э

《口》《聞》《臣》《臣》

Projective and Injective Resolutions

Friedrich Günther

September 11th 2020

Projective and Injective Resolutions

Roadmap for this talk:

Recap on projective and injective modules

Roadmap for this talk:

- Recap on projective and injective modules
- Projective and injective resolutions

(日)

Roadmap for this talk:

- Recap on projective and injective modules
- Projective and injective resolutions
- Lift of module homomorphisms to chain maps and homotopy properties of lift

< ロ > < 同 > < 三 > < 三 >

Roadmap for this talk:

- Recap on projective and injective modules
- Projective and injective resolutions
- Lift of module homomorphisms to chain maps and homotopy properties of lift
- No examples

Projective and Injective Resolutions

Induced Chain Maps 000000000

Projective and Injective Resolutions

Induced Chain Maps 000000000

< ロ > < 同 > < 三 > < 三 >

Examples in talk 4, promise!

Projective and Injective Resolutions

Section 1

Projective and Injective Modules

Projective and Injective Resolutions

| 4 同 🕨 🛛 🖃 🕨 🤘

Projective Modules

Definition 1

Let *P* be a module. If for every surjective homomorphism $f: M \to N$ and every homomorphism $g: P \to M$ there is a homomorphism $h: P \to N$ that renders commutative the diagram

then P is called projective.

Projective Modules

Definition 1

Let *P* be a module. If for every surjective homomorphism $f: M \to N$ and every homomorphism $g: P \to M$ there is a homomorphism $h: P \to N$ that renders commutative the diagram

then P is called projective.

Note: *P* is projective iff every short exact sequence

$$0 \longrightarrow A \stackrel{\iota}{\longleftrightarrow} B \stackrel{\pi}{\longrightarrow} P \longrightarrow 0$$

splits, i.e. there is a homomorphism $\varphi \colon P \to B$ such that $\pi \circ \varphi = \operatorname{id}_P$. In this case, $B = \operatorname{im} \varphi \oplus \ker \pi$.

(日)

Injective Modules

Codefinition 2

Let M, N and I be modules. If for every injective homomorphism $f: M \to N$ and any homomorphism $g: M \to I$ there is a homomorphism $h: N \to I$ rendering commutative the diagram

then I is called injective.

Injective Modules

Codefinition 2

Let M, N and I be modules. If for every injective homomorphism $f: M \to N$ and any homomorphism $g: M \to I$ there is a homomorphism $h: N \to I$ rendering commutative the diagram

then I is called *injective*.

Note: *I* is injective iff every short exact sequence

$$0 \longrightarrow I \longmapsto M \longrightarrow N \longrightarrow 0$$

< ロ > < 同 > < 三 > < 三 >

splits.

Projective and Injective Resolutions

Central Fact on Projective Modules

Theorem 3

Every module M is the homomorphic image of a projective module.

Central Fact on Projective Modules

Theorem 3

Every module M is the homomorphic image of a projective module.

Proof.

▶ Define φ_m : $R \to M$, $1 \mapsto m$ and obtain $(\varphi_m : R \to M)_{m \in M}$

Central Fact on Projective Modules

Theorem 3

Every module M is the homomorphic image of a projective module.

Proof.

▶ Define φ_m : $R \to M$, $1 \mapsto m$ and obtain $(\varphi_m : R \to M)_{m \in M}$

By universal property of coproduct have commutative diagrams

Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

(日)

Projective and Injective Resolutions

• • = • • = •

Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

No proof, but sketchy sketch:

> Over principal ideal domains, injectivity equals divisibility

∃ ⊳.

Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

No proof, but sketchy sketch:

- > Over principal ideal domains, injectivity equals divisibility
- \blacktriangleright Show that each $\mathbb Z\text{-module}$ embedds into injective $\mathbb Z\text{-module}$

Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

No proof, but sketchy sketch:

- > Over principal ideal domains, injectivity equals divisibility
- \blacktriangleright Show that each $\mathbb Z\text{-module}$ embedds into injective $\mathbb Z\text{-module}$
- ▶ Regard arbitrary unital ring R as Z-module and "lift" statement to R-modules

Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

No proof, but sketchy sketch:

- > Over principal ideal domains, injectivity equals divisibility
- \blacktriangleright Show that each $\mathbb Z\text{-module}$ embedds into injective $\mathbb Z\text{-module}$
- Regard arbitrary unital ring R as Z-module and "lift" statement to R-modules
- Let *M* be module over principal ideal domain *R*. If for every $r \in R \{0\}$ it holds M = rM, then *M* is called *divisible*.

Section 2

Projective and Injective Resolutions

Projective and Injective Resolutions

・ 一 マ ト ・ 日 ト ・

Cochain Complexes

Codefinition 5

Let $\mathbf{C} = (M^n, \alpha^n)_{n \in \mathbb{Z}}$ be a family of modules and linear maps of the form

$$\mathbf{C}\colon\ldots\longrightarrow M^{n-1}\stackrel{\alpha^{n-1}}{\longrightarrow}M^n\stackrel{\alpha^n}{\longrightarrow}M^{n+1}\longrightarrow\ldots$$

If for all integers *n* it holds $\alpha^{n+1} \circ \alpha^n = 0$, then **C** is called a *cochain complex*. For the integer *n*, the quotient

$$H^n(\mathbf{C}) = \ker \alpha^n / \operatorname{im} \alpha^{n-1}$$

is called the *n*-th cohomology module of **C**.

Cochain Complexes

Codefinition 5

Let $\mathbf{C} = (M^n, \alpha^n)_{n \in \mathbb{Z}}$ be a family of modules and linear maps of the form

$$\mathbf{C}\colon\ldots\longrightarrow M^{n-1}\stackrel{\alpha^{n-1}}{\longrightarrow}M^n\stackrel{\alpha^n}{\longrightarrow}M^{n+1}\longrightarrow\ldots$$

If for all integers *n* it holds $\alpha^{n+1} \circ \alpha^n = 0$, then **C** is called a *cochain complex*. For the integer *n*, the quotient

$$H^n(\mathbf{C}) = \ker \alpha^n / \operatorname{im} \alpha^{n-1}$$

is called the *n*-th cohomology module of **C**.

By "reflection", make chain complex into cochain complex: For chain complex M = (M_n, α_n)_{n∈Z} put Nⁿ := M_{-n}, βⁿ := α_{-n} and obtain N = (Nⁿ, αⁿ)_{n∈Z}.

(日)

Deleted (Co)Chain Complexes

Definition 6

Let \mathbf{C} be a positive chain complex

$$\mathbf{C}: \ldots \longrightarrow M_n \longrightarrow \ldots \longrightarrow M_0 \longrightarrow M \longrightarrow 0$$

Then C_M , the so called *deleted chain complex*, denotes the complex where M is omitted.

Deleted (Co)Chain Complexes

Definition 6

Let \mathbf{C} be a positive chain complex

$$\mathbf{C}: \ldots \longrightarrow M_n \longrightarrow \ldots \longrightarrow M_0 \longrightarrow M \longrightarrow 0$$

Then C_M , the so called *deleted chain complex*, denotes the complex where M is omitted.

Codefinition 7

Let \mathbf{C} be the positive cochain complex

$$\mathbf{C}: \mathbf{0} \longrightarrow M \longrightarrow M^1 \longrightarrow \ldots \longrightarrow M^n \longrightarrow \ldots$$

 \mathbf{C}^{M} denotes the cochain complex where M is omitted.

Projective Resolutions

Definition 8

Let $\mathbf{P}' = (P_n, \alpha_n)_{n \in \mathbb{N}_0}$ be an exact positive chain complex. If all P_n are projective and if the chain complex

$$\mathbf{P}: \ldots \longrightarrow P_n \xrightarrow{\alpha_n} \ldots \longrightarrow P_1 \xrightarrow{\alpha_1} P_0 \xrightarrow{\alpha_0} M \longrightarrow 0$$

is exact, then **P** is called a *projective resolution of M*. In this case, $\mathbf{P}_M := \mathbf{P}'$ is called the *deleted projective resolution*.

Projective Resolutions

Definition 8

Let $\mathbf{P}' = (P_n, \alpha_n)_{n \in \mathbb{N}_0}$ be an exact positive chain complex. If all P_n are projective and if the chain complex

$$\mathbf{P}: \ldots \longrightarrow P_n \xrightarrow{\alpha_n} \ldots \longrightarrow P_1 \xrightarrow{\alpha_1} P_0 \xrightarrow{\alpha_0} M \longrightarrow 0$$

is exact, then **P** is called a *projective resolution of* M. In this case, $\mathbf{P}_M := \mathbf{P}'$ is called the *deleted projective resolution*.

Note: Since

$$H_0(\mathbf{P}_M) = \ker(P_0 \to 0) / \operatorname{im} \alpha_1 = P_0 / \operatorname{im} \alpha_1 = P_0 / \ker \alpha_0 \cong M$$

we do not suffer loss of information when deleting M.

Injective Resolutions

Codefinition 9

Let $\mathbf{E}' = (E^n, \alpha^n)_{n \in \mathbb{N}_0}$ be an exact positive cochain complex. If all E_n are injective and if the cochain complex

$$\mathbf{E} \colon \mathbf{0} \longrightarrow M \xrightarrow{\alpha^{-1}} E^{\mathbf{0}} \xrightarrow{\alpha^{\mathbf{0}}} E^{\mathbf{1}} \xrightarrow{\alpha^{\mathbf{1}}} E^{\mathbf{2}} \longrightarrow \dots$$

is exact, then **E** is called an *injective resolution of* M and $\mathbf{E}^M := \mathbf{E}'$ is called the *deleted injective resolution*.

In the following: Concepts and proofs for chain complexes. Can be adapted to cochain complexes by "reflection".

Existence of Projective Resolutions

Theorem 10 Every module M has a projective resolution.

Existence of Projective Resolutions

Theorem 10

Every module M has a projective resolution.

Cotheorem 11

Every module M has an injective resolution.

Existence of Projective Resolutions

Theorem 10

Every module M has a projective resolution.

Cotheorem 11

Every module M has an injective resolution.

Proof.

We want to build fences out of short exact sequences:

▶ Use Theorem 3 to get a surjection $\pi_0: P_0 \to M$ and thus the short exact sequence

$$0 \longrightarrow \ker \pi_0 \stackrel{\iota_0}{\longrightarrow} P_0 \stackrel{\pi_0}{\longrightarrow} M \longrightarrow 0$$

 Continue inductively for the emerging kernels and construct short exact sequences

$$0 \longrightarrow \ker \pi_n \stackrel{\iota_n}{\longrightarrow} P_n \stackrel{\pi_n}{\longrightarrow} \ker \pi_{n-1} \longrightarrow 0 \qquad (n \in \mathbb{N})$$

 Continue inductively for the emerging kernels and construct short exact sequences

$$0 \longrightarrow \ker \pi_n \xrightarrow{\iota_n} P_n \xrightarrow{\pi_n} \ker \pi_{n-1} \longrightarrow 0 \qquad (n \in \mathbb{N})$$

Bend each short exact sequence into a triangle, weave together a fence

and put $\alpha_n := \iota_{n-1} \circ \pi_n$ for $n \ge 1$, $\alpha_0 := \pi_0$.

Projective and Injective Resolutions

 Continue inductively for the emerging kernels and construct short exact sequences

$$0 \longrightarrow \ker \pi_n \xrightarrow{\iota_n} P_n \xrightarrow{\pi_n} \ker \pi_{n-1} \longrightarrow 0 \qquad (n \in \mathbb{N})$$

Bend each short exact sequence into a triangle, weave together a fence

and put $\alpha_n := \iota_{n-1} \circ \pi_n$ for $n \ge 1$, $\alpha_0 := \pi_0$.

• Obtain im $\alpha_n = \ker \alpha_{n-1} = \ker \pi_{n-1}$ for $n \ge 1$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Section 3

Induced Chain Maps

Projective and Injective Resolutions

Lift to Chain Map

Lemma 12

Let $\mathbf{P}: \ldots \to P_n \to \ldots \to P_0 \to M \to 0$ be a chain complex (with differentials $\alpha_n: P_n \to P_{n-1}$) such that the P_n are projective and let $\mathbf{Q}: \ldots \to N_n \to \ldots \to N_0 \to N \to 0$ be an exact chain complex (with differentials $\beta_n: N_n \to N_{n-1}$). Then for any module homomorphism $f: M \to N$ there is a chain map $\mathbf{f}: \mathbf{P}_M \to \mathbf{Q}_N$ such that the following diagram commutes:

We want to work inductively and for commutativity we want to use projectivity.

▶ In the first step, we stage the use of projectivity:

We want to work inductively and for commutativity we want to use projectivity.

▶ In the first step, we stage the use of projectivity:

$$\begin{array}{c|c} P_0 & \xrightarrow{\alpha_0} & M \longrightarrow 0 \\ \hline f_0 & & f_{\sigma\alpha_0} & f \\ N_0 & \xrightarrow{\beta_0} & N \longrightarrow 0 \end{array}$$

We want to work inductively and for commutativity we want to use projectivity.

▶ In the first step, we stage the use of projectivity:

$$\begin{array}{ccc} P_0 & \xrightarrow{\alpha_0} & M & \longrightarrow & 0 \\ \hline & & & & & & \\ f_0 & & & & & \\ & & & & & \\ & & & & & \\ N_0 & \xrightarrow{\beta_0} & N & \longrightarrow & 0 \end{array}$$

Suppose we have f_0, \ldots, f_{n-1} . We need $f_n: P_n \to N_n$ with $\beta_n \circ f_n = f_{n-1} \circ \alpha_n$ and for projectivity, we need

Λ

$$V_n \xrightarrow[\beta_n]{} P_n$$

< ロ > < 同 > < 三 > < 三 >

• Easiest shot for ? is im β_n and easiest shot for ? is $f_{n-1} \circ \alpha_n$. Is this legal?

Projective and Injective Resolutions

- ► Easiest shot for ? is im β_n and easiest shot for ? is $f_{n-1} \circ \alpha_n$. Is this legal?
- ▶ Because f_{n-1} satisifies $\beta_{n-1} \circ f_{n-1} = f_{n-2} \circ \alpha_{n-1}$ we get $\beta_{n-1} \circ f_{n-1} \circ \alpha_n = f_{n-2} \circ \alpha_{n-1} \circ \alpha_n = 0$ and thus im $f_{n-1} \circ \alpha_n \subseteq \ker \beta_{n-1} = \operatorname{im} \beta_n$

- 4 同 1 4 三 1 4 三 1

Proof.

- ► Easiest shot for ? is im β_n and easiest shot for ? is f_{n-1} ∘ α_n. Is this legal?
- ▶ Because f_{n-1} satisifes $\beta_{n-1} \circ f_{n-1} = f_{n-2} \circ \alpha_{n-1}$ we get $\beta_{n-1} \circ f_{n-1} \circ \alpha_n = f_{n-2} \circ \alpha_{n-1} \circ \alpha_n = 0$ and thus im $f_{n-1} \circ \alpha_n \subseteq \ker \beta_{n-1} = \operatorname{im} \beta_n$
- ▶ Projectivity yields desired $f_n: P_n \to N_n$.

< ロ > < 同 > < 三 > < 三 >

Proof.

- ► Easiest shot for ? is im β_n and easiest shot for ? is f_{n-1} α_n. Is this legal?
- ▶ Because f_{n-1} satisifes $\beta_{n-1} \circ f_{n-1} = f_{n-2} \circ \alpha_{n-1}$ we get $\beta_{n-1} \circ f_{n-1} \circ \alpha_n = f_{n-2} \circ \alpha_{n-1} \circ \alpha_n = 0$ and thus im $f_{n-1} \circ \alpha_n \subseteq \ker \beta_{n-1} = \operatorname{im} \beta_n$
- ▶ Projectivity yields desired $f_n: P_n \to N_n$.

Note: In particular, we get from Lemma 12: If $f: M \to N$ is linear and \mathbf{P}_M and \mathbf{Q}_N are deleted projective resolutions for M resp. N, then there is an induced chain map $\mathbf{f}: \mathbf{P}_M \to \mathbf{Q}_N$. We call \mathbf{f} the *chainmap generated by* f.

Generated Chain Maps Induce the same map on Homology

Lemma 13

Let **P** and **Q** be projective resolutions of *M* resp. *N*. If $f: M \to N$ is a homomorphism and $\mathbf{f}, \mathbf{g}: \mathbf{P}_M \to \mathbf{Q}_N$ are chain maps generated by f, then \mathbf{f} and \mathbf{g} are homotopic, i.e. induce the same map between the homologies.

< ロ > < 同 > < 三 > < 三 >

Generated Chain Maps Induce the same map on Homology

Lemma 13

Let **P** and **Q** be projective resolutions of *M* resp. *N*. If $f: M \to N$ is a homomorphism and $\mathbf{f}, \mathbf{g}: \mathbf{P}_M \to \mathbf{Q}_N$ are chain maps generated by f, then \mathbf{f} and \mathbf{g} are homotopic, i.e. induce the same map between the homologies.

Proof.

Again, we want to work inductively to construct family $(\varphi_n \colon P_n \to N_n)_{n \in \mathbb{Z}}$ of homomorphisms such that for all $n \in \mathbb{Z}$

$$f_n - g_n = \beta_{n+1} \circ \varphi_n + \varphi_{n-1} \circ \alpha_n.$$

Because P is positive, $\varphi_n = 0$ for n < 0.

Consider

$$\begin{array}{ccc} & & P_0 & \stackrel{\alpha_0}{\longrightarrow} & M \\ & & & g_0 & & \downarrow_{f_0} \\ & & & & f_0 & & \downarrow_f \\ N_1 & \xrightarrow{& & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & &$$

Because of $\beta_0 \circ g_0 = f \circ \alpha_0 = \beta_0 \circ f_0$ we have

$$\beta_0 \circ (f_0 - g_0) = f \circ (\alpha_0 - \alpha_0) = 0,$$

thus im $f_0 - g_0 \subseteq \ker \beta_0 = \operatorname{im} \beta_1$. Same trick as before yields $\varphi \colon P_0 \to N_1$ with $f_0 - g_0 = \beta_1 \circ \varphi_0$.

▶ Suppose we have $\varphi_0, \ldots, \varphi_{n-1}$. We need $\varphi_n \colon P_n \to N_{n+1}$ such that

$$f_n - g_n = \beta_{n+1} \circ \varphi_n + \varphi_{n-1} \circ \alpha_n$$

▶ Suppose we have $\varphi_0, \ldots, \varphi_{n-1}$. We need $\varphi_n \colon P_n \to N_{n+1}$ such that

$$f_n - g_n = \beta_{n+1} \circ \varphi_n + \varphi_{n-1} \circ \alpha_n$$

For $0 \le k \le n-1$, we know we have

$$f_k - g_k - \beta_{k+1} \circ \varphi_k = \varphi_{k-1} \circ \alpha_k \iff f_k - g_k = \beta_{k+1} \circ \varphi_k + \varphi_{k-1} \circ \alpha_k.$$

▶ Suppose we have $\varphi_0, \ldots, \varphi_{n-1}$. We need $\varphi_n : P_n \to N_{n+1}$ such that

$$f_n - g_n = \beta_{n+1} \circ \varphi_n + \varphi_{n-1} \circ \alpha_n$$

For $0 \le k \le n-1$, we know we have

$$f_k - g_k - \beta_{k+1} \circ \varphi_k = \varphi_{k-1} \circ \alpha_k \iff f_k - g_k = \beta_{k+1} \circ \varphi_k + \varphi_{k-1} \circ \alpha_k.$$

▶ To make use of projectivity, we need

$$P_{n}$$

$$\varphi_{n}$$

$$P_{n}$$

$$P_{n$$

▶ Suppose we have $\varphi_0, \ldots, \varphi_{n-1}$. We need $\varphi_n : P_n \to N_{n+1}$ such that

$$f_n - g_n = \beta_{n+1} \circ \varphi_n + \varphi_{n-1} \circ \alpha_n$$

For $0 \le k \le n-1$, we know we have

$$f_k - g_k - \beta_{k+1} \circ \varphi_k = \varphi_{k-1} \circ \alpha_k \iff f_k - g_k = \beta_{k+1} \circ \varphi_k + \varphi_{k-1} \circ \alpha_k.$$

▶ To make use of projectivity, we need

$$\begin{array}{c}
P_n \\
\varphi_n \\
P_{n+1} \\
\hline
\rho_{n+1} \\
\hline
\end{array}$$

▶ We want to put ? to be im β_{n+1} and need to check, if we can put ? to be $f_n - g_n - \varphi_{n-1} \circ \alpha_n$: $P_n \to N_n$ (because we want $\beta_{n+1} \circ \varphi_n = f_n - g_n - \varphi_{n-1} \circ \alpha_n$)

► We have

$$\begin{split} \beta_n \circ (f_n - g_n \circ \varphi_{n-1} \circ \alpha_n) \\ &= \beta_n \circ f_n - \beta_n \circ g_n - \beta_n \circ \varphi_{n-1} \circ \alpha_n \\ &= f_{n-1} \circ \alpha_n - g_{n-1} \circ \alpha_n - \beta_n \circ \varphi_{n-1} \circ \alpha_n \\ &= (f_{n-1} - g_{n-1} - \beta_n \circ \varphi_{n-1}) \circ \alpha_n \\ &= \varphi_{n-2} \circ \alpha_{n-1} \circ \alpha_n = 0, \end{split}$$

thus $\operatorname{im}(f_n - g_n - \varphi_{n-1} \circ \alpha_n) \subseteq \ker \beta_n = \operatorname{im} \beta_{n+1}$.

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Proof.

► We have

$$\begin{split} \beta_n \circ (f_n - g_n \circ \varphi_{n-1} \circ \alpha_n) \\ &= \beta_n \circ f_n - \beta_n \circ g_n - \beta_n \circ \varphi_{n-1} \circ \alpha_n \\ &= f_{n-1} \circ \alpha_n - g_{n-1} \circ \alpha_n - \beta_n \circ \varphi_{n-1} \circ \alpha_n \\ &= (f_{n-1} - g_{n-1} - \beta_n \circ \varphi_{n-1}) \circ \alpha_n \\ &= \varphi_{n-2} \circ \alpha_{n-1} \circ \alpha_n = 0, \end{split}$$

thus $\operatorname{im}(f_n - g_n - \varphi_{n-1} \circ \alpha_n) \subseteq \ker \beta_n = \operatorname{im} \beta_{n+1}$. Now we are done by induction.

Propsition 14

Let *M* be a module and let **P**, **Q** be projective resolutions of *M*. Then \mathbf{P}_M and \mathbf{Q}_M have the same homotopy type.

< ロ > < 同 > < 三 > < 三 >

Propsition 14

Let *M* be a module and let **P**, **Q** be projective resolutions of *M*. Then \mathbf{P}_M and \mathbf{Q}_M have the same homotopy type.

Proof.

Consider $id_M: M \to M$. This map generates chain maps $f: \mathbf{P}_M \to \mathbf{Q}_M$ and $\mathbf{g}: \mathbf{Q}_M \to \mathbf{P}_M$. By the previous lemma, $\mathbf{g} \circ \mathbf{f} = id_{\mathbf{P}_M}$ and $\mathbf{f} \circ \mathbf{g} = id_{\mathbf{Q}_M}$.