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For every talk, we assume R to be some fixed unital ring and any module is
assumed to be an R-module. If not explicitly stated otherwise, any linear map
is assumed to be R-linear.

1 About Chains and Snakes
Definition 1.1: A left module M is an abelian group (M,+) together with a
map

R×M →M, (r,m) 7→ r ·m,

such that for all r, r1, r2 ∈ R, m,m1,m2 ∈M the following hold:

• r1 · (r1 ·m) = (r1 · r2) ·m
• (r1 + r2) ·m = r1 ·m+ r2 ·m
• r · (m1 +m2) = r ·m1 + r ·m2

• 1 ·m = m.

Definition 1.2: A family M = {Mn, αn}n∈Z of modules and module homomor-
phisms

M : . . . Mn+1 Mn Mn−1 . . .
αn+1 αn αn−1

such that αn ◦ αn+1 = 0 for each n ∈ Z, i.e. imαn+1 ⊂ kerαn, is called chain
complex. Each mapping αn : Mn → Mn−1 is called a boundary mapping or
differential operator.

Definition 1.3: We call a chain complex

M : · · · →Mn+1
αn+1−−−→Mn

αn−→Mn−1
αn−1−−−→Mn−2 → · · ·

• exact at Mn if im(αn+1) = ker(αn).
• exact if it is exact at Mn for each n ∈ Z.
• short exact sequence if it is an exact complex of the form

0→M2
α2−→M1

α1−→M0 → 0.
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1 About Chains and Snakes

Definition 1.4: Let

M : · · · →Mn+1
αn+1−−−→Mn

αn−→Mn−1
αn−1−−−→Mn−2 → · · ·

be a chain complex. We call Hn(M) = kerαn/ imαn+1 the n-th homology
module of M.

Definition 1.5: Let M and N be two chain complexes. A family f = {fn :
Mn → Nn+k}n∈Z of linear mappings such that the diagram

. . . Mn Mn−1 . . .

. . . Nn+k Nn+k−1 . . .

αn+1 αn

fn fn−1

αn−1

βn+k+1 βn+k βn+k−1

is commutative for each n ∈ Z is called chain map of degree k.

Definition 1.6: Let M and N be two chain complexes and let f ,g : M→ N be
two chain maps of degree 0. A chain map ϕ = {ϕn : Mn → Nn+1} of degree 1
such that fn − gn = βn+1ϕn + ϕn−1αn for each n ∈ Z is called a homotopy.

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . . .

αn+1

fn+1
gn+1

αn

fn

gn

ϕn fn−1
gn−1

ϕn−1

βn+1 βn

We denote it by ϕ : f → g (f≈ g) and say that f and g are homotopic chain
maps. If there exist two chain maps f : M → N and g : N → M such that
gf≈idM and fg ≈ IdN then M and N are said to be of the same homotopy type.
The chain maps f : M→ N and g : N→M are called homotopy equivalences.

Definition 1.7: A category C is called (pre-)additive if for all objects A,B ∈ C
the set MorC(A,B) has the structure of an additive abelian group and if for all
f, f1, f2 ∈ MorC(A,B) and all g, g1, g2 ∈ MorC(B,C) it holds

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2

and
(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f.
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1 About Chains and Snakes

Definition 1.8: Let C and D be (pre-)additive categories. A (covariant or
contravariant) functor F : C → D is called additive if for all objects A,B ∈ C
the induced map

MorC(A,B)→ MorD
(
F(A),F(B)

)
f 7→ F(f)

is a group homomorphism.

Chain complexes and chain maps form an additive category. We denote it by
ChainR.

Definition 1.9: Let L,M and N be three chain complexes. A sequence

0→ L f−→M g−→ N→ 0

of chain complexes is said to be a short exact sequence, if for each n ∈ Z the
sequence 0→ Ln

fn−→Mn
gn−→ Nn → 0 is a short exact sequence in ModR. Note

that a short exact sequence of chain complexes is a 2-dimensional commutative
diagram of the form

... ... ...

0 Ln+1 Mn+1 Nn+1 0

0 Ln Mn Nn 0

0 Ln−1 Mn−1 Nn−1 0

... ... ...

αn+1

fn+1

βn+1

gn+1

γn+1

αn

fn

βn

gn

γn

fn−1 gn−1

Definition 1.10: Let M and N be modules and let f : M → N be a linear map.
Then coker f := N/ im f is called cokernel of f .
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2 Projective and injective resolutions

2 Projective and injective resolutions
Definition 2.1: Let P be a module. If for every surjective homomorphism
f : M → N and every homomorphism g : P → M there is a homomorphism
h : P → N that renders commutative the diagram

N

P M

fh

g

then P is called projective.

Codefinition 2.2: Let M , N and I be modules. If for every injective homomor-
phism f : M → N and any homomorphism g : M → I there is a homomorphism
h : N → I rendering commutative the diagram

M N

I

f

g
h

then I is called injective.

Codefinition 2.3: Let C = (Mn, αn)n∈Z be a family of modules and linear
maps of the form

C : . . . Mn−1 Mn Mn+1 . . .αn−1 αn

If for all integers n it holds αn+1 ◦ αn = 0, then C is called a cochain complex.
For the integer n, the quotient

Hn(C) = kerαn/ imαn−1

is called the n-th cohomology module of C.

Definition 2.4: Let C be a positive chain complex

C : . . . Mn . . . M0 M 0

Then CM , the so called deleted chain complex, denotes the complex where M
is omitted.
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3 Derived Functors

Definition 2.5: Let P′ = (Pn, αn)n∈N0 be an exact positive chain complex. If
all Pn are projective and if the chain complex

P : . . . Pn . . . P1 P0 M 0αn α1 α0

is exact, then P is called a projective resolution of M . In this case, PM := P′
is called the deleted projective resolution of M .

Codefinition 2.6: Let I be the exact positive cochain complex

I : 0 M I0 I1 . . . In−1 In . . .α−1 α0 αn−1

If for every natural number n the module In is injective, then I is called injective
resolution of M . Again, IM denotes the deleted injective resolution of M .

3 Derived Functors
Definition 3.1: Let R and S be rings with identity.

(a) A covariant functor F : ModR →ModS is called
(i) left exact if for every exact sequence

0 M1 M M2
f g

in ModR, the sequence

0 F(M1) F(M) F(M2)F(f) F(g)

is exact in ModS.
(ii) right exact if for every exact sequence

M1 M M2 0f g

in ModR, the sequence

F(M1) F(M) F(M2) 0F(f) F(g)

is exact in ModS.
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3 Derived Functors

(iii) exact if it is both left exact and right exact.
(b) A contravariant functor F : ModR →ModS is called

(i) left exact if for every exact sequence

M1 M M2 0f g

in ModR, the sequence

0 F(M2) F(M) F(M1)F(g) F(f)

is exact in ModS.
(ii) right exact if for every exact sequence

0 M1 M M2
f g

in ModR, the sequence

F(M2) F(M) F(M1) 0F(g) F(f)

is exact in ModS.
(iii) exact if it is both left exact and right exact.

Definition 3.2: Let C and D be categories and let F ,G : C → D be functors.
A natural transformation η from F to G is a rule that associates a morphism
ηA : F(A)→ G(A) in D with every object A ∈ C is such a way that for every
morphism f : A→ B in C the diagram

F(A) G(A)

F(B) G(B)

F(f)

ηA

G(f)

ηB

is commutative.
If, moreover, ηA is an isomorphism in D for every object A ∈ C, then

η : F → G is called a natural isomorphism and F and G are said to be naturally
equivalent functors.
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4 Examples are Manifold

4 Examples are Manifold
Definition 4.1: Let V andW be finite-dimensional vector spaces, let f : V → W
be linear and let f ∗ : W ∗ → V ∗, ψ 7→ ψ ◦ f be its dual map. Then there is one
and only one linear map ∧n f ∗ : ∧nW ∗ → ∧n V ∗ which is uniquely determined
by

n∧
f ∗(ψ1 ∧ · · · ∧ ψn) = f ∗(ψ1) ∧ · · · ∧ f ∗(ψn).

For an n-form ω ∈ ∧nW ∗, ∧n f ∗(ω) is called pullback of ω along f .
Definition 4.2 (Differential Form of Degree n): Let n be a natural number
and let U ⊆ RN be open. A map

ω : U −→
n∧

(RN)∗, u 7−→
∑

1≤i1<···<in≤N
f(i1,...,in)(u) dxi1 ∧ · · · ∧ dxin ,

where f(i1,...,in) : U → R are functions, is a differential form of degree n on U ;
briefly called n-form (on U). The space

Ωn(U) := {ω : U →
n∧

(RN)∗ smooth differential form}
is called space of smooth n-forms on U .
Definition 4.3 (Wedge Product for Differential Forms): Let n and m be nat-
ural numbers, let U ⊆ RN be open and let ω ∈ Ωn(U), η ∈ Ωm(U). Then the
function

ω ∧ η : U −→
n+m∧

(RN)∗, u 7−→ ω(u) ∧ η(u)
is called wedge product of ω and η.
Definition 4.4: Let n be a natural number and let U ⊆ RN be open. For
a differential form ω = ∑

1≤i1<···<in≤N f(i1,...,in) dx
i1 ∧ · · · ∧ dxin ∈ Ωn(U), the

differential form

dω :=
∑

1≤i1<···<in≤N

( N∑
j=1

∂f(i1,...,in)

∂xj
dxj

)
∧ dxi1 ∧ · · · ∧ dxin

is called exterior derivative of ω.
Definition 4.5: Let U ⊆ RN and V ⊆ RM be open, let ϕ : U → V be smooth
and let ω ∈ Ωn(V ). Then,

(ϕ∗ω) : U −→
n∧

(RN)∗,
u 7−→

[
(v1, . . . , vn) 7→ ω(ϕ(u))[(Dϕ)(u)(v1), . . . , (Dϕ)(u)(vn)]

]
is called pullback of ω along ϕ.

7



4 Examples are Manifold

Definition 4.6: Let U ⊆ RN be open. Then there is the cochain complex

0 Ω0(U) Ω1(U) . . . ΩN(U) 0d0 d1 dN−1

For a natural number n, the R-vector space Hn(U) := ker dn/ im dn−1 is called
the n-th de Rham cohomology of U , and the direct sum H•(U) := ⊕N

n=0 H
n(U)

is called the de Rham cohomology of U .

Reminder 4.7 (Line Integral): Let U ⊆ RN be open and let γ : [a, b]→ U be
a smooth path. For η ∈ Ω1(U), the value

ˆ
γ

η :=
ˆ b

a

γ∗η(t) dt =
ˆ b

a

〈η(γ(t)), γ′(t)〉 dt

is called line integral of η along γ.
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