From Posets to Categories

Lennard Gäher

Saarland University

08 September 2020 Seminar on Category Theory

Posets

A partially-ordered set is a pair (X, \leq) , where X is a set and \leq is a binary relation on X, s.t.

$$\leq$$
 is reflexive; $x \leq x$

- **2** \leq is transitive; $x \leq y \land y \leq z \Longrightarrow x \leq z$
- **g** \leq is anti-symmetric; $x \leq y \land y \leq x \Longrightarrow x = y$

Posets elements of the poset order structure $x \le y$

Cat theory objects morphisms $x \rightarrow y$

Top & Bottom objects

The top object of a poset, if it exists, is an element \top such that $\forall x.x \leq \top$.

The bottom object of a poset, if it exists, is an element \perp such that $\forall x . \perp \leq x$.

Posets	Cat theory
elements of the poset	objects
order structure $x \leq y$	morphisms $x \to y$
top object $ op$ bottom object $ op$	terminal object 1 initial object 0

Binary Meets & Joins

The meet $a \sqcap b$ of two elements a, b is their greatest lower bound, if it exists.

 $a \sqcap b$ satisfies $a \sqcap b \le a \land a \sqcap b \le b$, and if also $c \le a$ and $c \le b$, then $c \le a \sqcap b$.

The join $a \sqcup b$ is the least upper bound, if it exists. $a \sqcup b$ satisfies $a \le a \sqcup b \land b \le a \sqcup b$, and if also $a \le c$ and $b \le c$, then $a \sqcup b \le c$.

Posets	Cat theory
elements of the poset	objects
order structure $x \le y$	morphisms $x \rightarrow y$
top object $ op$ bottom object $ op$	terminal object 1 initial object 0
binary meet $x \sqcap y$	product $x \times y$
binary join $x \sqcup y$	co-product $x \coprod y$

Arbitrary Meets & Joins

- Given a set $S \subseteq X$, the meet $\sqcap S$ of S (if it exists) is the greatest lower bound of S.
- $\sqcap S \leq s \ \forall s \in S$ and if $c \leq s \ \forall s \in S$, then $c \leq \sqcap S$.

Similarly, $\Box S$ is the least upper bound of *S*.

 $s \leq \sqcup S \ \forall s \in S$ and if $s \leq c \ \forall s \in S$, then $\sqcup S \leq c$.

Posets	Cat theory
elements of the poset	objects
order structure $x \le y$	morphisms $x \rightarrow y$
top object $ op$ bottom object $ op$	terminal object 1 initial object 0
binary meet $x \sqcap y$	product $x \times y$
binary join $x \sqcup y$	co-product $x \amalg y$
arbitrary meet ⊓ <i>S</i>	limit
arbitrary join ⊔ <i>S</i>	co-limit

Order-preserving Functions

Let $P = (X, \leq_X)$ and $Q = (Y, \leq_Y)$ be posets. An order-preserving function between P and Q is a function

$$f:X \to Y$$

s.t.

$$x \leq_X x' \Rightarrow f(x) \leq_Y f(x').$$

Posets	Cat theory
elements of the poset	objects
order structure $x \le y$	morphisms $x \rightarrow y$
top object $ op$ bottom object $ op$	terminal object 1 initial object 0
binary meet $x \sqcap y$	product $x \times y$
binary join $x \sqcup y$	co-product $x \amalg y$
arbitrary meet ⊓ <i>S</i>	limit
arbitrary join ⊔ <i>S</i>	co-limit
order-preserving functions	functors between poset categories

(Monotone) Galois Connections

A (monotone) Galois connection between two posets $P = (X, \leq_X)$ and $Q = (Y, \leq_Y)$ is a pair of order-preserving functions

$$\mathsf{P} \xrightarrow[]{\alpha}{\overset{\gamma}{\longrightarrow}} \mathsf{Q}$$

such that $\alpha(p) \leq_Y q \iff p \leq_X \gamma(q)$. γ is an upper adjoint, α a lower adjoint.

Posets	Cat theory
elements of the poset	objects
order structure $x \le y$	morphisms $x \rightarrow y$
top object $ op$ bottom object $ op$	terminal object 1 initial object 0
binary meet $x \sqcap y$	product $x \times y$
binary join $x \sqcup y$	co-product $x \amalg y$
arbitrary meet ⊓ <i>S</i>	limit
arbitrary join ⊔ <i>S</i>	co-limit
order-preserving functions	functors between poset categories
Galois connections	adjoint functors