Simon Ertl

Sommersemester 2020

Definition 1:

In a category C an object is called *null object* or *zero object* **0** if it is both initial and terminal. A category with zero objects is called *pointed category*.

Definition 2:

Let \mathcal{C} be a category with a zero object. The morphism $f : a \mapsto b$ is called *null morphism* if it factors through **0**.

Definition 3:

For a pointed category C the *kernel* of a morphism $f : A \mapsto B$ is the equalizer of f and $0_{a,b}$. The *cokernel* is the dual concept.

Definition 4:

A category is called *pre-additive* or *Ab-category* if every hom-set C(a, b) is an additive abelian group and composition is bilinear in a way that the it distributes over the addition.

$$h \circ (f+g) = h \circ f + h \circ g$$
 and $(f+g) \circ h = f \circ h + g \circ h$

Proposition 1: Let z be an object of an Ab-category A. The following conditions are equivalent:

- (i) z is initial.
- (ii) z is terminal.
- (iii) A has a zero object.

Definition 5:

Let A be an Ab-category. For objects $a, b \in A$ a biproduct is diagram $a \xleftarrow{i_1}{p_1} c \xleftarrow{p_2}{i_2} b$ that fulfils $p_1i_1 = 1_a, p_2i_2 = 1_b, i_1p_1 + i_2p_2 = 1_c$.

Proposition 2: In an Ab-category the following statements are equivalent:

- (i) The product of a, b exists.
- (ii) The coproduct of a, b exists.

(iii) The biproduct of a, b exists.

Definition 6:

An *additive category* is defined as a pre-additive category with a zero object and a biproduct for each pair of objects.

Definition 7:

If A, B are Ab-categories, a functor $F : A \mapsto B$ is additive when for all parallel arrows $f, f' : b \mapsto c$ in A

$$F(f+f') = F(f) + F(f')$$

holds, so F is a group homomorphism. The composite of additive functors is additive.

Proposition 3: F is additive if and only if F preserves biproducts.

Definition 8:

An Ab-category C is *abelian* if the following conditions are satisfied:

- (i) C has a zero object.
- (ii) C has a biproduct for each pair of objects.
- (iii) Every arrow has a kernel and a cokernel.
- (iv) Every monomorphism is a kernel and every epi is cokernel.

if it only fulfils the conditions (i)-(iii) it is pre-abelian.

Definition 9:

The *image* and *coimage* of a function is defined as

im $f = \ker(\operatorname{coker}(f))$ and $\operatorname{coim} f = \operatorname{coker}(\ker(f))$

Theorem 1: For an abelian category \mathcal{A} , every morphism has a factorization, f = me, where m is a monomorphism and e is an epimorphism. Moreover m = ker(coker(f)) and e = coker(ker(f)).

Definition 10:

A composable pair of arrows $\cdot \xrightarrow{f} b \xrightarrow{g} \cdot$ is called *exact at b* if im $f = \ker g$. A diagram

 $0 \longrightarrow a \xrightarrow{f} b \xrightarrow{g} c \longrightarrow 0$

is called *short exact sequence* when it is exact at a, b and c.

Theorem 2 (five-lemma): If the rows of (1) are exact and f_1, f_2, f_4, f_5 are isomorphisms, so is f_3 .

Theorem 3 (The Freyd-Mitchell embedding theorem): Every small abelian category admits a full, faithful and exact functor to the category Mod_R for some Ring R.