Homological Algebra
Friedrich Giinther, Eileen Oberringer, Nikolaos Tsakanikas

For every talk, we assume R to be some fixed unital ring and any module is
assumed to be an R-module. If not explicitly stated otherwise, any linear map
is assumed to be R-linear.

1 About Chains and Snakes

Definition 1.1: A left module M is an abelian group (M, +) together with a
map

Rx M — M, (r,m)w—r-m,

such that for all r,r;,ry € R, m, mq, my € M the following hold:

ri-(rp-m)=(ry-re) -m

(ri+m)-m=ri-m+ry-m

re(my4+mg)=1-my+r-ms

e 1-m=m.

Definition 1.2: A family M = {M,,, a,, }nez of modules and module homomor-
phisms

Qn+1 « Qp—1
M:...—— M,y —— M, —— M, —— ...

such that a,, o a,11 = 0 for each n € Z, i.e. imay,41 C ker o, is called chain
complexr. Each mapping «,,: M, — M, is called a boundary mapping or
differential operator.

Definition 1.3: We call a chain complex

Qn—1

M: o= Moy 5 M, 2 M, 222 My,_o — -

o ezact at M, if im(ay,11) = ker(a,).
e exact if it is exact at M, for each n € Z.

e short exact sequence if it is an exact complex of the form

0—>M2£>M1ﬂ>MQ—>O.
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Definition 1.4: Let

Qn—1

M: o — My =% M, 2% My =% Mg — - -

be a chain complex. We call H,(M) = kera,/ima, 1 the n-th homology
module of M.

Definition 1.5: Let M and N be two chain complexes. A family f = {f,, :
M,, = Npik}nez of linear mappings such that the diagram

QAn+1 [e7% QAn—1
M, M, 1 —— ...

lfn J{f’nfl

Bn+k+1 6n+k Bn—‘—k—l
. —— Npyop —— Npyppog —— ...

is commutative for each n € Z is called chain map of degree k.

Definition 1.6: Let M and N be two chain complexes and let f,g: M — N be
two chain maps of degree 0. A chain map ¢ = {¢,: M, — N1} of degree 1
such that f, — g, = Bni19n + Pn_10, for each n € Z is called a homotopy.

Qn 41 [e7%%
s My, M, My, —— ...

e
/ gn / gn—1

S Ny N, Ny @ —— ...

Bn+1 Bn

We denote it by ¢: f — g (f~ g) and say that f and g are homotopic chain
maps. If there exist two chain maps f: M — N and g: N — M such that
gf~idy and fg ~ Idn then M and N are said to be of the same homotopy type.
The chain maps f: M — N and g: N — M are called homotopy equivalences.

Definition 1.7: A category C is called (pre-)additive if for all objects A, B € C
the set Morc(A, B) has the structure of an additive abelian group and if for all
f, f1, f2 € More(A, B) and all g, g1, g2 € More(B, C) it holds

go(fi+fa)=gofit+gofs

and
(r+g)of=giof+gaof.
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Definition 1.8: Let C and D be (pre-)additive categories. A (covariant or
contravariant) functor F: C — D is called additive if for all objects A, B € C
the induced map

More(A, B) = Morp (F(A), F(B))
f=F(f)

is a group homomorphism.

Chain complexes and chain maps form an additive category. We denote it by

ChainR.
Definition 1.9: Let L, M and N be three chain complexes. A sequence
0-LLEMENSO

of chain complexes is said to be a short exact sequence, if for each n € Z the

sequence 0 — L, i"—> M, 2% N, — 0 is a short exact sequence in Modpg. Note
that a short exact sequence of chain complexes is a 2-dimensional commutative
diagram of the form

An41 Br+1 Tn+1
0 L, —I— M, — N, 0
Qn ﬂn Yn

Definition 1.10: Let M and N be modules and let f: M — N be a linear map.
Then coker f := N/im f is called cokernel of f.
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2 Projective and injective resolutions

Definition 2.1: Let P be a module. If for every surjective homomorphism
f: M — N and every homomorphism ¢g: P — M there is a homomorphism
h: P — N that renders commutative the diagram

then P is called projective.

Codefinition 2.2: Let M, N and I be modules. If for every injective homomor-
phism f: M — N and any homomorphism g: M — I there is a homomorphism
h: N — I rendering commutative the diagram

M(L

gl
" h

then [ is called injective.

Codefinition 2.3: Let C = (M",a"),cz be a family of modules and linear
maps of the form

n—1 n
C: ... — Mty pym 2 Ml

If for all integers n it holds o' o o™ = 0, then C is called a cochain complex.
For the integer n, the quotient

H"(C) =kera"/ima™!
is called the n-th cohomology module of C.
Definition 2.4: Let C be a positive chain complex
c:....— M, — ... — My — M —0

Then C,y, the so called deleted chain complex, denotes the complex where M
is omitted.



3 Derived Functors
Definition 2.5: Let P’ = (P,, a,,)nen, be an exact positive chain complex. If
all P, are projective and if the chain complex
P...—>P ... P3PS M-—>0

is exact, then P is called a projective resolution of M. In this case, Py, := P’
is called the deleted projective resolution of M.

Codefinition 2.6: Let I be the exact positive cochain complex
—~1 0 n—1
I:0 —- M2 V%S P — . — vl

If for every natural number n the module I, is injective, then I is called injective
resolution of M. Again, I™ denotes the deleted injective resolution of M.

3 Derived Functors

Definition 3.1: Let R and S be rings with identity.

(a) A covariant functor F: Modr — Modg is called

(i) left exact if for every exact sequence

0 —— M, —L1— M —2 M,

in Modg, the sequence

0 —— Fomy) 2% m oy Y Fouw)
is exact in Modg.
(ii) right ezact if for every exact sequence
My, L M2 M, 0
in Modg, the sequence
Fon) 22 7oy 29 F() —— 0

is exact in Modg.
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(iii) ezact if it is both left exact and right exact.
(b) A contravariant functor F: Modg — Modg is called

(i) left exact if for every exact sequence

M, L M2 M 0
in Modg, the sequence
0 —— F(M) 22 F(uy 29 F )

is exact in Modg.
(ii) right ezact if for every exact sequence

0 —— M, —— M —2 M,

in Modg, the sequence

F(g) F(f)
- -

F(My) F (M) F(My) —— 0

is exact in Modg.
(iii) ezact if it is both left exact and right exact.

Definition 3.2: Let C and D be categories and let F,G: C — D be functors.
A natural transformation n from F to G is a rule that associates a morphism
na: F(A) = G(A) in D with every object A € C is such a way that for every
morphism f: A — B in C the diagram

is commutative.

If, moreover, n4 is an isomorphism in D for every object A € C, then
n: F — G is called a natural isomorphism and F and G are said to be naturally
equivalent functors.
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Definition 4.1: Let V and W be finite-dimensional vector spaces, let f: V — W
be linear and let f*: W* — V* 4+ 1 o f be its dual map. Then there is one
and only one linear map A" f*: A" W* — A" V* which is uniquely determined
by

NN AY™) = Y A A FH).
For an n-form w € A" W*, A" f*(w) is called pullback of w along f.

Definition 4.2 (Differential Form of Degree n): Let n be a natural number
and let U C RY be open. A map

w: U — /\(]RN)*, U —> Z Jtir,.nin) (1) dz A -+ ANda™,
1<ig <-<in<N

where f;,,. 4,1 U — R are functions, is a differential form of degree n on U;

.....

briefly called n-form (on U). The space

Q"(U) == {w: U = A(R")* smooth differential form}
is called space of smooth n-forms on U.

Definition 4.3 (Wedge Product for Differential Forms): Let n and m be nat-
ural numbers, let U C R be open and let w € Q"(U), n € Q™(U). Then the
function .

wAn:U— N\ RBY), u— w(u) A n(u)
is called wedge product of w and 7.

Definition 4.4: Let n be a natural number and let U C R”" be open. For
a differential form w = Y14; .. i <y fior,i) A2 A - Ada™ € Q*(U), the
differential form

N O firrin) 4 i A _
dw = Z (Zl’"j""dxj>/\dx”/\---/\dxl"
1<iy < <in<N ~j=1

is called exterior derivative of w.

Definition 4.5: Let U C RY and V C R™ be open, let p: U — V be smooth
and let w € Q"(V'). Then,

(o'w): U — ARY)')

ur— (V1 vn) = (@) (D) (u)(v1), - -, (D) (u) (vn)]
is called pullback of w along .
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Definition 4.6: Let U C R”Y be open. Then there is the cochain complex

del

0 —— QUU) —2 Ql(U) & QN (U) —— 0

For a natural number n, the R-vector space H"(U) := kerd"/im d" ! is called
the n-th de Rham cohomology of U, and the direct sum H*(U) := @_, H"(U)
is called the de Rham cohomology of U.

Reminder 4.7 (Line Integral): Let U C RY be open and let v: [a,b] — U be
a smooth path. For n € Q'(U), the value

[ = [ o))

is called line integral of n along 7.
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