From Posets to Categories — Definitions

Lennard Gäher

September 2, 2020

Definition 1 (Posets). A partially-ordered set is a pair (X, \leq) , where X is a set and \leq is a binary relation on X, s.t.

- 1. \leq is reflexive; for all $x, x \leq x$
- 2. \leq is transitive; for all $x, y, z, x \leq y$ and $y \leq z$ implies that $x \leq z$
- 3. \leq is anti-symmetric; for all $x, y, x \leq y$ and $y \leq x$ implies x = y

Definition 2 (Binary Meets & Joins). The meet $a \sqcap b$ of two elements a, b is their greatest lower bound, if it exists. The join $a \sqcup b$ is the least upper bound, if it exists.

Formally, $a \sqcap b$ satisfies $a \sqcap b \leq a$ and $a \sqcap b \leq b$, and if also $c \leq a$ and $c \leq b$, then $c \leq a \sqcap b$.

Definition 3 (Lattices). A poset with all binary meets and joins is called a lattice.

Definition 4 (Top & Bottom objects). The top object of a poset, if it exists, is an element \top such that for all $x, x \leq \top$. The bottom object of a poset, if it exists, is an element \bot such that for all $x, \bot \leq x$. These objects are automatically determined uniquely.

Definition 5 (Arbitrary Meets & Joins). Given a set $S \subseteq X$, the meet $\sqcap S$ of S (if it exists) is the greatest lower bound of S. Similarly, $\sqcup S$ is the least upper bound of S.

Formally, $\sqcap S \leq s \forall s \in S$ and if $c \leq s \forall s \in S$, then $c \leq \sqcap S$.

Definition 6 (Complete Lattices). A lattice with all arbitrary meets and joins is called complete.

Definition 7 (Order-preserving Functions). Let two posets $P = (X, \leq_X)$ and $Q = (Y, \leq_Y)$ be given. An order-preserving function between P and Q is a function $f : X \to Y$ s.t. $x \leq_X x' \Rightarrow f(x) \leq_Y f(x')$.

Definition 8 ((Monotone) Galois Connections). A (monotone) Galois connection between two posets $P = (X, \leq_X)$ and $Q = (Y, \leq_Y)$ is a pair of order-preserving functions

$$P \xrightarrow{\gamma} Q$$

such that $\alpha(p) \leq_Y q \iff p \leq_X \gamma(q)$.

Dictionary

Posets	Cat theory
elements of the poset	objects
order structure $x \leq y$	morphisms $x \to y$
$\text{maximum object }\top$	terminal object 1
minimum object \perp	initial object 0
binary meet $x \sqcap y$	product $x \times y$
binary join $x \sqcup y$	co-product $x \amalg y$
arbitrary meet $\sqcap S$	limit
arbitrary join $\sqcup S$	co-limit
order-preserving functions	functors between poset categories
Galois connections	adjoint functors