Limits, colimits, sources, sinks, pullbacks, pushouts

Definition 1: Let I be a class. A source is a pair $(A, (f_i)_{i \in I})$ consisting of an object A and a family of morphisms $f_i : A \longrightarrow A_i$. The object A is called the domain of the source. The family of objects $(A_i)_{i \in I}$ is called the codomain of the source.

Definition 2: Let I and A be categories. A functor $D : I \longrightarrow A$ is called a *diagram*. The domain I is called *scheme*. The diagram is called *small* (or *finite*), if I is small (or finite).

Definition 3: Let $D : \mathbf{I} \longrightarrow \mathbf{A}$ be a diagram. An **A**-source $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ is called *natural for D* or *cone*, if for each **I**-morphism $d: i \longrightarrow j$ the triangle

commutes.

Let $(L, (l_i)_{i \in Ob(\mathbf{I})})$ be a natural source for D with codomain $(D_i)_{i \in Ob(\mathbf{I})}$. $(L, (l_i)_{i \in Ob(\mathbf{I})})$ is called a *limit*, if it fulfils the following universal property: For each natural source $(A, (f_i)_{i \in Ob(\mathbf{I})})$ with codomain $(D_i)_{i \in Ob(\mathbf{I})}$ there exists a unique morphism $f : A \longrightarrow L$ with $f_i = l_i \circ f$ for each $i \in Ob(\mathbf{I})$.

Definition 4: A source $(P, (p_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ that has the property that for each source $(A, (f_i)_{i \in I})$ with codomain $(A_i)_{i \in I}$ there exists a unique morphism $f : A \longrightarrow P$ such that $f_i = p_i \circ f$ for each $i \in I$ is called *product*.

A product with codomain $(A_i)_{i \in I}$ is called a product of the family $(A_i)_{i \in I}$.

Definition 5: Let $f, g: A \longrightarrow B$ be two morphisms. A morphism $e: E \longrightarrow A$ with the properties that $f \circ e = g \circ e$ and that for any morphism $e': E' \longrightarrow A$ with $f \circ e' = g \circ e'$ there exists a unique morphism h such that the triangle

commutes, is called an equalizer of f and g.

Definition 6: A commuting square

$$\begin{array}{ccc} P & \stackrel{f}{\longrightarrow} & B \\ & & & \downarrow^{\tilde{g}} & & \downarrow^{g} \\ A & \stackrel{f}{\longrightarrow} & C \end{array}$$

is called a *pullback square* provided that for any commuting square

there exists a unique morphism $k:\hat{P}\longrightarrow P$ for which the following diagram commutes

In this case the source $(P, (\tilde{g}, \tilde{f}))$ is called a *pullback* of the sink (C, (f, g)) and \tilde{f} is called *pullback of f along g*.

Theorem 7: Let $f : A \longrightarrow C$ and $g : B \longrightarrow C$ be morphisms.

If a source $(A \times B, (\pi_A, \pi_B))$ with codomain (A, B) is a product of A and B, and $e: E \longrightarrow A \times B$ is an equalizer of $f \circ \pi_A$ and $g \circ \pi_B$, then

$$\begin{array}{ccc} E & \xrightarrow{\pi_A \circ e} & A \\ \downarrow \pi_B \circ e & & \downarrow f \\ B & \xrightarrow{g} & C \end{array}$$

is a pullback square.

Definition 8: Let **A** be a category.

If for each finite diagram \mathbf{A} there exists a limit, then \mathbf{A} is said to be *finitely* complete.

If for each small diagram **A** there exists a limit, then **A** is said to be *complete*.