Monoidal 😣

Daniel Spaniol September 9, 2020

Monoid

Definition (Monoid) Let C be a set with $1 \in C$ and $\cdot : C \times C \rightarrow C$, such that

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

 $a \cdot 1 = 1 \cdot a = a$

then $\langle C, \cdot, 1 \rangle$ is a monoid.

• Strings with concatenation and the empty string

("foo" ++ "bar") ++ "baz" = "foo" ++ ("bar" ++ "baz") "foo" ++ "" = "foo" =+ "" ++ "foo"

- Strings with concatenation and the empty string

 ("foo" ++ "bar") ++ "baz" = "foo" ++ ("bar" ++ "baz")
 "foo" ++ "" = "foo" = "" ++ "foo"
- Integers with addition and 0

$$(123 + 456) + 789 = 123 + (456 + 789)$$

 $42 + 0 = 42 = 0 + 42$

- Strings with concatenation and the empty string

 ("foo" ++ "bar") ++ "baz" = "foo" ++ ("bar" ++ "baz")
 "foo" ++ "" = "foo" = "" ++ "foo"
- Integers with addition and 0

$$(123 + 456) + 789 = 123 + (456 + 789)$$

 $42 + 0 = 42 = 0 + 42$

• Sets with union and the empty set

 $(\{A, B\} \cup \{B, C\}) \cup \{A, D\} = \{A, B\} \cup (\{B, C\} \cup \{A, D\})$ $\{A\} \cup \emptyset = \{A\} = \emptyset \cup \{A\}$

Strict Monoidal Categories

Let C be a category with $1 \in C$ and a bifunctor $\otimes : C \times C \to C$, such that

$$(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z)$$

 $1 \otimes X = X \otimes 1 = X$

Let C be a category with $1 \in C$ and a bifunctor $\otimes : C \times C \to C$, such that

$$(X \otimes Y) \otimes Z = X \otimes (Y \otimes Z)$$

 $1 \otimes X = X \otimes 1 = X$

and

$$a: (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z) = id$$
$$\iota: 1 \otimes 1 \xrightarrow{\sim} 1 = id$$

then $\langle C, \otimes, a, 1, \iota \rangle$ is a strict monoidal category.

Let C be a category, then End(C) is a strict monoidal category.

Let C be a category, then End(C) is a strict monoidal category.

- $f \otimes g = f \circ g$
- $1 = id_C$

Let C be a category, then End(C) is a strict monoidal category.

- $f \otimes g = f \circ g$
- $1 = id_C$
- ∀X, Y, Z ∈ C. (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z) by composition laws.

Let C be a category, then End(C) is a strict monoidal category.

- $f \otimes g = f \circ g$
- $1 = id_C$
- ∀X, Y, Z ∈ C. (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z) by composition laws.
- $1 \otimes 1 = 1$ by identity laws.

Example Let \mathbb{F} be a field, then $Mat(\mathbb{F})$ is a strict monoidal category

Let \mathbb{F} be a field, then $Mat(\mathbb{F})$ is a strict monoidal category

- $n \otimes m = n \cdot m$, $f \otimes g$ by Kronecker product
- 1 by single 1-matrix

Let \mathbb{F} be a field, then $Mat(\mathbb{F})$ is a strict monoidal category

- $n \otimes m = n \cdot m$, $f \otimes g$ by Kronecker product
- 1 by single 1-matrix
- ∀X, Y, Z ∈ C. (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z)
 by properties of Kronecker product

Let \mathbb{F} be a field, then $Mat(\mathbb{F})$ is a strict monoidal category

- $n \otimes m = n \cdot m$, $f \otimes g$ by Kronecker product
- 1 by single 1-matrix
- ∀X, Y, Z ∈ C. (X ⊗ Y) ⊗ Z = X ⊗ (Y ⊗ Z) by properties of Kronecker product
- $1\otimes 1 = 1$ obvious

Non-Strict Monoidal Categories

Definition (Monoidal Category) Let C be a category with $1 \in C$, a bifunctor $\otimes : C \times C \rightarrow C$, and

$$a_{X,Y,Z} : (X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes (Y \otimes Z)$$
$$\iota : 1 \otimes 1 \xrightarrow{\sim} 1$$

satisfying the *pentagon* and the *unit axiom*, then $\langle C, \otimes, a, 1, \iota \rangle$ is a *monoidal category*

The diagram

commutes

The functors

 $L_1: X \mapsto 1 \otimes X$ $R_1: X \mapsto X \otimes 1$

are autoequivalences of C.

Define natural isomorphisms

$$l_X: 1 \otimes X \to X$$
$$r_x: X \otimes 1 \to X$$

Define natural isomorphisms

$$l_X : 1 \otimes X \to X$$
$$r_x : X \otimes 1 \to X$$

such that

$$L_{1}(I_{X}) = 1 \otimes (1 \otimes X) \xrightarrow{a_{1,1,X}^{-1}} (1 \otimes 1) \otimes X \xrightarrow{\iota \otimes \mathrm{id}_{X}} 1 \otimes X$$
$$R_{1}(r_{X}) = (X \otimes 1) \otimes 1 \xrightarrow{a_{X,1,1}} X \otimes (1 \otimes 1) \xrightarrow{\mathrm{id}_{X} \otimes \iota} X \otimes 1$$

Define natural isomorphisms

$$l_X : 1 \otimes X \to X$$
$$r_X : X \otimes 1 \to X$$

such that

$$L_{1}(I_{X}) = 1 \otimes (1 \otimes X) \xrightarrow{a_{1,1,X}^{-1}} (1 \otimes 1) \otimes X \xrightarrow{\iota \otimes \mathrm{id}_{X}} 1 \otimes X$$
$$R_{1}(r_{X}) = (X \otimes 1) \otimes 1 \xrightarrow{a_{X,1,1}} X \otimes (1 \otimes 1) \xrightarrow{\mathrm{id}_{X} \otimes \iota} X \otimes 1$$

then I_X is the left and r_X is the right unit constraint

Unit constraints

For all $X \in C$

$$l_{1\otimes x} = id_1 \otimes l_X$$
$$r_{X\otimes 1} = r_X \otimes id_1$$

For all $X \in C$

$$l_{1\otimes x} = id_1 \otimes l_X$$
$$r_{X\otimes 1} = r_X \otimes id_1$$

Proof.

The diagram

commutes

Triangle

Triangles

The diagrams

commute.

Triangles

The diagrams

commute.

Proof. similar

 \square

Corollary

In any monoidal category $l_1 = r_1 = \iota$

Corollary In any monoidal category $l_1 = r_1 = \iota$

Proof. Set X = Y = 1 in the second triangle. We have

$$\mathit{l}_1 \otimes \mathit{id}_1 = \mathit{l}_{1 \otimes 1} \circ \mathit{a}_{1,1,1} = (\mathit{id}_1 \otimes \mathit{l}_1) \circ \mathit{a}_{1,1,1}$$

Corollary In any monoidal category $l_1 = r_1 = \iota$

Proof. Set X = Y = 1 in the second triangle. We have

$$\mathit{l}_1 \otimes \mathit{id}_1 = \mathit{l}_{1 \otimes 1} \circ \mathit{a}_{1,1,1} = (\mathit{id}_1 \otimes \mathit{l}_1) \circ \mathit{a}_{1,1,1}$$

Set X = Y = 1 in the triangle axiom. We have

 $r_1 \otimes id_1 = (id_1 \otimes l_1) \circ a_{1,1,1}$

Corollary In any monoidal category $l_1 = r_1 = \iota$

Proof. Set X = Y = 1 in the second triangle. We have

$$I_1 \otimes \mathit{id}_1 = I_{1 \otimes 1} \circ \mathit{a}_{1,1,1} = (\mathit{id}_1 \otimes \mathit{I}_1) \circ \mathit{a}_{1,1,1}$$

Set X = Y = 1 in the triangle axiom. We have

 $r_1 \otimes id_1 = (id_1 \otimes l_1) \circ a_{1,1,1}$

By unit constraint

$$(\mathit{id}_1 \otimes \mathit{l}_1) \circ \mathit{a}_{1,1,1} = \iota \otimes \mathit{id}_1$$

Corollary In any monoidal category $l_1 = r_1 = \iota$

Proof. Set X = Y = 1 in the second triangle. We have

$$I_1 \otimes \mathit{id}_1 = I_{1 \otimes 1} \circ \mathit{a}_{1,1,1} = (\mathit{id}_1 \otimes \mathit{I}_1) \circ \mathit{a}_{1,1,1}$$

Set X = Y = 1 in the triangle axiom. We have

 $r_1 \otimes id_1 = (id_1 \otimes l_1) \circ a_{1,1,1}$

By unit constraint

$$(\mathit{id}_1 \otimes \mathit{l}_1) \circ \mathit{a}_{1,1,1} = \iota \otimes \mathit{id}_1$$

Hence

$$r_1 \otimes id_1 = l_1 \otimes id_1 = \iota \otimes id_1$$
 14

The unit object in a monoidal category is unique up to a unique isomorphism.

The unit object in a monoidal category is unique up to a unique isomorphism.

Proof.

Let $\langle 1_1, \iota_1 \rangle$, $\langle 1_2, \iota_2 \rangle$ be two unit objects with unit constraints $\langle r_1, l_1 \rangle$, $\langle r_2, l_2 \rangle$.

The unit object in a monoidal category is unique up to a unique isomorphism.

Proof.

Let $\langle 1_1, \iota_1 \rangle$, $\langle 1_2, \iota_2 \rangle$ be two unit objects with unit constraints $\langle r_1, l_1 \rangle$, $\langle r_2, l_2 \rangle$. We have $\eta := l_1 \ (1_2) \circ (r_2 \ (1_1))^{-1} : 1_1 \xrightarrow{\sim} 1_2$

The unit object in a monoidal category is unique up to a unique isomorphism.

Proof.

Let $\langle 1_1, \iota_1 \rangle$, $\langle 1_2, \iota_2 \rangle$ be two unit objects with unit constraints $\langle r_1, l_1 \rangle$, $\langle r_2, l_2 \rangle$. We have $\eta := l_1 \ (1_2) \circ (r_2 \ (1_1))^{-1} : 1_1 \xrightarrow{\sim} 1_2$

The unit object in a monoidal category is unique up to a unique isomorphism.

Proof.

Let $\langle 1_1, \iota_1 \rangle$, $\langle 1_2, \iota_2 \rangle$ be two unit objects with unit constraints $\langle r_1, l_1 \rangle$, $\langle r_2, l_2 \rangle$. We have $\eta := l_1 \ (1_2) \circ (r_2 \ (1_1))^{-1} : 1_1 \xrightarrow{\sim} 1_2$

Note that

Sets with the Cartesian product and the singleton set are a monoidal category.

Sets with the Cartesian product and the singleton set are a monoidal category.

Example

Let C be an additive category, then C with $\otimes = \oplus$ is a monoidal category.

Sets with the Cartesian product and the singleton set are a monoidal category.

Example

Let C be an additive category, then C with $\otimes = \oplus$ is a monoidal category.

Example

 \mathbb{K} -Vec with $\otimes = \otimes_{\mathbb{K}}$ and $1 = \mathbb{K}$ is a monoidal category.

Theorem (Mac Lane) Any monoidal category is monoidally equivalent to a strict monoidal category

Theorem (Mac Lane) Any monoidal category is monoidally equivalent to a strict monoidal category

Proof. Tensor Categories - P. 37

Rigid Monoidal Categories

Definition (Left Dual) Let C be a monoidal category and $X \in C$. If there exist $ev_X: X^* \otimes X \to 1$ and $coev_X: 1 \to X \otimes X^*$ such that

$$X \xrightarrow{coev_X \otimes id_X} (X \otimes X^*) \otimes X \xrightarrow{a_{X,X^*,X}} X \otimes (X^* \otimes X) \xrightarrow{id_X \otimes ev_X} X$$
$$X^* \xrightarrow{id_{X^*} \otimes coev_X} X^* \otimes (X \otimes X^*) \xrightarrow{a_{X^*,X,X^*}^{-1}} (X^* \otimes X) \otimes X^* \xrightarrow{ev_X \otimes id_{X^*}} X^*$$

then X^* is the *left dual* of X.

Definition (Right Dual) Let C be a monoidal category and $X \in C$. If there exist $ev'_X : X \otimes {}^*X \to 1$ and $coev'_X : 1 \to {}^*X \otimes X$ such that

$$X \xrightarrow{id_X \otimes coev'_X} X \otimes (^*X \otimes X) \xrightarrow{a_{X,*X,X}^{-1}} (X \otimes ^*X) \otimes X \xrightarrow{ev'_X \otimes id_X} X$$
$$^*X \xrightarrow{coev'_X \otimes id_{*X}} (^*X \otimes X) \otimes ^*X \xrightarrow{a_{*X,x,*X}} ^*X \otimes (X \otimes ^*X) \xrightarrow{id_{*X} \otimes ev'_X} X$$

then *X is the *right dual* of X.

Example K-Vec is rigid.

- Dual of V is the dual vector space V^*
- $ev_V: V^* \otimes V \to \mathbb{K}$ by contraction
- $\mathit{coev}_V : \mathbb{K} \to V^* \otimes V$ by embedding

Unique by duals

If $X \in C$ has a left / right dual, then it is unique up to a unique isomorphism.

Unique by duals

If $X \in C$ has a left / right dual, then it is unique up to a unique isomorphism. Define $\alpha : X_1^* \to X_2^*$ by

$$X_1^* \xrightarrow{id_{X_1^*} \otimes c_2} X_1^* \otimes (X \otimes X_2^*) \xrightarrow{a_{X_1^*, X, X_2^*}^{-1}} (X_1^* \otimes X) \otimes X_2^* \xrightarrow{e_1 \otimes id_{X_2^*}} X_2^*$$

and $\beta: X_2^* \to X_1^*$ similar.

Unique by duals

If $X \in C$ has a left / right dual, then it is unique up to a unique isomorphism. Define $\alpha : X_1^* \to X_2^*$ by

$$X_1^* \xrightarrow{id_{X_1^*} \otimes c_2} X_1^* \otimes (X \otimes X_2^*) \xrightarrow{a_{X_1^*, X, X_2^*}^{-1}} (X_1^* \otimes X) \otimes X_2^* \xrightarrow{e_1 \otimes id_{X_2^*}} X_2^*$$

and $\beta : X_2^* \to X_1^*$ similar.

Show $\beta \circ \alpha$ and $\alpha \circ \beta$ are *id*.

Temperley-Lieb categories

Definition (simple Temperley-Lieb diagram)

Let m, n be non-negative. Consider unit square with m and n points on top and bottom. A *simple Temperley-Lieb diagram* consists of smooth, non-crossing arcs between top and bottom.

The Temperley-Lieb category is a category where

- Objects are non-negative $\ensuremath{\mathbb{N}}$
- Hom(m, n) is the \mathbb{F} -linear span of diagrams from m to n, modulo d-equivalence.

All morphisms $f \in Hom(m, n)$ can be written canonically

All morphisms $f \in Hom(m, n)$ can be written canonically

The Temperley-Lieb category is a strict monoidal category where

- 1 is the 0-diagram
- for all objects $a, b : \mathbb{N}$, $a \otimes b$ is a + b
- for all diagrams $f: m_1
 ightarrow n_1, g: m_2
 ightarrow n_2$,

 $f\otimes g:m_1\otimes m_2
ightarrow n_1\otimes n_2$ is juxtaposition

Definition (unit) For all *n*, the arrow $\eta_n : 0 \rightarrow n + n$

is the unit (counit $\epsilon_n : n + n \to 0$ similar).

Definition (unit) For all *n*, the arrow $\eta_n : 0 \rightarrow n + n$

is the unit (counit $\epsilon_n : n + n \rightarrow 0$ similar).

Using this unit, all objects are self-dual.

Monoidal Functors

Definition

Let $\langle C_1, \otimes_1, 1_1, a_1, \iota_1 \rangle$ and $\langle C_2, \otimes_2, 1_2, a_2, \iota_2 \rangle$ be monoidal categories, $F : C_1 \to C_2$ be a functor with a natural isomorphism

$$J_{X,Y}:F(X)\otimes_2 F(Y)\xrightarrow{\sim} F(X\otimes_1 Y)$$

such that $F(1_1)$ is isomorphic to 1_2 and the diagram

commutes, then $\langle F, H \rangle$ is a monoidal functor.

Example Forgetful functors are monoidal.