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Monoid



Definition

Definition (Monoid)
Let C be a set with 1 ∈ C and · : C × C → C , such that

(a · b) · c = a · (b · c)

a · 1 = 1 · a = a

then 〈C , ·, 1〉 is a monoid.
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Examples

� Strings with concatenation and the empty string

(“foo” ++ “bar”) ++ “baz” = “foo” ++ (“bar” ++ “baz”)

“foo” ++ “” = “foo” = “” ++ “foo”

� Integers with addition and 0

(123 + 456) + 789 = 123 + (456 + 789)

42 + 0 = 42 = 0 + 42

� Sets with union and the empty set

({A,B} ∪ {B,C}) ∪ {A,D} = {A,B} ∪ ({B,C} ∪ {A,D})
{A} ∪ ∅ = {A} = ∅ ∪ {A}
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Strict Monoidal Categories



Definition

Let C be a category with 1 ∈ C and a bifunctor ⊗ : C × C → C ,

such that

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z )

1⊗ X = X ⊗ 1 = X

and

a : (X ⊗ Y )⊗ Z
∼−→ X ⊗ (Y ⊗ Z ) = id

ι : 1⊗ 1
∼−→ 1 = id

then 〈C ,⊗, a, 1, ι〉 is a strict monoidal category.
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Example

Example
Let C be a category, then End(C ) is a strict monoidal category.

Proof.

� f ⊗ g = f ◦ g

� 1 = idC

� ∀X ,Y ,Z ∈ C . (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z )

by composition laws.

� 1⊗ 1 = 1 by identity laws.
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Example

Example
Let F be a field, then Mat(F) is a strict monoidal category

Proof.

� n ⊗m = n ·m, f ⊗ g by Kronecker product

� 1 by single 1-matrix

� ∀X ,Y ,Z ∈ C . (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z )

by properties of Kronecker product

� 1⊗ 1 = 1 obvious
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Non-Strict Monoidal Categories



Definition

Definition (Monoidal Category)
Let C be a category with 1 ∈ C , a bifunctor ⊗ : C × C → C , and

aX ,Y ,Z : (X ⊗ Y )⊗ Z
∼−→ X ⊗ (Y ⊗ Z )

ι : 1⊗ 1
∼−→ 1

satisfying the pentagon and the unit axiom, then 〈C ,⊗, a, 1, ι〉 is a

monoidal category
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Pentagon Axiom

The diagram

commutes
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Unit Axiom

The functors

L1 : X 7→ 1⊗ X

R1 : X 7→ X ⊗ 1

are autoequivalences of C .
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Unit constraints

Define natural isomorphisms

lX : 1⊗ X → X

rx : X ⊗ 1→ X

such that

L1(lx) = 1⊗ (1⊗ X )
a−1
1,1,X−−−→ (1⊗ 1)⊗ X

ι⊗idX−−−→ 1⊗ X

R1(rX ) = (X ⊗ 1)⊗ 1
aX ,1,1−−−→ X ⊗ (1⊗ 1)

idX⊗ι−−−→ X ⊗ 1

then lX is the left and rX is the right unit constraint
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Unit constraints

For all X ∈ C

l1⊗x = id1 ⊗ lX

rX⊗1 = rX ⊗ id1

Proof.
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Triangle

The diagram

commutes
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Triangle

Proof.
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Triangles

The diagrams

commute.

Proof.
similar
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Triangles

The diagrams

commute.

Proof.
similar

13



Proposition

Corollary
In any monoidal category l1 = r1 = ι

Proof.
Set X = Y = 1 in the second triangle. We have

l1 ⊗ id1 = l1⊗1 ◦ a1,1,1 = (id1 ⊗ l1) ◦ a1,1,1

Set X = Y = 1 in the triangle axiom. We have

r1 ⊗ id1 = (id1 ⊗ l1) ◦ a1,1,1

By unit constraint

(id1 ⊗ l1) ◦ a1,1,1 = ι⊗ id1

Hence

r1 ⊗ id1 = l1 ⊗ id1 = ι⊗ id1
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Unique unit

The unit object in a monoidal category is unique up to a unique

isomorphism.

Proof.
Let 〈11, ι1〉, 〈12, ι2〉 be two unit objects with unit constraints

〈r1, l1〉, 〈r2, l2〉.
We have η := l1 (12) ◦ (r2 (11))

−1 : 11
∼−→ 12

Note that
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Examples

Example
Sets with the Cartesian product and the singleton set are a

monoidal category.

Example
Let C be an additive category, then C with ⊗ = ⊕ is a monoidal

category.

Example
K-Vec with ⊗ = ⊗K and 1 = K is a monoidal category.
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Mac Lane’s strictness theorem

Theorem (Mac Lane)
Any monoidal category is monoidally equivalent to a strict

monoidal category

Proof.
Tensor Categories - P. 37
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Rigid Monoidal Categories



Duals

Definition (Left Dual)
Let C be a monoidal category and X ∈ C . If there exist

evX : X ∗ ⊗ X → 1 and coevX : 1→ X ⊗ X ∗ such that

X
coevX⊗idX−−−−−−−→ (X ⊗ X ∗)⊗ X

aX ,X∗,X−−−−→ X ⊗ (X ∗ ⊗ X )
idX⊗evX−−−−−→ X

X ∗
idX∗⊗coevX−−−−−−−→ X ∗ ⊗ (X ⊗ X ∗)

a−1
X∗,X ,X∗−−−−−→ (X ∗ ⊗ X )⊗ X ∗

evX⊗idX∗−−−−−−→ X ∗

then X ∗ is the left dual of X .
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Duals

Definition (Right Dual)
Let C be a monoidal category and X ∈ C . If there exist

ev ′X : X ⊗ ∗X → 1 and coev ′X : 1→ ∗X ⊗ X such that

X
idX⊗coev ′X−−−−−−−→ X ⊗ (∗X ⊗ X )

a−1
X ,∗X ,X−−−−→ (X ⊗ ∗X )⊗ X

ev ′X⊗idX−−−−−→ X

∗X
coev ′X⊗id∗X−−−−−−−→ (∗X ⊗ X )⊗ ∗X

a∗X ,x,∗X−−−−−→ ∗X ⊗ (X ⊗ ∗X )
id∗X⊗ev ′X−−−−−−→ X

then ∗X is the right dual of X .
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Examples

Example
K-Vec is rigid.

� Dual of V is the dual vector space V ∗

� evV : V ∗ ⊗ V → K by contraction

� coevV : K→ V ∗ ⊗ V by embedding
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Unique by duals

If X ∈ C has a left / right dual, then it is unique up to a unique

isomorphism.

Define α : X ∗1 → X ∗2 by

X ∗1
idX∗

1
⊗c2

−−−−−→ X ∗1 ⊗ (X ⊗ X ∗2 )
a−1
X∗
1
,X ,X∗

2−−−−−→ (X ∗1 ⊗ X )⊗ X ∗2
e1⊗idX∗

2−−−−−→ X ∗2

and β : X ∗2 → X ∗1 similar.

Show β ◦ α and α ◦ β are id .
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Temperley-Lieb categories



Diagrams

Definition (simple Temperley-Lieb diagram)
Let m, n be non-negative. Consider unit square with m and n

points on top and bottom. A simple Temperley-Lieb diagram

consists of smooth, non-crossing arcs between top and bottom.
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Composition
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Category

The Temperley-Lieb category is a category where

� Objects are non-negative N

� Hom(m, n) is the F-linear span of diagrams from m to n,

modulo d-equivalence.
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Generators

All morphisms f ∈ Hom(m, n) can be written canonically
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Strict Monoidal

The Temperley-Lieb category is a strict monoidal category where

� 1 is the 0-diagram

� for all objects a, b : N, a⊗ b is a + b

� for all diagrams f : m1 → n1, g : m2 → n2,

f ⊗ g : m1 ⊗m2 → n1 ⊗ n2 is juxtaposition
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Rigid

Definition (unit)
For all n, the arrow ηn : 0→ n + n

is the unit (counit εn : n + n→ 0 similar).

Using this unit, all objects are self-dual.
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Monoidal Functors



Definition

Let 〈C1,⊗1, 11, a1, ι1〉 and 〈C2,⊗2, 12, a2, ι2〉 be monoidal

categories, F : C1 → C2 be a functor with a natural isomorphism

JX ,Y : F (X )⊗2 F (Y )
∼−→ F (X ⊗1 Y )

such that F (11) is isomorphic to 12 and the diagram

commutes, then 〈F ,H〉 is a monoidal functor.
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Example

Example
Forgetful functors are monoidal.
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