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Sources and Sinks
Definition
Let I be a class and A be a category. A source is a pair (A, (fi)i∈I)
consisting of an A-object A and a family of A-morphisms
fi : A −→ Ai .

The object A is called the domain of the source.
The family of objects (Ai)i∈I is called the codomain of the source.

Remark
We may regard an object A as an empty source (a source indexed
by the empty set).

Moreover we may regard an Morphism f : A −→ A1 as an source
indexed by the set {1}.
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Sources and Sinks
Definition
Let I be a class and A be a category. A sink is a pair (A, (fi)i∈I)
consisting of an A-object A and a family of A-morphisms
fi : Ai −→ A.

The object A is called the codomain of the sink.
The family of objects (Ai)i∈I is called the domain of the sink.



Sources and Sinks
Definition
Let I be a class and A be a category. A sink is a pair (A, (fi)i∈I)
consisting of an A-object A and a family of A-morphisms
fi : Ai −→ A.

The object A is called the codomain of the sink.

The family of objects (Ai)i∈I is called the domain of the sink.



Sources and Sinks
Definition
Let I be a class and A be a category. A sink is a pair (A, (fi)i∈I)
consisting of an A-object A and a family of A-morphisms
fi : Ai −→ A.

The object A is called the codomain of the sink.
The family of objects (Ai)i∈I is called the domain of the sink.



Limits and colimits
Definition
Let A and I be categories. A functor D : I −→ A is called a
diagram.

The domain I is called scheme.
The diagram is called small (or finite), if I is small (or finite).

Example
A diagram in a category A with scheme •⇒ • is essentially a pair
of A-Morphisms with common domain and common codomain.
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Limits and colimits
Definition
Let D : I −→ A be a diagram. An A-source (A, (fi)i∈Ob(I)) with
codomain (Di)i∈Ob(I) is called natural for D or cone, if for each
I-morphism d : i −→ j the triangle

A

Di Dj

fi
fj

Dd

commutes.

Let (L, (li)i∈Ob(I)) be a natural source for D with codomain
(Di)i∈Ob(I). (L, (li)i∈Ob(I)) is called a limit, if it fulfils the following
universal property: For each natural source (A, (fi)i∈Ob(I)) with
codomain (Di)i∈Ob(I) there exists a unique morphism f : A −→ L
with fi = li ◦ f for each i ∈ Ob(I).
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Limits and colimits
Example
We consider I = Nop the poset of non-negative integers with the
opposite of the usual ordering as a category. A diagram
D : I −→ A is essentially a sequence

. . . D2 D1 D0
d2 d1 d0

of A-morphisms where

D(n + 1 −→ n) = dn,D(n + 2 −→ n) = dn ◦ dn+1,

etc..

A natural source for D is a source (A, (fn)n∈N) with codomain
(Dn)n∈N with fn = dn ◦ fn+1 for each n ∈ N.
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Limits and colimits
Example
Now, let A be Set. A limit of the diagram D is a source
(L, (ln)n∈N) with codomain (Dn)n∈N, where L is the set of all
sequences (xn)n∈N with xn ∈ Dn and dn(xn+1) = xn for each n ∈ N
and where lm is a restriction of the projection
πm :

∏
n∈NDn −→ Dm for each m.

Such an limit is called a projective limit or an inverse limit.
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Limits and colimits
Definition
Let D : I −→ A be a diagram. An A-sink (A, (fi)i∈Ob(I)) with
domain (Di)i∈Ob(I) is called natural for D or cocone, if for each
I-morphism d : i −→ j the triangle

A

Di Dj

fi

Dd

fj

commutes.

Let (L, (li)i∈Ob(I)) be a natural sink for D with domain (Di)i∈Ob(I).
(L, (li)i∈Ob(I)) is called a colimit, if it fulfils the following universal
property: For each natural sink (A, (fi)i∈Ob(I)) with domain
(Di)i∈Ob(I) there exists a unique morphism f : L −→ A with
fi = f ◦ li for each i ∈ Ob(I).
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domain (Di)i∈Ob(I) is called natural for D or cocone, if for each
I-morphism d : i −→ j the triangle

A

Di Dj

fi

Dd

fj

commutes.
Let (L, (li)i∈Ob(I)) be a natural sink for D with domain (Di)i∈Ob(I).
(L, (li)i∈Ob(I)) is called a colimit, if it fulfils the following universal
property: For each natural sink (A, (fi)i∈Ob(I)) with domain
(Di)i∈Ob(I) there exists a unique morphism f : L −→ A with
fi = f ◦ li for each i ∈ Ob(I).



Limits and colimits
Example
We consider I = N the poset of non-negative integers as a
category. A diagram D : I −→ A is essentially a sequence

D0 D1 D2 . . .
d0 d1 d2

of A-morphisms where

D(n −→ n + 1) = dn,D(n −→ n + 2) = dn+1 ◦ dn,

etc..

A natural sink for D is a source (A, (fn)n∈N) with domain (Dn)n∈N
with fn = fn+1 ◦ dn for each n ∈ N.
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Limits and colimits
Example
Now, let A be Set. We set C :=

⋃
i∈N(Di × {i}) (the disjoint

union of the Di). We then define an equivalence relation ∼ on C
by (x , i) ∼ (y , j) if and only if there exists a k ≥ i , j with
dik(x) = djk(y) where dij := D(i −→ j).

Our limit is given by (C/∼, (p ◦ µi)i∈N), where p : C −→ C/∼ is
the natural map from C onto the map of equivalence classes under
∼ and µi : Di −→ C is the inclusion map.

Such an colimit is called a inductive limit or a direct limit.
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Limits and colimits
Theorem
Let D : I −→ A be a diagram and (L, (li)i∈Ob(I)) with codomain
(Di)i∈Ob(I) be a limit of D. The following hold:
For each limit (K , (ki)i∈Ob(I)) with codomain (Di)i∈Ob(I) of D there
exist an isomorphism h : K −→ L such that for each i ∈ Ob(I)

ki = li ◦ h

hold.



Limits and colimits
Proof.
First we show that we can cancel a limit (L, (li)i∈Ob(I)) from the
left (i.e. for any pair r , s : A −→ L of morphisms li ◦ r = li ◦ s for
each i ∈ I implies r = s).
Since (A, (li ◦ r)i∈Ob(I)) and (A, (li ◦ s)i∈Ob(I)) are natural sources
with the same codomain as (L, (li)i∈Ob(I)), our conjecture follows
directly out of the uniqueness requirement in the definition of limit.

Since (L, (li)i∈Ob(I)) and (K , (ki)i∈Ob(I)) are limits with the same
codomain, there exist unique morphisms h and k with ki = li ◦ h,
li = ki ◦ k for each i ∈ Ob(I).
Therefore we get ki ◦ idK = ki ◦ k ◦ h and li ◦ idL = li ◦ h ◦ k. This
yield idK = k ◦ h and idL = h ◦ k.
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Products and coproducts
Definition
A source (P, (pi)i∈I) with codomain (Ai)i∈I that has the property
that for each source (A, (fi)i∈I) with codomain (Ai)i∈I there exists
a unique morphism f : A −→ P such that fi = pi ◦ f for each i ∈ I
is called product.

A product with codomain (Ai)i∈I is called a product of the family
(Ai)i∈I .
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Products and coproducts
Example
In the category Set let (Ai)i∈I be a family of sets indexed by a set
I and let

∏
i∈I Ai be its cartesian product. Then (

∏
i∈I Ai , (πi)i∈I),

where πj :
∏

i∈I Ai −→ Aj is the natural projection, is a product of
(Ai)i∈I .

In the categories Vec and Grp direct products together with the
natural projections are products.

In the category Top topological products (i.e. the cartesian
product of the sets equipped with the product topology) together
with the natural projections are products.

In a partially ordered class considered as a category a source
(P, (pi)i∈I) is a product if and only if P is a meet.
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Products and coproducts
Definition
A sink (P, (pi)i∈I) with domain (Ai)i∈I that has the property that
for each sink (A, (fi)i∈I) with domain (Ai)i∈I there exist a unique
morphism f : P −→ A such that fi = f ◦ pi for each i ∈ I is called
coproduct.

A coproduct with domain (Ai)i∈I is called a coproduct of the
family (Ai)i∈I .
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Products and coproducts
Example
In the category Set let (Ai)i∈I be a family of sets indexed by a set
I. Then (

⋃
i∈I(Ai × {i}), (µi)i∈I), where µj : Aj −→

⋃
i∈I(Ai × {i})

is the natural embedding, is a product of (Ai)i∈I .

In the category Vec direct sums together with the injections
µi : Aj −→

⊕
i∈I Ai are coproducts.

In the category Grp free products together with the injections
µi : Aj −→ ∗i∈IAi are coproducts.

In a poset considered as a category, coproducts are joints.
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Products and coproducts
Remark
Let D : I −→ A be a diagram with a discrete scheme. Every source
with codomain (Di)i∈Ob(I) is natural. A source is a limit of D if
and only if it is a product of the family (Di)i∈Ob(I).



Equalizer and coequalizer
Definition
Let f , g : A −→ B be two morphisms. A morphism e : E −→ A
with the properties

1 f ◦ e = g ◦ e and
2 for any morphism e′ : E ′ −→ A with f ◦ e′ = g ◦ e′ there

exists a unique morphism h such that the triangle

E ′

E A B
h e′

e f
g

commutes,
is called an equalizer of f and g .



Equalizer and coequalizer
Example
In the category Set (Vec, Grp or Top) let f , g : A −→ B be
morphisms. If E = {a ∈ A | f (a) = g(a)} considered as a subset
(linear subspace, subgroup, subspace) of A, then the inclusion from
E to A is an equalizer of f and g .



Equalizer and coequalizer
Definition
Let f , g : A −→ B be two morphisms. A morphism c : B −→ C
with the properties

1 c ◦ f = c ◦ g and
2 for any morphism c ′ : B −→ C ′ with c ′ ◦ f = c ′ ◦ g there

exists a unique morphism h such that the triangle

C ′

C B A
h c′

c
f
g

commutes,
is called an coequalizer of f and g .



Equalizer and coequalizer
Example
In the categoriey Set let f , g : A −→ B be morphisms and let ∼ be
the smallest equivalence relation on B such that f (a) ∼ g(a) for
all a ∈ A. The natural map p : B −→ B/∼ is a coequalizer of f
and g .



Equalizer and coequalizer
Remark
Equalizer are limits of diagrams with the scheme •⇒ •.

More precisely for a pair of morphisms f , g : A −→ B, considered
as a diagram D with scheme •⇒ • a source (C , (e, h)) with
codomain (A,B) is natural if g ◦ e = h = f ◦ e. Hence e is an
equalizer of f and g if and only if the source (C , (e, f ◦ e)) is a
limit of D.



Equalizer and coequalizer
Remark
Equalizer are limits of diagrams with the scheme •⇒ •.
More precisely for a pair of morphisms f , g : A −→ B, considered
as a diagram D with scheme •⇒ • a source (C , (e, h)) with
codomain (A,B) is natural if g ◦ e = h = f ◦ e. Hence e is an
equalizer of f and g if and only if the source (C , (e, f ◦ e)) is a
limit of D.



Pullbacks and Pushouts
Definition
A commuting square

P B

A C

f̃

g̃ g

f

is called a pullback square provided that for any commuting square

P̂ B

A C ,

f̂

ĝ g

f



Pullbacks and Pushouts
There exists a unique morphism k : P̂ −→ P for which the
following diagram commutes

P̂

P B

A C .

k

f̂

ĝ

f̃

g̃ g

f

In this case the source (P, (g̃ , f̃ )) is called a pullback of the sink
(C , (f , g)) and f̃ is called pullback of f along g .



Pullbacks and Pushouts
There exists a unique morphism k : P̂ −→ P for which the
following diagram commutes

P̂

P B

A C .

k

f̂

ĝ

f̃

g̃ g

f

In this case the source (P, (g̃ , f̃ )) is called a pullback of the sink
(C , (f , g)) and f̃ is called pullback of f along g .



Pullbacks and Pushouts
Remark
Pullbacks are limits of diagrams with scheme • → • ← •.

More precisely A square

P B

A C .

f̃

g̃ g

f

is a pullback square if and only if the source (P, (g̃ , f ◦ g̃ , f̃ )) is a
limit of the sink (C , (f , g)), considered as a diagram in A with
scheme • → • ← •.



Pullbacks and Pushouts
Remark
Pullbacks are limits of diagrams with scheme • → • ← •.
More precisely A square

P B

A C .

f̃

g̃ g

f

is a pullback square if and only if the source (P, (g̃ , f ◦ g̃ , f̃ )) is a
limit of the sink (C , (f , g)), considered as a diagram in A with
scheme • → • ← •.



Pullbacks and Pushouts
Theorem
Let f : A −→ C and g : B −→ C be morphisms.
If a source (A× B, (πA, πB)) with codomain (A,B) is a product of
A and B, and e : E −→ A×B is an equalizer of f ◦ πA and g ◦ πB,
then

E A

B C

πA◦e

πB◦e f

g

is a pullback square.



Pullbacks and Pushouts
The square commutes since e : E −→ A× B is an equalizer of
f ◦ πA and g ◦ πB.

E A

B C

πA◦e

πB◦e f

g



Pullbacks and Pushouts
Let P be an object and r , s be morphisms such that the following
square commutes:

P

E A

B C

s

r

πA◦e

πB◦e f

g



Pullbacks and Pushouts
Since (A×B, (πA, πB)) is a product and (P, (s, r)) is a source with
the same codomain as (A× B, (πA, πB)), there exists a unique
morphism 〈s, r〉 : P −→ A× B with
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Pullbacks and Pushouts
s = πA ◦ 〈s, r〉 and
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Pullbacks and Pushouts
r = πB ◦ 〈s, r〉.

P

E A

A× B

B C

∃! 〈s,r〉

s

r

πA◦e

e

πB◦e f

πA

πB

g



Pullbacks and Pushouts
We also have f ◦ s = g ◦ r and consequently
f ◦ πA ◦ 〈s, r〉 = g ◦ πB ◦ 〈s, r〉.

P

E A

A× B

B C

〈s,r〉

s

r

πA◦e

e

πB◦e f

πA

πB

g



Pullbacks and Pushouts
Since e is an equalizer of f ◦ πA and g ◦ πB, we infer the existence
of a unique morphism k : P −→ E with
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Pullbacks and Pushouts
〈s, r〉 = e ◦ k.

P

E A

A× B

B C

∃! k

〈s,r〉

s

r

πA◦e

e

πB◦e f

πA

πB

g



Pullbacks and Pushouts
Since we already know that s = πA ◦ 〈s, r〉 and r = πB ◦ 〈s, r〉, we
we get s = πA ◦ e ◦ k and
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Pullbacks and Pushouts
r = πB ◦ e ◦ k.
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Pullbacks and Pushouts
We conclude that the following diagram commutes:

P

E A

B C

k

r

s

πA◦e

πB◦e f

g



Pullbacks and Pushouts
We still have to show that k is unique with this property. Let t be
another morphism with s = πA ◦ e ◦ t and r = πB ◦ e ◦ t.

Then it holds πA ◦ e ◦ t = πA ◦ e ◦ k and πB ◦ e ◦ t = πB ◦ e ◦ k.
Since we can cancel products and equalizers from the left, we infer
k = h.



Pullbacks and Pushouts
Example
Let f : A −→ C and g : B −→ C be morphisms in Set,
P := {(a, b) ∈ A× B | f (a) = g(b)} and let f̃ : P −→ A and
g̃ : P −→ B be restrictions of the projections from A× B. Then

P A

B C

f̃

g̃ f

g

is a pullback square.

We could construct similar examples in Vec or Top.
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Pullbacks and Pushouts
Definition
A commuting square

P B

A C

f̃

g̃ g

f

is called a pushout square provided that for any commuting square

P̂ B

A C

f̂

ĝ g

f



Pullbacks and Pushouts
Definition
there exists a unique morphism k : P −→ P̂ for which the following
diagram commutes

P̂

P B

A C

k

f̂

f̃

ĝ g̃ g

f

In this case the sink (P, (g̃ , f̃ )) is called a pushout of the source
(C , (f , g)) and f̃ is called pushout of f along g .
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Completeness
Definition
Let A be a category. If for each (finite) set-indexed family of
objects in A there exists a product, then A is said to have (finite)
products.

If for each pair of morphisms with common domain and codomain
in A there exists an equalizer, then A is said to have equalizers.

If for each 2-sink in A there exists a pullback, then A is said to
have pullbacks.
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Completeness
Example
The categories Set,Top and Grp are complete.

The category of finite sets is finitely complete but not complete.

The category Field (objects are fields and morphisms are algebraic
field extensions) is not finitely complete.
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Completeness
Theorem
Let A be a category. The following are equivalent

1 A is finitely complete;
2 A has finite products and equalizers;
3 A has pullbacks and a terminal object.



Preservation of limits
Definition
Let F : A −→ B be a functor. F is said to preserve a limit
L = (L, (li)) of a diagram D : I −→ A provided that (FL, (Fli)) is a
limit of the diagram F ◦ D : I −→ B.

If F preserves all limits of diagrams D : I −→ A, then F is said to
preserve all limits of a diagram D : I −→ A with a scheme I.

F is said to preserve equalizers, if F preserves all limits with the
scheme •⇒ •. F is said to preserve products, if F preserves all
limits over small discrete schemes. F is said to preserve small
limits, if F preserves all limits over small schemes.
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Preservation of limits
Example
For the category Top, the forgetful functor preserves limits.

For the categories Vec and Grp, the forgetful functor preserves
limits. It also preserves discrete colimits, but neither coproducts
nor coequalizers.

The full embedding Haus −→ Top preserves limits and
coproducts, but not coequalizers.
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Preservation of limits
Example
For the category Top, the forgetful functor preserves limits.

For the categories Vec and Grp, the forgetful functor preserves
limits. It also preserves discrete colimits, but neither coproducts
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Preservation of limits
Theorem
Let F : A −→ B be a functor and A finitely complete. The
following are equivalent:

1 F preserves finite limits;
2 F preserves finite products and equalizers;
3 F preserves pullbacks and terminal objects.


