Limits, colimits, sources, sinks, pullbacks, pushouts

Steven Klein

08.09.2020

Definition

Let *I* be a class and **A** be a category. A *source* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A \longrightarrow A_i$.

Definition

Let *I* be a class and **A** be a category. A *source* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A \longrightarrow A_i$.

The object A is called the *domain of the source*.

Definition

Let *I* be a class and **A** be a category. A *source* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A \longrightarrow A_i$.

The object A is called the *domain of the source*. The family of objects $(A_i)_{i \in I}$ is called the *codomain of the source*.

Definition

Let *I* be a class and **A** be a category. A *source* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A \longrightarrow A_i$.

The object A is called the *domain of the source*. The family of objects $(A_i)_{i \in I}$ is called the *codomain of the source*.

Remark

We may regard an object A as an empty source (a source indexed by the empty set).

Definition

Let *I* be a class and **A** be a category. A *source* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A \longrightarrow A_i$.

The object A is called the *domain of the source*. The family of objects $(A_i)_{i \in I}$ is called the *codomain of the source*.

Remark

We may regard an object A as an empty source (a source indexed by the empty set).

Moreover we may regard an Morphism $f : A \longrightarrow A_1$ as an source indexed by the set $\{1\}$.

Definition

Let *I* be a class and **A** be a category. A *sink* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A_i \longrightarrow A$.

Definition

Let *I* be a class and **A** be a category. A *sink* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A_i \longrightarrow A$.

The object A is called the *codomain of the sink*.

Definition

Let *I* be a class and **A** be a category. A *sink* is a pair $(A, (f_i)_{i \in I})$ consisting of an **A**-object *A* and a family of **A**-morphisms $f_i : A_i \longrightarrow A$.

The object A is called the *codomain of the sink*. The family of objects $(A_i)_{i \in I}$ is called the *domain of the sink*.

Definition

Let **A** and **I** be categories. A functor $D : \mathbf{I} \longrightarrow \mathbf{A}$ is called a *diagram*.

Definition

Let **A** and **I** be categories. A functor $D : \mathbf{I} \longrightarrow \mathbf{A}$ is called a *diagram*.

The domain I is called *scheme*.

Definition

Let **A** and **I** be categories. A functor $D : \mathbf{I} \longrightarrow \mathbf{A}$ is called a *diagram*.

The domain I is called *scheme*.

The diagram is called *small* (or *finite*), if I is small (or finite).

Definition

Let **A** and **I** be categories. A functor $D : \mathbf{I} \longrightarrow \mathbf{A}$ is called a *diagram*.

The domain I is called *scheme*.

The diagram is called *small* (or *finite*), if I is small (or finite).

Example

A diagram in a category **A** with scheme $\bullet \rightrightarrows \bullet$ is essentially a pair of **A**-Morphisms with common domain and common codomain.

Definition

Let $D : \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram. An **A**-source $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ is called *natural for* D or *cone*, if for each **I**-morphism $d : i \longrightarrow j$ the triangle

commutes.

Definition

Let $D : \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram. An **A**-source $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ is called *natural for* D or *cone*, if for each **I**-morphism $d : i \longrightarrow j$ the triangle

commutes.

Let $(L, (I_i)_{i \in Ob(I)})$ be a natural source for D with codomain $(D_i)_{i \in Ob(I)}$. $(L, (I_i)_{i \in Ob(I)})$ is called a *limit*, if it fulfils the following universal property: For each natural source $(A, (f_i)_{i \in Ob(I)})$ with codomain $(D_i)_{i \in Ob(I)}$ there exists a unique morphism $f : A \longrightarrow L$ with $f_i = I_i \circ f$ for each $i \in Ob(I)$.

Example

We consider $\mathbf{I} = \mathbb{N}^{\text{op}}$ the poset of non-negative integers with the opposite of the usual ordering as a category. A diagram $D : \mathbf{I} \longrightarrow \mathbf{A}$ is essentially a sequence

$$\ldots \xrightarrow{d_2} D_2 \xrightarrow{d_1} D_1 \xrightarrow{d_0} D_0$$

of A-morphisms where

$$D(n+1 \longrightarrow n) = d_n, D(n+2 \longrightarrow n) = d_n \circ d_{n+1},$$

etc..

Example

We consider $\mathbf{I} = \mathbb{N}^{\text{op}}$ the poset of non-negative integers with the opposite of the usual ordering as a category. A diagram $D : \mathbf{I} \longrightarrow \mathbf{A}$ is essentially a sequence

$$\ldots \xrightarrow{d_2} D_2 \xrightarrow{d_1} D_1 \xrightarrow{d_0} D_0$$

of A-morphisms where

$$D(n+1 \longrightarrow n) = d_n, D(n+2 \longrightarrow n) = d_n \circ d_{n+1},$$

etc..

A natural source for D is a source $(A, (f_n)_{n \in \mathbb{N}})$ with codomain $(D_n)_{n \in \mathbb{N}}$ with $f_n = d_n \circ f_{n+1}$ for each $n \in \mathbb{N}$.

Example

Now, let **A** be **Set**. A limit of the diagram *D* is a source $(L, (I_n)_{n \in \mathbb{N}})$ with codomain $(D_n)_{n \in \mathbb{N}}$, where *L* is the set of all sequences $(x_n)_{n \in \mathbb{N}}$ with $x_n \in D_n$ and $d_n(x_{n+1}) = x_n$ for each $n \in \mathbb{N}$ and where I_m is a restriction of the projection $\pi_m : \prod_{n \in \mathbb{N}} D_n \longrightarrow D_m$ for each *m*.

Example

Now, let **A** be **Set**. A limit of the diagram *D* is a source $(L, (I_n)_{n \in \mathbb{N}})$ with codomain $(D_n)_{n \in \mathbb{N}}$, where *L* is the set of all sequences $(x_n)_{n \in \mathbb{N}}$ with $x_n \in D_n$ and $d_n(x_{n+1}) = x_n$ for each $n \in \mathbb{N}$ and where I_m is a restriction of the projection $\pi_m : \prod_{n \in \mathbb{N}} D_n \longrightarrow D_m$ for each *m*. Such an limit is called a *projective limit* or an *inverse limit*.

Definition

Let $D: \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram. An \mathbf{A} -sink $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with domain $(D_i)_{i \in Ob(\mathbf{I})}$ is called *natural for* D or *cocone*, if for each \mathbf{I} -morphism $d: i \longrightarrow j$ the triangle

commutes.

Definition

Let $D : \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram. An \mathbf{A} -sink $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with domain $(D_i)_{i \in Ob(\mathbf{I})}$ is called *natural for* D or *cocone*, if for each \mathbf{I} -morphism $d : i \longrightarrow j$ the triangle

commutes.

Let $(L, (I_i)_{i \in Ob(I)})$ be a natural sink for D with domain $(D_i)_{i \in Ob(I)}$. $(L, (I_i)_{i \in Ob(I)})$ is called a *colimit*, if it fulfils the following universal property: For each natural sink $(A, (f_i)_{i \in Ob(I)})$ with domain $(D_i)_{i \in Ob(I)}$ there exists a unique morphism $f : L \longrightarrow A$ with $f_i = f \circ I_i$ for each $i \in Ob(I)$.

Example

We consider $I = \mathbb{N}$ the poset of non-negative integers as a category. A diagram $D: I \longrightarrow A$ is essentially a sequence

$$D_0 \xrightarrow{d_0} D_1 \xrightarrow{d_1} D_2 \xrightarrow{d_2} \dots$$

of A-morphisms where

$$D(n \longrightarrow n+1) = d_n, D(n \longrightarrow n+2) = d_{n+1} \circ d_n,$$

etc..

Example

We consider $I = \mathbb{N}$ the poset of non-negative integers as a category. A diagram $D : I \longrightarrow A$ is essentially a sequence

$$D_0 \xrightarrow{d_0} D_1 \xrightarrow{d_1} D_2 \xrightarrow{d_2} \dots$$

of A-morphisms where

$$D(n \longrightarrow n+1) = d_n, D(n \longrightarrow n+2) = d_{n+1} \circ d_n,$$

etc..

A natural sink for D is a source $(A, (f_n)_{n \in \mathbb{N}})$ with domain $(D_n)_{n \in \mathbb{N}}$ with $f_n = f_{n+1} \circ d_n$ for each $n \in \mathbb{N}$.

Example

Now, let **A** be **Set**. We set $C := \bigcup_{i \in \mathbb{N}} (D_i \times \{i\})$ (the disjoint union of the D_i). We then define an equivalence relation \sim on C by $(x, i) \sim (y, j)$ if and only if there exists a $k \ge i, j$ with $d_{ik}(x) = d_{jk}(y)$ where $d_{ij} := D(i \longrightarrow j)$.

Our limit is given by $(C/\sim, (p \circ \mu_i)_{i \in \mathbb{N}})$, where $p : C \longrightarrow C/\sim$ is the natural map from C onto the map of equivalence classes under \sim and $\mu_i : D_i \longrightarrow C$ is the inclusion map.

Example

Now, let **A** be **Set**. We set $C := \bigcup_{i \in \mathbb{N}} (D_i \times \{i\})$ (the disjoint union of the D_i). We then define an equivalence relation \sim on C by $(x, i) \sim (y, j)$ if and only if there exists a $k \ge i, j$ with $d_{ik}(x) = d_{jk}(y)$ where $d_{ij} := D(i \longrightarrow j)$.

Our limit is given by $(C/\sim, (p \circ \mu_i)_{i \in \mathbb{N}})$, where $p : C \longrightarrow C/\sim$ is the natural map from *C* onto the map of equivalence classes under \sim and $\mu_i : D_i \longrightarrow C$ is the inclusion map. Such an colimit is called a *inductive limit* or a *direct limit*.

Theorem

Let $D: \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram and $(L, (l_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ be a limit of D. The following hold: For each limit $(K, (k_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ of D there exist an isomorphism $h: K \longrightarrow L$ such that for each $i \in Ob(\mathbf{I})$

$$k_i = l_i \circ h$$

hold.

Proof.

First we show that we can cancel a limit $(L, (I_i)_{i \in Ob(I)})$ from the left (i.e. for any pair $r, s : A \longrightarrow L$ of morphisms $I_i \circ r = I_i \circ s$ for each $i \in I$ implies r = s).

Since $(A, (I_i \circ r)_{i \in Ob(I)})$ and $(A, (I_i \circ s)_{i \in Ob(I)})$ are natural sources with the same codomain as $(L, (I_i)_{i \in Ob(I)})$, our conjecture follows directly out of the uniqueness requirement in the definition of limit.

Proof.

First we show that we can cancel a limit $(L, (I_i)_{i \in Ob(I)})$ from the left (i.e. for any pair $r, s : A \longrightarrow L$ of morphisms $I_i \circ r = I_i \circ s$ for each $i \in I$ implies r = s).

Since $(A, (I_i \circ r)_{i \in Ob(I)})$ and $(A, (I_i \circ s)_{i \in Ob(I)})$ are natural sources with the same codomain as $(L, (I_i)_{i \in Ob(I)})$, our conjecture follows directly out of the uniqueness requirement in the definition of limit.

Since $(L, (l_i)_{i \in Ob(I)})$ and $(K, (k_i)_{i \in Ob(I)})$ are limits with the same codomain, there exist unique morphisms h and k with $k_i = l_i \circ h$, $l_i = k_i \circ k$ for each $i \in Ob(I)$.

Therefore we get $k_i \circ id_K = k_i \circ k \circ h$ and $l_i \circ id_L = l_i \circ h \circ k$. This yield $id_K = k \circ h$ and $id_L = h \circ k$.

Definition

A source $(P, (p_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ that has the property that for each source $(A, (f_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ there exists a unique morphism $f : A \longrightarrow P$ such that $f_i = p_i \circ f$ for each $i \in I$ is called *product*.

Definition

A source $(P, (p_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ that has the property that for each source $(A, (f_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ there exists a unique morphism $f : A \longrightarrow P$ such that $f_i = p_i \circ f$ for each $i \in I$ is called *product*.

A product with codomain $(A_i)_{i \in I}$ is called a *product of the family* $(A_i)_{i \in I}$.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set I and let $\prod_{i \in I} A_i$ be its cartesian product. Then $(\prod_{i \in I} A_i, (\pi_i)_{i \in I})$, where $\pi_j : \prod_{i \in I} A_i \longrightarrow A_j$ is the natural projection, is a product of $(A_i)_{i \in I}$.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set I and let $\prod_{i \in I} A_i$ be its cartesian product. Then $(\prod_{i \in I} A_i, (\pi_i)_{i \in I})$, where $\pi_j : \prod_{i \in I} A_i \longrightarrow A_j$ is the natural projection, is a product of $(A_i)_{i \in I}$.

In the categories **Vec** and **Grp** direct products together with the natural projections are products.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set I and let $\prod_{i \in I} A_i$ be its cartesian product. Then $(\prod_{i \in I} A_i, (\pi_i)_{i \in I})$, where $\pi_j : \prod_{i \in I} A_i \longrightarrow A_j$ is the natural projection, is a product of $(A_i)_{i \in I}$.

In the categories **Vec** and **Grp** direct products together with the natural projections are products.

In the category **Top** topological products (i.e. the cartesian product of the sets equipped with the product topology) together with the natural projections are products.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set I and let $\prod_{i \in I} A_i$ be its cartesian product. Then $(\prod_{i \in I} A_i, (\pi_i)_{i \in I})$, where $\pi_j : \prod_{i \in I} A_i \longrightarrow A_j$ is the natural projection, is a product of $(A_i)_{i \in I}$.

In the categories **Vec** and **Grp** direct products together with the natural projections are products.

In the category **Top** topological products (i.e. the cartesian product of the sets equipped with the product topology) together with the natural projections are products.

In a partially ordered class considered as a category a source $(P, (p_i)_{i \in I})$ is a product if and only if P is a meet.

Definition

A sink $(P, (p_i)_{i \in I})$ with domain $(A_i)_{i \in I}$ that has the property that for each sink $(A, (f_i)_{i \in I})$ with domain $(A_i)_{i \in I}$ there exist a unique morphism $f : P \longrightarrow A$ such that $f_i = f \circ p_i$ for each $i \in I$ is called *coproduct*.

Definition

A sink $(P, (p_i)_{i \in I})$ with domain $(A_i)_{i \in I}$ that has the property that for each sink $(A, (f_i)_{i \in I})$ with domain $(A_i)_{i \in I}$ there exist a unique morphism $f : P \longrightarrow A$ such that $f_i = f \circ p_i$ for each $i \in I$ is called *coproduct*.

A coproduct with domain $(A_i)_{i \in I}$ is called a *coproduct of the family* $(A_i)_{i \in I}$.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set *I*. Then $(\bigcup_{i \in I} (A_i \times \{i\}), (\mu_i)_{i \in I})$, where $\mu_j : A_j \longrightarrow \bigcup_{i \in I} (A_i \times \{i\})$ is the natural embedding, is a product of $(A_i)_{i \in I}$.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set *I*. Then $(\bigcup_{i \in I} (A_i \times \{i\}), (\mu_i)_{i \in I})$, where $\mu_j : A_j \longrightarrow \bigcup_{i \in I} (A_i \times \{i\})$ is the natural embedding, is a product of $(A_i)_{i \in I}$.

In the category **Vec** direct sums together with the injections $\mu_i : A_j \longrightarrow \bigoplus_{i \in I} A_i$ are coproducts.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set *I*. Then $(\bigcup_{i \in I} (A_i \times \{i\}), (\mu_i)_{i \in I})$, where $\mu_j : A_j \longrightarrow \bigcup_{i \in I} (A_i \times \{i\})$ is the natural embedding, is a product of $(A_i)_{i \in I}$.

In the category **Vec** direct sums together with the injections $\mu_i : A_j \longrightarrow \bigoplus_{i \in I} A_i$ are coproducts.

In the category **Grp** free products together with the injections $\mu_i : A_j \longrightarrow *_{i \in I} A_i$ are coproducts.

Example

In the category **Set** let $(A_i)_{i \in I}$ be a family of sets indexed by a set *I*. Then $(\bigcup_{i \in I} (A_i \times \{i\}), (\mu_i)_{i \in I})$, where $\mu_j : A_j \longrightarrow \bigcup_{i \in I} (A_i \times \{i\})$ is the natural embedding, is a product of $(A_i)_{i \in I}$.

In the category **Vec** direct sums together with the injections $\mu_i : A_j \longrightarrow \bigoplus_{i \in I} A_i$ are coproducts.

In the category **Grp** free products together with the injections $\mu_i : A_j \longrightarrow *_{i \in I} A_i$ are coproducts.

In a poset considered as a category, coproducts are joints.

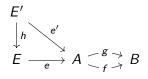
Remark

Let $D: \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram with a discrete scheme. Every source with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ is natural. A source is a limit of D if and only if it is a product of the family $(D_i)_{i \in Ob(\mathbf{I})}$.

Definition

Let $f, g: A \longrightarrow B$ be two morphisms. A morphism $e: E \longrightarrow A$ with the properties

- 1) $f \circ e = g \circ e$ and
- 2 for any morphism $e': E' \longrightarrow A$ with $f \circ e' = g \circ e'$ there exists a unique morphism h such that the triangle



commutes,

is called an equalizer of f and g.

Example

In the category **Set** (Vec, **Grp** or **Top**) let $f, g : A \longrightarrow B$ be morphisms. If $E = \{a \in A \mid f(a) = g(a)\}$ considered as a subset (linear subspace, subgroup, subspace) of A, then the inclusion from E to A is an equalizer of f and g.

Definition

Let $f,g:A\longrightarrow B$ be two morphisms. A morphism $c:B\longrightarrow C$ with the properties

- 1 $c \circ f = c \circ g$ and
- 2 for any morphism $c': B \longrightarrow C'$ with $c' \circ f = c' \circ g$ there exists a unique morphism h such that the triangle

$$\begin{array}{c}
C' \\
h \uparrow & \swarrow & c' \\
C & \longleftarrow & B & \swarrow & f \\
c & & g & \downarrow & A
\end{array}$$

commutes,

is called an *coequalizer* of f and g.

Example

In the categoriey **Set** let $f, g : A \longrightarrow B$ be morphisms and let \sim be the smallest equivalence relation on B such that $f(a) \sim g(a)$ for all $a \in A$. The natural map $p : B \longrightarrow B/\sim$ is a coequalizer of f and g.

Remark

Equalizer are limits of diagrams with the scheme $\bullet \rightrightarrows \bullet$.

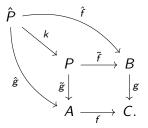
Remark

Equalizer are limits of diagrams with the scheme $\bullet \rightrightarrows \bullet$. More precisely for a pair of morphisms $f, g : A \longrightarrow B$, considered as a diagram D with scheme $\bullet \rightrightarrows \bullet$ a source (C, (e, h)) with codomain (A, B) is natural if $g \circ e = h = f \circ e$. Hence e is an equalizer of f and g if and only if the source $(C, (e, f \circ e))$ is a limit of D.

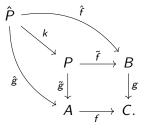
Definition A commuting square

is called a *pullback square* provided that for any commuting square

There exists a unique morphism $k: \hat{P} \longrightarrow P$ for which the following diagram commutes



There exists a unique morphism $k : \hat{P} \longrightarrow P$ for which the following diagram commutes



In this case the source $(P, (\tilde{g}, \tilde{f}))$ is called a *pullback* of the sink (C, (f, g)) and \tilde{f} is called *pullback of f along g*.

Remark

Pullbacks are limits of diagrams with scheme $\bullet \to \bullet \leftarrow \bullet$.

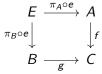
Remark

Pullbacks are limits of diagrams with scheme $\bullet \to \bullet \leftarrow \bullet.$ More precisely A square

is a pullback square if and only if the source $(P, (\tilde{g}, f \circ \tilde{g}, \tilde{f}))$ is a limit of the sink (C, (f, g)), considered as a diagram in **A** with scheme $\bullet \to \bullet \leftarrow \bullet$.

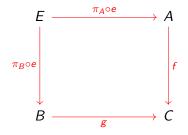
Theorem

Let $f : A \longrightarrow C$ and $g : B \longrightarrow C$ be morphisms. If a source $(A \times B, (\pi_A, \pi_B))$ with codomain (A, B) is a product of A and B, and $e : E \longrightarrow A \times B$ is an equalizer of $f \circ \pi_A$ and $g \circ \pi_B$, then

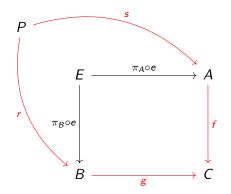


is a pullback square.

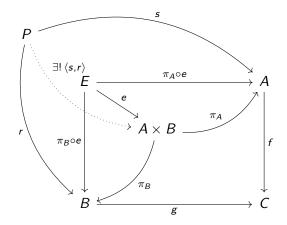
The square commutes since $e: E \longrightarrow A \times B$ is an equalizer of $f \circ \pi_A$ and $g \circ \pi_B$.



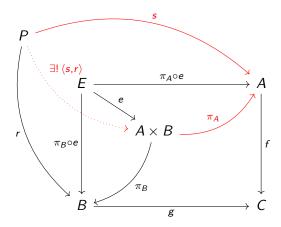
Let P be an object and r, s be morphisms such that the following square commutes:



Since $(A \times B, (\pi_A, \pi_B))$ is a product and (P, (s, r)) is a source with the same codomain as $(A \times B, (\pi_A, \pi_B))$, there exists a unique morphism $\langle s, r \rangle : P \longrightarrow A \times B$ with



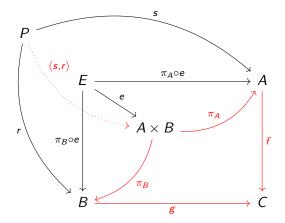
 $s = \pi_A \circ \langle s, r \rangle$ and



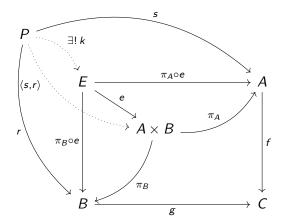
s $\exists ! \langle s, r \rangle$ $\pi_A \circ e$ Α F е π_A $A \times B$ r $\pi_B \circ e$ f π_B В g

 $r = \pi_B \circ \langle s, r \rangle.$

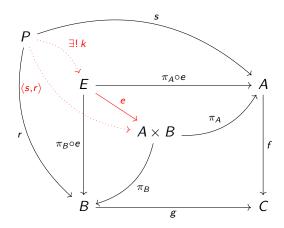
We also have $f \circ s = g \circ r$ and consequently $f \circ \pi_A \circ \langle s, r \rangle = g \circ \pi_B \circ \langle s, r \rangle$.



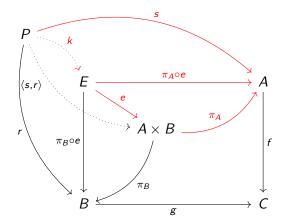
Since *e* is an equalizer of $f \circ \pi_A$ and $g \circ \pi_B$, we infer the existence of a unique morphism $k : P \longrightarrow E$ with



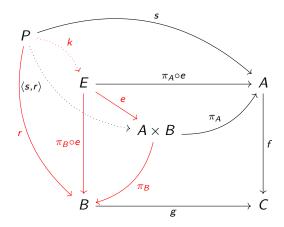
 $\langle s, r \rangle = e \circ k.$



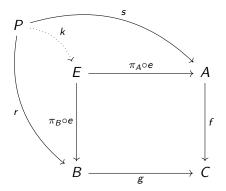
Since we already know that $s = \pi_A \circ \langle s, r \rangle$ and $r = \pi_B \circ \langle s, r \rangle$, we we get $s = \pi_A \circ e \circ k$ and



 $r = \pi_B \circ e \circ k$.



We conclude that the following diagram commutes:



We still have to show that k is unique with this property. Let t be another morphism with $s = \pi_A \circ e \circ t$ and $r = \pi_B \circ e \circ t$.

Then it holds $\pi_A \circ e \circ t = \pi_A \circ e \circ k$ and $\pi_B \circ e \circ t = \pi_B \circ e \circ k$. Since we can cancel products and equalizers from the left, we infer k = h.

Example

Let $f : A \longrightarrow C$ and $g : B \longrightarrow C$ be morphisms in **Set**, $P := \{(a, b) \in A \times B \mid f(a) = g(b)\}$ and let $\tilde{f} : P \longrightarrow A$ and $\tilde{g} : P \longrightarrow B$ be restrictions of the projections from $A \times B$. Then

is a pullback square.

Example

Let $f : A \longrightarrow C$ and $g : B \longrightarrow C$ be morphisms in **Set**, $P := \{(a, b) \in A \times B \mid f(a) = g(b)\}$ and let $\tilde{f} : P \longrightarrow A$ and $\tilde{g} : P \longrightarrow B$ be restrictions of the projections from $A \times B$. Then

is a pullback square.

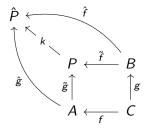
We could construct similar examples in Vec or Top.

Definition A commuting square

is called a pushout square provided that for any commuting square

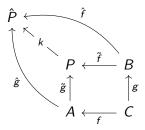
Definition

there exists a unique morphism $k:P\longrightarrow \hat{P}$ for which the following diagram commutes



Definition

there exists a unique morphism $k:P\longrightarrow \hat{P}$ for which the following diagram commutes



In this case the sink $(P, (\tilde{g}, \tilde{f}))$ is called a *pushout* of the source (C, (f, g)) and \tilde{f} is called *pushout of f along g*.

Completeness

Definition

Let **A** be a category. If for each (finite) set-indexed family of objects in **A** there exists a product, then **A** is said to *have (finite) products*.

Completeness

Definition

Let **A** be a category. If for each (finite) set-indexed family of objects in **A** there exists a product, then **A** is said to *have (finite) products*.

If for each pair of morphisms with common domain and codomain in \bf{A} there exists an equalizer, then \bf{A} is said to *have equalizers*.

Definition

Let **A** be a category. If for each (finite) set-indexed family of objects in **A** there exists a product, then **A** is said to *have (finite) products*.

If for each pair of morphisms with common domain and codomain in \bf{A} there exists an equalizer, then \bf{A} is said to *have equalizers*.

If for each 2-sink in **A** there exists a pullback, then **A** is said to *have pullbacks*.

Definition

Let **A** be a category. If for each finite diagram **A** there exists a limit, then **A** is said to be *finitely complete*.

Definition

Let **A** be a category. If for each finite diagram **A** there exists a limit, then **A** is said to be *finitely complete*.

If for each small diagram **A** there exists a limit, then **A** is said to be *complete*.

Example

The categories Set, Top and Grp are complete.

Example

The categories **Set**, **Top** and **Grp** are complete.

The category of finite sets is finitely complete but not complete.

Example

The categories **Set**, **Top** and **Grp** are complete.

The category of finite sets is finitely complete but not complete.

The category **Field** (objects are fields and morphisms are algebraic field extensions) is not finitely complete.

Theorem

Let A be a category. The following are equivalent

- **1** A is finitely complete;
- **2 A** has finite products and equalizers;
- **3 A** has pullbacks and a terminal object.

Definition

Let $F : \mathbf{A} \longrightarrow \mathbf{B}$ be a functor. F is said to *preserve a limit* $\mathcal{L} = (L, (l_i))$ of a diagram $D : \mathbf{I} \longrightarrow \mathbf{A}$ provided that $(FL, (Fl_i))$ is a limit of the diagram $F \circ D : \mathbf{I} \longrightarrow \mathbf{B}$.

Definition

Let $F : \mathbf{A} \longrightarrow \mathbf{B}$ be a functor. F is said to *preserve a limit* $\mathcal{L} = (L, (I_i))$ of a diagram $D : \mathbf{I} \longrightarrow \mathbf{A}$ provided that $(FL, (FI_i))$ is a limit of the diagram $F \circ D : \mathbf{I} \longrightarrow \mathbf{B}$.

If *F* preserves all limits of diagrams $D : I \longrightarrow A$, then *F* is said to preserve all limits of a diagram $D : I \longrightarrow A$ with a scheme I.

Definition

Let $F : \mathbf{A} \longrightarrow \mathbf{B}$ be a functor. F is said to *preserve a limit* $\mathcal{L} = (L, (I_i))$ of a diagram $D : \mathbf{I} \longrightarrow \mathbf{A}$ provided that $(FL, (FI_i))$ is a limit of the diagram $F \circ D : \mathbf{I} \longrightarrow \mathbf{B}$.

If *F* preserves all limits of diagrams $D : I \longrightarrow A$, then *F* is said to preserve all limits of a diagram $D : I \longrightarrow A$ with a scheme I.

F is said to *preserve equalizers*, if *F* preserves all limits with the scheme $\bullet \Rightarrow \bullet$. *F* is said to *preserve products*, if *F* preserves all limits over small discrete schemes. *F* is said to *preserve small limits*, if *F* preserves all limits over small schemes.

Example

For the category **Top**, the forgetful functor preserves limits.

Example

For the category **Top**, the forgetful functor preserves limits.

For the categories **Vec** and **Grp**, the forgetful functor preserves limits. It also preserves discrete colimits, but neither coproducts nor coequalizers.

Example

For the category **Top**, the forgetful functor preserves limits.

For the categories **Vec** and **Grp**, the forgetful functor preserves limits. It also preserves discrete colimits, but neither coproducts nor coequalizers.

The full embedding $\textbf{Haus} \longrightarrow \textbf{Top}$ preserves limits and coproducts, but not coequalizers.

Theorem

Let $F : \mathbf{A} \longrightarrow \mathbf{B}$ be a functor and \mathbf{A} finitely complete. The following are equivalent:

- **1** *F* preserves finite limits;
- **2** *F* preserves finite products and equalizers;
- 3 F preserves pullbacks and terminal objects.