Enriched Categories

Alexander Rogovskyy

Proseminar "Category Theory", Summer 2020

Table of Contents

Motivation and Intuition

Constructing Enriched Categories

Self-Enriched Categories

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 - つへの

Example: Vec

• The morphisms between two objects are a *Set*

- Hom $(\mathbb{R}^5, _)$: Vec \rightarrow Set
- Set is special. Can we try to get away from that?

イロト イポト イヨト イヨト

Special structure of morphisms

- We often have special structure in morphisms
- A notion of "combining two morphisms" into one
 - Concatenation: \circ : Hom $(A, B) \times$ Hom $(B, C) \rightarrow$ Hom(A, C)
 - ▶ Tensoring \otimes : Hom $(A, B) \otimes$ Hom $(B, C) \rightarrow$ Hom(A, C)
- Can we generalize the notion of morphisms to reflect that?

イロト イポト イヨト イヨト

Motivation for Enriched Categories

Two central questions:

- 1. Can we generalize over Set?
- 2. Can we employ special structure of morphisms (\Rightarrow *relationships*) between objects

イロト イポト イヨト イヨト

Answer: Instead of sets of morphisms (hom-sets)

we use *hom-objects from another category* V to represent the relationship between A and B!

$$\mathsf{A} \longrightarrow \mathcal{C}(A,B) \longrightarrow \mathsf{B}$$

Answer: Instead of sets of morphisms (hom-sets)

we use *hom-objects from another category* V to represent the relationship between A and B!

$$\mathsf{A} \longrightarrow \mathcal{C}(A, B) \longrightarrow \mathsf{B}$$

Classical categories can be seen as enriched over Set.

An example: \mathbb{R} -**Vec** as a **Set**-Category

 $\mathsf{Hom}(\mathbb{R}^3,\mathbb{C})$

 $\mathsf{Hom}(\mathbb{R}^5,\mathbb{C})$

 $\mathsf{Hom}(\mathbb{R}^5,\mathbb{R}^3)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

An example: \mathbb{R} -**Vec** as a **Set**-Category

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

イロト イポト イヨト イヨト

Another point of view

- Essentially, enriched categories can be thought of as *directed* graphs with edge labels
- The edge labels come from another (regular, non-enriched) category V
- We have a hom-object between any two objects graph is *complete*

Important! We do not have individual morphisms anymore!

イロト イポト イヨト イヨト

Step 1: Monoidal Categories

- ▶ What structure should our category of hom-objects V have?
- We saw that something like a cartesian product × could be useful

Definition (Monoidal Category)

A monoidal category consists of

- A category \mathcal{V}
- A functor $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ ("tensor product")
- ▶ An element $1 \in Ob(\mathcal{V})$ ("unit")

such that

- \blacktriangleright \otimes is associative (up to isomorphism)
- 1 is the left and right unit w.r.t \otimes (up to isomorphism)
- certain coherence diagrams commute (see next slide)

Definition (Monoidal Category)

A monoidal category consists of

- A category \mathcal{V}
- A functor $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ ("tensor product")
- ▶ An element $1 \in Ob(\mathcal{V})$ ("unit")

such that

- \blacktriangleright \otimes is associative (up to isomorphism)
- 1 is the left and right unit w.r.t \otimes (up to isomorphism)
- certain coherence diagrams commute (see next slide)
- \implies essentially a categorical version of a monoid

Some coherence Axioms

イロト イポト イヨト イヨト

Examples

- **Set** with \times and $\{\cdot\}$
- k-Vec with \times (= \oplus) and {0}
- k-**Vec** with \otimes and k
- ► Grp with × and {e}
- Graph with the tensor product of graphs and \bigcirc
- Cat with \times and \bigcirc
- $\overline{\mathbb{R}}_+$ (with \geq for morphisms), + and 0.

イロト イポト イヨト イヨト

Special cases and variations

A monoidal category is called...

► symmetric if ⊗ is commutative up to isomorphism (and some additional coherence diagramms commute)

イロト イポト イヨト イヨト

Special cases and variations

A monoidal category is called...

- ► symmetric if ⊗ is commutative up to isomorphism (and some additional coherence diagramms commute)
- ► cartesian if ⊗ is the category-theoretic product and 1 is the terminal object

Special cases and variations

A monoidal category is called...

- ► symmetric if ⊗ is commutative up to isomorphism (and some additional coherence diagramms commute)
- ► cartesian if ⊗ is the category-theoretic product and 1 is the terminal object
- closed if for every X, the functor $_ \otimes X$ has a right adjoint

Special cases and variations

A monoidal category is called...

- ► symmetric if ⊗ is commutative up to isomorphism (and some additional coherence diagramms commute)
- ► cartesian if ⊗ is the category-theoretic product and 1 is the terminal object
- closed if for every X, the functor $_ \otimes X$ has a right adjoint
 - We call this adjoint functor the internal hom

イロト イポト イヨト イヨト

Step 2: Enriched Categories

Remember that we are replacing hom-sets with hom-objects. We need to have a *composition morphism* $\circ := \circ_{ABC}$

$$\mathcal{C}(A,B)\otimes \mathcal{C}(B,C) \stackrel{\circ}{\longrightarrow} \mathcal{C}(A,C)$$

In $\mathcal{V} = \mathbf{Set}$, this is just the usual composition of functions.

(a)

- But what about the identity morphism *id*_A?
- We don't have individual morphisms anymore, only hom-objects!
- ▶ We need a way to "pick" an identity

Motivation	

イロト イヨト イヨト イヨト

- But what about the identity morphism *id*_A?
- We don't have individual morphisms anymore, only hom-objects!
- ► We need a way to "pick" an identity
- Solution Require a morphism $j_A : \mathbb{1} \to \mathcal{C}(A, A)$ that represents "picking" an identity

- But what about the identity morphism *id*_A?
- We don't have individual morphisms anymore, only hom-objects!
- ▶ We need a way to "pick" an identity
- Solution Require a morphism $j_A : \mathbb{1} \to \mathcal{C}(A, A)$ that represents "picking" an identity

イロト 不得 トイヨト イヨト

Definition (Enriched Category)

Let $(\mathcal{V},\otimes,\mathbb{1})$ be a monoidal category. A $\mathcal{V}\text{-}\mathsf{Category}\ \mathcal{C}$ consists of

- ► A collection of objects *Ob*(*C*)
- ▶ For $A, B \in Ob(C)$ a hom-object $C(A, B) \in V$
- For $A, B, C \in Ob(C)$ a composition morphism

 $\circ_{ABC}: \mathcal{C}(A,B) \otimes \mathcal{C}(B,C) \rightarrow \mathcal{C}(A,C)$

For $A \in Ob(\mathcal{C})$ an *identity selector* $j_A : \mathbb{1} \to \mathcal{C}(A, A)$ such that the associativity and unit laws (next slides) hold.

э

Associativity of o

(a)

Unit law for j_A

(symmetric law omitted)

Alexander Rogovskyy Enriched Categories

18/ 33

Unit law for j_A

(symmetric law omitted)

"If we pick the right identity, it will act as a unit w.r.t \circ !"

The Triangle of Truth

< ロ > < 同 > < 回 > < 回 > < 回 > <

Examples of Enriched Categories

- Any category C can be seen as enriched over Set
- k Vec as a (k Vec)-Category with \otimes and k
- ▶ k Vec as a (k Vec)-Category with \oplus and $\{0\}$
- \blacktriangleright Preorders as categories enriched over $\, \Huge{\sc cl} \, 0 \to 1 \, \Huge{\sc cl}$
- (Generalized) metric spaces as categories over $\overline{\mathbb{R}}_+$

A closer look: Lawvere Metric Spaces

Let
$$\mathcal{V} := \overline{\mathbb{R}}_+$$
 with $x \to y \iff x \ge y$, $\otimes := +$ and $\mathbb{1} := 0$:

Let C be a V-Category. What can we say about its structure?

▲日▼▲□▼▲田▼▲田▼ 田 ろんの

Example diagram in a $\overline{\mathbb{R}}_+$ -Category

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Image: Image:

Example diagram in a $\overline{\mathbb{R}}_+$ -Category

This is exactly the \triangle -inequality!

(a)

What about the identity selector?

$$\mathbb{1} = 0 \xrightarrow{\geq} \mathcal{C}(A, A) \xrightarrow{A}$$

This implies C(A, A) = 0!

Alexander Rogovskyy Enriched Categories

23/ 33

2

イロト イポト イヨト イヨト

What about the identity selector?

This implies C(A, A) = 0!

A $\overline{\mathbb{R}}_+$ -category is thus a generalized metric space:

- The hom-objects represent the metric ("distance" between objects)
- The triangle inequality holds

$$\blacktriangleright \ \mathcal{C}(A,A) = 0$$

Enriched Functors

A regular functor is a mapping between objects and hom-sets. An *enriched* functor is a mapping between objects and hom-objects:

$$A = \mathcal{C}(A, B) \Longrightarrow B$$

$$\downarrow_{F} \qquad \qquad \downarrow_{F_{AB}} \qquad \qquad \downarrow_{F} \qquad \mathcal{V}\text{-Functor } F : \mathcal{C} \to \mathcal{D}$$

$$FA = \mathcal{D}(FA, FB) \Longrightarrow FB$$

イロト イヨト イヨト イヨト

A \mathcal{V} -Functor has to respect composition...

$$\mathcal{C}(A, B) \otimes \mathcal{C}(B, C) \xrightarrow{\circ} \mathcal{C}(A, C)$$
$$\downarrow^{F} \qquad \qquad \downarrow^{F}$$
$$\mathcal{D}(FA, FB) \otimes \mathcal{D}(FB, FC) \xrightarrow{\circ} \mathcal{D}(FA, FC)$$

Alexander Rogovskyy Enriched Categories æ

A \mathcal{V} -Functor has to respect composition...

$$\mathcal{C}(A, B) \otimes \mathcal{C}(B, C) \xrightarrow{\circ} \mathcal{C}(A, C)$$
$$\downarrow^{F} \qquad \qquad \downarrow^{F}$$
$$\mathcal{D}(FA, FB) \otimes \mathcal{D}(FB, FC) \xrightarrow{\circ} \mathcal{D}(FA, FC)$$

...and identity selections

イロト イボト イヨト イヨト

Enriched natural transformations

An ordinary natural transformation $\alpha : F \to G$ $(F, G : C \to D)$ assigns to each object A a morphism

$$FA \xrightarrow{\alpha_A} GA$$

In other words: We select an object of Hom(FA, GA).

イロト イボト イヨト イヨト

Enriched natural transformations

An ordinary natural transformation $\alpha : F \to G$ $(F, G : C \to D)$ assigns to each object A a morphism

$$FA \xrightarrow{\alpha_A} GA$$

In other words: We select an object of Hom(FA, GA). But we already saw how to pick items of the hom-object: We use morphisms from 1:

Self-Enriched Categories

Set can be thought as being enriched over itself. Can we generalize this idea?

Ordinary Category ${\cal V}$

- Objects
- Hom-Sets

 $\mathcal{V}\text{-}\mathsf{Category}\ \mathcal{C}$

- Objects
- Hom-Objects in ${\cal V}$

Self-Enriched Categories

Set can be thought as being enriched over itself. Can we generalize this idea?

Ordinary Category \mathcal{V}

- Objects
- Hom-Sets

 \mathcal{V} -Category \mathcal{V}

- Objects Hom-Objects in $\ensuremath{\mathcal{V}}$

Self-Enriched Categories

Set can be thought as being enriched over itself. Can we generalize this idea?

 \mathcal{V} -Category \mathcal{V}

- Objects
 Hom-Sets
 ► Objects
 ► Hom-Objects in V
- \implies We need to express hom-sets in \mathcal{V} as objects within $\mathcal{V}!$.

Theorem

Any closed symmetrical monoidal category V can be self-enriched, i.e. it is equivalent to a V-Category.

Reminder

 $(\mathcal{V}, \otimes, \mathbb{1})$ is *closed* if every functor $_ \otimes A$ has a right adjoint $[A, _]$.

 $\mathsf{Hom}(A \otimes B, C) \cong \mathsf{Hom}(A, [B, C])$

《日》《國》《臣》《臣》

イロト イポト イヨト イヨト

Theorem

Any closed symmetrical monoidal category V can be self-enriched, i.e. it is equivalent to a V-Category.

Reminder $(\mathcal{V}, \otimes, \mathbb{1})$ is *closed* if every functor $_ \otimes A$ has a right adjoint $[A, _]$.

$\mathsf{Hom}(A \otimes B, C) \cong \mathsf{Hom}(A, [B, C]) \\ \Longrightarrow \mathsf{Hom}(B, C) \cong \mathsf{Hom}(\mathbb{1}, [B, C])$

Constructing Enriched Categories

Self-Enriched Categories

(a)

How to turn ${\mathcal V}$ into a ${\mathcal V}\text{-}\mathsf{Category}$

This gives us an ideal candidate for the hom-object:

 $[A,B]\in \textit{Ob}(\mathcal{V})$

イロト イボト イヨト イヨト

How to turn ${\mathcal V}$ into a ${\mathcal V}\text{-}\mathsf{Category}$

This gives us an ideal candidate for the hom-object:

 $[A,B]\in \textit{Ob}(\mathcal{V})$

Thus we define the \mathcal{V} -category $\overline{\mathcal{V}}$ as:

 $Ob(\overline{\mathcal{V}}) := Ob(\mathcal{V}) \qquad \overline{\mathcal{V}}(A,B) := [A,B] \in Ob(V)$

How to turn ${\mathcal V}$ into a ${\mathcal V}\text{-}\mathsf{Category}$

This gives us an ideal candidate for the hom-object:

 $[A,B]\in \textit{Ob}(\mathcal{V})$

Thus we define the \mathcal{V} -category $\overline{\mathcal{V}}$ as:

$$\mathit{Ob}(\overline{\mathcal{V}}):=\mathit{Ob}(\mathcal{V}) \qquad \overline{\mathcal{V}}(A,B):=[A,B]\in \mathit{Ob}(\mathcal{V})$$

Now we need to provide a concatenation and a unit selector

$$\circ: [A,B] \otimes [B,C] \to [A,C] \tag{1}$$

$$j_{\mathcal{A}}: \mathbb{1} \to [\mathcal{A}, \mathcal{A}] \tag{2}$$

イロト イボト イヨト イヨト

(2) is easy: Just set X := 1, Y, Z := A in the adjunction property

$$\operatorname{Hom}(X\otimes Y,Z)\cong\operatorname{Hom}(X,[Y,Z])$$

Alexander Rogovskyy

イロン イロン イヨン イヨン

Similarly, for \circ , we use

 $\mathsf{Hom}([A,B]\otimes [B,C],[A,C])\cong \mathsf{Hom}(([A,B]\otimes [B,C])\otimes A,C)$

and define

 $\begin{array}{c} ([A,B]\otimes [B,C])\otimes A \\ & \downarrow^{\text{By associativity and commutativity}} \\ [B,C]\otimes ([A,B]\otimes A) \\ & \downarrow^{\text{By "almost invertability" of adjoints}} \\ [B,C]\otimes B \\ & \downarrow^{\text{By "almost invertability" of adjoints}} \\ C \end{array}$

3

イロン イ団 と イヨン イヨン

Examples of Self-Enrichment

The categories

- Set with $[A, B] = \{f : A \rightarrow B\}$
- ▶ k Vec with the usual tensor product \otimes and $[A, B] = \{f : A \rightarrow B \text{ linear } \}$
- Cat with the categorical product where [A, B] is the functor category B^A.
- Graph with the tensor product of graphs and a kind of "exponential graph" as the internal hom

• SimplyTyped $-\lambda$

are all cartesian (and thus symmetrically) closed and hence are enriched over themselves.

3

Thank you for listening!

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

- G. M. Kelly. "Basic concepts of enriched category theory". In: *Repr. Theory Appl. Categ.* 10 (2005). URL: http://emis.dsd.sztaki.hu/journals/TAC/reprints/ articles/10/tr10abs.html.
- Bartosz Milewski. Category Theory for Programmers. URL: https://github.com/hmemcpy/milewski-ctfp-pdf.
- nLab authors. enriched category. http://ncatlab.org/nlab/show/enriched%20category. Revision 94. Sept. 2020.
- Emily Riehl. Categorical homotopy theory. Vol. 24. New Mathematical Monographs. Cambridge University Press, Cambridge, 2014. ISBN: 978-1-107-04845-4. URL: http://www.math.jhu.edu/~eriehl/cathtpy.pdf.