Motivation	Definitions	Examples	Properties and Usefulness	End

Adjunctions Category Theory Seminar SS20 at University of Saarland

Adrian Dapprich

8. September 2020

Motivation	Definitions	Examples	Properties and Usefulness	End
•	000000	00000		00
Motivation				

- "Adjoint functors arise everywhere" Saunders MacLane
- Two functors that are not inverse, but almost
 - category of integers, dividing und multiplying by a constant
 - category of groups and abelian groups. Abelization goes one way and inclusion the other but you don't end up in the same spot.

Motivation	Definitions	Examples	Properties and Usefulness	End
O	●00000	00000		00

Definitions

Definition

- \bullet Categories $\mathcal{C},\ \mathcal{D}$
- left-adjoint functor $\mathcal{D} \xrightarrow{F} \mathcal{C}$
- right-adjoint functor $\mathcal{C} \xrightarrow{\mathsf{G}} \mathcal{D}$
- *F* ⊣ *G*
- F, G are unique up to unique isomorphism

Motivation	Definitions	Examples	Properties and Usefulness	End
o	000000	00000		00

#1 Definition using unit/counit

Definition

- left-adjoint $\mathcal{D} \xrightarrow{F} \mathcal{C}$, right-adjoint $\mathcal{C} \xrightarrow{G} \mathcal{D}$
- Natural transformations $1_{\mathcal{D}} \xrightarrow{\eta} GF$, $FG \xrightarrow{\epsilon} 1_{\mathcal{C}}$
- Satisfying the triangle equalities

Motivation	Definitions	Examples	Properties and Usefulness	End
	000000			

#2 Definition using hom-functors

Definition

- left-adjoint $\mathcal{D} \xrightarrow{F} \mathcal{C}$, right-adjoint $\mathcal{C} \xrightarrow{G} \mathcal{D}$
- Natural isomorphism of hom-functors $Hom_{\mathcal{C}}(Fd, c) \simeq Hom_{\mathcal{D}}(d, Gc)$
- $\Psi_{xy}: \mathit{Hom}_{\mathcal{C}}(\mathit{Fd}, c)
 ightarrow \mathit{Hom}_{\mathcal{D}}(d, \mathit{Gc})$
- \overline{f} notation for Ψ , $\overline{\overline{f}} = f$

L				
Motivation	Definitions	Examples	Properties and Usefulness	End
O	000€00	00000		00

Proof.

Given $Hom_{\mathcal{C}}(Fd, c) \simeq Hom_{\mathcal{D}}(d, Gc)$, define $\eta_d = \overline{id_{Fd}}$, $\epsilon_c = \overline{id_{Gc}}$ (1) $\overline{Ff} = \eta_d \circ f$ (2) $\overline{f} = \epsilon_c \circ Ff$ (3) $\overline{g} = Gg \circ \eta_d$ (4) $\overline{Gg} = g \circ \epsilon_c$ f: d'-> d Fd -> c', q: c -> c' $Hom_{\varrho}(Fd, Fd) \xrightarrow{(-)} Hom_{D}(d, GFd) \qquad Hom_{\varrho}(Fd, Fd) \xrightarrow{(-)} Hom_{D}(d, GFd)$ $+ or _{\varrho}(Fd, Fd) \xrightarrow{(-)} Hom_{D}(d, GFd) \qquad Hom_{\varrho}(Fd, Fd) \xrightarrow{(-)} Hom_{D}(d, GFd)$ $+ or _{\varrho}(Fd', Fd) \xrightarrow{(-)} Hom_{D}(d', GFd) \qquad Hom_{\varrho}(Fd, c') \xrightarrow{(-)} Hom_{D}(d, Gc')$

Motivation	Definitions	Examples	Properties and Usefulness	End
O	0000€0	00000		oo
homsets -	ightarrow (co)unit			

Proof.

(1)
$$\overline{Ff} = \eta_d \circ f$$
 (2) $\overline{f} = \epsilon_c \circ Ff$
(3) $\overline{g} = Gg \circ \eta_d$ (4) $\overline{Gg} = g \circ \epsilon_c$

• η is a natural transformation, $\textit{GFf} \circ \eta_{d'} = \eta_d \circ f$ using (1), (3)

 \bullet triangle equalities using (2), (3) and naturality of η,ϵ

	, hamaata			
	000000			
Motivation	Definitions	Examples	Properties and Usefulness	End

Proof sketch.

nomsets

Given $1_{\mathcal{D}} \xrightarrow{\eta} GF$, $FG \xrightarrow{\epsilon} 1_{\mathcal{C}}$ define • $\Psi_{dc} (g : Fd \to c) = Gg \circ \eta_d$ • $\Psi_{dc}^{-1} (f : d \to Gc) = \epsilon_c \circ Ff$ Proof needs triangle equality and naturality of η, ϵ Or use the Yoneda Lemma (Brandenburg p. 193)

8/22

Motivation	Definitions	Examples	Properties and Usefulness	End
0	000000	●0000		00
Calois Co	nnections			

- In a poset category (A, ≤) there is at most one morphism between objects
- $Hom_{\mathcal{C}}(Fd, c) \simeq Hom_{\mathcal{D}}(d, Gc)$
- $Fd \leq c \Leftrightarrow d \leq Gc$
- So a (monotone) galois connection is a special adjunction

Motivation	Definitions	Examples	Properties and Usefulness	End
O	000000	0●000		00

Coproduct $\dashv \Delta \dashv$ Product

Definition

diagonal functor
$$\Delta : \mathcal{C} \xrightarrow{\Delta} \mathcal{C} \times \mathcal{C}$$
 with $\Delta c = \langle c, c \rangle$
product functor **Prod** : $\mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ with **Prod** $\langle a, b \rangle = a \times b$

Per universal construction for any $\langle c, c \rangle \xrightarrow{\langle p,q \rangle} \langle a, b \rangle$ there exists a unique $c \xrightarrow{h} a \times b$ with $\pi_1 \circ h = p, \pi_2 \circ h = q$. For any $c \xrightarrow{h} a \times b$ there exist $c \xrightarrow{\pi_1 \circ h} a, c \xrightarrow{\pi_2 \circ h} b$. So we can define $\langle p, q \rangle \mapsto h, h \mapsto \langle \pi_1 \circ h, \pi_2 \circ h \rangle$ $Hom_{\mathcal{C} \times \mathcal{C}}(\langle c, c \rangle, \langle a, b \rangle) \simeq Hom_{\mathcal{C}}(c, a \times b)$

Motivation	Definitions	Examples	Properties and Usefulness	End
0	000000	00●00		00
6				

Coproduct $\dashv \Delta \dashv$ Product

- $Hom_{\mathcal{C}\times\mathcal{C}}(\langle c,c\rangle,\langle a,b\rangle) \simeq Hom_{\mathcal{C}}(c,a\times b)$
- restatement of the universal construction of a product
- any right adjoint of the diagonal functor is the product
- $\bullet\,$ coproduct analogous but on the left of $\Delta\,$

Motivation	Definitions	Examples	Properties and Usefulness	End
	000000	00000	0000000	00

Tensor-Hom Adjunction

Works for any category with tensor product and internal hom (object that corresponds to the homset). Here product and function type.

- Endofunctors (- imes b) and $(b\Rightarrow -)$
- $Hom_{\mathcal{C}}(a \times b, c) \simeq Hom_{\mathcal{C}}(a, b \Rightarrow c)$
- Known as currying in programming.

curry :: ((a, b)
$$\rightarrow$$
 c) \rightarrow (a \rightarrow (b \rightarrow c))
curry f = λ a \Rightarrow λ b \Rightarrow f (a, b)

uncurry :: (a
$$\rightarrow$$
 (b \rightarrow c)) \rightarrow ((a, b) \rightarrow c)
uncurry g = λ (a, b) \Rightarrow g a b

Motivation	Definitions	Examples	Properties and Usefulness	End
0	000000	0000		00
Free ⊣ Fo	orgetful			

Definition

For a construct (A, U) if free objects exist we can define a free functor $F \dashv U$ E.g. free group, free monoid, free category

Example

In **Mon** the free monoid Σ^* for a set of generators Σ is the set of all finite sequences of elements of Σ with concatenation as the operation.

$$\{a, b\} \mapsto (\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}, \circ)$$

homset isomorphism: any mapping of the generators to another set defines a monoid homomorphism and vice-versa

Motivation	Definitions	Examples	Properties and Usefulness	End
			000000	

Right Adjoints Preserve Limits

Theorem (RAPL)

• functors
$$\mathcal{D} \xrightarrow{F} \mathcal{C}$$
, $\mathcal{C} \xrightarrow{G} \mathcal{D}$

• index category \mathcal{I} , diagram $\mathcal{I} \xrightarrow{D} \mathcal{C}$ \textcircled{a}^{\cdot} $G(Lim D) \simeq Lim (G \circ D)$

Proof using homset isomorphism \overline{g} .

 $(Lim D, \lambda_i)$ is a cone for D, therefore $(G(Lim D), G(\lambda_i))$ is a cone for GD. Take any cone (X, μ_i) for GD. We find a unique factorizing $X \xrightarrow{h} G(Lim D)$ so that $G\lambda_i \circ h = \mu_i$. $(FX, \overline{\mu_i})$ is a cone for D, therefore there exists a unique factorizing morphism $FX \xrightarrow{\overline{\phi}} Lim D$. Now put $h := \phi$. Naturality tells us $G\lambda_i \circ \phi = \mu_i$.

Motivation	Definitions	Examples	Properties and Usefulness	End
o	000000	00000	000000	00

$G(Lim D) \simeq Lim(GD)$

Proof using homset isomorphism \overline{g} .

 $(Lim D, \lambda_i)$ is a cone for D, therefore $(G(Lim D), G(\lambda_i))$ is a cone for GD. Take any cone (X, μ_i) for GD. We find a unique factorizing $X \xrightarrow{h} G(Lim D)$ so that $G\lambda_i \circ h = \mu_i$. $(FX, \overline{\mu_i})$ is a cone for D, therefore there exists a unique factorizing morphism $FX \xrightarrow{\overline{\phi}} Lim D$. Now put $h := \phi$. Naturality tells us $G\lambda_i \circ \phi = \mu_i$ and it's still unique. \Box

Motivation	Definitions	Examples	Properties and Usefulness	End
	000000	00000		00

$(FX, \overline{\mu_i})$ is a cone for D

Proof.

Need to show for any $D_i \xrightarrow{h} D_j$ that $h \circ \overline{\mu_i} = \overline{\mu_j}$. We know for any $GD_i \xrightarrow{g} GD_j$ that $g \circ \mu_i = \mu_j$, therefore $Gh \circ \mu_i = \mu_j$. Then using the homset isomorphism $\overline{\mu_j} = \overline{Gh \circ \mu_i} = h \circ \overline{\mu_i}$ where the last equality follows from naturality.

Motivation	Definitions	Examples	Properties and Usefulness	End	
O	000000	00000		00	
RAPL &	LAPC				

You see this pattern in a lot of different fields of math

• Products/coproducts/exponentials are also limits. So you get some algebraic laws.

$$- U \otimes (V \oplus W) \simeq (U \otimes V) \oplus (U \otimes W)$$
$$- c^{a+b} \simeq c^{a} \times c^{b}$$

• Free group on disjoint union is free product of free groups

- $F(A \sqcup B) \simeq F(A) * F(B)$

For a function f : A → B the function f⁻¹ : P(B) → P(A) is is left adjoint to f_{*} : P(A) → P(B)
f⁻¹([]_i B_i) = []_i f⁻¹(B_i)

Adjunct Functor Theorem(s)

Definition

Right adjoint functors preserve all limits that exist in their domain. An adjoint functor theorem is a statement that (under certain conditions) the converse holds: a functor $\mathcal{C} \xrightarrow{G} \mathcal{D}$ which preserves limits is a right adjoint.

In the general theorem the conditions are that C has small limits and is small and that some morphisms constituting the **solution** set criterion for G exist.

Motivation	Definitions	Examples	Properties and Usefulness	End
			0000000	

Restricts to Isomorphism of Subcategories

Definition

A fixpoint of η is a $d \in \mathcal{D}$ so that $\eta_d : d \to G(F(d))$ is an isomorphism. $Fix(\eta)$ is all such fixpoints. Analogous for ϵ .

Theorem

 $Fix(\eta), Fix(\epsilon)$ are subcategories of \mathcal{D}, \mathcal{C} . And there exists an equivalence of categories $Fix(\eta) \simeq Fix(\epsilon)$.

Example

The functor that maps a vector space to its dual $D: \operatorname{Vect}_{K}^{op} \to \operatorname{Vect}_{K}$ is left-adjoint to $D^{op}: \operatorname{Vect}_{K} \to \operatorname{Vect}_{K}^{op}$. The unit is the embedding of a space V into its bidual space V^{**} The fixpoints are the finite-dimensional vector spaces. So we get that $\operatorname{FinVect}_{K} \simeq \operatorname{FinVect}_{K}^{op}$

Motivation	Definitions	Examples	Properties and Usefulness	End
O	000000	00000		00
Monads				

Definition

A Monad is an endofunctor $\mathcal{D} \xrightarrow{T} \mathcal{D}$ with two natural transformations $1_{\mathcal{D}} \xrightarrow{\eta} T$ and $T^2 \xrightarrow{\mu} T$ and some coherence laws.

Theorem

Any pair of adjoint functors F, G gives rise to a monad, namely $G \circ F : \mathcal{D} \to \mathcal{D}$.

 η stays the same. μ can be defined by $T^2 = GFGF \xrightarrow{G_{\epsilon}F} GF = T$. Cohence laws follow from triangle equalities.

Theorem

For any monad T we can find multiple adjunctions that give give to it. A whole category even!

Motivation	Definitions	Examples	Properties and Usefulness	End
O	000000	00000		●○
Summary				

thation	Definitions 000000	Examples 00000	Properties and Usefulness 0000000	End 00	Motivation O	Definitions 000000	Examples 00000	Properties and Usefulness COCOCO	End 00
ree ⊣ Fo	orgetful				Right Ad	joints Preser	ve Limits		
Definiti For a c functor E.g. fre	on onstruct (A, U) $F \dashv U$ se group, free mo	if free objects e onoid, free cate	xist we can define a free gory		Theore • fu • in	m (RAPL) nctors $D \xrightarrow{F} C$, C dex category I, d	$C \xrightarrow{G} D$ diagram $I \xrightarrow{D} C$:	
Exampl	le				_	G(I	$\lim D) \simeq \lim_{n \to \infty} $	(G ∘ D)	
In Mor all finit operation {a, b} homset defines	the free monoid e sequences of e on. \rightarrow ({ <i>e</i> , <i>a</i> , <i>b</i> , <i>aa</i> , <i>a</i> isomorphism: at a monoid homo	d Σ^* for a set o lements of Σ with b, ba, bb, \ldots , on mapping of t morphism and χ	f generators Σ is the set of th concatenation as the) he generators to another ice-versa	of set	Proof u (Lim D for GD factoriz (FX, m morphi	using homset ison D, λ_i) is a cone for L. Take any cone ting $X \xrightarrow{h} G(Lim$ $\overline{i})$ is a cone for E som $FX \xrightarrow{\overline{\phi}} Lim E$ $h \to w$	morphism \overline{g} . or D , therefore (X, μ_i) for GD D) so that $G\lambda$ D, therefore the D. Now put $h :=$	$(G(Lim D), G(\lambda_i))$ is a co- . We find a unique $i_i \circ h = \mu_i$. re exists a unique factorizi $= \phi$. Naturality tells us	ing

Motivation	Definitions	Examples	Properties and Usefulness	End
O	000000	00000		⊙●
References				

- Jiří Adámek, Horst Herrlich, and George E. Strecker. *Abstract and concrete categories : the joy of cats.* Wiley, New York, NY [u.a.], 1990.
- Martin Brandenburg. Einführung in die Kategorientheorie : Mit ausführlichen Erklärungen und zahlreichen Beispielen. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.

BARTOSZ MILEWSKI.

Category theory for programmers, 2018.

URL: https://github. com/hmemcpy/milewski-ctfp-pdf (accessed: 2020-09-01).

Emily Riehl.

Category theory in context. Courier Dover Publications, 2017.