Homological Algebra

Friedrich Günther, Eileen Oberringer, Nikolaos Tsakanikas

For every talk, we assume R to be some fixed unital ring and any module is assumed to be an R-module. If not explicitly stated otherwise, any linear map is assumed to be R-linear.

1 About Chains and Snakes

Definition 1.1: A *left module* M is an abelian group (M, +) together with a map

$$R \times M \to M, \ (r,m) \mapsto r \cdot m,$$

such that for all $r, r_1, r_2 \in R, m, m_1, m_2 \in M$ the following hold:

- $r_1 \cdot (r_1 \cdot m) = (r_1 \cdot r_2) \cdot m$
- $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$
- $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$
- $1 \cdot m = m$.

Definition 1.2: A family $\mathbf{M} = \{M_n, \alpha_n\}_{n \in \mathbb{Z}}$ of modules and module homomorphisms

 $\mathbf{M}: \ldots \longrightarrow M_{n+1} \xrightarrow{\alpha_{n+1}} M_n \xrightarrow{\alpha_n} M_{n-1} \xrightarrow{\alpha_{n-1}} \ldots$

such that $\alpha_n \circ \alpha_{n+1} = 0$ for each $n \in \mathbb{Z}$, i.e. $\operatorname{im} \alpha_{n+1} \subset \operatorname{ker} \alpha_n$, is called *chain* complex. Each mapping $\alpha_n \colon M_n \to M_{n-1}$ is called a *boundary mapping* or differential operator.

Definition 1.3: We call a chain complex

 $\mathbf{M}: \dots \to M_{n+1} \xrightarrow{\alpha_{n+1}} M_n \xrightarrow{\alpha_n} M_{n-1} \xrightarrow{\alpha_{n-1}} M_{n-2} \to \dots$

- exact at M_n if $\operatorname{im}(\alpha_{n+1}) = \operatorname{ker}(\alpha_n)$.
- *exact* if it is exact at M_n for each $n \in \mathbb{Z}$.
- short exact sequence if it is an exact complex of the form

$$0 \to M_2 \xrightarrow{\alpha_2} M_1 \xrightarrow{\alpha_1} M_0 \to 0.$$

Definition 1.4: Let

 $\mathbf{M}: \cdots \to M_{n+1} \xrightarrow{\alpha_{n+1}} M_n \xrightarrow{\alpha_n} M_{n-1} \xrightarrow{\alpha_{n-1}} M_{n-2} \to \cdots$

be a chain complex. We call $H_n(\mathbf{M}) = \ker \alpha_n / \operatorname{im} \alpha_{n+1}$ the *n*-th homology module of \mathbf{M} .

Definition 1.5: Let **M** and **N** be two chain complexes. A family $\mathbf{f} = \{f_n : M_n \to N_{n+k}\}_{n \in \mathbb{Z}}$ of linear mappings such that the diagram

is commutative for each $n \in \mathbb{Z}$ is called *chain map of degree k*.

Definition 1.6: Let **M** and **N** be two chain complexes and let $\mathbf{f}, \mathbf{g} \colon \mathbf{M} \to \mathbf{N}$ be two chain maps of degree 0. A chain map $\boldsymbol{\varphi} = \{\varphi_n \colon M_n \to N_{n+1}\}$ of degree 1 such that $f_n - g_n = \beta_{n+1}\varphi_n + \varphi_{n-1}\alpha_n$ for each $n \in \mathbb{Z}$ is called a *homotopy*.

$$\dots \longrightarrow M_{n+1} \xrightarrow{\alpha_{n+1}} M_n \xrightarrow{\alpha_n} M_{n-1} \longrightarrow \dots$$

$$g_{n+1} \downarrow f_{n+1} \swarrow g_n \downarrow f_n \xrightarrow{\varphi_{n-1}} g_{n-1} \downarrow f_{n-1}$$

$$\dots \longrightarrow N_{n+1} \xrightarrow{\beta_{n+1}} N_n \xrightarrow{\beta_n} N_{n-1} \longrightarrow \dots$$

We denote it by $\varphi \colon \mathbf{f} \to \mathbf{g} \ (\mathbf{f} \approx \mathbf{g})$ and say that \mathbf{f} and \mathbf{g} are homotopic chain maps. If there exist two chain maps $\mathbf{f} \colon \mathbf{M} \to \mathbf{N}$ and $\mathbf{g} \colon \mathbf{N} \to \mathbf{M}$ such that $\mathbf{g}\mathbf{f} \approx \mathrm{id}_{\mathbf{M}}$ and $\mathbf{f}\mathbf{g} \approx \mathrm{Id}_{\mathbf{N}}$ then \mathbf{M} and \mathbf{N} are said to be of the same homotopy type. The chain maps $\mathbf{f} \colon \mathbf{M} \to \mathbf{N}$ and $\mathbf{g} \colon \mathbf{N} \to \mathbf{M}$ are called homotopy equivalences.

Definition 1.7: A category C is called *(pre-)additive* if for all objects $A, B \in C$ the set $Mor_{\mathcal{C}}(A, B)$ has the structure of an additive abelian group and if for all $f, f_1, f_2 \in Mor_{\mathcal{C}}(A, B)$ and all $g, g_1, g_2 \in Mor_{\mathcal{C}}(B, C)$ it holds

$$g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$$

and

$$(g_1+g_2)\circ f=g_1\circ f+g_2\circ f.$$

Definition 1.8: Let \mathcal{C} and \mathcal{D} be (pre-)additive categories. A (covariant or contravariant) functor $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ is called *additive* if for all objects $A, B \in \mathcal{C}$ the induced map

$$\operatorname{Mor}_{\mathcal{C}}(A, B) \to \operatorname{Mor}_{\mathcal{D}}\left(\mathcal{F}(A), \mathcal{F}(B)\right)$$

 $f \mapsto \mathcal{F}(f)$

is a group homomorphism.

Chain complexes and chain maps form an additive category. We denote it by \mathbf{Chain}_{R} .

Definition 1.9: Let L, M and N be three chain complexes. A sequence

$$\mathbf{0}
ightarrow \mathbf{L} \xrightarrow{\mathbf{f}} \mathbf{M} \xrightarrow{\mathbf{g}} \mathbf{N}
ightarrow \mathbf{0}$$

of chain complexes is said to be a *short exact sequence*, if for each $n \in \mathbb{Z}$ the sequence $0 \to L_n \xrightarrow{f_n} M_n \xrightarrow{g_n} N_n \to 0$ is a short exact sequence in \mathbf{Mod}_R . Note that a short exact sequence of chain complexes is a 2-dimensional commutative diagram of the form

Definition 1.10: Let M and N be modules and let $f: M \to N$ be a linear map. Then coker f := N/ im f is called *cokernel of f*.

2 Projective and injective resolutions

Definition 2.1: Let P be a module. If for every surjective homomorphism $f: M \to N$ and every homomorphism $g: P \to M$ there is a homomorphism $h: P \to N$ that renders commutative the diagram

then P is called *projective*.

Codefinition 2.2: Let M, N and I be modules. If for every injective homomorphism $f: M \to N$ and any homomorphism $g: M \to I$ there is a homomorphism $h: N \to I$ rendering commutative the diagram

$$\begin{array}{ccc} M & \stackrel{f}{\longleftrightarrow} & N \\ g \\ \downarrow & & \\ I \end{array} \xrightarrow{f} h \end{array}$$

then I is called *injective*.

Codefinition 2.3: Let $\mathbf{C} = (M^n, \alpha^n)_{n \in \mathbb{Z}}$ be a family of modules and linear maps of the form

$$\mathbf{C}: \ldots \longrightarrow M^{n-1} \stackrel{\alpha^{n-1}}{\longrightarrow} M^n \stackrel{\alpha^n}{\longrightarrow} M^{n+1} \longrightarrow \ldots$$

If for all integers n it holds $\alpha^{n+1} \circ \alpha^n = 0$, then **C** is called a *cochain complex*. For the integer n, the quotient

$$H^n(\mathbf{C}) = \ker \alpha^n / \operatorname{im} \alpha^{n-1}$$

is called the *n*-th cohomology module of \mathbf{C} .

Definition 2.4: Let **C** be a positive chain complex

 $\mathbf{C}: \ldots \longrightarrow M_n \longrightarrow \ldots \longrightarrow M_0 \longrightarrow M \longrightarrow 0$

Then \mathbf{C}_M , the so called *deleted chain complex*, denotes the complex where M is omitted.

3 Derived Functors

Definition 2.5: Let $\mathbf{P}' = (P_n, \alpha_n)_{n \in \mathbb{N}_0}$ be an exact positive chain complex. If all P_n are projective and if the chain complex

 $\mathbf{P}\colon \ldots \to P_n \xrightarrow{\alpha_n} \ldots \to P_1 \xrightarrow{\alpha_1} P_0 \xrightarrow{\alpha_0} M \to 0$

is exact, then **P** is called a *projective resolution of* M. In this case, $\mathbf{P}_M := \mathbf{P}'$ is called the *deleted projective resolution of* M.

Codefinition 2.6: Let I be the exact positive cochain complex

 $\mathbf{I} \colon 0 \longrightarrow M \xrightarrow{\alpha^{-1}} I^0 \xrightarrow{\alpha^0} I^1 \longrightarrow \ldots \longrightarrow I^{n-1} \xrightarrow{\alpha^{n-1}} I^n \longrightarrow \ldots$

If for every natural number n the module I_n is injective, then **I** is called *injective* resolution of M. Again, \mathbf{I}^M denotes the deleted injective resolution of M.

3 Derived Functors

Definition 3.1: Let R and S be rings with identity.

- (a) A covariant functor $\mathcal{F} \colon \mathbf{Mod}_R \to \mathbf{Mod}_S$ is called
 - (i) *left exact* if for every exact sequence

$$0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2$$

in \mathbf{Mod}_R , the sequence

$$0 \longrightarrow \mathcal{F}(M_1) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(M) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(M_2)$$

is exact in \mathbf{Mod}_S .

(ii) *right exact* if for every exact sequence

$$M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$$

in \mathbf{Mod}_R , the sequence

$$\mathcal{F}(M_1) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(M) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(M_2) \longrightarrow 0$$

is exact in \mathbf{Mod}_S .

3 Derived Functors

- (iii) *exact* if it is both left exact and right exact.
- (b) A contravariant functor $\mathcal{F} \colon \mathbf{Mod}_R \to \mathbf{Mod}_S$ is called
 - (i) *left exact* if for every exact sequence

$$M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$$

in \mathbf{Mod}_R , the sequence

$$0 \longrightarrow \mathcal{F}(M_2) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(M) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(M_1)$$

is exact in \mathbf{Mod}_S .

(ii) *right exact* if for every exact sequence

$$0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2$$

in \mathbf{Mod}_R , the sequence

$$\mathcal{F}(M_2) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(M) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(M_1) \longrightarrow 0$$

is exact in \mathbf{Mod}_S .

(iii) *exact* if it is both left exact and right exact.

Definition 3.2: Let \mathcal{C} and \mathcal{D} be categories and let $\mathcal{F}, \mathcal{G} : \mathcal{C} \to \mathcal{D}$ be functors. A *natural transformation* η *from* \mathcal{F} *to* \mathcal{G} is a rule that associates a morphism $\eta_A : \mathcal{F}(A) \to \mathcal{G}(A)$ in \mathcal{D} with every object $A \in \mathcal{C}$ is such a way that for every morphism $f : A \to B$ in \mathcal{C} the diagram

$$\begin{array}{c} \mathcal{F}(A) & \stackrel{\eta_A}{\longrightarrow} \mathcal{G}(A) \\ \begin{array}{c} \mathcal{F}(f) \\ \mathcal{F}(B) & \stackrel{\eta_B}{\longrightarrow} \mathcal{G}(B) \end{array} \end{array}$$

is commutative.

If, moreover, η_A is an isomorphism in \mathcal{D} for every object $A \in \mathcal{C}$, then $\eta: \mathcal{F} \to \mathcal{G}$ is called a *natural isomorphism* and \mathcal{F} and \mathcal{G} are said to be *naturally* equivalent functors.

4 Examples are Manifold

Definition 4.1: Let V and W be finite-dimensional vector spaces, let $f: V \to W$ be linear and let $f^*: W^* \to V^*$, $\psi \mapsto \psi \circ f$ be its dual map. Then there is one and only one linear map $\bigwedge^n f^*: \bigwedge^n W^* \to \bigwedge^n V^*$ which is uniquely determined by

$$\bigwedge^{n} f^{*}(\psi^{1} \wedge \dots \wedge \psi^{n}) = f^{*}(\psi^{1}) \wedge \dots \wedge f^{*}(\psi^{n}).$$

For an *n*-form $\omega \in \bigwedge^n W^*$, $\bigwedge^n f^*(\omega)$ is called *pullback of* ω *along* f.

Definition 4.2 (Differential Form of Degree n): Let n be a natural number and let $U \subseteq \mathbb{R}^N$ be open. A map

$$\omega \colon U \longrightarrow \bigwedge^{n} (\mathbb{R}^{N})^{*}, \qquad u \longmapsto \sum_{1 \leq i_{1} < \dots < i_{n} \leq N} f_{(i_{1},\dots,i_{n})}(u) \, dx^{i_{1}} \wedge \dots \wedge dx^{i_{n}},$$

where $f_{(i_1,\ldots,i_n)}: U \to \mathbb{R}$ are functions, is a differential form of degree n on U; briefly called *n*-form (on U). The space

$$\Omega^n(U) := \{ \omega \colon U \to \bigwedge^n (\mathbb{R}^N)^* \text{ smooth differential form} \}$$

is called space of smooth n-forms on U.

Definition 4.3 (Wedge Product for Differential Forms): Let n and m be natural numbers, let $U \subseteq \mathbb{R}^N$ be open and let $\omega \in \Omega^n(U)$, $\eta \in \Omega^m(U)$. Then the function

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

Definition 4.4: Let *n* be a natural number and let $U \subseteq \mathbb{R}^N$ be open. For a differential form $\omega = \sum_{1 \leq i_1 < \cdots < i_n \leq N} f_{(i_1,\ldots,i_n)} dx^{i_1} \wedge \cdots \wedge dx^{i_n} \in \Omega^n(U)$, the differential form

$$d\omega := \sum_{1 \le i_1 < \dots < i_n \le N} \left(\sum_{j=1}^N \frac{\partial f_{(i_1,\dots,i_n)}}{\partial x^j} \, dx^j \right) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_n}$$

is called *exterior derivative of* ω .

Definition 4.5: Let $U \subseteq \mathbb{R}^N$ and $V \subseteq \mathbb{R}^M$ be open, let $\varphi \colon U \to V$ be smooth and let $\omega \in \Omega^n(V)$. Then,

$$(\varphi^*\omega)\colon U \longrightarrow \bigwedge^n (\mathbb{R}^N)^*, u \longmapsto \left[(v_1, \dots, v_n) \mapsto \omega(\varphi(u)) [(D\varphi)(u)(v_1), \dots, (D\varphi)(u)(v_n)] \right]$$

is called *pullback* of ω along φ .

Definition 4.6: Let $U \subseteq \mathbb{R}^N$ be open. Then there is the cochain complex

$$0 \longrightarrow \Omega^0(U) \xrightarrow{d^0} \Omega^1(U) \xrightarrow{d^1} \dots \xrightarrow{d^{N-1}} \Omega^N(U) \longrightarrow 0$$

For a natural number n, the \mathbb{R} -vector space $H^n(U) := \ker d^n / \operatorname{im} d^{n-1}$ is called the *n*-th de Rham cohomology of U, and the direct sum $H^{\bullet}(U) := \bigoplus_{n=0}^{N} H^n(U)$ is called the de Rham cohomology of U.

Reminder 4.7 (Line Integral): Let $U \subseteq \mathbb{R}^N$ be open and let $\gamma: [a, b] \to U$ be a smooth path. For $\eta \in \Omega^1(U)$, the value

$$\int_{\gamma} \eta := \int_{a}^{b} \gamma^* \eta(t) \, dt = \int_{a}^{b} \langle \eta(\gamma(t)), \gamma'(t) \rangle \, dt$$

is called *line integral of* η *along* γ .