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Abstract. This paper is devoted to the study of noncommutative maximal inequalities and

ergodic theorems for group actions on von Neumann algebras. Consider a locally compact group

G of polynomial growth with a symmetric compact subset V . Let α be a continuous action of
G on a von Neumann algebra M by trace-preserving automorphisms. We then show that the

operators defined by

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈ Lp(M), n ∈ N, 1 ≤ p ≤ ∞

is of weak type (1, 1) and of strong type (p, p) for 1 < p < ∞. Consequently, the sequence
(Anx)n≥1 converges almost uniformly for x ∈ Lp(M) for 1 ≤ p < ∞. Also we establish

the noncommutative maximal and individual ergodic theorems associated with more general

doubling conditions; and we prove the corresponding results for general actions on one fixed
noncommutative Lp-space which are beyond the class of Dunford-Schwartz operators considered

previously by Junge and Xu. As key ingredients, we also obtain the Hardy-Littlewood maximal

inequality on metric spaces with doubling measures in the operator-valued setting. After the
groundbreaking work of Junge and Xu on the noncommutative Dunford-Schwartz maximal

ergodic inequalities, this is the first time that more general maximal inequalities are proved

beyond Junge-Xu’s setting. Our approach is based on the quantum probabilistic methods as
well as the random walk theory.

1. Introduction

This paper studies maximal inequalities and ergodic theorems for group actions on noncommu-
tative Lp-spaces. The connection between ergodic theory and von Neumann algebras goes back
to the very beginning of the theory of operator algebras. However, the study of individual er-
godic theorems in the noncommutative setting only took off with Lance’s pioneering work [Lan76]
in 1976. The topic was then extensively investigated in a series of works of Conze, Dang-Ngoc,
Kümmerer, Yeadon and others (see [CDN78, Küm78, Yea77, Jaj85] and the references therein).
Among them, Yeadon [Yea77] obtained a maximal ergodic theorem in the preduals of semifinite
von Neumann algebras. But the corresponding maximal inequalities in Lp-spaces remained open
until the celebrated work of Junge and Xu [JX07], which established the noncommutative ana-
logue of the Dunford-Schwartz maximal ergodic theorem. This breakthrough motivates further
research on noncommutative ergodic theorems, such as [AD06, Hu08, Bek08, Lit14, HS16]. Note
that all these works essentially remain in the class of Dunford-Schwartz operators, that is, do not
go beyond Junge-Xu’s setting.

On the other hand, in the classical ergodic theory, a number of significant developments related
to individual ergodic theorems for group actions have been established in the past years. In
particular, Breuillard [Bre14] and Tessera [Tes07] studied the balls in groups of polynomial growth;
they proved that for any invariant metric quasi-isometric to a word metric (such as invariant
Riemannian metrics on connected nilpotent Lie groups), the balls are asymptotically invariant
and satisfy the doubling condition, and hence satisfy the individual ergodic theorem. This settled
a long-standing problem in ergodic theory since Calderón’s classical paper [Cal53] in 1953. Also,
Lindenstrauss [Lin01] proved the individual ergodic theorem for a tempered Følner sequences,
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which resolves the problem of constructing pointwise ergodic sequences on an arbitrary amenable
group. We refer to the survey paper [Nev06] for more details.

Thus it is natural to extend Junge-Xu’s work to actions of more general amenable groups rather
than the integer group. As in the classical case, the first natural step would be to establish the
maximal ergodic theorems for doubling conditions. However, since we do not have an appropriate
analogue of covering lemmas in the noncommutative setting, no significant progress has been
made in this direction. In this paper we provide a new approach to this problem. This approach is
based on both classical and quantum probabilistic methods, and allows us to go beyond the class
of Dunford-Schwartz operators considered by Junge and Xu.

Our main results establish the noncommutative maximal and individual ergodic theorems for
ball averages under the doubling condition. Let G be a locally compact group equipped with a
right Haar measure m. Recall that for an invariant metric1 d on G, we say that (G, d) satisfies
the doubling condition if the balls Br := {g ∈ G : d(g, e) ≤ r} satisfy

(1.1) m(B2r) ≤ Cm(Br), r > 0,

where C is a constant independent of r. We say that the balls are asymptotically invariant under
right translation if for every g ∈ G,

(1.2) lim
r→∞

m((Brg)4Br)

m(Br)
= 0,

where 4 denotes the usual symmetric difference of subsets. To state the noncommutative ergodic
theorems, we consider a von Neumann algebraM equipped with a normal semifinite trace τ . We
also consider an action α of G on the associated noncommutative Lp-spaces Lp(M), under some
mild assumptions clarified in later sections. In particular, if α is a continuous action of G on M
by τ -preserving automorphisms of M, then α extends to isometric actions on the spaces Lp(M).
The following is one of our main results:

Theorem 1.1. Assume that (G, d) satisfies (1.1) and (1.2). Let α be a continuous action of G
on M by τ -preserving automorphisms. Let Ar be the averaging operators

Arx =
1

m(Br)

ˆ
Br

αgxdm(g), x ∈M, r > 0.

Then (Ar)r>0 is of weak type (1, 1) and of strong type (p, p) for 1 < p < ∞. Moreover for all
1 ≤ p <∞, the sequence (Arx)r>0 converges almost uniformly for x ∈ Lp(M).

Here we refer to Section 2.1 for the notion of weak and strong type (p, p) inequalities in the
noncommutative setting. Also, the notion of almost uniform convergence is a noncommutative
analogue of the notion of almost everywhere convergence. We refer to Definition 6.1 for the relevant
definitions.

There exist a number of examples satisfying assumption (1.1) and (1.2) of the above theorem,
for which we refer to [Bre14, Tes07, Nev06] as is quoted before. In particular, if we take G to be
the integer group Z and d to be the usual word metric, then we recover the usual ergodic average
An = 1

2n+1

∑n
k=−n T

k for an invertible operator T , as is treated in [JX07]. More generally, we
may consider groups of polynomial growth:

Theorem 1.2. Assume that G is generated by a symmetric compact subset V and is of polynomial
growth.

(1) Fix 1 < p < ∞. Let α be a strongly continuous and uniformly bounded action of G on
Lp(M) such that αg is a positive map for each g ∈ G. Then the operators defined by

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈ Lp(M), n ∈ N

is of strong type (p, p). The sequence (Anx)n≥1 converges bilaterally almost uniformly for x ∈
Lp(M).

1In this paper we always assume that d is a measurable function on G × G and m is a Radon Borel measure

with respect to (G, d).
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(2) Let α be a strongly continuous action of G on M by τ -preserving automorphisms. Then the
operators defined by

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈M, n ∈ N

is of weak type (1, 1) and of strong type (p, p) for all 1 < p <∞. The sequence (Anx)n≥1 converges
almost uniformly for x ∈ Lp(M) for all 1 ≤ p <∞.

The theorems rely on several key results obtained in this paper. The subjects that we address
are as follows:

i) Noncommutative transference principles. Our first key ingredient is a noncommutative variant
of Calderón’s transference principle [Cal68, CW76, Fen98], given in Theorem 3.1 and Theorem
3.3. More precisely, we prove that for actions by an amenable group, in order to establish the
noncommutative maximal ergodic inequalities, it suffices to show the inequalities for translation
actions on operator-valued functions. We remark that the particular case of certain actions by R
is also discussed in [Hon17] by the first author.

ii) Noncommutative Hardy-Littlewood maximal inequalities on metric measure spaces. As for the
second key ingredient, we prove in Theorem 4.1 a noncommutative extension of Hardy-Littlewood
maximal inequalities on metric measure spaces. For a doubling metric measure space (X, d, µ),
denote by B(x, r) the ball with center x and radius r with respect to the metric d. Our result
asserts that the Hardy-Littlewood averaging operators on the Lp(M)-valued functions

Arf(x) =
1

µ(B(x, r))

ˆ
B(x,r)

fdµ, f ∈ Lp(X;Lp(M)), x ∈ X, r > 0

satisfy the weak type (1, 1) and strong type (p, p) inequalities. We remark that the classical
argument via covering lemmas does not seem to fit into this operator-valued setting. Instead, our
approach is based on the study of random dyadic systems by Naor, Tao [NT10] and Hytönen,
Kaimera [HK12]. The key idea is to relate the desired inequality to noncommutative martingales,
and to use the available results in quantum probability developed in [Cuc71, Jun02]. The approach
is inspired by Mei’s famous work [Mei03, Mei07] which asserts that the usual continuous BMO
space is the intersection of several dyadic BMO spaces.

iii) Domination by Markov operators. In the study of ergodic theorems for actions by free groups
or free abelian groups, it is a key fact that the associated ergodic averages can be dominated by
the standard averaging operators of the form 1

n

∑n
k=1 T

k for some map T (see [Bru73, NS94]).
Also, in [SS83], Stein and Strömberg apply the Markov semigroup with heat kernels to estimate
the maximal inequalities on Euclidean spaces with large dimensions. In this paper, we build a
similar result for groups of polynomial growth. Our approach is new and the construction follows
easily from some typical Markov chains on these groups. More precisely, we show in Proposition
4.8 that for a group G of polynomial growth with a symmetric compact generating subset V ⊂ G,
and for an action α of G, there exists a constant c such that

1

m(V n)

ˆ
V n

αgxdm(g) ≤ c

n2

2n2∑
k=1

T kx, x ≥ 0,

where T = 1
m(V )

´
V
αgdm(g). The result will help us to improve the weak type inequalities in

Theorem 1.2.
iv) Individual ergodic theorems for Lp representations. In the classical setting, the individ-

ual ergodic theorem holds for positive contractions on Lp-spaces with one fixed p ∈ (1,∞)
([IT64, Akc75]). The results can be also generalized for positive power-bounded operators and
more general Lamperti operators (see for example [MRDlT88, Kan78, Tem15]). However in the
noncommutative setting, the individual ergodic theorems on Lp-spaces were only known for op-
erators which can be extended to L1 + L∞. In this paper we will develop in Section 6 some new
methods to prove the individual ergodic theorems for operators on one fixed Lp-space.

Apart from the above approach, we also provide in Section 5 an alternative proof of Theorem 1.1
for discrete groups of polynomial growth. Compared to the previous approach, this proof is much
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more group-theoretical and has its own interests. It relies essentially on the concrete structure of
groups of polynomial growth discovered by Bass, Gromov and Wolf.

We remark that although our results are stated in the setting of tracial Lp-spaces, a large
number of the results can be extended to the general non-tracial case without difficulty. Since
the standard methods for these generalizations are already well developed in [JX07, HJX10], we
would like to leave the details to the reader, and restrict to the semifinite case for simplicity of
exposition.

We end this introduction with a brief description of the organization of the paper. In the
next section we recall some basics on noncommutative maximal operators as well as actions by
amenable groups. Section 3 is devoted to the proof of the noncommutative Calderón transference
principle. In Section 4 we prove the Hardy-Littlewood maximal inequalities mentioned above,
and deduce the maximal inequalities in Theorem 1.1. We also use the similar ideas to establish
the ergodic theorems for increasing sequences of compact subgroups (Theorem 4.7). In the last
part of the section, we will provide an approach based on the random walk theory, which relates
the ball averages to the classical ergodic averages of Markov operators. In Section 5 we provide
an alternative group-theoretical approach to Theorem 1.2. In Section 6 we discuss the individual
ergodic theorems, which proves the bilateral almost uniform convergences in Theorem 1.1. Also
we give new results on almost uniform convergences associated with actions on one fixed Lp-space.

2. Preliminaries

2.1. Noncommutative Lp-spaces and noncommutative maximal norms. Throughout the
paper, unless explicitly stated otherwise,M will always denote a semifinite von Neumann algebra
equipped with a normal semifinite trace τ . Let S+ denote the set of all x ∈ M+ such that
τ(suppx) < ∞, where suppx denotes the support of x. Let S be the linear span of S+. Given
1 ≤ p <∞, we define

‖x‖p =
[
τ(|x|p)

]1/p
, x ∈ S,

where |x| = (x∗x)1/2 is the modulus of x. Then (S, ‖ · ‖p) is a normed space, whose completion
is the noncommutative Lp-space associated with (M, τ), denoted by Lp(M). As usual, we set
L∞(M) =M equipped with the operator norm. Let L0(M) denote the space of all closed densely
defined operators on H measurable with respect to (M, τ) (H being the Hilbert space on which
M acts). Then Lp(M) can be viewed as closed densely defined operators on H. We denote by
L+

0 (M) the positive part of L0(M), and set L+
p (M) = L+

0 (M) ∩ Lp(M). We refer to [PX03] for
more information on noncommutative Lp-spaces.

For a σ-finite measure space (X,Σ, µ), we consider the von Neumann algebraic tensor product
L∞(X)⊗̄M equipped with the trace

´
⊗τ , where

´
denotes the integral against µ. For 1 ≤ p <∞,

the space Lp(L∞(X)⊗̄M) isometrically coincides with Lp(X;Lp(M)), the usual Lp-space of p-
integrable functions from X to Lp(M). In this paper we will not distinguish these two notions
unless specified otherwise.

Maximal norms in the noncommutative setting require a specific definition. The subtlety is
that supn |xn| does not make any sense for a sequence (xn)n of arbitrary operators. This difficulty
is overcome by considering the spaces Lp(M; `∞), which are the noncommutative analogs of the
usual Bochner spaces Lp(X; `∞). These vector-valued Lp-spaces were first introduced by Pisier
[Pis98] for injective von Neumann algebras and then extended to general von Neumann algebras
by Junge [Jun02]. The descriptions and properties below can be found in [JX07, Section 2]. Given
1 ≤ p ≤ ∞, Lp(M; `∞) is defined as the space of all sequences x = (xn)n≥0 in Lp(M) which
admit a factorization of the following form: there are a, b ∈ L2p(M) and a bounded sequence
y = (yn) ⊂ L∞(M) such that

xn = aynb, ∀ n ≥ 0.

We then define
‖x‖Lp(M;`∞) = inf

{
‖a‖2p sup

n≥0
‖yn‖∞ ‖b‖2p

}
,

where the infimum runs over all factorizations as above. We will adopt the convention that the
norm ‖x‖Lp(M;`∞) is denoted by

∥∥ sup+
n xn

∥∥
p
. As an intuitive description, we remark that a
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positive sequence (xn)n≥0 of Lp(M) belongs to Lp(M; `∞) if and only if there exists a positive
a ∈ Lp(M) such that xn ≤ a for any n ≥ 0 and in this case,∥∥ sup

n

+xn
∥∥
p

= inf {‖a‖p : a ∈ Lp(M), a ≥ 0 and xn ≤ a for any n ≥ 0} .

Also, we denote by Lp(M; c0) the closure of finite sequences in Lp(M; `∞) for 1 ≤ p < ∞. On
the other hand, we may also define the space Lp(M; `c∞), which is the space of all sequences
x = (xn)n≥0 in Lp(M) which admit a factorization of the following form: there are a ∈ Lp(M)
and y = (yn) ⊂ L∞(M) such that

xn = yna, ∀ n ≥ 0.

And we define
‖x‖Lp(M;`c∞) = inf

{
sup
n≥0
‖yn‖∞ ‖a‖p

}
,

where the infimum runs over all factorizations as above. Similarly, we denote by Lp(M; cc0) be the
closure of finite sequences in Lp(M; `c∞). We refer to [Mus03, DJ04] for more information.

Indeed, for any index I, we can define the spaces Lp(M; `∞(I)) of families (xi)i∈I in Lp(M)
with similar factorizations as above. We omit the details and we will simply denote the spaces by
the same notation Lp(M; `∞) and Lp(M; c0) if non confusion can occur.

The following properties will be of use in this paper.

Proposition 2.1. (1) A family (xi)i∈I ⊂ Lp(M) belongs to Lp(M; `∞) if and only if

sup
J finite

∥∥∥ sup
i∈J

+ xi

∥∥∥
p

< ∞,

and in this case ∥∥∥ sup
i∈I

+ xi

∥∥∥
p

= sup
J finite

∥∥∥ sup
i∈J

+ xi

∥∥∥
p
.

(2) Let 1 ≤ p0 < p1 ≤ ∞ and 0 < θ < 1. Then we have isometrically

(2.1) Lp(M; `∞) = (Lp0(M; `∞), Lp1(M; `∞))θ ,

where 1
p = 1−θ

p0
+ θ

p1
. If additionally p0 ≥ 2, then we have isometrically

(2.2) Lp(M; `c∞) = (Lp0(M; `c∞), Lp1(M; `c∞))θ ,

where 1
p = 1−θ

p0
+ θ

p1
.

Based on these notions we can discuss the noncommutative maximal inequalities.

Definition 2.2. Let 1 ≤ p ≤ ∞ and let S = (Si)i∈I be a family of maps from L+
p (M) to L+

0 (M).
(1) For p < ∞, we say that S is of weak type (p, p) with constant C if there exists a constant

C > 0 such that for all x ∈ L+
p (M) and λ > 0, there is a projection e ∈M satisfying

τ(1− e) ≤ Cp

λp
‖x‖pp, eSi(x)e ≤ λe, i ∈ I.

(2) For 1 ≤ p ≤ ∞, we say that S is of strong type (p, p) with constant C if there exists a
constant C > 0 such that ∥∥∥sup

i∈I

+Six
∥∥∥
p
≤ C‖x‖p, x ∈ Lp(M).

We will also need a reduction below for weak type inequalities.

Lemma 2.3 ([Hon17, Lemma 3.2]). If for all finite subset J ⊂ I, (Si)i∈J is of weak type (p, p)
with constant C, then (Si)i∈I is of weak type (p, p) with constant 4C.

The following noncommutative Doob inequalities will play a crucial role in our proof.

Lemma 2.4 ([Cuc71, Jun02]). Let (Mn)n∈Z be an increasing sequence of von Neumann subal-
gebras of M such that ∪n∈ZMn is w*-dense in M. Denote by En the τ -preserving conditional
expectation from Lp(M) onto Lp(Mn). Then (En)n∈Z is of weak type (1, 1) and strong type (p, p)
for all 1 < p <∞.
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2.2. Actions by amenable groups. Unless explicitly stated otherwise, throughout G will denote
a locally compact group with neutral element e, equipped with a fixed right invariant Haar measure
m. For a Banach space E, we say that

α : G→ B(E), g 7→ αg

is an action if αg ◦ αh = αgh for all g, h ∈ G. Let (M, τ) be as before. For a fixed 1 ≤ p ≤ ∞, we
will be interested in actions α = (αg)g∈G on Lp(M) with the following conditions:

(Ap
1) Continuity: for all x ∈ Lp(M), the map g 7→ αgx from G to Lp(M) is continuous. Here

we take the norm topology on Lp(M) if 1 ≤ p <∞ and the w*-topology if p =∞.
(Ap

2) Uniform boundedness: supg∈G ‖αg : Lp(M)→ Lp(M)‖ <∞.

(Ap
3) Positivity : for all g ∈ G, αgx ≥ 0 if x ≥ 0 in Lp(M).

As a natural example, if α is an action on M satisfying the condition:

(A′) for all x ∈ M, the map g 7→ αgx from G to M is continuous with respect to the w*-
topology onM; and for all g ∈ G, αg is an automorphism ofM (in the sense of ∗-algebraic
structures) such that τ = τ ◦ αg,

then α extends naturally to actions on Lp(M) with conditions (Ap
1)-(Ap

3) for all 1 ≤ p ≤ ∞,
still denoted by α (see e.g. [JX07, Lemma 1.1]). In this case for each g ∈ G, αg is an isometry
on Lp(M). We refer to [Oli13, Oli12, Bek15] for other natural examples of group actions on
noncommutative Lp-spaces.

Recall that G is said to be amenable if G admits a Følner net, i.e., a net (Fi)i∈I of measurable
subsets of G with m(Fi) <∞ such that for all g ∈ G,

lim
i

m((Fig)4 Fi)

m(Fi)
= 0.

Note that the above condition is a reformulation of the asymptotic invariance (1.2) for the general
setting. It is known that (Fi)i∈I is a Følner net if for all compact measurable subsets K ⊂ G,

(2.3) lim
i

m(FiK)

m(Fi)
= 1.

Recall that G is a compactly generated group of polynomial growth if the compact generating
subset V ⊂ G satifies

m(V n) ≤ knr, n ≥ 1,

where k > 0 and r ∈ N are constants independent of n. It is well-known that any group of
polynomial growth is amenable and the sequence (V n)n≥1 satisfies the above Følner condition
(see e.g. [Bre14, Tes07]). We refer to [Pat88] for more information on amenable groups.

Now let G be amenable and (Fi)i∈I be a Følner net in G. Let 1 < p < ∞. Let α = (αg)g∈G
be an action of G on Lp(M) satisfying (Ap

1)-(Ap
3). Denote by Ai the corresponding averaging

operators

Aix =
1

m(Fi)

ˆ
Fi

αgxdm(g), x ∈ Lp(M).

According to the mean ergodic theorem for amenable groups (see e.g. [ADAB+10, Théorème
2.2.7]), we have a canonical splitting on Lp(M):

Lp(M) = Fp ⊕Fp⊥,
with

(2.4) Fp = {x ∈ Lp(M) : αgx = x, g ∈ G}, Fp⊥ = span{x− αgx : g ∈ G, x ∈ Lp(M)}.
Let P be the bounded positive projection from Lp(M) onto Fp. Then (Aix)i converges to Px in
Lp(M) for all x ∈ Lp(M).

Assume additionally that α extends to an action on ∪1≤p≤∞Lp(M) satisfying (Ap
1)-(Ap

3) for
every 1 ≤ p ≤ ∞. Note that the convergence in Lp(M) yields the convergence in measure in
L0(M), and in particular for x ∈ L+

1 (M) ∩M+ ∩ L2(M) and for p0 = 1 or p0 =∞,

‖Px‖p0 ≤ lim inf
n→∞

‖Anx‖p0 ≤ sup
g∈G
‖αg‖B(Lp0 (M))‖x‖p0 ,
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so by [JX07, Lemma 1.1] and [Yea77, Proposition 1], P admits a continuous extension on L1(M)
and M, still denoted by P . The splitting (2.4) is also true in this case. Note then however that
F∞⊥ is the w*-closure of the space spanned by {x− αgx : g ∈ G, x ∈M}.

3. Noncommutative Calderón’s transference principle

In this section we discuss a noncommutative variant of Calderón’s transference principle. Fix
1 ≤ p < ∞. Let G be a locally compact group and α be an action satisfying (Ap

1)-(Ap
3) in the

previous section. Let (µn)n≥1 be a sequence of Radon probability measures on G. We consider
the following averages

(3.1) Anx =

ˆ
G

αgxdµn(g), x ∈ Lp(M), n ≥ 1.

Also, let us consider the natural translation action of G on itself. We are interested in the following
averages: for all f ∈ Lp(G;Lp(M)),

(3.2) A′nf(g) =

ˆ
G

f(gh)dµn(h), g ∈ G,n ≥ 1,

where the integration denotes the usual integration of Banach space valued functions.

3.1. Strong type inequalities. We begin with the transference principle for strong type (p, p)
inequalities.

Theorem 3.1. Assume that G is amenable. Fix 1 ≤ p < ∞. If there exists a constant C > 0
such that ∥∥∥sup

n

+A′nf
∥∥∥
p
≤ C‖f‖p, f ∈ Lp(G;Lp(M)),

then there exists a constant C ′ > 0 depending on α such that∥∥∥sup
n

+Anx
∥∥∥
p
≤ CC ′‖x‖p, x ∈ Lp(M).

Proof. Note that we may take an increasing net of compact subsetsKi ⊂ G such that limi µn(Ki) =
µn(G). Then for

An,ix =

ˆ
G

αgxχKi(g)dµn(g), x ∈ Lp(M), n ≥ 1,

we have

An,ix ≤ Anx, lim
i→∞

‖Anx−An,ix‖p = 0, x ∈ L+
p (M).

So for x, y ∈ L+
p (M),

Anx ≤ y iff ∀i , An,ix ≤ y.
Hence ‖ sup+

n,iAn,ixn,i‖p = ‖ sup+
n Anxn‖p. So without loss of generality we may assume that µn

are of compact support.
We fix x ∈ Lp(M) and N ≥ 1. Choose a compact subset K ⊂ G such that µn is supported in K

for all 1 ≤ n ≤ N . Since αg : Lp(M)→ Lp(M) is positive for all g ∈ G, we see that (αg ⊗ Id)g∈G
extends to a uniformly bounded family of maps on Lp(M; `∞) (see e.g. [HJX10, Proposition 7.3]).
So we may choose a constant C ′ > 0 such that∥∥∥ sup+

1≤n≤N
Anx

∥∥∥
p

=
∥∥∥ sup+

1≤n≤N
αg−1αgAnx

∥∥∥
p
≤ C ′

∥∥∥ sup+

1≤n≤N
αgAnx

∥∥∥
p
, g ∈ G.

Let F be a compact subset. Then we have

(3.3)
∥∥∥ sup+

1≤n≤N
Anx

∥∥∥p
p
≤ C ′p 1

m(F )

ˆ
F

∥∥∥ sup+

1≤n≤N
αgAnx

∥∥∥p
p
dm(g).

We define a function f ∈ Lp(G;Lp(M)) as

f(h) = χFK(h)αhx, h ∈ G.
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Then for all g ∈ F ,

(3.4) αgAnx =

ˆ
K

αghxdµn(h) =

ˆ
K

f(gh)dµn(h) = A′nf(g).

We consider (A′nf)1≤n≤N ∈ Lp(L∞(G)⊗̄M; `∞), and for any ε > 0 we take a factorization
A′nf = aFnb such that a, b ∈ L2p(L∞(G)⊗̄M), Fn ∈ L∞(G)⊗̄M and

‖a‖2p sup
1≤n≤N

‖Fn‖∞‖b‖2p ≤
∥∥∥(A′nf)1≤n≤N

∥∥∥
Lp(L∞(G)⊗̄M;`∞)

+ ε.

Then we haveˆ
G

∥∥∥ sup+

1≤n≤N
A′nf(g)

∥∥∥p
p
dm(g) ≤

ˆ
G

‖a(g)‖p2p sup
1≤n≤N

‖Fn(g)‖p∞‖b(g)‖p2pdm(g)

≤ ‖a‖p2p sup
1≤n≤N

‖Fn‖p∞‖b‖
p
2p ≤

(∥∥∥(A′nf)1≤n≤N

∥∥∥
Lp(L∞(G)⊗̄M;`∞)

+ ε

)p
.

Since ε is arbitrarily chosen, we obtainˆ
G

∥∥∥ sup+

1≤n≤N
A′nf(g)

∥∥∥p
p
dm(g) ≤

∥∥∥ sup+

1≤n≤N
A′nf

∥∥∥p
p
.

Thus together with (3.3), (3.4) and the assumption we see that∥∥∥ sup+

1≤n≤N
Anx

∥∥∥p
p
≤ C ′p

m(F )

ˆ
F

∥∥∥ sup+

1≤n≤N
A′nf(g)

∥∥∥p
p
dm(g) ≤ C ′p

m(F )

∥∥∥ sup+

1≤n≤N
A′nf

∥∥∥p
p

≤ CpC ′p

m(F )
‖f‖pp =

CpC ′p

m(F )

ˆ
FK

‖αhx‖ppdm(h)

≤ CpC ′pm(FK)

m(F )
‖x‖pp.

Since G is amenable, for any ε > 0 we may choose the above subset F such that m(FK)/m(F ) ≤
1 + ε. Therefore we get ∥∥∥ sup+

1≤n≤N
Anx

∥∥∥
p
≤ CC ′(1 + ε)‖x‖p.

Note that N, ε, x are all arbitrarily chosen, so we establish the theorem. �

Remark 3.2. Applying the same argument, we may obtain several variants of the above theorem.
(1) The sequence of measures (µn)n≥1 can be replaced by any family (µi)i∈I of Radon proba-

bility measures for an arbitrary index set I.
(2) The positivity of the action α can be replaced by more general assumptions. It suffices to

assume that

sup
g∈G
‖αg ⊗ Id‖B(Lp(M;`∞)) <∞.

IfM is commutative, this is equivalent to say that the operators (αg)g∈G are regular with uniformly
bounded regular norm ([MN91]). In the noncommutative setting, one may assume that (αg)g∈G
are uniformly bounded decomposable maps, and we refer to [Pis95, JR04] for more details.

(3) One may also state similar properties for transference of linear operators; in this case the
assumption on positivity of α can be ignored, and the semigroup actions can be included. We
have the following noncommutative analogue of the transference result in [CW76, Theorem 2.4].
Assume that G and α satisfy one of the following conditions:

(a) G is an amenable locally compact group, and α satisfies (Ap
1) and (Ap

2);
(b) G is a discrete amenable semigroup or G = R+, α satisfies (Ap

1) and each αg is an isometry
on Lp(M) (or more generally, there exist K1,K2 > 0 such that for all g ∈ G, we have
K1‖x‖p ≤ ‖αgx‖p ≤ K2‖x‖p).

Let µ be a bounded Radon measure on G. Define

Tµ(f) =

ˆ
G

f(gh)dµ(h), f ∈ Lp(G),
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and

T̃µ(x) =

ˆ
G

αgxdµ(g), x ∈ Lp(M).

Then we have

‖T̃µ‖B(Lp(M)) ≤ sup
g∈G
‖αg‖B(Lp(M))‖Tµ ⊗ Id‖B(Lp(L∞(G)⊗̄M)).

3.2. Weak type inequalities. Now we discuss the transference principle for weak type (p, p)
inequalities. In this case we will only consider the special case of group actions on von Neumann
algebras. We assume that α is given by an action on M satisfying the condition (A′) in Section
2.2.

Theorem 3.3. Assume that G is amenable. Let (An)n≥1 and (A′n)n≥1 be the associated sequences
of maps given in (3.1) and (3.2). Fix 1 ≤ p <∞. If the sequence (A′n)n≥1 is of weak type (p, p),
then (An)n≥1 is of weak type (p, p) too.

Proof. As in the last subsection, we may assume without loss of generality that µn is of compact
support. Assume that the sequence (A′n)n≥1 is of weak type (p, p) with constant C. By Lemma 2.3,
it suffices to show that there exists a constant C ′ > 0 such that for all λ > 0, x ∈ L+

p (M), N ≥ 1,
there exists a projection e ∈M such that

τ(e⊥) ≤ C ′p

λp
‖x‖pp, e(Anx)e ≤ λ, 1 ≤ n ≤ N.

We fix λ > 0, x ∈ Lp(M) and N ≥ 1. Choose a compact subset K ⊂ G such that µn is supported
in K for all 1 ≤ n ≤ N . Let F be a compact subset. We define a function f ∈ Lp(G;Lp(M)) as

f(h) = χFK(h)αhx, h ∈ G.
Then for all g ∈ F ,

(3.5) αgAnx =

ˆ
K

αghxdµn(h) =

ˆ
K

f(gh)dµn(h) = A′nf(g).

Since the sequence (A′n)n≥1 is of weak type (p, p) with constant C, we may choose a projection
e ∈ L∞(G)⊗̄M such thatˆ

G

τ(e(g)⊥)dg ≤
(
C
‖f‖Lp(G;Lp(M))

λ

)p
and e(A′nf)e ≤ λ, 1 ≤ n ≤ N,

where we regard e as a measurable operator-valued function on G. Therefore by (3.5) for g ∈ G,
we have

(3.6) (αg−1e(g))(Anx)(αg−1e(g)) ≤ λ, n ≥ 1.

Recall that each αg−1 is a unital τ -preserving automorphism ofM. In particular, for an arbitrary
ε > 0, we may choose g0 ∈ G and a projection ẽ := αg−1

0
e(g0) ∈M such that

τ(ẽ⊥) ≤ inf
g∈G

τ(e(g)⊥) + ε and ẽ(Anx)ẽ ≤ λ, n ≥ 1.

Then we have

τ(ẽ⊥) ≤ 1

m(F )

ˆ
F

τ(e(g)⊥)dg + ε ≤ Cp

λpm(F )
‖f‖pLp(G;Lp(M)) + ε

=
Cp

λpm(F )

ˆ
FK

‖αhx‖ppdm(h) + ε

≤ Cpm(FK)

λpm(F )
‖x‖pp + ε.

Since G is amenable, for any ε > 0 we may choose the above subset F such that m(FK)/m(F ) ≤
1 + ε. Therefore we get

τ(ẽ⊥) ≤ Cp(1 + ε)

λp
‖x‖pp + ε, ẽ(Anx)ẽ ≤ λ, 1 ≤ n ≤ N.

Note that N, ε, x are all arbitrarily chosen, so we establish the theorem. �
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Remark 3.4. We remark that the above result also holds for other index sets. For example,
(µn)n≥1 can be replaced by an one-parameter family (µr)r∈R+

such that r 7→ Arx is continuous
for all x ∈ Lp(M). The only ingredient needed in the proof is that the condition (3.6) holds true
almost everywhere on G.

4. Maximal inequalities: probabilistic approach

This section is devoted to the proof of the maximal inequalities in Theorem 1.1. To this end we
will first establish a noncommutative Hardy-Littlewood maximal inequalities on doubling metric
spaces.

4.1. Hardy-Littlewood maximal inequalities on metric measure spaces. Throughout a
metric measure space (X, d, µ) refers to a metric space (X, d), equipped with a Radon measure µ.
We denote B(x, r) = {y ∈ X : d(y, x) ≤ r}, and we say that µ satisfies the doubling condition if
there exists a constant K > 0 such that

(4.1) ∀r > 0, x ∈ X, µ(B(x, 2r)) ≤ Kµ(B(x, r)).

In the sequel we always assume the non-degeneracy property 0 < µ(B(x, r)) < ∞ for all r > 0.
The following theorem can be regarded as an operator-valued analogue of the Hardy-Littlewood
maximal inequalities.

Theorem 4.1. Let (X, d, µ) be a metric measure space. Suppose that µ satisfies the doubling
condition. Let 1 ≤ p <∞, and let Ar be the averaging operators

Arf(x) =
1

µ(B(x, r))

ˆ
B(x,r)

fdµ, f ∈ Lp(X;Lp(M)), x ∈ X, r > 0.

Then (Ar)r∈R+
is of weak type (1, 1) and of strong type (p, p) for 1 < p <∞.

The key ingredient of the proof is the following construction of random partitions of metric
measure spaces, which is established in [HK12, Corollary 7.4].

Lemma 4.2. Let (X, d) be a metric space and µ be a Radon measure on X satisfying the doubling
condition. Then there exists a finite collection of families P1,P2, . . . ,PN , where each Pi :=
(Pi

k)k∈Z is a sequence of partitions of X, such that the following conditions hold true:

(1) for each 1 ≤ i ≤ N and for each k ∈ Z, the partition Pi
k+1 is a refinement of the partition

Pi
k;

(2) there exists a constant C > 0 such that for all x ∈ X and r > 0, there exist 1 ≤ i ≤ N, k ∈
Z and an element Q ∈Pi

k such that

B(x, r) ⊂ Q, µ(Q) ≤ Cµ(B(x, r)).

Remark 4.3. The lemma dates back to the construction of dyadic systems in the case of X = Rd,
which is due to Mei [Mei03, Mei07]. We remark that Mei’s construction also works for the discrete

space Zd as follows. For 0 ≤ i ≤ d and k ≥ 0, we set P̃i
−k to be the following family of intervals

in Z,

P̃i
−k = {[α(i)

k +m2k, α
(i)
k + (m+ 1)2k) ∩ Z : m ≥ 1},

where α
(i)
k =

∑k−1
j=0 2jξ

(i)
j modulo 2k, with

ξ
(i)
(d+1)n+l = δi,l, n ≥ 0, 0 ≤ l ≤ d.

And we set P̃i
k = P̃i

0 for all k ≥ 0. Consider the usual word metric d and the counting measure
µ on X = Zd. Then the the partitions

Pi
k :=

(
P̃i
k

)d
, k ∈ Z, 0 ≤ i ≤ d

satisfy the conditions in Lemma 4.2, with constant C ≤ 23d(d+2).
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Proof of Theorem 4.1. Let Σ be the σ-algebra of Borel sets on X. For 1 ≤ i ≤ N and k ∈ Z,
we define Σik ⊂ Σ to be the σ-subalgebra generated by the elements of Pi

k. Denote by Eik the
conditional expectation from L∞(X,Σ, µ)⊗̄M to L∞(X,Σik, µ|Σik)⊗̄M. For each x ∈ X, let Pi

k(x)

be the unique element of Pi
k which contains x. Then we have

Eikg(x) =
1

µ(Pi
k(x))

ˆ
Pi
k(x)

gdµ, x ∈ X, g ∈ L∞(X,Σ, µ)⊗̄M.

By Lemma 2.4, there exists a constant C > 0 such that for λ > 0 and f ∈ L+
1 (X;L1(M)), there

exists a projection ei ∈ L∞(X,Σ, µ)⊗̄M satisfying

τ(e⊥i ) ≤ C

λ
‖f‖L1(X;L1(M)), ei(Eikf)ei ≤ λ, k ∈ Z.

Take e = ∧iei to be the infimum of (ei)
N
i=1, i.e., the projection onto ∩ieiH (H being the Hilbert

space on which M acts). Note that (∧iei)⊥ ≤
∑
i e
⊥
i . Then we have

(4.2) τ(e⊥) ≤ CN

λ
‖f‖L1(X;L1(M)), e(Eikf)e ≤ λ, 1 ≤ i ≤ N, k ∈ Z.

By Lemma 4.2, there exists a constant C ′ > 0 such that for each x ∈ X and r > 0, there exist
1 ≤ i ≤ N and k ∈ Z such that B(x, r) ⊂Pi

k(x), µ(Pi
k(x)) ≤ C ′µ(B(x, r)); in particular,

(4.3) Arf(x) =
1

µ(B(x, r))

ˆ
B(x,r)

fdµ ≤ C ′ 1

µ(Pi
k(x))

ˆ
Pi
k(x)

fdµ = C ′Eikf(x).

Then together with (4.2) we see that

e(Arf)e ≤ C ′λ, r > 0.

Therefore (Ar)r>0 is of weak type (1, 1).
On the other hand, for 1 < p < ∞, according to the proof of (4.3), we have for f ∈

L+
p (X;Lp(M)),

‖(Arf)r>0‖Lp(M⊗̄L∞(X);`∞) ≤ C ′‖(
N∑
i=1

Eikf)k∈Z‖Lp(M⊗̄L∞(X);`∞)

≤ C ′
N∑
i=1

‖(Eikf)k∈Z‖Lp(M⊗̄L∞(X);`∞).

Since each (Eik)k∈Z on the right hand side is of strong type (p, p) by Lemma 2.4, we see that
(Ar)r∈R+ is of strong type (p, p), as desired. �

Remark 4.4. There is another approach of random partitions of metric measure spaces, which is
proved by Naor and Tao [NT10, Lemma 3.1]. The construction is motivated by the study of Hardy-
Littlewood maximal inequalities on large dimensional doubling spaces. Their result replaces the
families P1,P2, . . . ,PN in Lemma 4.2 by a infinite random collection (Pω)ω∈Ω for a probability
space (Ω, P ) and assume a positive probability for the coverings of balls. In this case we may find
a random family of martingales {(Eωk )k∈Z, ω ∈ Ω} such that for some k : R+ → Z and for some
fixed constant c, we have

Arf ≤ c
ˆ

Ω

Eωk(r)f(x)dP (ω), f ∈ L+
p (X;Lp(M)).

This yields as well the strong type (p, p) inequalities of (Ar)r∈R+ for 1 < p < ∞. We omit the
details.
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4.2. Maximal ergodic inequalities. Based on the previous result we are now ready to deduce
the following maximal ergodic theorems. We say that a metric d on G is invariant if d(e, g) =
d(h, hg) for all g, h ∈ G. We denote Br = B(e, r) for r > 0. As before we consider an action α on
Lp(M) satisfying the conditions (Ap

1)-(Ap
3) for a fixed p in Section 2.2. The following establishes

the maximal inequalities in Theorem 1.1.

Theorem 4.5. Let G be an amenable locally compact group and d be an invariant metric on G.
Assume that (G, d) satisfies the doubling condition (1.1). Fix 1 ≤ p <∞. Let Ar be the averaging
operators

Arx =
1

m(Br)

ˆ
Br

αgxdm(g), x ∈ Lp(M), r > 0.

Then (Ar)r>0 is of strong type (p, p) if 1 < p < ∞. If moreover α satisfies the condition (A′),
then (Ar)r>0 is of weak type (1, 1).

Proof. By Theorem 3.1,Theorem 3.3 and the remarks following them, it suffices to prove the
maximal inequalities for the averaging operators

A′rf(g) =
1

m(Br)

ˆ
Br

f(gh)dm(h), f ∈ Lp(G;Lp(M)), g ∈ G, r > 0.

Since the condition (1.1) holds, G must be unimodular (see e.g. [Cal53]). In other words, the
measure m is also invariant under left translation. Note that gBr = B(g, r) by the invariance of
d. Thus m(Br) = m(gBr) = m(B(g, r)) and

A′rf(g) =
1

m(B(g, r))

ˆ
B(g,r)

f(h)dm(h).

And by Theorem 4.1, the right hand side is of weak type (1, 1) and of strong type (p, p) for
1 < p < ∞. Thus (A′r)r>0 is of weak type (1, 1) and of strong type (p, p) for 1 < p < ∞ as well.
The theorem is proved. �

Example 4.6. The theorem is noncommutative variants of classical results due to Wiener [Wie39],
Calderón [Cal53] and Nevo [Nev06]. If G is a compactly generated group of polynomial growth,
the theorem applies to a large class of invariant metrics on G, such as distance functions derived
from an invariant Riemann metric or word metrics. We refer to [Nev06, Section 4 and 5] for more
examples. Here we list several typical examples satifying the doubling condition:

(1) Let G be a compactly generated group of polynomial growth, and V be a symmetric compact
generating subset. The the word metric defined by

∀g, h ∈ G, d(g, h) = inf{n ∈ N, g−1h ∈ V n}
satisfies (1.1) and (1.2). Note that the integer groups and finitely generated nilpotent groups are
of polynomial growth.

i) The averaging operators

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈ Lp(M), n ∈ N

is of strong type (p, p) if 1 < p < ∞. If moreover α satisfies the condition (A′), then (An)n≥1 is
of weak type (1, 1). This in particular establishes the maximal inequalities in Theorem 1.2.

ii) Let T : Lp(M) → Lp(M) be a positive invertible operator with positive inverse such that
supn∈Z ‖Tn‖ <∞. Then

An =
1

2n+ 1

n∑
k=−n

T k, n ∈ N

is of strong type (p, p) if 1 < p <∞. If T is an automorphism ofM which leaves τ invariant, then
(An)n≥1 is of weak type (1, 1).

(2) Let G be a compactly generated group of polynomial growth and let d be a metric on G. If
d is invariant under a co-compact subgroup of G and if d satisfies a weak kind of the existence of
geodesics axiom (see [Bre14, Definition 4.1]), then (G, d) satisfies (1.1) and (1.2).
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We remark that a natural generalization of the doubling condition (1.1) is given by Tempelman
[Tem67] as follows. A sequence (Fk)k≥1 of sets of finite measure in G satisfies Tempelman’s regular
condition if

m(F−1
k Fk) < Cm(Fk)

for some C > 0 independent of k. We refer to [Tem92, Chapter 5] for more details. It is unclear
for us how to establish the noncommutative maximal inequalities in this setting. In the following
we provide a typical example for which the inequalities hold true.

Theorem 4.7. Let G be an increasing union of compact subgroups (Gn)n≥1. Fix 1 ≤ p <∞. Let
(An)n≥1 be the averaging operators

Anx =
1

m(Gn)

ˆ
Gn

αgxdm(g), x ∈ Lp(M).

Then (An)n≥1 is of strong type (p, p) if 1 < p < ∞. If moreover α satisfies the condition (A′),
then (An)n≥1 is of weak type (1, 1).

Proof. By Theorem 3.1 and Theorem 3.3, it suffices to prove the maximal inequalities for the
averaging operators

A′nf(g) =
1

m(Gn)

ˆ
Gn

f(gh)dm(h), f ∈ Lp(G;Lp(M)), g ∈ G,n ≥ 1.

Set Σ to be the σ-algebra of Borel sets on G. For each n ≥ 1, we define Σn ⊂ Σ to be the
σ-subalgebra generated by the cosets of Gn

{gGn : g ∈ G}.
We see that Σn+1 ⊂ Σn for all n ≥ 1. Let En be the conditional expectation from L∞(G,Σ,m)⊗̄M
to L∞(G,Σn,m|Σn)⊗̄M. Then it is easy to see

En = A′n, n ≥ 1.

According to Lemma 2.4, we see that (En)n≥1 is of weak type (1, 1) and of strong type (p, p) for
1 < p <∞. This yields the desired inequalities. �

4.3. A random walk approach. In this subsection we provide an alternative approach to max-
imal inequalities for groups of polynomial growth. This approach is based on a Gaussian lower
bound of random walks on groups ([HSC93]). Independent of the previous approaches, in this
method we do not need the results on dyadic decompositions of the group, nor do we use trans-
ference principle. The key observation is that we may relate the ball averages on groups with the
ergodic averages of a Markov operator.

Proposition 4.8. Let G be a locally compact group of polynomial growth and let V be a compact
generating set. Let α be a strongly continuous action of G on an ordered Banach space E such
that αgx ≥ 0 for all g ∈ G and x ∈ E+. Define an operator T on E by

Tx =
1

m(V )

ˆ
V

αgxdm(g), x ∈ E.

Then there exists a constant c only depending on G such that

1

m(V n)

ˆ
V n

αgxdm(g) ≤ c

n2

2n2∑
k=1

T kx, x ∈ E+.

We remark that for actions by abelian semigroups, it is known by Brunel [Bru73] that the
ergodic averages of multi-operators can be related to averages of some Markov operators; Nevo
and Stein [NS94] showed that similar observations hold for spherical averages of free group actions.
These results play an essential role in the proof of ergodic theorems therein. In the case of groups
of polynomial growth, our construction of Markov operators is different from theirs, which is
inspired by [SS83]. The argument is relatively easy, and is based on the Markov chains on groups
of polynomial growth.
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To prove the proposition, we consider a locally compact group G and a measure µ on G. For
an integer k, we denote by µ?k the k-th convolution of µ, that is, the unique measure ν on G
satisfying ˆ

G

fdν =

ˆ
∏k
i=1G

f(g1 · · · gk)dµ(g1) · · · dµ(gk), f ∈ C0(G).

If f is the density function of µ, we still denote by f?k the density function of µ?k.
In the following d will denote the word metric with respect to V introduced in Example 4.6(1),

and Br = {x ∈ G : d(e, x) ≤ r} for r > 0.

Lemma 4.9 ([HSC93]). Let G be a locally compact group of polynomial growth and let V be
a compact generating set. Let f be the density function of a symmetric continuous probability
measure on G such that supp(f) is bounded and V ⊂ supp(f). Then there exists a constant c > 0
such that for any integer k,

f?k(g) ≥ ce−d(e,g)2/k

m(B√k)
, g ∈ Bk.

Lemma 4.10. Let G, V and f be as in the previous lemma. Then there exists a constant c > 0
such that for any integer n,

χBn
m(Bn)

≤ c

2n2

2n2∑
k=1

f?k.

Proof. It suffices to prove the inequality in the lemma for sufficiently large n. By the previous
lemma, there exists c > 0 such that

f?k(g) ≥ c

m(B√k)
, g ∈ B√k(e).

Therefore, for g ∈ Bn(e),

1

2n2

2n2∑
k=1

f?k(g) ≥ 1

2n2

2n2∑
k=(n+1)2

f?k(g) ≥ 1

2n2

2n2∑
k=(n+1)2

c

m(B√k)

≥ c(n2 − 2n− 1)

2n2m(B√2n)
≥ c′

m(Bn)
,

where c′ > 0 is a constant only depending on the doubling condition of G. �

Proof of Proposition 4.8. We apply Lemma 4.10 with f = χV /m(V ). Then we obtain for x ∈ E+,

1

m(V n)

ˆ
V n

αgxdm(g) ≤ c

2n2

2n2∑
k=1

ˆ
G

αgxf
?k(g)dm(g).

By the definition of f?k, we haveˆ
G

αgxf
?k(g)dm(g) =

ˆ
∏k
i=1G

αg1···gkxf(g1) · · · f(gk)dm(g1) · · · dm(gk).

Recall that α is a group action and f = χV /m(V ), so we obtainˆ
G

αgxf
?k(g)dm(g) =

1

m(V )k

ˆ
∏k
i=1 V

αg1 · · ·αgkxdm(g1) · · · dm(gk) = T kx.

Therefore we establish the desired inequality. �

Proposition 4.8 allows us to deduce maximal ergodic theorems for group actions from well-known
ergodic theorems for Markov operators. As a corollary, we may obtain the maximal inequalities in
Example 4.6 (1). Moreover, for maximal ergodic inequalities on L1, it is not necessary to assume
that α is an action by automorphisms as in (A′):
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Corollary 4.11. Let G and V be as above. Let α be a continuous τ -preserving action of G on
M such that αg is a positive isometry on M for each g ∈ G. Then α extends to an action on
L1(M). The operators defined by

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈ L1(M), n ∈ N

is of weak type (1, 1).

Proof. Note that the operator

Tx =
1

m(V )

ˆ
V

αgxdm(g), x ∈M

is a positive contraction on M, which preserves τ . Then it is well-known that the averages
1
n

∑n
k=1 T

k is of weak type (1, 1) (see [Yea77]). Thus by Proposition 4.8, (An)n≥0 is of weak type
(1, 1) as well. �

5. Maximal inequalities: group-theoretic approach

In this section we provide an alternative approach to Theorem 4.5 in the case where G is a
finitely generated discrete group of polynomial growth, d is the word metric, and p 6= 1. The
argument follows from a structural study of nilpotent groups.

We first recall some well-known facts on the structure of nilpotent groups. Let G be a discrete
finitely generated nilpotent group with lower central series

G = G1 ⊃ G2 ⊃ · · · ⊃ GK ⊃ GK+1 = {e}.
Each quotient group Gi/Gi+1 is an abelian group of rank ri, that is, there is a group isomorphism

πi : Gi/Gi+1 → Fi × Zri

with a finite abelian group Fi. It was shown in [Bas72] that G is of polynomial growth. We
summarize below some facts in the argument of [Bas72]. We may choose a finite generating set T
of G such that

[T, T ] = {s−1t−1st : s, t ∈ T} ⊂ T
and take

Ti = Gi ∩ T, 1 ≤ i ≤ K + 1.

Then
Gi = 〈Ti〉, 1 ≤ i ≤ K + 1.

For each 1 ≤ j ≤ K, we order the elements in Tj \ Tj+1 as

(5.1) Tj \ Tj+1 = {t(j)1 , t
(j)
2 , . . . , t(j)rj , t

(j)
rj+1 . . . , t

(j)
lj
}

so that πj([t
(j)
1 ]), . . . , πj([t

(j)
rj ]) are the generators of Zrj . Let Nj be the index of the subgroup

〈t(j)1 , t
(j)
2 , . . . , t

(j)
rj 〉Gj+1 in Gj .

By a word in a subset T ′ ⊂ T we mean a sequence of elements w = (s1, s2, . . . , sn) with
s1, s2, . . . , sn ∈ T ′, and we denote by |w| = s1s2 · · · sn ∈ G the resulting group element in G.
If w = (s1, s2, . . . , sn) is a word in T ′ and if T ′′ ⊂ T ′, we let degT ′′(w) be the cardinality of
{k : 1 ≤ k ≤ n, sk ∈ T ′′}. We say that

deg(j)(w) ≤ (dj , dj+1, . . . , dK) := d

if we have degTj\Ti+1
(w) ≤ di for all j ≤ i ≤ K. Denote by Gj(d) the set of all words w in Tj such

that deg(j)(w) ≤ d, and by G′j(d) the subset of the words w ∈ Gj(d) of the form

w = (t
(j)
1 , . . . , t

(j)
1 , . . . , t

(j)
lj
, . . . , t

(j)
lj
, v)

where v is a word in Tj+1 and the element t
(j)
k does not appear more than Nj times in w for

rj < k ≤ lj .
The key observation in [Bas72] for proving the polynomial growth of G is as follows (see the

assertions (6) and (7) in [Bas72, p.613]).
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Lemma 5.1. Let c > 0 be a constant and m ≥ 1. For each 1 ≤ j ≤ K, we have

{g ∈ G : g = |w|, w ∈ Gj(cmj , . . . , cmK)} ⊂ {g ∈ G : g = |w|, w ∈ G′j(c′mj , . . . , c′mK)}
where c′ > 0 is a constant only depending on c and Gj.

In particular, we take g ∈ Tn. Hence g corresponds to a word w in T = T1 such that

g = |w|, w ∈ G1(m1, . . . ,mK), m := max{m1, . . . ,mK} ≤ n.
Using the lemma inductively, we may find another word w′ = (w1, . . . , wK) in T (where each wj
in the bracket stands for a subword in Tj \ Tj+1) and a constant c > 0 such that

g = |w′|, (wj , . . . , wK) ∈ G′j(cn, . . . , cnK), 1 ≤ j ≤ K.
In other words, we have the following observation.

Lemma 5.2. Let n ∈ N. Each element g ∈ Tn can be written in the following form

g = (t
(1)
1 )n11 · · · (t(1)

l1
)n1l1 · · · (t(K)

1 )nK1 · · · (t(K)
lK

)nKlK ,

where there exists a constant c > 0 such that for 1 ≤ j ≤ K,

njk ≤ cnj , if 1 ≤ k ≤ rj ,
and

njk ≤ Nj , if rj < k ≤ lj .

In [Bas72] and [Wol68] it is proved that G satisfies the following strict polynomial growth
condition.

Lemma 5.3. We have two constants c1, c2 > 0 such that

c1n
d(G) ≤ |Tn| ≤ c2nd(G)

where | | denotes the cardinality of a subset and

d(G) =

K∑
j=1

jrj .

Note that the upper bound in the above lemma follows directly from Lemma 5.2.

Now we will prove the following maximal inequalities, which are particular cases studied in
Theorem 4.5 and Example 4.6 (1).

Proposition 5.4. Let G be a finitely generated discrete group of polynomial growth and let S ⊂ G
be a finite generating set. Fix 1 < p < ∞ and let α be an action α = (αg)g∈G of G on Lp(M)
which satisfies (Ap

1)-(Ap
3). We consider the following averaging operators

An =
1

|Sn|
∑
g∈Sn

αg, n ≥ 1,

where | | denotes the cardinality of a subset. Then (An)n≥1 is of strong type (p, p).

The proposition relies on the following characterization of groups of polynomial growth by
Gromov [Gro81].

Lemma 5.5. Any finitely generated discrete group of polynomial growth contains a finitely gen-
erated nilpotent subgroup of finite index.

We also need the following fact.

Lemma 5.6. Let G be a finitely generated group of polynomial growth. Let H be a normal subgroup
of G of finite index. Then H is finitely generated. Let U ⊂ G be a finite system of representatives
of the cosets G/H with e ∈ U . Let T ⊂ H be a finite generating set of H. Write V = U ∪ T .
Then there exists an integer N such that

∀m ∈ N, V m ⊂ UT (3N+1)m.
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Proof. This is given in the proof of [Wol68, Theorem 3.11]. Let N be an integer large enough such
that for all uε1, u

η
2 ∈ U with ε, η ∈ {±1}, there exist u ∈ U and t ∈ TN satisfying uε1u

η
2 = ut. Then

N satisfies the desired condition. �

Now we deduce the desired result.

Proof of Proposition 5.4. By Theorem 3.1, it suffices to consider the case where α is an action on
Lp(G;Lp(M)) by translation. By Lemma 5.5, we may find a nilpotent subgroup H ⊂ G of finite
index. As is explained in [Wol68, 3.11], H can be taken normal by replacing H with ∩g∈GgHg−1.

Now let T = {t(j)k : 1 ≤ k ≤ lj , 1 ≤ j ≤ K} be a finite generating set of the nilpotent group H,
where T and the indices k, j are chosen in the same manner as in (5.1). Also, let U and V be
given as in the previous lemma. Consider x ∈ L+

p (G;Lp(M)) and write

Ãnx =
1

|V n|
∑
g∈V n

αgx, n ∈ N.

Since the operators αg extends to positive operators on Lp(G;Lp(M)), by Lemma 5.2 and Lemma
5.6, there exists a constant c > 0 for all n ∈ N,∑

g∈V n
αgx ≤

∑
h∈U

αh
∑

t∈T (3N+1)n

αtx

≤
∑
h∈U

αh
∑

1≤j≤K

∑
1≤njk≤cnj

1≤k≤rj

∑
1≤njk≤Nj
rj<k≤lj

αn11

t
(1)
1

· · ·αn1l1

t
(1)
l1

· · ·αnK1

t
(K)
1

· · ·αnKlK
t
(K)
lK

x.

Recall that by Lemma 5.3 we may find a constant c′ > 0 such that

|V n| ≥ c′n
∑K
j=1 jrj .

So we may find a constant c′′ > 0 satisfying

Ãnx ≤ c′′
∑
h∈U

αh
1

n
∑K
j=1 jrj

∑
1≤j≤K

∑
1≤njk≤cnj

1≤k≤rj

∑
1≤njk≤Nj
rj<k≤lj

αn11

t
(1)
1

· · ·αn1l1

t
(1)
l1

· · ·αnK1

t
(K)
1

· · ·αnKlK
t
(K)
lK

x.

Note that by [JX07, Theorem 4.1], for each 1 ≤ j ≤ K and 1 ≤ k ≤ rj there exists a constant Cp
only depending on p such that

∥∥∥sup
n

+ 1

cnj

cnj∑
l=1

αl
t
(j)
k

x
∥∥∥
p
≤ Cp‖x‖p, x ∈ Lp(G;Lp(M)).

Applying the inequality iteratively, we obtain a constant C ′p > 0 such that∥∥∥sup
n

+Ãnx
∥∥∥
p
≤ C ′p‖x‖p, x ∈ Lp(G;Lp(M)).

Since S and V are both finite, we may find two integers k and k′ with

S ⊂ V k, V ⊂ Sk
′
.

So the strong type (p, p) inequality for An follows as well. �

6. Individual ergodic theorems

In this section we apply the maximal inequalities to study the pointwise ergodic convergence
in Theorem 1.1 and Theorem 1.2.

We will use the following analogue for the noncommutative setting of the usual almost every-
where convergence. The definition is introduced by Lance [Lan76] (see also [Jaj85]).
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Definition 6.1. Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace τ . Let xn, x ∈ L0(M). (xn)n≥1 is said to converge bilaterally almost uniformly (b.a.u. in
short) to x if for every ε > 0 there is a projection e ∈M such that

τ(e⊥) < ε and lim
n→∞

‖e(xn − x)e‖∞ = 0,

and it is said to converge almost uniformly (a.u. in short) to x if for every ε > 0 there is a
projection e ∈M such that

τ(e⊥) < ε and lim
n→∞

‖(xn − x)e‖∞ = 0.

In the case of classical probability spaces, the definition above is equivalent to the usual almost
everywhere convergence in terms of Egorov’s theorem.

Now let G be an amenable locally compact group and (Fn)n≥1 be a Følner sequence in G. Let
1 ≤ p ≤ ∞. Assume that α = (αg)g∈G is an action on Lp(M) which satisfies (Ap

1)-(Ap
3). Denote

by An the corresponding averaging operators

Anx =
1

m(Fn)

ˆ
Fn

αgxdm(g), x ∈ Lp(M).

We keep the notation Fp ⊂ Lp(M) and P introduced in Section 2.2.

We will be first interested in the case where α extends to an action on L1(M)+M. In this case
the argument for b.a.u. convergences is standard, which is adapted from [JX07, Yea77, Hon17].
The following lemma from [DJ04] will be useful.

Lemma 6.2. Let 1 ≤ p < ∞. If (xn) ∈ Lp(M; c0), then xn converges b.a.u. to 0. If (xn) ∈
Lp(M; cc0) with 2 ≤ p <∞, then xn converges a.u. to 0.

We will also use the following noncommutative analogue of the Banach principle given by [Lit17]
and [CL16, Theorem 3.1].

Lemma 6.3. Let 1 ≤ p < ∞ and let S = (Sn)n≥1 be a sequence of additive maps from L+
p (M)

to L+
0 (M). Assume that S is of weak type (p, p). Then the set

C = {x ∈ Lp(M) : (Snx)n≥1 converges a.u.}

is closed in Lp(M).

Proposition 6.4. Assume that α = (αg)g∈G is an action well-defined on ∪1≤p≤∞Lp(M) and
satisfies (Ap

1)-(Ap
3) for every 1 ≤ p ≤ ∞. Let (An)n≥1 be as above and let 1 ≤ p0 < p1 ≤ ∞.

Assume that (An)n≥1 is of strong type (p, p) for all p0 < p < p1.

(1) For all x ∈ Lp(M) with p0 < p ≤ 2p0, (Anx− Px)n≥1 ∈ Lp(M; c0), and hence (Anx)n≥1

converges b.a.u. to Px;
(2) for all x ∈ Lp(M) with 2p0 < p < p1, (Anx− Px)n≥1 ∈ Lp(M; cc0), and hence (Anx)n≥1

converges a.u. to Px.

Proof. According to the splitting (2.4) and the discussion after it, we know that

S = span{x− αgx : g ∈ G, x ∈ L1(M) ∩M}

is dense in (Id− P )(Lp(M)) for all 1 ≤ p <∞. Also, observe that for all x ∈ S,

(6.1) lim
n→∞

Anx = 0 a.u., x ∈ S.

To see this, take an arbitrary x ∈ S of the form x = y−αg0y for some g0 ∈ G and y ∈ L1(M)∩M.
Then

Anx =
1

m(Fn)

ˆ
Fn

(αgy − αgg0y)dm(g)

=
1

m(Fn)

ˆ
Fn\(Fng0∩Fn)

αgydm(g)− 1

m(Fn)

ˆ
Fng0\(Fng0∩Fn)

αgydm(g).
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Therefore according to (A∞2 ),

(6.2) ‖Anx‖∞ ≤
m(Fn 4 Fng0)

m(Fn)
‖y‖∞ sup

g∈G
‖αg‖B(M),

which converges to 0 as n → ∞ according to the Følner condition. This therefore yields the a.u.
convergence of (Anx)n in (6.1), as desired.

Now we prove the assertion (1). Take x ∈ Lp(M). Since S is dense in (Id− P )(Lp(M)), there
are xk ∈ S such that

lim
k→∞

‖x− Px− xk‖p = 0.

Since (An)n≥1 is of strong type (p, p), there exists a constant C > 0 independent of x such that∥∥(Anx− Px−Anxk)n∥∥Lp(M;`∞)
≤ C‖x− Px− xk‖p.

Thus

lim
k→∞

(
Anxk

)
n

=
(
Anx− Px

)
n

in Lp(M; `∞).

Since Lp(M; c0) is closed in Lp(M; `∞), it suffices to show
(
Anxk

)
n
∈ Lp(M; c0) for all k. To this

end we take an arbitrary z ∈ S of the form z = y−αg0y for some g0 ∈ G and y ∈ L1(M)∩M. Take
some p0 < q < p. Note that z ∈ Lq(M) and that (An)n is of strong type (q, q) by assumption, so(
An(z)

)
n

belongs to Lq(M; `∞). Then by (2.1) and (6.2), for any m < n,∥∥ sup+

m≤j≤n
Ajz

∥∥
p
≤ sup
m≤j≤n

∥∥Ajz∥∥1− qp
∞

∥∥ sup+

m≤j≤n
Ajz

∥∥ qp
q

≤ sup
m≤j≤n

(
m(Fj 4 Fjg0)

m(Fj)
‖y‖∞

)1− qp ∥∥ sup+

m≤j≤n
Ajz

∥∥ qp
q
.

Thus
∥∥ sup+

j≥mAjz
∥∥
p

tends to 0 as m → ∞. Therefore the finite sequence (A1z, ..., Amz, 0, ...)

converges to (Anz)n in Lp(M; `∞) as m→∞. As a result
(
An(z)

)
n
∈ Lp(M; c0), as desired.

The assertion (2) is similar. It suffices to note that by the classical Kadison inequality [Kad52],

(Anx)2 ≤ An(x2) sup
g∈G
‖αg‖B(M), x ∈ Lp(M) ∩M, x ≥ 0,

and hence by the strong type (p, p) inequality and the definition of Lp(M; `c∞), there exists a
constant C such that

‖(Anx)n≥1‖Lp(M;`c∞) ≤ ‖((Anx)2)n≥1‖1/2Lp/2(M;`∞) ≤ C‖x‖p, x ∈ L+
p (M).

Then a similar argument yields that (Anx− Px)n≥1 ∈ Lp(M; cc0). �

Remark 6.5. The above argument certainly works as well for a Følner sequence (Fr)r>0 indexed
by r ∈ R+ provided that r 7→ Arx is continuous for x ∈ Lp(M).

As a corollary we obtain the individual ergodic theorems for actions on L1(M) +M. We
complete the proof of Theorem 1.1.

Theorem 6.6. Let d be an invariant metric on G. Assume that (G, d) satisfies (1.1) and (1.2). Let
α be an action of G well-defined on ∪1≤p≤∞Lp(M) and satisfies (Ap

1)-(Ap
3) for every 1 ≤ p ≤ ∞.

Denote

Arx =
1

m(Br)

ˆ
Br

αgxdm(g), x ∈ Lp(M), r > 0.

Then (Arx)r>0 converges a.u. to Px as r →∞ for all 1 < p <∞.
Moreover, if α is a continuous action of G onM by τ -preserving automorphisms (i.e. α satisfies

(A′)), then (Arx)r>0 converges a.u. to Px as r →∞ for all x ∈ L1(M).

Proof. Note that for 1 ≤ p ≤ 2 and 2 < p′ <∞, Lp(M)∩Lp′(M) is dense in Lp(M), and (Arx)r>0

converges a.u. to Px for all x ∈ Lp′(M) according to Proposition 6.4. Then the theorem is an
immediate consequence of Lemma 6.3 and Theorem 4.5. �
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For word metrics on groups of polynomial growth, it is well-known that the associated balls
satisfy the Følner condition (see [Bre14, Tes07]). Together with Corollary 4.11 we obtain the
following result. This also proves the a.u. convergence on L1(M) stated in Theorem 1.2.

Theorem 6.7. Assume that G is of polynomial growth, and is generated by a symmetric compact
subset V . Let α be an action of G well-defined on ∪1≤p≤∞Lp(M) and satisfies (Ap

1)-(Ap
3) for

every 1 ≤ p ≤ ∞. Denote

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), x ∈ L1(M), n ∈ N

Then (Anx) converges a.u. to Px for all 1 < p <∞.
Moreover, if α is a continuous τ -preserving action of G onM such that αg is a positive isometry

on M for each g ∈ G, then (Anx) converges a.u. to Px for all x ∈ L1(M).

Also it is obvious that an increasing sequence of compact subgroups always satisfies the Følner
condition. Together with Theorem 4.7 we obtain:

Theorem 6.8. Let G be an increasing union of compact subgroups (Gn)n≥1. Let α be an action
of G well-defined on ∪1≤p≤∞Lp(M) and satisfies (Ap

1)-(Ap
3) for every 1 ≤ p ≤ ∞. Denote

Anx =
1

m(Gn)

ˆ
Gn

αgxdm(g), x ∈ Lp(M), n ∈ N.

Then (Anx) converges a.u. to Px for all 1 < p <∞.
Moreover, if α is a continuous action of G onM by τ -preserving automorphisms (i.e. α satisfies

(A′)), then (Anx) converges a.u. to Px for all x ∈ L1(M).

Note that all the above arguments relies on the assumption that the action α extends to an
uniformly bounded action on L∞(M) with condition (A∞1 )-(A∞3 ), though our strong type (p, p)
inequalities in previous sections do not require this assumption. Also, in general this assumption
does not hold for bounded representations on one fixed Lp-space. In the following Theorem 6.11
we will give a stronger result for Følner sequences associated with doubling conditions. This also
completes the proof of Theorem 1.2.

Lemma 6.9. Let (X, d, µ) be a metric measure space satisfying the doubling condition (4.1). Take
i ∈ N and k ≤ 2i. Then there exists 2i ≤ ri < 2i+1 such that

µ(B(x, ri + k) \B(x, ri)) ≤ Ckµ(B(x, ri))/ri,

where C only depends on the doubling constant.

Proof. The result and the argument are adapted from [Tes07, Proposition 17]. For each r ∈ N,
we denote

S(x, r) = B(x, r + k) \B(x, r).

Then

∪[ 2
i

k ]
n=0S(x, 2i + nk) ⊂ B(x, 2i+1).

Therefore
2i

k
inf

0≤n≤[ 2
i

k ]

µ(S(x, 2i + nk)) ≤ µ(B(x, 2i+1)).

Thus the lemma follows thanks to the doubling condition (4.1). �

Lemma 6.10 ([Bre14, Tes07]). Let G be a locally compact group of polynomial growth, generated
by a symmetric compact subset V . Then

lim
n→∞

m(V n)

nd(G)
= c

where d(G) is the rank of G and c is a constant only depending on the metric d. And there exist
δ > 0 and a constant C such that

m(V n+1 \ V n)

m(V n)
≤ Cn−δ, n ≥ 1.
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Theorem 6.11. Fix 1 < p < ∞. Let α = (αg)g∈G be an action on Lp(M) which satisfies
(Ap

1)-(Ap
3).

(1) Assume that there exists an invariant metric d on G and that (G, d) satisfies (1.1) and
(1.2). Denote

Arx =
1

m(Br)

ˆ
Br

αgxdm(g), x ∈ Lp(M), r > 0.

Then there exists a lacunary sequence (rk)k≥1 with 2k ≤ rk < 2k+1 such that (Arkx)k≥1 converges
b.a.u. to Px for all x ∈ Lp(M). If additionally p ≥ 2, (Arkx)k≥1 converges a.u. to Px for all
x ∈ Lp(M).

(2) Assume that G is a locally compact group of polynomial growth, generated by a symmetric
compact subset V . Then the sequence

Anx =
1

m(V n)

ˆ
V n

αgxdm(g), n ∈ N,

converges b.a.u. to Px for all x ∈ Lp(M).
(3) Assume that G is an increasing union of compact subgroups (Gn)n≥1. Then the sequence

Anx =
1

m(Gn)

ˆ
Gn

αgxdm(g), n ∈ N.

converges a.u. to Px for all x ∈ Lp(M).

Proof. (1) By Lemma 6.9, there exists (ri)i≥1 such that 2i ≤ ri ≤ 2i+1 and such that

m(Bri \Bri−(3/2)i) ≤ C(3/2)im(Bri)/ri.

That is to say,

(6.3)
m(Bri \Bri−(3/2)i)

m(Bri)
≤ C(3/4)i

We show that (Arix)i≥1 converges b.a.u. to Px. By (2.4) and Lemma 6.2, it suffices to show
that (Arix)i≥1 ∈ Lp(M; c0) for x ∈ F⊥p . By Theorem 4.5, it is enough to consider the case where

x = y − αg0y with y ∈ L+
p (M) and g0 ∈ G. Denote |g0| = d(e, g0). Note that

Arx = A1
ry −A2

ry

where

A1
ry =

1

m(Br)

ˆ
Br\(Br∩Brg0)

αgydm(g), A2
ry =

1

m(Br)

ˆ
(Brg0)\(Br∩Brg0)

αgydm(g).

By (6.3) we have for i so that (3/2)i ≥ |g0|,

‖A1
riy‖p ≤

m(Bri \Bri−|g0|)
m(Bri)

‖y‖p ≤ C(3/4)i‖y‖p.

On the other hand, for any m ≤ j ≤ n,

A1
rjy = [(A1

rjy)p]1/p ≤
[ ∑
m≤i≤n

(A1
riy)p

]1/p
,

and by the previous argument∥∥∥∥∥∥
[ ∑
m≤i≤n

A1
riy

p
]1/p∥∥∥∥∥∥

p

≤
[ ∑
m≤i≤n

‖A1
riy‖

p
p

]1/p
≤ C(3/4)m‖y‖p.

Hence ‖(A1
rjy)m≤j≤n‖Lp(M;c0) tends to 0 as m,n→∞. Similarly, (A2

riy)i≥1 converges in the same

manner. Therefore (Arix)i≥1 ∈ Lp(M; c0), as desired.
Moreover if p ≥ 2,

(A1
rjy)2 = [(A1

rjy)p]2/p ≤
[ ∑
m≤i≤n

(A1
riy)p

]2/p
,
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and hence we can find contractions uj ∈ L∞(M) such that for m large enough,

A1
rjy = uj

[ ∑
m≤i≤n

(A1
riy)p

]1/p
with

∥∥∥∥∥∥
[ ∑
m≤i≤n

(A1
riy)p

]1/p∥∥∥∥∥∥
p

≤ C(3/4)m‖y‖p.

Therefore ‖(A1
rjy)m≤j≤n‖Lp(M;cc0) tends to 0 as m,n → ∞, and (A1

riy)i≥1 converges a.u. to 0

according to Lemma 6.2. Similarly, (A2
riy)i≥1 convergences in the same manner. Thus we obtain

that (Arix)i≥1 converges a.u. to 0. Then by (2.4) and Lemma 6.3, (Arix)i≥1 converges a.u. for
all x ∈ Lp(M).

(2) We keep the notation x, y, g0 in (1), and denote as before

A1
ky =

1

m(V k)

ˆ
(V k)\(V k∩V kg0)

αgydm(g), y ∈ Lp(M), k ≥ 1.

Write δ′ = [δ−1] + 1. Note that by Lemma 6.10, there exists a constant C > 0 such that for
y ∈ Lp(M) and k ≥ 1,

(6.4)
∥∥A1

kδ′
y
∥∥
p
≤ m(V k

δ′ \ V kδ
′
−|g0|)

m(V kδ
′
)

‖y‖p ≤
C|g0|‖y‖p

k
,

where |g0| = d(e, g0) and d refers to the word metric defined in Example 4.6(1). Hence∥∥∥∥∥∥
[ ∑
m≤k≤n

A1
kδ′
yp
]1/p∥∥∥∥∥∥

p

≤
[ ∑
m≤k≤n

‖A1
kδ′
y‖pp
]1/p

≤ C|g0|
( ∑
m≤k≤n

1

kp
)1/p‖y‖p.

Then by the similar argument as in (1) we see that (Anδ′x)n≥1 converges b.a.u. to Px for all
x ∈ Lp(M), and if p ≥ 2, (Anδ′x)n≥1 converges a.u. to Px.

For the general case, we consider x ∈ L+
p (M). For each k, let n(k) be the number such that

n(k)δ
′ ≤ k < (n(k) + 1)δ

′
. Then

m(V n(k)δ
′

)

m(V k)
An(k)δ′x ≤ Akx ≤

m(V (n(k)+1)δ
′

)

m(V k)
A(n(k)+1)δ′x.

Also note that according to Lemma 6.10, m(V n(k)δ
′

)/m(V k) tends to 1. Therefore it is easy to
see from the definition of b.a.u. convergence that Akx converges b.a.u. to Px.

(3) Note that for x = y−αg0y with y ∈ Lp(M) and g0 ∈ G, we have for n large enough so that
Gn 3 g0,

Anx =
1

m(Gn)

ˆ
Gn

αgydm(g)−
ˆ
Gn

αgg0ydm(g) = 0.

That is to say, Anx converges a.u. to 0 as n → ∞. Then by (2.4) and Lemma 6.3, we see that
Anx converges a.u. for all x ∈ Lp(M). �

In particular, the above arguments give the individual ergodic theorem for positive invertible
operators on Lp-spaces.

Corollary 6.12. Let 1 < p <∞. Let T : Lp(M)→ Lp(M) be a positive invertible operator with
positive inverse such that supn∈Z ‖Tn‖ <∞. Denote

An =
1

2n+ 1

n∑
k=−n

T k, n ∈ N.

Then (Anx)n≥1 converges b.a.u to Px for all x ∈ Lp(M). If additionally p ≥ 2, (Anx)n≥1

converges a.u to Px.

Proof. The assertion follows from the proof of Theorem 6.11(2) for the case where G equals the
integer group Z. It suffices to notice that in this case we may choose δ = 1 in Lemma 6.10 and
take δ′ = 1 in (6.4). �
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Remark 6.13. Note that the above result is not true for p = 1, even for positive invertible isometries
on classical L1-spaces (see for example [IT64]). So it is natural to assume p 6= 1 in the above
discussions.

The following conjecture for mean bounded maps is still open. The result for classical Lp-spaces
is given by [MRDlT88].

Conjecture 6.14. Let 1 < p < ∞. Let T : Lp(M) → Lp(M) be a positive invertible operator
with positive inverse such that supn∈Z ‖ 1

2n+1

∑n
k=−n T

k‖ <∞. Denote

An =
1

2n+ 1

n∑
k=−n

T k, n ∈ N.

Then (Anx)n≥1 converges b.a.u to Px for all x ∈ Lp(M). If additionally p ≥ 2, (Anx)n≥1

converges a.u to Px.
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pour les actions de groupes, volume 41 of Monographies de L’Enseignement Mathématique [Mono-
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[SS83] E. M. Stein and J.-O. Strömberg. Behavior of maximal functions in Rn for large n. Ark. Mat.,

21(2):259–269, 1983.

[Tem67] A. Tempelman. Ergodic theorems for general dynamical systems. Dokl. Akad. Nauk SSSR, 176:790–
793, 1967.



NONCOMMUTATIVE MAXIMAL ERGODIC INEQUALITIES 25

[Tem92] A. Tempelman. Ergodic theorems for group actions, volume 78 of Mathematics and its Applications.
Kluwer Academic Publishers Group, Dordrecht, 1992. Informational and thermodynamical aspects,

Translated and revised from the 1986 Russian original.

[Tem15] A. Tempelman. Pointwise ergodic theorems for bounded Lamperti representations of amenable groups.
Proc. Amer. Math. Soc., 143(11):4989–5004, 2015.

[Tes07] R. Tessera. Volume of spheres in doubling metric measured spaces and in groups of polynomial growth.

Bull. Soc. Math. France, 135(1):47–64, 2007.
[Wie39] N. Wiener. The ergodic theorem. Duke Math. J., 5(1):1–18, 1939.

[Wol68] J. A. Wolf. Growth of finitely generated solvable groups and curvature of Riemanniann manifolds. J.
Differential Geometry, 2:421–446, 1968.

[Yea77] F. J. Yeadon. Ergodic theorems for semifinite von Neumann algebras. I. J. London Math. Soc. (2),

16(2):326–332, 1977.

School of Mathematics and Statistics, Wuhan University, 430072 Wuhan, China and Hubei Key Lab-
oratory of Computational Science, Wuhan University, 430072 Wuhan, China.

E-mail address: guixiang.hong@whu.edu.cn

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368, USA.

E-mail address: liaob@math.tamu.edu

Universität des Saarlandes, Fachrichtung Mathematik, Postfach 151150, 66041 Saarbrücken, Ger-
many.

E-mail address: wang@math.uni-sb.de


	1. Introduction
	2. Preliminaries
	2.1. Noncommutative Lp-spaces and noncommutative maximal norms
	2.2. Actions by amenable groups

	3. Noncommutative Calderón's transference principle
	3.1. Strong type inequalities
	3.2. Weak type inequalities

	4. Maximal inequalities: probabilistic approach
	4.1. Hardy-Littlewood maximal inequalities on metric measure spaces
	4.2. Maximal ergodic inequalities
	4.3. A random walk approach

	5. Maximal inequalities: group-theoretic approach
	6. Individual ergodic theorems
	Acknowledgment

	References

