting down square
matrices to the wanted rectangular ones.
For a systematic treatment of this use the theory of

rectangular free probability

of Benaych-Georges.
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Wigner Matrices Versus Gaussian Matrices
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Wigner Matrices Versus Gaussian Matrices

A crucial ingredient in most calculations from the free probability side is
the asymptotic freeness between Gaussian random matrices and
deterministic matrices.

Problem
However, in applications, quite often one does not have Gaussian matrices
but just Wigner matrices (i.e., entries are i.i.d., but their distribution is not
necessarily Gaussian).

Solution
But this is not a problem, because Wigner matrices and deterministic
matrices are also asymptotically free (though the proof is substantially
harder).

The main problem is that this question was neglected for quite a while in
the free probability community and explicit references to this are only very
recent, and still not easy to localize:

book of Anderson, Guionnet, Zeitouni: Theorem 5.4.5
book of Mingo, Speicher (to appear)
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Asymptotics Versus Deterministic Equivalents
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Asymptotics Versus Deterministic Equivalents

Problem
Quite often, one has a random matrix problem for (large) size N , but the
limit N →∞ is not adequate, because there is no canonical limit for some
of the involved matrices

Solution (Girko; Couillet, Hoydis, Debbah; Hachem, Loubaton, Najim)
Deterministic Equivalent: Replace the random Stieltjes transform gN of
the problem for N by a deterministic transform g̃N such that

g̃N is calculable, usually as the fixed point solution of some system of
equations
the difference between gN and g̃N goes, for N →∞, to 0
(even though gN itself might not converge)
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Asymptotics Versus Deterministic Equivalents

Deterministic Equivalent

Replace the original unsolvable problem by another problem which is
I solvable
I close to the original problem (at least for large N)

The replacement is done on the level of Stieltjes transforms and there
is no clear rule how to do this
Essentially one tries to close the system of equations for the Stieltjes
transforms by keeping as much data as possible of the original situation
Replacement and solving is done in one step
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Asymptotics Versus Deterministic Equivalents

Free Deterministic Equivalent (Speicher, Vargas)

We will replace the original problem by another one on the level of
operators in a quite precise way, essentially by prescribing

I replace Gaussian random matrices by semicircular variables
I replace matrices which are asymptotically free by free variables

The free deterministic equivalent is then a well-defined function in free
variables
That the free deterministic equivalent is close to the original model
(for large N) is essentially the same calculation as showing asymptotic
freeness
One can then try to solve for the distribution of this replacement in a
second step
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Asymptotics Versus Deterministic Equivalents

Free Deterministic Equivalent (Speicher, Vargas)
Example
Consider AN = TN +XN where

XN is a symmetric N ×N Gaussian random matrix
TN is a deterministic matrix

We do not have a sequence TN , with N →∞, thus we only have the
distribution of TN for some fixed N .
We replace now AN by aN = tN + s, where

s is a semicircular element
tN is an operator which has the same distribution as TN
tN and s are free

In this case, the distribution of aN is given by the free convolution of the
distribution of tN and the distribution of s,

µAN
∼ µaN = µtN+s = µtN � µs = µTN

� µs
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Scalar-Valued Versus Operator-Valued Free Probability

Section 5

Scalar-Valued Versus Operator-Valued Free
Probability
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Scalar-Valued Versus Operator-Valued Free Probability

Can We Calculate Free Deterministic Equivalents?

Problem
Usually, our free deterministic equivalents are polynomials in free variables.
Can we calculate their distribution out of the knowledge of the distribution
of each variable?

Solution
Yes, we can!
For this, use the combination of

the linearization trick
and recent advances on the analytic description of operator-valued free
convolution
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Scalar-Valued Versus Operator-Valued Free Probability

The Linearization Philosophy
In order to understand polynomials in non-commuting variables, it suffices
to understand matrices of linear polynomials in those variables.

History (in operator algebras)
Voiculescu 1987: motivation
Haagerup, Thorbjørnsen 2005: largest eigenvalue
Anderson 2012: the selfadjoint version

(“Schur complement")

History (in other fields)
The same idea has been used in other fields under different names (like
"descriptor system" in control theory), for example:

Schützenberger 1961: automata theory
Helton, McCullough, Vinnikov 2006: symmetric descriptor realization
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Scalar-Valued Versus Operator-Valued Free Probability

Definition
Consider a polynomial p in non-commuting variables x and y.
A linearization of p is an N ×N matrix (with N ∈ N) of the form

p̂ =

(
0 u
v Q

)
,

u, v,Q are matrices of the following sizes: u is 1× (N − 1); v is
(N − 1)×N ; and Q is (N − 1)× (N − 1)

u, v, Q are polynomials in x and y, each of degree ≤ 1

Q is invertible and we have p = −uQ−1v

Theorem (Schützenberger; Helton, McCullough, Vinnikov; Anderson)
For each p there exists a linearization p̂
(with an explicit algorithm for finding those)
If p is selfadjoint, then this p̂ is also selfadjoint
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Example
A selfadjoint linearization of
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 0 x x
2 + y
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x
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because we have
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x x
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Scalar-Valued Versus Operator-Valued Free Probability

What is a Linearization Good for?

We have then

p̂ =

(
0 u
v Q

)
=

(
1 uQ−1

0 1

)(
p 0
0 Q

)(
1 0

Q−1v 1

)

Note:
(
1 0
a 1

)
is always invertible with

(
1 0
a 1

)−1
=

(
1 0
−a 1

)
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What is a Linearization Good for?

More general, for z ∈ C put b =
(
z 0
0 0

)
and then

b− p̂ =
(
z −u
−v −Q

)
=

(
1 uQ−1

0 1

)(
z − p 0
0 −Q

)(
1 0

Q−1v 1

)
z − p invertible ⇐⇒ b− p̂ invertible

and actually

(b− p̂)−1 =
[(

1 uQ−1

0 1

)(
z − p 0
0 −Q

)(
1 0

Q−1v 1

)]−1

=

(
1 0

−Q−1v 1

)(
(z − p)−1 0

0 −Q−1
)(

1 −uQ−1
0 1

)
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Scalar-Valued Versus Operator-Valued Free Probability

(b− p̂)−1 =
(

1 0
−Q−1v 1

)(
(z − p)−1 0

0 −Q−1
)(

1 −uQ−1
0 1

)

=

(
(z − p)−1 −(z − p)−1uQ−1

−Q−1v(z − p)−1 Q−1v(z − p)−1uQ−1 −Q−1
)

=

(
(z − p)−1 ∗
∗ ∗

)

and we can get the Cauchy transform Gp(z) = ϕ((z − p)−1) of p as the
(1,1)-entry of the matrix-valued Cauchy-transform of p̂

Gp̂(b) = id⊗ ϕ((b− p̂)−1) =
(
ϕ((z − p)−1) · · ·

· · · · · ·

)
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Scalar-Valued Versus Operator-Valued Free Probability

Why is p̂ better than p?

The selfadjoint linearization p̂ is now the sum of two selfadjoint
operator-valued variables

p̂ = x̂+ ŷ =

0 x x
2

x 0 0
x
2 0 0

+

0 0 y
0 0 −1
y −1 0


where

we know the operator-valued distribution of x̂ and the operator-valued
distribution of ŷ
and x̂ and ŷ are operator-valued freely independent!

This is now a problem about operator-valued free convolution. This we can
do.
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Scalar-Valued Versus Operator-Valued Free Probability

Analytic Description of Operator-Valued Free
Convolution

Definition
Consider an operator-valued probability space E : A → B.
For a random variable x ∈ A, we define the operator-valued Cauchy
transform:

G(b) := E[(b− x)−1] (b ∈ B).

For x = x∗, this is well-defined and a nice analytic map on the
operator-valued upper halfplane:

H+(B) := {b ∈ B | b− b
∗

2i
> 0}
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Scalar-Valued Versus Operator-Valued Free Probability

Subordination Formulation
Theorem (Belinschi, Mai, Speicher 2013)
Let x and y be selfadjoint operator-valued random variables free over B.
Then there exists a Fréchet analytic map ω : H+(B)→ H+(B) so that

Gx+y(b) = Gx(ω(b)) for all b ∈ H+(B).

Moreover, if b ∈ H+(B), then ω(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fb(w) = hy(hx(w) + b) + b,

and
ω(b) = lim

n→∞
f◦nb (w) for any w ∈ H+(B).

where

H+(B) := {b ∈ B | b− b
∗

2i
> 0}, h(b) :=

1

G(b)
− b
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Scalar-Valued Versus Operator-Valued Free Probability

Example
P (X,Y ) = XY + Y X +X2

for independent X,Y ; X is Gaussian and Y is Wishart

p̂ =

 0 x y + x
2

x 0 −1
y + x

2 −1 0



−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(x, y) = xy + yx+ x2

for free x, y; x is semicircular and y is Marchenko-Pastur
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Scalar-Valued Versus Operator-Valued Free Probability

Can We Calculate Free Deterministic Equivalents?
Problem
Usually, our free deterministic equivalents are polynomials in free variables.
Can we calculate their distribution out of the knowledge of the distribution
of each variable?

Solution
Yes, we can!
For this, use the combination of

the linearization trick
recent advances on the theory of operator-valued free convolution

This yields:
some fixed point equation for the wanted Stieltjes transform
the uniqueness of the solution of this fixed point equations, within the
class of Stieltjes transforms, is given by our analytic theory of
operator-valued free convolution
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Section 6

Conclusion
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Conclusion

Conclusion
Free Probability Theory can deal with

rectangular matrices
Wigner matrices
deterministic equivalents
arbitrary polynomials in free variables

Literature
Speicher, Vargas: Free deterministic equivalents, rectangular random
matrix models, and operator-valued free probability theory. Random
Matrices: Theory Appl. 1 (2012).
Vargas: PhD thesis, forthcoming
Belinschi, Mai, Speicher: Analytic subordination theory of
operator-valued free additive convolution and the solution of a general
random matrix problem. CRELLE, to appear
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