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A Little Reminder

In the following, R is a ring with 1R .

De�nition

A left R-module M is an abelian group (M,+) together with a map

R ×M → M, (r ,m) 7→ r ·m,

such that for all r , r1, r2 ∈ R, m,m1,m2 ∈ M the following hold:

r1 · (r1 ·m) = (r1 · r2) ·m
(r1 + r2) ·m = r1 ·m + r2 ·m
r · (m1 + m2) = r ·m1 + r ·m2

1 ·m = m.
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Examples

Let K be a �eld. K -vector spaces are K -modules.

Abelian groups G are Z-modules.

The map is given by Z× G → G , (n, g) 7→ g + g + · · ·+ g︸ ︷︷ ︸
n -times

.

Let R = Z. Then M = 2Z = {2x | x ∈ Z} is an R-module.

Let R be a ring and I ⊂ R be an ideal. Then I is an R-module.
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Chain Complexes

M : . . .→ Mn+1

αn+1−−−→ Mn
αn−→ Mn−1

αn−1−−−→ Mn−2 → . . .

De�nition

A family M={Mn, αn}n∈Z of R-modules and R-module homomorphisms

such that αn ◦ αn+1 = 0 for each n ∈ Z is called chain complex. Note that

αn ◦ αn+1 = 0⇔ Imαn+1 ⊂ Kerαn.

Each mapping αn : Mn → Mn−1 is called a boundary mapping or

di�erential operator.
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Chain Complexes

Example

Let R = Z. Consider

M : 0→ Z 2x−→ Z→ Z/2Z→ 0.

This is a chain complex of Z-modules. Even more...

De�nition

We call a chain complex

M : . . .→ Mn+1

αn+1−−−→ Mn
αn−→ Mn−1

αn−1−−−→ Mn−2 → . . .

of R-modules and R-module homomorphisms

exact at Mn if Im(αn+1) = Ker(αn).

exact if it is exact at Mn for each n ∈ Z.
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Chain Complexes

short exact sequence if it is an exact complex of the form

0→ M2

α2−→ M1

α1−→ M0 → 0.

Remark

Exactness on the left means injectivity.

Exactness on the right means surjectivity.
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Chain Complexes

De�nition

Let

M : . . .→ Mn+1

αn+1−−−→ Mn
αn−→ Mn−1

αn−1−−−→ Mn−2 → . . .

be a chain complex of R-modules and R-module homomorphisms.

We call the R-module Hn(M) = Kerαn/ Imαn+1 the n-th homology

module of M.

If M is a chain complex of abelian groups then we call Hn(M) the n
-th homology group of M.

Remark

The chain complex M is exact at n if and only if Hn(M) = {0}.
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Chain Maps

De�nition

Let M and N be two chain complexes of R-modules and R-module

homomorphisms. A family f = {fn : Mn → Nn+k}n∈Z of R-linear mappings

such that the diagram

. . . Mn Mn−1 . . .

. . . Nn+k Nn+k−1 . . .

αn+1 αn

fn fn−1

αn−1

βn+k+1 βn+k βn+k−1

is commutative for each n ∈ Z is called chain map of degree k .
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Chain Maps

Proposition

Let M and N be two chain complexes of R-modules and R-module

homomorphisms and let f : M→ N be a chain map between them. Then

for each n ∈ Z there exists an R-linear mapping Hn(f) : Hn(M)→ Hn(N)
which is de�ned by

Hn(f)(x + Imαn+1) = fn(x) + Imβn+1

for all x + Imαn+1 ∈ Hn(M).
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Proof

For each n ∈ Z we have the following commutative diagram

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1
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Chain Maps

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1

(i) Hn(f) maps Ker(αn)/ Im(αn+1) to Ker(βn)/ Im(βn+1):

Let x ∈ Kerαn. We have

βn(fn(x)) = fn−1(αn(x)) = 0,

i.e. fn(x) ∈ Ker βn.
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Chain Maps

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1

(ii) H(f) is well-de�ned:

Let x , x ′ ∈ Kerαn such that

x + Imαn+1 = x ′ + Imαn+1.

Then x − x ′ ∈ Imαn+1, i.e. there exists y ∈ Mn+1 with

αn+1(y) = x − x ′ and

fn(x)− fn(x ′) = fn(x − x ′) = fn(αn+1(y)) = βn+1(fn+1(y)).

Thus fn(x)− fn(x ′) ∈ Imβn+1.

Eileen Oberringer Block Seminar On Category Theory Date 14 / 34



Chain Maps

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1

(ii) H(f) is well-de�ned:

Let x , x ′ ∈ Kerαn such that

x + Imαn+1 = x ′ + Imαn+1.

Then x − x ′ ∈ Imαn+1, i.e. there exists y ∈ Mn+1 with

αn+1(y) = x − x ′ and

fn(x)− fn(x ′) = fn(x − x ′) = fn(αn+1(y)) = βn+1(fn+1(y)).

Thus fn(x)− fn(x ′) ∈ Imβn+1.

Eileen Oberringer Block Seminar On Category Theory Date 14 / 34



Chain Maps

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1

(ii) H(f) is well-de�ned:

Let x , x ′ ∈ Kerαn such that

x + Imαn+1 = x ′ + Imαn+1.

Then x − x ′ ∈ Imαn+1, i.e. there exists y ∈ Mn+1 with

αn+1(y) = x − x ′ and

fn(x)− fn(x ′) = fn(x − x ′) = fn(αn+1(y)) = βn+1(fn+1(y)).

Thus fn(x)− fn(x ′) ∈ Imβn+1.

Eileen Oberringer Block Seminar On Category Theory Date 14 / 34



Chain Maps

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+2

fn+1

αn+1 αn

fn fn−1

αn−1

βn+2 βn+1 βn βn−1

(ii) H(f) is well-de�ned:

Let x , x ′ ∈ Kerαn such that

x + Imαn+1 = x ′ + Imαn+1.

Then x − x ′ ∈ Imαn+1, i.e. there exists y ∈ Mn+1 with

αn+1(y) = x − x ′ and

fn(x)− fn(x ′) = fn(x − x ′) = fn(αn+1(y)) = βn+1(fn+1(y)).

Thus fn(x)− fn(x ′) ∈ Imβn+1.

Eileen Oberringer Block Seminar On Category Theory Date 14 / 34



Chain Maps

(iii) Hn(f) is R-linear:

Clear, since all fn are R-linear.
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Homotopy Equivalence

When do two chain maps induce the same n-th homology
map?

De�nition

Let M and N be two chain complexes of R-modules and Rmodule

homomorphisms and let f, g : M→ N be two chain maps of degree 0. A

chain map ϕ = {ϕn : Mn → Nn+1} of degree 1 such that

fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn for each n ∈ Z is called a homotopy.

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+1

fn+1
gn+1

αn

fn

gn
ϕn fn−1

gn−1

ϕn−1

βn+1 βn

We denote it by ϕ : f → g (f≈ g) and say that f and g are homotopic

chain maps.
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Homotopy Equivalence

If there exist two chain maps f : M→ N and g : N→M such that

g ◦ f≈IdM and f ◦ g ≈ IdN then M and N are said to be of the same

homotopy type. The chain maps f : M→ N and g : N→M are called

homotopy equivalences.

Proposition

If f, g : M→ N are two homotopic chain maps then Hn(f) = Hn(g) for

each n ∈ Z.

Proof

Let ϕ be a homotopy from f to g.

For each n ∈ Z we have a commutative diagram
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. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+1

fn+1
gn+1

αn

fn

gn
ϕn fn−1

gn−1

ϕn−1

βn+1 βn

If x + Imαn+1 ∈ Hn(M), where x ∈ Kerαn then

fn(x)−gn(x) = βn+1(ϕn(x))+ϕn−1(αn(x)) = βn+1(ϕn(x)) ∈ Imβn+1,

so fn(x) + Imβn+1 = gn(x) + Imβn+1.

If x ∈ Kerαn then

βn(fn(x)) = fn−1(αn(x)) = 0,

so fn(x) ∈ Ker βn.
The same works for gn.
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In Category-Language?

Chain complexes and chain maps form a preadditive
category. We denote it by ChainR .

Let f, f ′ : L→M and g : M→ N be chain maps. We de�ne

g ◦ f = {gn ◦ fn : Ln → Nn}n∈Z.
f + f ′ = {fn + f ′n : Ln → Mn}n∈Z.

Proposition

Let M and N be two chain complexes of R-modules and R-module

homomorphisms. The relation �≈� on Mor(M,N) given by f ≈ g, if there is

a homotopy ϕ : f → g is an equivalence relation on Mor(M,N) in ChainR .

We call the equivalence class [f] determined by this equivalence relation the

homotopy class of f.

Proposition

For each n ∈ Z, Hn : ChainR →ModR is an additive functor.
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What Is The Goal?

We want to show the following result:

Proposition

Corresponding to each short exact sequence

0→ L
f−→M

g−→ N→ 0

of chain complexes of R- modules, there exists a long exact sequence in

homology of the form

. . .
Φn+1−−−→ H(L) Hn(M) Hn(N)

Hn−1(L) Hn−1(M) Hn−1(N)
Φn−1−−−→ . . .

Hn(f) Hn(g)

Φn

Hn−1(f) Hn−1(g)

where Φn is a connecting homomorphism for each n ∈ Z.

We need some preparation. . . .
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Proof Part One: Exact Sequences Of Chain Complexes

De�nition

Let L,M and N be three chain complexes of R-modules and R-module

homomorphisms. Let

L
f−→M

g−→ N

be a sequence.

A sequence

0→ L
f−→M

g−→ N→ 0

is said to be a short exact sequence, if 0→ Ln
fn−→ Mn

gn−→ Nn → 0 is a

short exact sequence in ModR for each n ∈ Z.
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Proof Part One: Exact Sequences Of Chain Complexes

Actually, a short exact sequence of chain complexes is a 2-dimensional

commutative diagram of the form

...
...

...

0 Ln+1 Mn+1 Nn+1 0

0 Ln Mn Nn 0

0 Ln−1 Mn−1 Nn−1 0

...
...

...

αn+1

fn+1

βn+1

gn+1

γn+1

αn

fn

βn

gn

γn

fn−1 gn−1
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Proof Part One: Exact Sequences Of Chain Complexes

Remark

Note that if the diagram

M1 M2

N1 N2

f

α

g

β

of R-modules and R-module homomorphisms is commutative, then there

are induced mappings f̄ : Kerα→ Ker β and ḡ : Cokerα→ Coker β,
which are de�ned by f̄ (x) = f (x) and ḡ(x + Imα) = g(x) + Imβ.

We obtain the following diagram

0 Kerα M1 M2 Cokerα 0

0 Ker β N1 N2 Coker β 0

f̄ f

α

g ḡ

β
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Proof Part Two: What About The Snakes?
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Proof Part Two: What About The Snakes?

Lemma (Snake Lemma)

Let

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

be a commutative diagram of R-modules and R-module homomorphisms

with exact rows. Then there is an R-linear mapping Φ: Ker γ → Cokerα
such that the sequence

Kerα Ker β Ker γ

Cokerα Coker β Coker γ

f̄1 ḡ1

Φ
f̄2 ḡ2

is exact.
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Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .
Then γ(g1(x)) = 0, so g2(β(x)) = 0. Thus β(x) ∈ Ker g2 = Im f2.
f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).
De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .

Then γ(g1(x)) = 0, so g2(β(x)) = 0. Thus β(x) ∈ Ker g2 = Im f2.
f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).
De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .
Then γ(g1(x)) = 0, so g2(β(x)) = 0.

Thus β(x) ∈ Ker g2 = Im f2.
f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).
De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .
Then γ(g1(x)) = 0, so g2(β(x)) = 0. Thus β(x) ∈ Ker g2 = Im f2.

f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).
De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .
Then γ(g1(x)) = 0, so g2(β(x)) = 0. Thus β(x) ∈ Ker g2 = Im f2.
f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).

De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



Proof

M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(i) Existence of Φ:

For z ∈ Ker γ take x ∈ M such that g1(x) = z .
Then γ(g1(x)) = 0, so g2(β(x)) = 0. Thus β(x) ∈ Ker g2 = Im f2.
f2 is an injection, so there is a unique y ∈ N1 such that f2(y) = β(x).
De�ne Φ by

Φ(z) = y + Imα.

Eileen Oberringer Block Seminar On Category Theory Date 26 / 34



M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(ii) Well-de�nedness of Φ:

Let x , x ′ ∈ M such that g1(x) = g1(x ′) = z .
Suppose that there are y , y ′ ∈ N1 with f2(y) = β(x) and

f2(y ′) = β(x ′).
Then x − x ′ ∈ Ker g1 = Im f1, so there is w ∈ M1 such that

f1(w) = x − x ′. Then

f2(y)− f2(y ′) = β(x)− β(x ′) = β(f1(w)) = f2(α(w)),

so y − y ′ − α(w) ∈ Ker f2 = 0. Thus y − y ′ = α(w) ∈ Imα, so
y + Imα = y ′ + Imα.
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M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(iii) Exactness at Ker γ :

Ker Φ ⊂ Im ḡ1: Let z ∈ Ker γ such that z ∈ Ker Φ, x ∈ M, y ∈ N1 as

above. Then

0 = Φ(z) = y + Imα,

thus y ∈ Imα; there is u ∈ M1 such that α(u) = y . Thus

β(f1(u)) = f2(α(u)) = f2(y) = β(x),

so x − f1(u) ∈ Ker β.
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Ker Φ ⊂ Im ḡ1: Let z ∈ Ker γ such that z ∈ Ker Φ, x ∈ M, y ∈ N1 as

above. Then

0 = Φ(z) = y + Imα,

thus y ∈ Imα; there is u ∈ M1 such that α(u) = y .

Thus

β(f1(u)) = f2(α(u)) = f2(y) = β(x),

so x − f1(u) ∈ Ker β.

Eileen Oberringer Block Seminar On Category Theory Date 28 / 34



M1 M M2 0

0 N1 N N2

α

f1 g1

β γ

f2 g2

(iii) Exactness at Ker γ :
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If

x − f1(u) = w ∈ Ker β,

then z = g1(x) = g1(f1(u)) = g1(w);

z ∈ Im ḡ1.
Im ḡ1 ⊂ Ker Φ: Let z ∈ Ker γ such that z ∈ Im ḡ1 ⊂ Im g1.
There is x ∈ Ker β such that g1(x) = z and y ∈ N1 such that

f2(y) = β(x) = 0.

Thus y = 0 by injectivity of f2, so Φ(z) = y + Imα = 0.
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(iii) Exactness at Cokerα:

Analogously to the proof of the exactness at Ker γ.

(iv) R-linearity of Φ:

Since all mappings which are involved in the de�nition of the map Φ
are R- linear, via an easy computation Φ is R-linear.

(v) Exactness of the sequences

Kerα
f̄1−→ Ker β

ḡ1−→ Ker γ

and

Cokerα
f̄2−→ Coker β

ḡ2−→ Coker γ :

Easy.
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ḡ1−→ Ker γ

and

Cokerα
f̄2−→ Coker β
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Proof Part Three: From Short To Long Exact Sequences

Lemma

Let M be a chain complex of R-modules and R-module homomorphisms.

The map αn : Mn → Mn−1 induces an R-linear mapping

ᾱn : Cokerαn+1 → Kerαn−1.

Moreover, Hn(M) = Ker ᾱn and Hn−1(M) = Coker ᾱn.

Remark

In the Snake-Lemma, let f1 be injective and g2 be surjective. Then f̄1 is

injective and ḡ2 is surjective. Thus from the short exact sequence

0→ L
f−→M

g−→ N→ 0

we obtain for each n ∈ Z the following row and column exact diagram
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0 0 0

0 Kerαn Ker βn Ker γn

0 Ln Mn Nn 0

0 Ln−1 Mn−1 Nn−1 0

Cokerαn Coker βn Coker γn 0

0 0 0.

αn βn γn

By using this diagram and one previous lemma, we obtain the following

diagram
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Hn(N)

Ker γ̄n

Cokerαn+1 Coker βn+1 Coker γn+1 0

0 Kerαn−1 Ker βn−1 Ker γn−1

Coker ᾱn

Hn−1(L)

ᾱn β̄n γ̄n

for each n ∈ Z. The Snake Lemma gives us Φn : Hn(N)→ Hn−1(L).
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Last But Not Least: Find Your Purpose!
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