Seminar on Category Theory, Summer 2020

Alexander Rogovskyy

Definitions

Definition (Monoidal Category): A monoidal category consists of

- A category \mathcal{V}
- A functor $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ ("tensor product")
- An element $1 \in Ob(\mathcal{V})$ ("unit")

such that the following laws hold for $A, B, C \in Ob(\mathcal{V})$:

- Associativity: $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$
- Unit law: $A \otimes \mathbb{1} \cong A \cong \mathbb{1} \otimes A$

A monoidal category is

- symmetric if \otimes is commutative: $A \otimes B \cong B \otimes A$
- cartesian if \otimes is the category-theoretic product: $A \otimes B = A \prod B$
- closed if for every X, the functor $_ \otimes X$ has a right adjoint $[X, _]$

For the coherence laws, see the previous talk.

Definition (Enriched Category): Let $(\mathcal{V}, \otimes, \mathbb{1})$ be a monoidal category.

A $\mathcal V\text{-}\mathrm{Category}\ \mathcal C$ consists of

- A collection of objects $Ob(\mathcal{C})$
- For $A, B \in Ob(\mathcal{C})$ a hom-object $\mathcal{C}(A, B) \in \mathcal{V}$
- For $A, B, C \in Ob(\mathcal{C})$ a composition morphism

$$\circ_{ABC}: \mathcal{C}(A,B) \otimes \mathcal{C}(B,C) \to \mathcal{C}(A,C)$$

• For $A \in Ob(\mathcal{C})$ an identity selector $j_A : \mathbb{1} \to \mathcal{C}(A, A)$

such that the associativity law 1 and unit law 2 (as well as the symmetrical unit law) hold.

Definition (Enriched Functor): Let $(\mathcal{V}, \otimes, \mathbb{1})$ be a monoidal category and \mathcal{C}, \mathcal{D} \mathcal{V} -categories. An enriched \mathcal{V} -functor $F : \mathcal{C} \to \mathcal{D}$ consists of

- A map $F : \operatorname{Ob}(\mathcal{C}) \to \operatorname{Ob}(\mathcal{D})$
- For $A, B \in Ob(C)$ a morphism $F_{AB} : \mathcal{C}(A, B) \to \mathcal{D}(FA, FB)$

such that it respects compositions 3 and identity selections 4.

Definition (Enriched Natural Transformation): Let $(\mathcal{V}, \otimes, \mathbb{1})$ be a monoidal category, $\mathcal{C}, \mathcal{D} \mathcal{V}$ categories and $F, G : \mathcal{C} \to \mathcal{D} \mathcal{V}$ -functors. A \mathcal{V} -natural transformation between F and G consists of a morphism $\alpha_A : \mathbb{1} \to \mathcal{D}(FA, GA)$ for every $A \in Ob(\mathcal{C})$ such that the naturality law 5 holds.

Diagrams

In order to avoid cluttering, some edge labels are simplified, e.g. F instead of F_{AB} , if the actual variant is clear from the context. All of these diagrams are in \mathcal{V} .

Examples

- An ordinary category as a $(\mathbf{Set},\times,\{\cdot\})\text{-category}$
- k-Vec as a (k-Vec, \oplus , $\{0\}$)-category
- k-Vec as a (k-Vec, \otimes , k)-category
- Generalized (Lawvere-) metric spaces as $(\overline{\mathbb{R}}_+,+,0)\text{-categories}$
- Preorders as categories enriched over $ightarrow 0 \longrightarrow 1
 ightarrow$ with multiplication as \otimes
- Cat as a self enriched Cat-category
- Graph as a self enriched Graph-category
- Simply typed λ -calculus (with product types) as a self enriched category