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A Little Reminder

In the following, R is a ring with 1g.

Definition
A left R-module M is an abelian group (M, +) together with a map

RxM— M, (r,m)—r-m,

such that for all r,ri,» € R, m, my, my € M the following hold:

n-(n-m=(n-r)-m

o (n+n)-m=n-mtrn-m
or-(m+m)=r-m+r-m
el-m=m.
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Examples

o Let K be a field. K-vector spaces are K-modules.
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Examples
o Let K be a field. K-vector spaces are K-modules.

@ Abelian groups G are Z-modules.
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Examples
o Let K be a field. K-vector spaces are K-modules.

@ Abelian groups G are Z-modules.
The map is givenby Zx G — G,(n,g) —»g+g+---+8&.
D e

n -times
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Examples
o Let K be a field. K-vector spaces are K-modules.
@ Abelian groups G are Z-modules.
The map is given by Zx G — G,(n,g) —g+g+ - +g.
N—_———
n -times

o Let R=7Z. Then M =2Z = {2x | x € Z} is an R-module.
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Examples
o Let K be a field. K-vector spaces are K-modules.

@ Abelian groups G are Z-modules.
The map is givenby Zx G — G,(n,g) —»g+g+---+8&.
D e

n -times

o Let R=7Z. Then M =2Z = {2x | x € Z} is an R-module.
@ Let R be aring and / C R be an ideal. Then / is an R-module.

Eileen Oberringer Block Seminar On Category Theory Date 3/34



Chain Complexes
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Chain Complexes

o F = = E 9DAC¢
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Chain Complexes

Qp
M: ... = M —5 M, 2 M,

Qp—1

14— M, — ...
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Chain Complexes

ap—

Qp
M: ... = M =5 M, & My =5 Mpo — ...

Definition
A family M={M,, ap} ez of R-modules and R-module homomorphisms
such that o, o avp1 = 0 for each n € Z is called chain complex.
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Chain Complexes

ap—

Qp
M: ... = M =5 M, & My =5 Mpo — ...

Definition
A family M={M,, ap} ez of R-modules and R-module homomorphisms
such that o, 0 avp1 = 0 for each n € Z is called chain complex. Note that

apoapt1 =0 Imayy; C Kerap,.
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Chain Complexes

Qp—1

Qp
M: ... = My —5 M, 5 My ———= Mp_s — ...

Definition

A family M={M,, ap} ez of R-modules and R-module homomorphisms
such that o, 0 avp1 = 0 for each n € Z is called chain complex. Note that
apoapt1 =0 Imayy; C Kerap,.

Each mapping a,: M, — M, _1 is called a boundary mapping or
differential operator.
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Chain Complexes

Example
Let R = Z. Consider

M: 02257 7/2Z 0.

This is a chain complex of Z-modules. Even more...
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Chain Complexes

Example
Let R = Z. Consider

M: 07257 Z/2Z — 0.

This is a chain complex of Z-modules. Even more...

Definition
We call a chain complex

Qp—1

«
M: ... = My =5 M, 2% M, 1 = Myo— ...

of R-modules and R-module homomorphisms
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Chain Complexes

Example
Let R = Z. Consider

M: 07257 Z/2Z — 0.

This is a chain complex of Z-modules. Even more...

Definition
We call a chain complex

Qp—1

«
M: ... = My =5 M, 2% M, 1 = Myo— ...

of R-modules and R-module homomorphisms

e exact at M, if Im(ap11) = Ker(ap).
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Chain Complexes

Example
Let R = Z. Consider

M: 07257 Z/2Z — 0.

This is a chain complex of Z-modules. Even more...

Definition
We call a chain complex

M: . Mpsn =2 My 2% My 225 My — ...
of R-modules and R-module homomorphisms
e exact at M, if Im(apt1) = Ker(ap).

@ exact if it is exact at M, for each n € Z.
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Chain Complexes

@ short exact sequence if it is an exact complex of the form

O—)Mzﬂ)Mla—l>Mo—)0.
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Chain Complexes

@ short exact sequence if it is an exact complex of the form

0—>M2a—2>M1a—1>M0—)0.

Remark
@ Exactness on the left means injectivity.
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Chain Complexes

@ short exact sequence if it is an exact complex of the form

0— M, 22 My 25 My — 0.

Remark
@ Exactness on the left means injectivity.

@ Exactness on the right means surjectivity.
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Chain Complexes

Definition
Let

Qn—1

(0%
M: ... = My —5 M, 25 My —— Mp_s — ...

be a chain complex of R-modules and R-module homomorphisms.
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Chain Complexes

Definition
Let

M: .. = My 225 M, 2% My 225 Moo — ...
be a chain complex of R-modules and R-module homomorphisms.

o We call the R-module H,(M) = Ker a/ Im cv11 the n-th homology
module of M.
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Chain Complexes

Definition
Let
M: .. = My 225 M, 2% My 225 Moo — ...
be a chain complex of R-modules and R-module homomorphisms.
o We call the R-module H,(M) = Ker a/ Im cv11 the n-th homology
module of M.
e If M is a chain complex of abelian groups then we call H,(M) the n
-th homology group of M.
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Chain Complexes

Definition
Let

M: .. = My 225 M, 2% My 225 Moo — ...
be a chain complex of R-modules and R-module homomorphisms.

o We call the R-module H,(M) = Ker a/ Im cv11 the n-th homology
module of M.

e If M is a chain complex of abelian groups then we call H,(M) the n
-th homology group of M.

Remark
The chain complex M is exact at n if and only if H,(M) = {0}.
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Chain Maps
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Chain Maps

Definition

Let M and N be two chain complexes of R-modules and R-module
homomorphisms. A family f = {f,: M, — N1« }nez of R-linear mappings
such that the diagram

Apt1 O Qp—1
> Mn > n—1
fnl fn—ll
ﬁn+k+1 ﬁn+k Bn+k71
N Nn+k — Nn+k—1

is commutative for each n € Z is called chain map of degree k.
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Chain Maps

Proposition

Let M and N be two chain complexes of R-modules and R-module
homomorphisms and let f: M — N be a chain map between them. Then
for each n € Z there exists an R-linear mapping H,(f): Hy(M) — H,(N)
which is defined by

Hp(f)(x + Im apt1) = fo(x) + Im Bria

for all x +Im apy1 € Hp(M).
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giving a written proof

diagram chasing
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Proof
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Proof

@ For each n € Z we have the following commutative diagram

Qpi2 Qpt1 [} Qn—1
"—)M,H_l 2 ‘Mn n‘Mn_l ? > ...

fn+1l fnl fnfll

Bn+2 Npi1 5n+1) N, Bn Bn-1

> Np—1 ? cooa
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Chain Maps

fn+1l fnl

5n+2> Nps ;Bn+1> N, Bn o N h}

(1) Ha(f) maps Ker(ap)/ Im(apt1) to Ker(B8n)/ Im(Bpt1):
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Chain Maps

fn+1l fnl f,,, ll

5n+2> Nps ;Bn+1> N, Bn o N h}

(1) Ha(f) maps Ker(ap)/ Im(apt1) to Ker(B8n)/ Im(Bpt1):
Let x € Ker a,. We have

Bn(fa(x)) = fa—1(an(x)) = 0,
i.e. fo(x) € Ker .
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Chain Maps

Qp42

[eTES | (e}
Mn+1 z M,, T Mn—l ——— coo

[

ﬁn+1> N Bn N /anl

N

fn+1

Bn+2
> N n+1

3
=
7

(it) H(f) is well-defined:
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Chain Maps

Qp42

Qpt1 a Qp—1
M1 > M, s My ——— ...
fn+1 fnl fn—ll
ﬁn+2 ﬁn+1 ﬁn /anl
> Npy1 > N, > Npoqy —— .

(it) H(f) is well-defined:
Let x,x’ € Ker a, such that

x+Imay; =x +Imany;.
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Chain Maps

Qlp Qn

2 Mpn — 5 M, =2 My —— ..
fn+1 fnl fn—ll

ﬁn+2 ﬁn+1 /Bn /anl
> Npy1 > N, > Ny —— ...

(it) H(f) is well-defined:
Let x,x’ € Ker a, such that

x+Imay; =x +Imany;.

Then x — x’ € Im 41, i.e. there exists y € M, 41 with
apt1(y) = x — x" and
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Chain Maps

Qn42 [eTES | Qp

— My > M, > M1 —— ...
fn+1 fn fn—ll

ﬁn+2 5n+1 ﬁn anl
> Npy1 > N, > Npog ———

(it) H(f) is well-defined:
Let x,x’ € Ker a, such that

x+Imay; =x +Imany;.

Then x — x’ € Im 41, i.e. there exists y € M, 41 with
apt1(y) = x — x" and

fo(x) = fa(X') = fa(x = X) = fa(ant1(y)) = Bata (Fara(y))-

Thus f5(x) — fo(x’) € Im Bpi1.

v
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Chain Maps

(i) Hp(f) is R-linear:
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Chain Maps

(i) Hp(f) is R-linear:

Clear, since all f, are R-linear.
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Homotopy Equivalence
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Homotopy Equivalence

When do two chain maps induce the same n-th homology
map’?
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Homotopy Equivalence

When do two chain maps induce the same n-th homology
map’?

Definition
Let M and N be two chain complexes of R-modules and Rmodule
homomorphisms and let f,g: M — N be two chain maps of degree 0. A

chain map ¢ = {¢n: M, — N1} of degree 1 such that
fn— 8n = Bny10pn+ o, 100, for each n € Z is called a homotopy.

Ony1 Qn
S Maiq y M, Mp_q —— ...

i | |% e
8n+1 Pn ¥Pn—1 fn71
/ &n L// &n—1

L ——— Npi

5ot N, 5 > Npoy —— .. ..

v
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Homotopy Equivalence

When do two chain maps induce the same n-th homology
map’?

Definition

Let M and N be two chain complexes of R-modules and Rmodule

homomorphisms and let f,g: M — N be two chain maps of degree 0. A
chain map ¢ = {¢n: M, — N1} of degree 1 such that

fo—&n=Pns1 00y + for each n € Z is called a homotopy.
S My —2 5 M, My-y —— ...
Jlfm‘»l / Jlfn JJ
&n+1 ®n fa—1
/ 8n 8n—1
o Nt ——— Ny ——— Npog ——— ...

We denote it by ¢: f — g (f~ g) and say that f and g are homotopic
chain maps.

v
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Homotopy Equivalence

If there exist two chain maps f: M — N and g: N — M such that
gofxldy and f o g ~ Idy then M and N are said to be of the same

homotopy type. The chain maps f: M — N and g: N — M are called
homotopy equivalences.
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Homotopy Equivalence

If there exist two chain maps f: M — N and g: N — M such that
gofxldy and f o g ~ Idy then M and N are said to be of the same
homotopy type. The chain maps f: M — N and g: N — M are called
homotopy equivalences.

Proposition

Iff,g: M — N are two homotopic chain maps then H,(f) = H,(g) for
each n € Z.
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Homotopy Equivalence

If there exist two chain maps f: M — N and g: N — M such that
gofxldy and f o g ~ Idy then M and N are said to be of the same
homotopy type. The chain maps f: M — N and g: N — M are called
homotopy equivalences.

Proposition

Iff,g: M — N are two homotopic chain maps then H,(f) = H,(g) for
each n € Z.

Proof
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Homotopy Equivalence

If there exist two chain maps f: M — N and g: N — M such that
gofxldy and f o g ~ Idy then M and N are said to be of the same
homotopy type. The chain maps f: M — N and g: N — M are called
homotopy equivalences.

Proposition

Iff,g: M — N are two homotopic chain maps then H,(f) = H,(g) for
each n € Z.

Proof
Let ¢ be a homotopy from f to g.
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Homotopy Equivalence

If there exist two chain maps f: M — N and g: N — M such that
gofxldy and f o g ~ Idy then M and N are said to be of the same
homotopy type. The chain maps f: M — N and g: N — M are called
homotopy equivalences.

Proposition

Iff,g: M — N are two homotopic chain maps then H,(f) = H,(g) for
each n € Z.

Proof

Let ¢ be a homotopy from f to g.
For each n € Z we have a commutative diagram
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an

e Mot y M, Mp1 —— .
fat1 / fn /
8n+1 n ©n—1 fo—1
8n )/ 8n—1
J— VS s N, s Np_g —— .
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Qn+t1 Qn

e Mpa Myq —— ...

> M,
- /l ol
8n+1 Pn—1 fa—1
v

o ——— Nn+1 > N, 3 > Npog — .
n

,8n+1

o If x+ Imapy1 € Hy(M), where x € Ker ), then

fa(x)=8n(x) = Bat1(n(x))+en-1(an(x)) = Ba+1(pn(x)) € I Boi1,

v

Eileen Oberringer Block Seminar On Category Theory Date 18 /34




Qn+t1 Qp

e Mpa Myq —— ...

> M,
- /l ol
8n+1 Pn—1 fa—1
v

o ——— Nn+1 > N, 3 > Npog — .
n

6n+1
o If x+ Imapy1 € Hy(M), where x € Ker ), then
fo(x)—8&n(x) = Br+1(@n(x))+@n-1(n(x)) = Br+1(@n(x)) € Im Bni1,

50 fn(x) + Im Bpt1 = gn(x) + Im Bri1.

v
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Qn+t1 Qp

S ——— Mar

. —— N n
Bn+1 Bn

o If x+ Imapy1 € Hy(M), where x € Ker ), then

fa(x)=8n(x) = Bat1(n(x))+en-1(an(x)) = Ba+1(pn(x)) € I Boi1,

50 fn(x) + Im Bpt1 = gn(x) + Im Bri1.
o If x € Ker o, then

Bn(fa(x)) = fa—1(an(x)) =0,

50 fn(x) € Ker .

My — ...

> My
[l
8n+1 ©n—1 fn—l
/
> N

s Npoy — ...

v
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Qn+t1 Qp

S ——— Mar

—— N

7

n n
Bn+1 Bn

o If x+ Imapy1 € Hy(M), where x € Ker ), then

fa(x)=8n(x) = Bat1(n(x))+en-1(an(x)) = Ba+1(pn(x)) € I Boi1,

50 fn(x) + Im Bpt1 = gn(x) + Im Bri1.
o If x € Ker o, then

Bn(fa(x)) = fa—1(an(x)) =0,

50 fn(x) € Ker .
The same works for g;,.

My — ...

> M,
[ ol
&n+1 Pn—1 fa—1

v
N

? 1

O

v
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In Category-Language?

o = = E A
Eileen Oberringer Block Seminar On Category Theory



In Category-Language?
Chain complexes and chain maps form a preadditive
category. We denote it by Chaing.
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In Category-Language?
Chain complexes and chain maps form a preadditive
category. We denote it by Chaing.

Let f,f: L — M and g: M — N be chain maps. We define

° gof:{gnofn: L, — Nn}neZ-
o f+f ={f+1: Ly — Mp}nez.
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In Category-Language?
Chain complexes and chain maps form a preadditive
category. We denote it by Chaing.

Let f,f: L — M and g: M — N be chain maps. We define
o gof={ghofy: Ln— Np}pez.
o f+f ={f,+f:L,— My}pez.

Proposition

Let M and N be two chain complexes of R-modules and R-module

homomorphisms. The relation “~" on Mor(M, N) given by f ~ g, if there is
a homotopy ¢: f — g is an equivalence relation on Mor(M,N) in Chaing.
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In Category-Language?
Chain complexes and chain maps form a preadditive
category. We denote it by Chaing.

Let f,f: L — M and g: M — N be chain maps. We define

e gof={g,ofy: Ly = Nyp}nez.
o f+f ={f,+f:L,— My}pez.

Proposition

Let M and N be two chain complexes of R-modules and R-module

homomorphisms. The relation “~" on Mor(M, N) given by f ~ g, if there is
a homotopy ¢: f — g is an equivalence relation on Mor(M,N) in Chaing.
We call the equivalence class [f] determined by this equivalence relation the

homotopy class of f.

v
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In Category-Language?
Chain complexes and chain maps form a preadditive
category. We denote it by Chaing.

Let f,f: L — M and g: M — N be chain maps. We define
o gof={ghofy: Ln— Np}pez.
o f+f ={f,+f:L,— My}pez.

Proposition

Let M and N be two chain complexes of R-modules and R-module
homomorphisms. The relation “~" on Mor(M, N) given by f ~ g, if there is
a homotopy ¢: f — g is an equivalence relation on Mor(M,N) in Chaing.
We call the equivalence class [f] determined by this equivalence relation the
homotopy class of f.

v

Proposition
For each n € Z, H,: Chaing — Modg is an additive functor.

V.
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What Is The Goal?
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What Is The Goal?

We want to show the following result:

o = = E A
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What Is The Goal?
We want to show the following result:

Proposition

Corresponding to each short exact sequence

o-LL5MENSD

of chain complexes of R- modules, there exists a long exact sequence in
homology of the form

2 H(L) O () — A

),

£+HFﬂLyiEAQ>HFﬂM)&1@FM4MDEE$“.

where ®,, is a connecting homomorphism for each n € Z.
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What Is The Goal?
We want to show the following result:

Proposition

Corresponding to each short exact sequence

o-LL5MENSD

of chain complexes of R- modules, there exists a long exact sequence in
homology of the form

2 H(L) O () — A

),

£+HFﬂLyiE£Q>HFﬂM)&1@Fm4MDEEQH.

where ®,, is a connecting homomorphism for each n € Z.

We need some preparation. . . .
Date  20/34



Proof Part One: Exact Sequences Of Chain Complexes
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Proof Part One: Exact Sequences Of Chain Complexes

Definition

Let L,M and N be three chain complexes of R-modules and R-module
homomorphisms. Let

LLEMEN
be a sequence.
@ A sequence

oLLSXMENSO

. : f . :
is said to be a short exact sequence, if 0 — L, -2 M, &% N, — 0 is a
short exact sequence in Modg for each n € Z.

v
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Proof Part One: Exact Sequences Of Chain Complexes

Actually, a short exact sequence of chain complexes is a 2-dimensional
commutative diagram of the form

0 > Lnyt i1 Mps1r =225 Npyy —— 0
Ony1 Bn+1 Yn+1

0 s L, b, M, —&— N, s 0
Qn Bn Yn

0 ” L,,_1 fn_l) M,,_l g N,,_l — 0
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Proof Part One: Exact Sequences Of Chain Complexes

Remark
Note that if the diagram

M1L>M2

ool

Ny — s N
of R-modules and R-module homomorphisms is commutative, then there
are induced mappings f: Kera — Ker 8 and 5: Coker o — Coker 3,
which are defined by (x) = f(x) and z(x + Ima) = g(x) + Im j3.

v
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Proof Part One: Exact Sequences Of Chain Complexes

Remark
Note that if the diagram

M1L>M2

ol

Ny — s N
of R-modules and R-module homomorphisms is commutative, then there
are induced mappings f: Kera — Ker 8 and 5: Coker o — Coker 3,
which are defined by (x) = f(x) and z(x + Ima) = g(x) + Im j3.
We obtain the following diagram

0 —— Kera sy My —2— M, > Cokera —— 0
f lf lg g
~ B ~
0 —— Kerp A\ > No > Coker§ —— 0
v
Date  23/34



Proof Part Two: What About The Snakes?
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Proof Part Two: What About The Snakes?
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Proof Part Two: What About The Snakes?

Lemma (Snake Lemma)
Let

s M~ M, > 0

O

2
s N —& > No

be a commutative diagram of R-modules and R-module homomorphisms

with exact rows. Then there is an R-linear mapping ©: Ker~y — Coker v
such that the sequence

Kera — Ker 8 _O Ker~y j

_ ® _
[—> Coker v —2— Coker _&, Coker

is exact. )
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Proof

M~ M B M, ; 0
o ﬁl vy
l f2 82 l
0 > Nq > N > No
(1) Existence of ®:

o F = G
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Proof

My s M —E M,

of o

0 s Ny s N —8 5 N,

~

~
(]

(1) Existence of ®:
For z € Ker~y take x € M such that gi(x) = z.
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Proof

(i) Existence of &:

For z € Ker~y take x € M such that gi(x) = z.

Then 7(g1(x)) = 0, so g(5(x)) = 0.

~

Eileen Oberringer Block Seminar On Category Theory
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Proof

M, — s M B ' 0
I B
0 yN 2 N B

(i) Existence of &:
For z € Ker~y take x € M such that gi(x) = z.
Then v(g1(x)) =0, so g2(5(x)) = 0. Thus (x) € Kergr = Im .
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Proof

M-

~
(]

2

SN
82
> N > Ny

(i) Existence of &:
For z € Ker~y take x € M such that gi(x) = z.
Then v(g1(x)) =0, so g2(5(x)) = 0. Thus (x) € Kergr = Im .
f, is an injection, so there is a unique y € Ny such that f(y) = B(x).
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Proof

M-

~
(]

2

SN
82
> N > Ny

(i) Existence of &:
For z € Ker~y take x € M such that gi(x) = z.
Then v(g1(x)) =0, so g2(5(x)) = 0. Thus (x) € Kergr = Im .

f, is an injection, so there is a unique y € Ny such that f(y) = B(x).
Define ® by

(z)=y+Ima.
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My s M~ M,

~
o

(i) Well-definedness of ®:
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fi
M1 ! > &1 M2

~

~
o

82

(i) Well-definedness of ®:
Let x, x" € M such that g1(x) = g1(x’) = z.
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81

M > M > Mo > 0
al ﬂl Vl
f 82
0 > N > N > Ny

(i) Well-definedness of ®:
Let x, x" € M such that g1(x) = g1(x’) = z.
Suppose that there are y,y’ € Ny with f(y) = 5(x) and
f(y") = B(X').
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81

M > M > Mo > 0
f 82
0 > N > N > Ny

(i) Well-definedness of ®:
Let x, x" € M such that g1(x) = g1(x’) = z.
Suppose that there are y,y’ € Ny with f(y) = 5(x) and
AlY') = A(x).
Then x — x’ € Kergy = Im f1, so there is w € M; such that
fi(w) =x—x".
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81

M > M > My > 0
f 82
0 > Ny > N > No

(i) Well-definedness of ®:
Let x, x" € M such that g1(x) = g1(x’) = z.
Suppose that there are y,y’ € Ny with f(y) = 5(x) and
AlY') = A(x).
Then x — x’ € Kergy = Im f1, so there is w € M; such that
fi(w) = x —x". Then

hy) = £(y') = B(x) = B(X) = B(A(w)) = f(a(w)),
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81

M > M > My > 0
f 82
0 > Ny > N > No

(i) Well-definedness of ®:
Let x, x" € M such that g1(x) = g1(x’) = z.
Suppose that there are y,y’ € Ny with f(y) = 5(x) and
AlY') = A(x).
Then x — x’ € Kergy = Im f1, so there is w € M; such that
fi(w) = x —x". Then

hy) = £(y') = B(x) = B(X) = B(A(w)) = f(a(w)),

soy—y —a(w)eKerfpb =0. Thusy —y' = a(w) € Ima, so
y+Ima=y +Ima.
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Q
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®
—=
®
<

) > 0
il
f g2
> Np > N > Ny
(iii) Exactness at Ker-y :

- e = p .
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81

f
M LI

al ﬂAg vl

fa g2

0 > N >

(iii) Exactness at Ker-y :

Ker® C Imgy: Let z € Kery such that z € Kerd, x ¢ M, y € N; as
above.
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M, — s M By s 0
o al
0 by 2 N B

(iii) Exactness at Ker-y :
Ker® C Imgy: Let z € Kery such that z € Kerd, x ¢ M, y € N; as
above. Then
0=P(z) =y +Ima,

thus y € Im a; there is u € My such that a(u) = y.
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~
o

M,

2

N
82
> N > Ny

(iii) Exactness at Ker-y :
Ker® C Imgy: Let z € Kery such that z € Kerd, x ¢ M, y € N; as
above. Then
0=P(z) =y +Ima,

thus y € Ima; there is u € My such that a(u) = y. Thus

B(fi(u)) = Rla(u)) = R(y) = B(x),
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M,

~
o

2

N
82
> N > Ny

(iii) Exactness at Ker-y :
Ker® C Imgy: Let z € Kery such that z € Kerd, x ¢ M, y € N; as
above. Then
0=P(z) =y +Ima,

thus y € Ima; there is u € My such that a(u) = y. Thus
B(fi(u)) = Rla(u)) = R(y) = B(x),
so x — fi(u) € Ker g.
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My s M~ M, s 0
I
0 N VLN

x —fi(u) = w € Ker 3,
then z = g1(x) = g1(A(v)) = g1 (w);
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My s M~ M, s 0
I
0 N VLN

x — f(u) = w € Ker g,
then z = g1(x) = g1(f(v)) = g1(w); z€ Im &
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My s M~ M, s 0
I
0 N VLN

x — f(u) = w € Ker g,

then z = g1(x) = g1(A(v)) = g1(w); z € Im g3.
Img; C Ker®: Let z € Ker~y such that z€Ilmg C Img.
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~
o

M,

2

81
4
82
> N > Ny

x — f(u) = w € Ker g,

then z = g1(x) = g1(fi(uv)) = g1(w); z € Im &1.
Img; C Ker®: Let z € Ker~y such that z€Ilmg C Img.
There is x € Ker  such that g1(x) = z and y € Nj such that

fa(y) = B(x) =0.
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1
> M g>M2

o

Q
%
=
(_

2

2
s N —& > No

x — f(u) = w € Ker g,

then z = g1(x) = g1(A(v)) = g1(w); z € Im g3.

Img; C Ker®: Let z € Ker~y such that z€Ilmg C Img.
There is x € Ker  such that g1(x) = z and y € Nj such that
f(y) = B(x) =0.

Thus y = 0 by injectivity of f, so ®(z) =y + Ima = 0.
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M, s M~ M,

~
o

0 by 2 N B
(iii) Exactness at Coker av:
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fi g
M1 1) 1,

al ﬁAg vl

f
0 y N ——

(iii) Exactness at Coker av:

Analogously to the proof of the exactness at Ker~y.

(iv) R-linearity of ®:
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> N

f

(iii) Exactness at Coker av:
Analogously to the proof of the exactness at Ker~y.

(iv) R-linearity of ®:
Since all mappings which are involved in the definition of the map ¢
are R- linear, via an easy computation ® is R-linear.
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(iii) Exactness at Coker av:
Analogously to the proof of the exactness at Ker~y.

(iv) R-linearity of ®:
Since all mappings which are involved in the definition of the map ¢
are R- linear, via an easy computation ® is R-linear.

(v) Exactness of the sequences

Kera % Ker g &, Ker v

and
Coker o 2 Coker 3 £ Coker :

Easy.
Date  30/34



Proof Part Three: From Short To Long Exact Sequences

o = = E A
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Proof Part Three: From Short To Long Exact Sequences

Lemma

Let M be a chain complex of R-modules and R-module homomorphisms.
The map a,: M, — M,_1 induces an R-linear mapping

dn: Coker apt1 — Kerap_g.

Moreover, H,(M) = Ker a, and H,—1(M) = Coker .
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Proof Part Three: From Short To Long Exact Sequences

Lemma

Let M be a chain complex of R-modules and R-module homomorphisms.
The map a,: M, — M,_1 induces an R-linear mapping

dn: Coker apt1 — Kerap_g.

Moreover, H,(M) = Ker a, and H,—1(M) = Coker .

Remark

In the Snake-Lemma, let f; be injective and g» be surjective. Then £ is
injective and g is surjective. Thus from the short exact sequence

osLEMENSDO

we obtain for each n € Z the following row and column exact diagram
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<
<

(e 7]
L

Bn

~

~

Yn

~

0Oo—— L,y — M,y ——— N,y ——0

~

~

~

Coker a, —— Coker 8, —— Cokery, —— 0

~

0

By using this diagram and one previous lemma, we obtain the following

diagram

~

0

~

0.

v
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Hn(N)

Ker v,

!

Coker apy; — Coker 8,41 —— Cokervyppp —— 0

& 16 |7

0 — > Kerap; — Ker .1 —— Kery,_1

!

Coker ap,

H
Hn—l(L)

for each n € Z. The Snake Lemma gives us ®,: H,(N) — H,_1(L).

v
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Last But Not Least: Find Your Purpose!

What category are you?

The category of
Lepgth of your Month you Day you were born:
first name: were born:
1. Commutative 1. Pre- 1. Groups 17. Chains
2.  Infinitary 2.  Algebraic 2.  Manifolds 18. Distributions
3. Projective 3. Quasi- 3. Sheaves 19. Bundles
4.  Preadditive 4.  Hilbert 4. Complexes 20. Sequences
5. Opposite 5. Differential 5. Schemes 21. Grassmanians
6. Semi- 6. p-adic 6. Filtrations 22. Surfaces
7. Smooth 7. Discrete 7. Spaces 23. Modules
8.  Injective 8. Pointed 8. Graphs 24. Varieties
9. Homogenous 9. Coherent 9.  Monoids 25. Curves
10. Local 10. Affine 10. Functors 26. Magmas
11. Hyper- 11. Complex 11.  Morphisms 27. Languages
12+ Complete 12. Simplicial 12. Groupoids 28. Fibrations
13. Algebras 29. Knots
14. Diagrams 30. Universes
15. Fields 31. Lattices
16. Representations
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