From Posets to Categories

Lennard Gäher

September 6, 2020

Main premise/motivation: we've seen some basic definitions and concepts, now apply it all to one example – Posets

Definition 1. A partially-ordered set (X, \leq) is a set X equipped with $\leq \subseteq X \times X$, s.t. \leq is

- 1. reflexive, $x \leq x$
- 2. transitive, $x \leq y \Rightarrow y \leq z \Rightarrow x \leq z$
- 3. anti-symmetric, $x \leq y \Rightarrow y \leq x \Rightarrow x = y$

For instance:

• powerset ordered by inclusion, e.g. $(\mathcal{P}\{1,2\},\subseteq)$

- natural numbers ordered by the divisibility relation $(\mathbb{N}, |)$
- acyclic directed graphs (V, E): the set is the set of vertices V and $v_1 \leq v_2$ iff v_2 is reachable from v_1 , i.e. $(v_1, v_2) \in E^*$, the reflexive-transitive closure of the set of edges E

anti-symmetry is implied by acyclicity

We can view this as a (concrete) category: we have objects X, morphisms $x \to y$ iff $x \leq y$.

Composition of arrows corresponds to transitivity of the order. The identity morphisms correspond to reflexivity.

This results in the following correspondences: ("dictionary")

elements of the poset	objects
order structure	morphisms

There are some specialties:

thin: a poset category is thin, meaning $|Hom(x, y)| \le 1$

skeletal: every two isomorphic objects are equal (we even have that every preorder has a poset as its skeleton)

small: the collection of objects is a set, not a (proper) class

Thin, skeletal, and small categories are exactly posets.

Let's continue with posets. Maximum object \top : $\forall x, x \leq \top$; dually, minimum object \perp : $\forall x, \perp \leq x$.

- in the above powerset poset, this is clear
- $(\mathbb{N}, |)$ does have the top object 0 (everything divides 0) and a bottom object (1)
- in DAGs: sources and sinks

These correspond to initial and terminal objects in category theory!

We can define (partial, in general) binary operations **meet** \sqcap and **join** \sqcup in a poset. $a \sqcap b$ is the maximal object satisfying $a \sqcap b \leq a \land a \sqcap b \leq b$. Imagine meets as infima and joins as suprema.

- the powerset lattice: meet is intersection and join is union
- DAGs: lowest common ancestor and highest common descendant, but these might not be unique and thus meet/join are partial
- natural numbers: gcd, lcm

As a diagram/universal property:

similarly for join.

That diagram looks the same as the diagram for products!

(binary) meet	product
(binary) join	co-product

A poset with all binary joins and meets is called a *lattice*.

- the powerset poset is a lattice
- $(\mathbb{N}, |)$ is a lattice
- DAGs aren't in general

We can extend that to joins and meets of arbitrary sets $\subseteq X$.

- for natural numbers, the gcd of arbitrary sets exists, but only finite joins (lcm)
- the powerset lattice: join is union, meet is intersection

For instance: the empty meet is the *unique* maximum object \top (if it exists).

In general: arbitrary meets/joins are limits and co-limits.

Why? the commutativity condition of cones is trivial: every diagram in thin categories does automatically commute!

Lemma 1. We have arbitrary joins iff we have arbitrary meets.

Proof. For deriving arbitrary meets from joins, just take the join of all smaller-or-equal elements. (greatest lower bound = least upper bound of smaller elements)

Define $S' := \{s' \in X | \forall s \in S. s' \leq s\}$ and $\sqcap S := \sqcup S'$. First we show that $\sqcap S \leq s \forall s \in S$, or equivalently, that $\sqcup S' \leq s$.

Note that, if $s' \in S'$, then in particular $s' \leq s$. Thus, by the universal property of \sqcup , we have $\sqcup S' \leq s$.

For universality, assume that $c \leq s \forall s \in S$. We show $c \leq \Box S$. As $c \leq s \forall s \in S$, in particular $c \in S'$ by definition. So $c \leq \Box S' = \Box S$.

Remark 1. The corresponding theorem for categories does not hold, i.e. a complete category (a category having all limits indexed by small categories) is not necessarily cocomplete, and vice versa. As an example, take the partially-ordered class of ordinal numbers as a category. It is cocomplete (for every set of ordinals $S, \bigcup S$ is again an ordinal), but it is not complete as it does not have a terminal object.

A poset with arbitrary meets/joins is called a *complete lattice*. Example: the powerset lattice is complete.

Now let's look at two posets (X, \leq_X) and (Y, \leq_Y) . Can we establish any relationship between them?

Maybe there's an order-preserving function between them: $\alpha : (X, \leq_X) \to (Y, \leq_Y)$ such that

$$\forall x \ y, x \le y \to \alpha \ x \le \alpha \ y.$$

Example: $(P, \leq_P) = (\mathcal{P}(\mathbb{Z}), \subseteq)$ and

$$(Q, \leq_Q) = (\{[l, h] | l \leq h \in \mathbb{Z} \cup \{-\infty, \infty\}\} \cup \{\bot\}, \leq)$$

 $(\perp \text{ is the minimum in } (Q, \leq_Y), [-\infty, \infty] \text{ the maximum}).$

$$\alpha \ S := \begin{cases} \bot & S = \emptyset \\ [\inf \ S, \sup \ S] & \text{othw} \end{cases}$$

In the category-theoretic view, this is just a functor between the two poset categories. If $a: x \to y$, then $\alpha(a): \alpha x \to \alpha y$, since α is order-preserving.

Galois Connections We'll consider *monotone* Galois connections here.

Consider again the order-preserving function from before. We can also map back.

$$\gamma(I) = \begin{cases} \emptyset & I = \bot \\ \{z \in \mathbb{Z} | l \le z \le h\} & I = [l, h] \end{cases}$$
$$\mathbf{P} \xrightarrow{\gamma}_{\alpha} \mathbf{Q}$$

In this particular example, we can view α as an "abstraction" function (from integer sets to integer intervals) and γ as a concretisation function.

We can show that: $\alpha(p) \leq q \iff p \leq \gamma(q)$.

This is a particular instance of a Galois connection.

Definition 2. A (monotone!) Galois connection between two posets (P, \leq_P) and (Q, \leq_Q) are two monotone maps

$$P \xrightarrow{\gamma} Q$$

such that $\alpha(p) \leq q \iff p \leq \gamma(q)$.

 α is also called a lower/left adjoint and γ an upper/right adjoint.

This is actually equivalent to requiring

$$\alpha(\gamma q) \le q$$
$$p \le \gamma(\alpha p).$$

Essentially, this states that α is the best possible abstraction (the smallest interval containing everything) and γ is the largest possible concretisation.

We show one direction of this, using the equivalence from the definition:

$$\alpha(\gamma q) \le q \Longleftrightarrow \gamma q \le \gamma q$$
$$p \le \gamma(\alpha p) \Longleftrightarrow \alpha p \le \alpha p$$

Other quick examples:

- For a (ℝ/ℂ-) vector space V, consider the posets (PV, ⊆) and (Subspace(V), ⊆). We can define α(S) to be the span ⟨S⟩ generated by S and γ(V') to be the underlying set. Then (α, γ) form a monotone Galois connection.
- monotone Galois connections naturally appear in computer science in abstract interpretation (in verification/invariant generation)

Lemma 2 (An instance of RAPL). The upper adjoint γ of a Galois connection (α, γ) : $(P, \leq_P) \leftrightarrows (Q, \leq_Q)$ preserves meets.

Proof. Let $\sqcap S$ in Q be given. We show that $\gamma(\sqcap S) = \sqcap S'$, where $S' := \{\gamma s | s \in S\}$ (and that the latter does actually exist).

- We have $\Box S \leq s \forall s \in S$. By monotonicity, $\gamma(\Box S) \leq \gamma s \forall s \in S$. Thus $\gamma(\Box S) \leq s' \forall s' \in S'$.
- We have to show: if $c \leq \gamma s \forall s \in S$, then $c \leq \gamma (\Box S)$, or equivalently $\alpha(c) \leq \Box S$.

By the property of Galois connections, we have $c \leq \gamma s \iff \alpha c \leq s$ for all $s \in S$, which is equivalent to $\alpha c \leq \Box S$. This completes the proof.

Lemma 3. The lower adjoint α of a Galois connection (α, γ) preserves joins.

Galois connections | Adjoint functors