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Sources and Sinks

Definition

Let / be a class and A be a category. A source is a pair (A, (f)ic/)
consisting of an A-object A and a family of A-morphisms

f;' A — A,'.

The object A is called the domain of the source.
The family of objects (A;);e; is called the codomain of the source.

Remark
We may regard an object A as an empty source (a source indexed
by the empty set).

Moreover we may regard an Morphism f : A — A; as an source
indexed by the set {1}.
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Sources and Sinks

Definition

Let / be a class and A be a category. A sink is a pair (A, (fi)icr)
consisting of an A-object A and a family of A-morphisms

i A — A

The object A is called the codomain of the sink.
The family of objects (A;);e; is called the domain of the sink.
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Limits and colimits
Definition
Let A and | be categories. A functor D : | — A is called a
diagram.
The domain | is called scheme.
The diagram is called small (or finite), if | is small (or finite).

Example
A diagram in a category A with scheme e = e is essentially a pair
of A-Morphisms with common domain and common codomain.
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Let D: 1 — A be a diagram. An A-source (A, (f)icob(ry) with
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Limits and colimits

Definition

Let D: 1 — A be a diagram. An A-source (A, (f)icob(ry) with
codomain (D;);conry is called natural for D or cone, if for each
I-morphism d : i — j the triangle
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commutes.

Let (L, (/i)icob()) be a natural source for D with codomain
(Di)icoby- (L, (i)icoby) is called a /imit, if it fulfils the following
universal property: For each natural source (A, (f;)icona)) with
codomain (D;);con(ry there exists a unique morphism f: A — L
with f; = [; o f for each i € Ob(l).
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Example

We consider | = IN°P the poset of non-negative integers with the
opposite of the usual ordering as a category. A diagram

D : 1 — A is essentially a sequence

d> di do

D, D Dy
of A-morphisms where
D(n+1—n)=d, D(n+2— n)=d,odn1,

etc..



Limits and colimits

Example

We consider | = IN°P the poset of non-negative integers with the
opposite of the usual ordering as a category. A diagram

D : 1 — A is essentially a sequence

d> di do

Dy Do

D,

of A-morphisms where
D(n+1—n)=d, D(n+2— n)=d,odn1,
etc..

A natural source for D is a source (A, (fs)nen) with codomain
(Dp)new with f, = dj, o fp41 for each n € IN.



Limits and colimits

Example

Now, let A be Set. A limit of the diagram D is a source

(L, (In)new) with codomain (D,)nenw, where L is the set of all
sequences (Xp)nen With x, € D and dp(xp+1) = x, for each n € N
and where /,,, is a restriction of the projection

Tm : [Iney Dn — D for each m.



Limits and colimits

Example

Now, let A be Set. A limit of the diagram D is a source

(L, (In)new) with codomain (D,)nenw, where L is the set of all
sequences (Xp)nen With x, € D and dp(xp+1) = x, for each n € N
and where /,,, is a restriction of the projection

Tm : [Iney Dn — D for each m.

Such an limit is called a projective limit or an inverse limit.
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Limits and colimits

Definition

Let D: 1 — A be a diagram. An A-sink (A, (f;)iconq)) with
domain (D;)icoby is called natural for D or cocone, if for each
I-morphism d : i — j the triangle

Y
Dd

P
— >

S

D;

commutes.

Let (L, (/i)icob)) be a natural sink for D with domain (D;)icob(1)-
(L, (li)icob(ry) is called a colimit, if it fulfils the following universal
property: For each natural sink (A, (f;)icon()) with domain
(Di)icob(ry there exists a unique morphism f : L — A with

fi = f o l; for each i € Ob(l).
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etc..



Limits and colimits

Example
We consider | = IN the poset of non-negative integers as a
category. A diagram D : | — A is essentially a sequence

do dq do

Do Dy D,
of A-morphisms where

D(n— n+1)=d, D(n — n+2) = dpy10dp,
etc..

A natural sink for D is a source (A, (f,)nen) with domain (Dp,)pen
with f, = f,41 o d, for each n € IN.



Limits and colimits

Example

Now, let A be Set. We set C := J;en(Di x {i}) (the disjoint
union of the D;). We then define an equivalence relation ~ on C
by (x, i) ~ (y,j) if and only if there exists a k > i, j with

dix(x) = djk(y) where djj := D(i — j).

Our limit is given by (C/~, (p o pi)ien), where p: C — C/~ is
the natural map from C onto the map of equivalence classes under
~ and u; : D — C is the inclusion map.



Limits and colimits

Example

Now, let A be Set. We set C := J;en(Di x {i}) (the disjoint
union of the D;). We then define an equivalence relation ~ on C
by (x, i) ~ (y,j) if and only if there exists a k > i, j with

dix(x) = djk(y) where djj := D(i — j).

Our limit is given by (C/~, (p o pi)ien), where p: C — C/~is
the natural map from C onto the map of equivalence classes under
~ and u; : D — C is the inclusion map.

Such an colimit is called a inductive limit or a direct limit.



Limits and colimits

Theorem

Let D : 1 — A be a diagram and (L, (I;)icon(y) with codomain
(Di)icob(y be a limit of D. The following hold:

For each limit (K, (ki)icob()) with codomain (D;)jcony of D there
exist an isomorphism h: K — L such that for each i € Ob(l)

k,-:/,-oh

hold.



Limits and colimits

Proof.

First we show that we can cancel a limit (L, (/;)jcon)) from the
left (i.e. for any pair r,s : A— L of morphisms l;or = [; os for
each i € | implies r = s).

Since (A, (/i o r)icob)) and (A, (/i o s)icon()) are natural sources
with the same codomain as (L, (/;)icon(1)), our conjecture follows
directly out of the uniqueness requirement in the definition of limit.



Limits and colimits

Proof.

First we show that we can cancel a limit (L, (/;)jcon)) from the
left (i.e. for any pair r,s : A— L of morphisms l;or = [; os for
each i € | implies r = s).

Since (A, (/i o r)icob)) and (A, (/i o s)icon()) are natural sources
with the same codomain as (L, (/;)icon(1)), our conjecture follows
directly out of the uniqueness requirement in the definition of limit.

Since (L, (/)icobay) and (K, (ki)icob(y) are limits with the same
codomain, there exist unique morphisms h and k with k; = /; o h,

li = ki o k for each i € Ob(l).

Therefore we get kjoidx = kjo ko h and [joid; = ;o ho k. This
yield idx = ko h and id; = ho k. ]



Products and coproducts

Definition

A source (P, (pi)ier) with codomain (A;)ic/ that has the property

that for each source (A, (f;)ic;) with codomain (A;);e; there exists
a unique morphism f : A— P such that f; = p; o f for each j € /
is called product.
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that for each source (A, (f;)ic;) with codomain (A;);e; there exists
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(Ai)ier-
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I and let [];c; Ai be its cartesian product. Then ([;c; Ai, (7i)ici),
where ; : [[;c; Ai — Aj is the natural projection, is a product of
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Products and coproducts

Example

In the category Set let (A;);es be a family of sets indexed by a set
I and let [];c; Ai be its cartesian product. Then ([;c; Ai, (7i)ici),
where ; : [[;c; Ai — Aj is the natural projection, is a product of
(Ai)ier-

In the categories Vec and Grp direct products together with the
natural projections are products.

In the category Top topological products (i.e. the cartesian
product of the sets equipped with the product topology) together
with the natural projections are products.

In a partially ordered class considered as a category a source
(P, (pi)ic1) is a product if and only if P is a meet.



Products and coproducts

Definition
A sink (P, (pi)ies) with domain (A;);c/ that has the property that
for each sink (A, (f;)ies) with domain (A;);c; there exist a unique
morphism f : P — A such that f; = f o p; for each j € | is called
coproduct.



Products and coproducts

Definition
A sink (P, (pi)ies) with domain (A;);c/ that has the property that
for each sink (A, (f;)ies) with domain (A;);c; there exist a unique
morphism f : P — A such that f; = f o p; for each j € | is called
coproduct.

A coproduct with domain (A;);c; is called a coproduct of the
family (Aj)ier-
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In the category Set let (A;);es be a family of sets indexed by a set

I Then (Ui (Ai X {i}), (ui)ier), where pj : Ay — U (Ai x {i})
is the natural embedding, is a product of (A;)e;.
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Products and coproducts

Example

In the category Set let (A;);es be a family of sets indexed by a set

I Then (Ui (Ai X {i}), (ui)ier), where pj : Ay — U (Ai x {i})
is the natural embedding, is a product of (A;)e;.

In the category Vec direct sums together with the injections
pi: Aj — @, Ai are coproducts.

In the category Grp free products together with the injections
wi : Aj — *;c)A; are coproducts.

In a poset considered as a category, coproducts are joints.



Products and coproducts

Remark

Let D : 1 — A be a diagram with a discrete scheme. Every source
with codomain (D;);conqy is natural. A source is a limit of D if
and only if it is a product of the family (D;)icob()-



Equalizer and coequalizer

Definition
Let f,g: A— B be two morphisms. A morphisme: E — A
with the properties
@ foe=goeand
@® for any morphism ¢’ : E/ — A with fo e = go ¢ there
exists a unique morphism h such that the triangle

commutes,
is called an equalizer of f and g.



Equalizer and coequalizer

Example

In the category Set (Vec, Grp or Top) let f,g: A — B be
morphisms. If E ={a € A| f(a) = g(a)} considered as a subset
(linear subspace, subgroup, subspace) of A, then the inclusion from
E to Ais an equalizer of f and g.



Equalizer and coequalizer

Definition
Let f,g : A— B be two morphisms. A morphism c: B — C
with the properties
@®cof=cogand
@® for any morphism ¢’ : B — C’ with ¢’ o f = ¢’ o g there
exists a unique morphism h such that the triangle

1~

f—
Ce—BIZIZA

commutes,
is called an coequalizer of f and g.



Equalizer and coequalizer

Example

In the categoriey Set let f, g : A — B be morphisms and let ~ be
the smallest equivalence relation on B such that f(a) ~ g(a) for
all a € A. The natural map p: B — B/~ is a coequalizer of f
and g.
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Remark
Equalizer are limits of diagrams with the scheme e = o,



Equalizer and coequalizer

Remark

Equalizer are limits of diagrams with the scheme e = e.

More precisely for a pair of morphisms f, g : A — B, considered
as a diagram D with scheme e = o a source (C, (e, h)) with
codomain (A, B) is natural if goe = h=f oe. Hence e is an
equalizer of f and g if and only if the source (C,(e,foe€)) is a
limit of D.



Pullbacks and Pushouts

Definition
A commuting square

>
%m oy]

1

is called a pullback square provided that for any commuting square
‘. B
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)
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Pullbacks and Pushouts

There exists a unique morphism k : P — P for which the
following diagram commutes

N

R

B
le
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Pullbacks and Pushouts

There exists a unique morphism k : P — P for which the
following diagram commutes

N

I

—f>C.

R

In this case the source (P, (&, f)) is called a pullback of the sink
(C,(f,g)) and f is called pullback of f along g.
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Pullbacks and Pushouts

Remark
Pullbacks are limits of diagrams with scheme e — e < o,
More precisely A square

—
f
— C.

> <— T

is a pullback square if and only if the source (P,(g,fog,f)) is a
limit of the sink (C,(f,g)), considered as a diagram in A with
scheme e — o <— o,



Pullbacks and Pushouts

Theorem

Let f: A— C and g : B— C be morphisms.

If a source (A x B, (mwa,ng)) with codomain (A, B) is a product of
Aand B, and e : E — A X B is an equalizer of f oma and g o g,
then

TpOE
——

m

Tgoe

.<7
— >
-

vy
0

—
g

is a pullback square.



Pullbacks and Pushouts

The square commutes since e : E — A x B is an equalizer of
forma and go7p.

Tp0€

mTRoe f




Pullbacks and Pushouts

Let P be an object and r, s be morphisms such that the following
square commutes:

Tgoe f




Pullbacks and Pushouts

Since (A x B, (ma,mg)) is a product and (P, (s, r)) is a source with
the same codomain as (A x B, (7a,mg)), there exists a unique
morphism (s, r) : P — A x B with




Pullbacks and Pushouts

s=mao (s, r) and




Pullbacks and Pushouts

r=mgols,r).




Pullbacks and Pushouts

We also have f o s = g o r and consequently
fompo(s,ry=gomgols,r).




Pullbacks and Pushouts

Since e is an equalizer of f o m4 and g o g, we infer the existence
of a unique morphism k : P — E with




Pullbacks and Pushouts




Pullbacks and Pushouts

Since we already know that s =ma o (s,r) and r =g o (s, r), we
we get s =m0 e0 k and




Pullbacks and Pushouts

r=mgoeok.




Pullbacks and Pushouts

We conclude that the following diagram commutes:




Pullbacks and Pushouts

We still have to show that k is unique with this property. Let t be
another morphism with s =m4o0eotand r=mgoeot.

Then it holds Tqoeot=mpo0eok and tgoeot =mgoeok.
Since we can cancel products and equalizers from the left, we infer
k = h.



Pullbacks and Pushouts

Example

Let f : A— C and g : B— C be morphisms in Set,
P:={(a,b) € Ax B|f(a)=g(b)} and let f: P — A and

g : P — B be restrictions of the projections from A x B. Then

f
—

W e
(\<T)>

—_—
g

is a pullback square.



Pullbacks and Pushouts

Example

Let f : A— C and g : B— C be morphisms in Set,
P:={(a,b) € Ax B|f(a)=g(b)} and let f: P — A and

g : P — B be restrictions of the projections from A x B. Then

f
—

W e
(\<T)>

—_—
g
is a pullback square.

We could construct similar examples in Vec or Top.



Pullbacks and Pushouts

Definition
A commuting square

> —s
O~ W

1

is called a pushout square provided that for any commuting square
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I
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Pullbacks and Pushouts

Definition
there exists a unique morphism k : P — P for which the following

diagram commutes
P 7
(\
k
N .

f
—
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>

]

(\Tm



Pullbacks and Pushouts

Definition
there exists a unique morphism k : P — P for which the following

diagram commutes
P 7
(\
k
N ,

f
—

o>
> —
(\TUJ

«—
f

In this case the sink (P, (&, 7)) is called a pushout of the source
(C,(f,g)) and f is called pushout of f along g.
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Completeness

Definition

Let A be a category. If for each (finite) set-indexed family of
objects in A there exists a product, then A is said to have (finite)
products.

If for each pair of morphisms with common domain and codomain
in A there exists an equalizer, then A is said to have equalizers.



Completeness
Definition
Let A be a category. If for each (finite) set-indexed family of

objects in A there exists a product, then A is said to have (finite)
products.

If for each pair of morphisms with common domain and codomain
in A there exists an equalizer, then A is said to have equalizers.

If for each 2-sink in A there exists a pullback, then A is said to
have pullbacks.



Completeness

Definition
Let A be a category. If for each finite diagram A there exists a
limit, then A is said to be finitely complete.



Completeness

Definition
Let A be a category. If for each finite diagram A there exists a
limit, then A is said to be finitely complete.

If for each small diagram A there exists a limit, then A is said to
be complete.



Completeness

Example
The categories Set, Top and Grp are complete.
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Completeness

Example
The categories Set, Top and Grp are complete.

The category of finite sets is finitely complete but not complete.

The category Field (objects are fields and morphisms are algebraic
field extensions) is not finitely complete.



Completeness

Theorem

Let A be a category. The following are equivalent
® A is finitely complete;
® A has finite products and equalizers;
© A has pullbacks and a terminal object.



Preservation of limits

Definition

Let F: A — B be a functor. F is said to preserve a limit

L = (L,(l;)) of a diagram D : | — A provided that (FL,(Fl;)) is a
limit of the diagram Fo D : 1 — B.



Preservation of limits

Definition

Let F: A — B be a functor. F is said to preserve a limit

L = (L,(l;)) of a diagram D : | — A provided that (FL,(Fl;)) is a
limit of the diagram Fo D : 1 — B.

If F preserves all limits of diagrams D : | — A, then F is said to
preserve all limits of a diagram D : | — A with a scheme |.



Preservation of limits

Definition

Let F: A — B be a functor. F is said to preserve a limit

L = (L,(l;)) of a diagram D : | — A provided that (FL, (Fl;)) is a
limit of the diagram Fo D : 1 — B.

If F preserves all limits of diagrams D : | — A, then F is said to
preserve all limits of a diagram D : | — A with a scheme |.

F is said to preserve equalizers, if F preserves all limits with the
scheme e = e. F is said to preserve products, if F preserves all
limits over small discrete schemes. F is said to preserve small
limits, if F preserves all limits over small schemes.



Preservation of limits

Example
For the category Top, the forgetful functor preserves limits.
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Example
For the category Top, the forgetful functor preserves limits.

For the categories Vec and Grp, the forgetful functor preserves
limits. It also preserves discrete colimits, but neither coproducts
nor coequalizers.



Preservation of limits

Example
For the category Top, the forgetful functor preserves limits.

For the categories Vec and Grp, the forgetful functor preserves
limits. It also preserves discrete colimits, but neither coproducts
nor coequalizers.

The full embedding Haus —> Top preserves limits and
coproducts, but not coequalizers.



Preservation of limits

Theorem
Let F: A — B be a functor and A finitely complete. The
following are equivalent:

@ F preserves finite limits;

® F preserves finite products and equalizers;

© F preserves pullbacks and terminal objects.



