Definition 1 (Classical point of view): A finite dimensional **representation** of a group G is a grouphomomorphism $G \to GL_n(\mathbb{K})$ for some field \mathbb{K} .

Definition 2: $T : \mathbb{K}^n \to \mathbb{K}^m$ such that for two representations ρ, σ we have $\rho(g)T = T\sigma(g) \forall g \in G$ is called **intertwiner**.

Definition 3 (Categorical point of view): A representation of a group G (as one-object category) is a functor $G \to Vect_{\mathbb{K}}$. Intertwiners are then natural transformations between two such functors.

Definition 4 (C^* **-category [NT13, Web17]):** A category C is called C^* -category provided that:

- (i) $\forall U, V \in Ob(\mathcal{C})Mor(U, V)$ is a Banach space, composition of morphisms is bilinear and $||ST|| \leq ||S|| ||T||$
- (ii) we have an antilinear contravariant functor "involution" $* : \mathcal{C} \to \mathcal{C}: * = \mathrm{id}$ on objects, and on morphisms $T \in Mor(U, V)$:
 - (1) $T^{**} = T$,
 - (2) $||T^*T|| = ||T||^2$, and End(U) is a unital C^* -algebra $\forall U \in Ob(\mathcal{C})$,
 - (3) $T^*T \in End(U) = Mor(U, U)$ is positive.

Definition 5 (C^* **-tensor category [NT13]):** A C^* -category is called C^* -tensor category provided that it is a tensor category and if furthermore:

- (i) The associativity morphisms are **unitary**: $uu^* = id, u^*u = id$ and $L_1, R_1 : X \to X \otimes 1, 1 \otimes X$ are unitary.
- (ii) $(S \otimes T)^* = S^* \otimes T^*$ for all morphisms S, T.

Definition 6 ((Semi-)Simplicity [NT13]): An object in a C^* -tensor category $U \in \mathcal{C}$ is called **simple** if $End(U) \cong \mathbb{C}1$. \mathcal{C} is called **semisimple** provided that every object can be decomposed into a direct sum of simple objects.

Definition 7 (Fiber functor [NT13]): A tensor functor $F : \mathcal{C} \to \text{f.d.-Hilb}$ is called **fiber functor** if it is faithful and exact.

Example 8 (canonical fiber functor [NT13]):

$$F(U \xrightarrow{S} V) = H_U \xrightarrow{S} H_V$$

Definition 9 (Compact quantum group [NT13]): A compact quantum group is a pair (A, Δ) , where A is a unital C^* -algebra and $\Delta : A \to A \otimes A$ is a unital *-homomorphism, called comultiplication:

- (i) $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$ coassociativity,
- (ii) $(A \otimes 1)\Delta(A), (1 \otimes A)\Delta(A)$ are dense in $A \otimes A$: cancellation property.

Definition 10 ([NT13]): A representation of a compact quantum group A is an invertible element $U \in M_n(A) \cong M_n(\mathbb{C}) \otimes A$. If U is unitary, then we call the representation unitary.

Definition 11: A Hopf *-algebra is an involutive algebra A together with algebra *-homomorphisms $\Delta: A \to A \otimes A$, $\varepsilon: A \to \mathbb{C}$, $S: A \to A^{\text{opp}}$, such that the following conditions hold:

 $(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$ $(\mathrm{id} \otimes \varepsilon) \circ \Delta = \mathrm{id} = (\varepsilon \otimes \mathrm{id}) \circ \Delta$ $m \circ (S \otimes \mathrm{id}) \circ \Delta = \eta \circ \varepsilon = m \circ (\mathrm{id} \otimes S) \circ \Delta$

Definition 12 ([NT13, Web17]): We denote by $\mathbb{C}[G]$:= the linear span of matrix coefficients of all f.d. unitary representations of G = algebra generated by these.

Theorem 1 ([Web17, NT13]): For any $CQG \mathbb{C}[G]$, Δ is a Hopf-*-algebra. Conversely, any Hopf-*-algebra generated by matrix coefficients of f.d. unitary corepresentations is of that form for some CQG.

Theorem 2 (Woronowicz's Tannaka Krein duality [NT13]): Let C be a rigid C^* -tensor category, $F : C \to f.d.$ - Hilb be a unitary fiber functor. Then there exist

- a compact quantum group G and
- a unitary monoidal equivalence $E : \mathcal{C} \to \operatorname{Rep}(G)$
- such that F is naturally unitarily monoidally isomorphic to the composition of the canonical fiber functor with E.
- Furthermore, the Hopf *-algebra $(\mathbb{C}[G], \Delta)$ for such a G is uniquely determined up to isomorphism.

Bibliography

- [NT13] Sergey Neshveyev and Lars Tuset. Compact Quantum Groups and their Representation Categories. Societé mathématique de France, 2013.
- [Web17] Moritz Weber. Introduction to compact (matrix) quantum groups and banica-speicher (easy) quantum groups. Proceedings - Mathematical Sciences, 127(5):881–933, nov 2017.