C*-tensor categories and Woronowicz’ Tannaka-Krein reconstruction

Alexander Wendel

September 10, 2020
1. Introduction and Motivation

2. C^*-categories

3. Conjugates and dimension

4. Tannaka-Krein and quantum groups
Motivation: Group Representations

Definition (Classical point of view)

A finite dimensional **representation** of a group G is a group homomorphism $G \to GL_n(\mathbb{K})$ for some field \mathbb{K}.

Definition

$T : \mathbb{K}^n \to \mathbb{K}^m$ such that for two representations ρ, σ we have $\rho(g)T = T\sigma(g) \forall g \in G$ is called **intertwiner**.

What do we know from a categorical point of view about representations?
Categorical view on representations

Definition (Categorical point of view)

A representation of a group G (as one-object category) is a functor $G \to Vect_K$. Intertwiners are then natural transformations between two such functors.

Thus:

- Representations form a category,
- a representation sends G to some K^n,
- and thus any $g \in G$ to some Matrix in $GL_n(K)$

But this category has even more structure:

- $Rep_K(G)$ forms a monoidal category.
Category of representations

For G a group, the following is a **monoidal** category, denoted $\text{Rep}(G)$

- **Objects:** Representations $\rho : G \rightarrow GL_n(\mathbb{C})$,
- **Morphisms:** Intertwiners,
- \mathbb{C}-linear,
- Direct sum $(\rho \oplus \sigma)(g) = \rho(g) \oplus \sigma(g) \in GL_{n+m},$
- Tensor product: $\rho \otimes \sigma(g) = \rho(g) \otimes \sigma(g) \in GL_{n \cdot m},$
- **Unit:** trivial representation \mathbb{C}.

Furthermore if we deal with compact topological groups we get the notion of a rigid C^*-tensor category.
Theorem (Woronowicz’s Tannaka Krein duality [NT13])

Let \mathcal{C} be a rigid C^*-tensor category, $F : \mathcal{C} \to \text{f.d.-Hilb}$ be a unitary fiber functor. Then there exist

- a compact quantum group G and
- a unitary monoidal equivalence $E : \mathcal{C} \to \text{Rep}(G)$
- such that F is naturally unitarily monoidally isomorphic to the composition of the canonical fiber functor with E.
- Furthermore, the Hopf *-algebra $(\mathbb{C}[G], \Delta)$ for such a G is uniquely determined up to isomorphism.
C^*-categories

Definition (C^*-category [NT13, Web17])

A category \mathcal{C} is called C^*-category provided that:

1. $\forall U, V \in \text{Ob}(\mathcal{C})\text{Mor}(U, V)$ is a Banach space, composition of morphisms is bilinear and $\|ST\| \leq \|S\|\|T\|$

2. we have an antilinear contravariant functor “involution” $\ast : \mathcal{C} \to \mathcal{C}$: $\ast = \text{id}$ on objects, and on morphisms $T \in \text{Mor}(U, V)$:

 1. $T^{**} = T$,
 2. $\|T^* T\| = \|T\|^2$, and $\text{End}(U)$ is a unital C^*-algebra
 3. $T^* T \in \text{End}(U) = \text{Mor}(U, U)$ is positive.

Via the \ast- operation we can introduce the notions of “projection, partial isometry, unitary”.

Alexander Wendel

C^*-tensor categories and Woronowicz’ Tannaka-Krein reconstruction
Examples of C^*-categories

Example

Category of finite-dimensional Hilbert spaces:
- Objects: finite dimensional Hilbert spaces,
- Morphisms: bounded linear maps.

Example

Any **unital** C^*-algebra is a one-object C^*-category.
Definition (C*-tensor category [NT13])

A C*-category is called C*-tensor category provided that it is a tensor category and if furthermore:

1. The associativity morphisms are **unitary**: \(uu^* = \text{id}, u^* u = \text{id} \) and \(L_1, R_1 : X \rightarrow X \otimes 1, 1 \otimes X \) are unitary.
2. \((S \otimes T)^* = S^* \otimes T^*\) for all morphisms \(S, T\).
Examples of C^*-tensor categories

Example

Category of finite-dimensional Hilbert spaces.

Idea: Topology $\leftrightarrow C^*$-structure

Example

Finite dimensional unitary representations of a CG:

- $\text{Rep}(G)$ has a faithful “fiber functor”,
- thus we can also view $\text{Rep}(G)$ as subcategory of f.d.-Hilb.

Notation: For G a compact group we can identify a representation with an element $U \in \mathcal{C}(G) \otimes M_n(\mathbb{C})$.
Definition

A representation U of a CG is **irreducible** if it has no invariant subspaces.

Lemma (Schur’s Lemma [NT13])

Two irreducible unitary representations U, V are either unitarily equivalent and $\text{Mor}(U, V)$ one-dimensional or $\text{Mor}(U, V) = 0$. Every f.d. rep is equivalent to a unitary one, and every f.d. rep is direct sum of irreducible ones.
Definition ((Semi-)Simplicity [NT13])

An object in a C^*-tensor category $U \in \mathcal{C}$ is called \textbf{simple} if $\text{End}(U) \cong \mathbb{C}1$. \mathcal{C} is called \textbf{semisimple} provided that every object can be decomposed into a direct sum of simple objects.

Corollary

For a compact group G, $\text{Rep}_\mathbb{C}(G)$ is semisimple.
Conjugate Objects

Definition (Conjugate Object[NT13])

\(\bar{U} \in \text{Ob}(\mathcal{C}) \) is **conjugate** to \(U \in \text{Ob}(\mathcal{C}) \) if there exist morphisms \(R : 1 \to \bar{U} \otimes U \), \(\bar{R} : 1 \to U \otimes \bar{U} \) such that the **conjugate equations** (CEQ) hold:

\[
(\bar{R}^* \otimes \text{id})(\text{id} \otimes R) = \text{id} \\
(R^* \otimes \text{id})(\text{id} \otimes \bar{R}) = \text{id}
\]

If every object in a \(C^* \)-tensor category has a conjugate, then we call it **rigid**.

Conjugate objects are, if they exist, unique up to isomorphism.
Conjugate Objects

Example (f.d.-Hilb [NT13])

\(H \in \text{f.d.-Hilb} \) the dual space \(H^* = \overline{H} \) is its conjugate (dual space).

\[
r : \mathbb{C} \rightarrow \overline{H} \otimes H, \quad r(1) = \sum_i \overline{e_i} \otimes e_i = \sum_i J(e_i) \otimes e_i
\]

Example (Representation of CG [NT13])

For a f.d. unitary representation \(U \) the conjugate representation is given by complex conjugation: \(\overline{U}(g) = U(\overline{g}) \).
Properties of conjugates

Proposition ([NT13])

If U has a conjugate, then $\text{End}(U)$ is finite dimensional and every object with a conjugate decomposes into a finite direct sum of simple objects (subobjects are required).

Corollary ([NT13])

The class of objects having a conjugate form a (semisimple) C^*-tensor subcategory.
Theorem (Frobenius reciprocity[NT13])

If an object U in a C^*-tensor category \mathcal{C} has a conjugate, then we have for $V, W \in \text{Ob}(\mathcal{C})$ an isomorphism:

$\text{Mor}(U \otimes V, W) \cong \text{Mor}(V, \bar{U} \otimes W)$

Taking conjugates can be extended to a contravariant functor via Frobenius reciprocity:

Theorem ([NT13])

The maps $U \mapsto \bar{U}$, $\text{Mor}(U, V) \ni T \mapsto T^v \in \text{Mor}(\bar{V}, \bar{U})$ define a contravariant endofunctor.
Definition

Let U be a simple object in a C^*-tensor category. The number

$$d_i(U) = \| R \| \cdot \| \bar{R} \|$$

is called intrinsic dimension. For general U decompose into simple objects U_k and define $d_i(U) := \sum_k d_i(U_k)$.

Example (f.d.-Hilb[NT13])

In this case we recover the usual notion of dimension, since $C^n = \bigoplus_{i=1}^n C$.

Uses: eg: classify C^*-tensor category generated by an object with certain intrinsic dimension: see work of Froelich: Quantum Groups, Quantum Categories.
intrinsinc/statistical dimension

Definition

Let U be a simple object in a C^*-tensor category. The number

$$d_i(U) = \| R \| \cdot \| \bar{R} \|$$

is called intrinsic dimension. For general U decompose into simple objects U_k and define $d_i(U) := \sum_k d_i(U_k)$.

Uses: eg: classify C^*-tensor category generated by an object with certain intrinsic dimension: see work of Froelich: Quantum Groups, Quantum Categories,.....
Fiber functors

Definition (Fiber functor [NT13])

A tensor functor $F : C \to \text{f.d.-Hilb}$ is called **fiber functor** if it is faithful and exact.

In case we are dealing with a rigid C^*-tensor category this is the same as tensor functor!

Example (canonical fiber functor [NT13])

$$F(U \xrightarrow{S} V) = H_U \xrightarrow{S} H_V$$
Monoidal equivalence

Definition (Monoidal equivalence [EGNO15])

A monoidal functor is called monoidal equivalence if it is an equivalence seen as functor. Monoidal equivalence is an equivalence relation for tensor categories. In that case there are two functors F, G, with natural isomorphisms $FG \cong \text{id}$ and $GF \cong \text{id}$.

Proposition ([NT13])

Let $F : \mathcal{C} \to \mathcal{C}'$ be a tensor functor between semisimple C^*-tensor categories. F is a monoidal equivalence iff $F(U_\alpha)$ are simple for all simple U_α, pairwise non-isomorphic and F is isomorphism-dense.
Definition

A functor F between C^*-tensor categories is called unitary if:

- $F(T^*) = F(T)^*$ and
- $F(U) \otimes F(V) \to F(U \otimes V)$ is unitary.

Definition

Two C^*-tensor categories are called unitarily monoidally equivalent if they are monoidally equivalent and if F, G between them such that F, G and the natural isomorphisms $FG \cong \text{id}$ and $GF \cong \text{id}$ are unitary.
Hopf *-algebras and CQGs

Definition

A **Hopf *-algebra** is an involutive algebra A together with algebra *-homomorphisms $\Delta: A \to A \otimes A$, $\varepsilon: A \to \mathbb{C}$, $S: A \to A^{\text{opp}}$, such that the following conditions hold:

$$(\text{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \text{id}) \circ \Delta$$

$$(\text{id} \otimes \varepsilon) \circ \Delta = \text{id} = (\varepsilon \otimes \text{id}) \circ \Delta$$

$$m \circ (S \otimes \text{id}) \circ \Delta = \eta \circ \varepsilon = m \circ (\text{id} \otimes S) \circ \Delta$$
CQGs

Definition (Compact quantum group [NT13])

A compact quantum group is a pair \((A, \Delta)\), where \(A\) is a unital C*-algebra and \(\Delta : A \rightarrow A \otimes A\) is a unital *-homomorphism, called comultiplication:

1. \((\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta\) coassociativity,
2. \((A \otimes 1)\Delta(A), (1 \otimes A)\Delta(A)\) are dense in \(A \otimes A\) : cancellation property.

Definition ([NT13])

A representation of a compact quantum group \(A\) is an invertible element \(U \in M_n(A) \cong M_n(\mathbb{C}) \otimes A\). If \(U\) is unitary, then we call the representation unitary.
Woronowicz’s Tannaka Krein duality

Theorem (Woronowicz’s Tannaka Krein duality [NT13])

Let \mathcal{C} be a rigid C^*-tensor category, $F : \mathcal{C} \to \text{f.d.-Hilb}$ be a unitary fiber functor. Then there exist

- a compact quantum group G and
- a unitary monoidal equivalence $E : \mathcal{C} \to \text{Rep}(G)$

such that F is naturally unitarily monoidally isomorphic to the composition of the canonical fiber functor with E.

Furthermore, the Hopf $*$-algebra $(\mathbb{C}[G], \Delta)$ for such a G is uniquely determined up to isomorphism.
Sketch of proof: Tannaka-Krein

- Consider the *-algebra $\text{End}(F) = \text{Nat}(F, F)$.
- $\eta \in \text{End}(F)$ is determined by $\eta_{U_\alpha} : F(U_\alpha) \to F(U_\alpha)$ and thus:

$$\text{End}(F) \cong \prod_\alpha B(F(U_\alpha))$$

Define $\delta : \text{End}(F) \to \text{End}(F \otimes^2)$ via:

$$\delta(\eta)_{U,V} = F_2^* \eta_{U \otimes V} F_2$$

- Coassociativity follows from the property of tensor functor.
- We construct a Hopf *-algebra from this data.
Sketch of proof: Tannaka-Krein

- Set $\mathcal{A} := \bigoplus_\alpha B(F(U_\alpha))^* \subset \text{End}(F)^*$.
- Define $ab := (a \otimes b)\delta$,
- $\Delta(a)(\omega \otimes \eta) = a(\omega\eta) \epsilon(a) = a(1)$,
- $S(a)(\eta) = a(\eta^v)$ and $a^*(\eta) := \bar{a}(\eta^{v*})$
- Then $(\mathcal{A}, \Delta, \epsilon, S)$ forms a Hopf $*$-algebra.
- We can construct a tensor functor to $\text{Rep}(A^*)$ by defining for $U \in \mathcal{C}$, $X^U \in B(F(U)) \otimes \text{End}(F)^*$: $(\text{id} \otimes \eta)(X^U) = \eta_U$ and such that for $T \in \text{Mor}(U, V), F(T)$ intertwines X^U and X^V.

Alexander Wendel

C-tensor categories and Woronowicz’ Tannaka-Krein reconstruction
Hopf \ast-algebras and CQGs

Definition ([NT13, Web17])

We denote by $\mathbb{C}[G] :=$ the linear span of matrix coefficients of all f.d. unitary representations of $G = \text{algebra generated by these.}$

Theorem ([Web17, NT13])

For any CQG $\mathbb{C}[G]$, Δ is a Hopf-\ast-algebra. Conversely, any Hopf-\ast-algebra generated by matrix coefficients of f.d. unitary corepresentations is of that form for some CQG.
We have seen: C^*-tensor categories \leftrightarrow Representation categories of compact (quantum) groups.

Example (quantum permutation group)

\[
\mathcal{C}(S_n^+) := C^*(u_{ij}, i, j = 1, \ldots, n) \quad (1)
\]
\[
|u_{ij}\text{are projections and } \sum_k u_{ik} = \sum_k u_{kj} = 1) \quad (2)
\]

- $\mathcal{C}(S_n^+)/\langle u_{ij}u_{kl} = u_{kl}u_{ij} \rangle \cong \mathcal{C}(S_n)$.
- But how is this related with the representation theory?
- Answer: While the intertwiner space of S_n is induced by partitions, the intertwiner space of S_n^+ is induced by noncrossing ones. \Rightarrow “easy quantum groups”.

Alexander Wendel

C^*-tensor categories and Woronowicz’ Tannaka-Krein reconstruction
Bibliography

- Pavel Etingof, Shlomo Gelaki, Dimitri Nikkshych, and Victor Ostrik.
 Tensor Categories.
 AMS, 2015.

- Sergey Neshveyev and Lars Tuset.
 Compact Quantum Groups and their Representation Categories.

- Moritz Weber.
 Introduction to compact (matrix) quantum groups and
 banica–speicher (easy) quantum groups.