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Projective Modules

Definition 1
Let P be a module. If for every surjective homomorphism
f : M → N and every homomorphism g : P → M there is a
homomorphism h : P → N that renders commutative the diagram

N

P M

fh

g

then P is called projective.

Note: P is projective iff every short exact sequence

0 A B P 0ι π

splits, i.e. there is a homomorphism ϕ : P → B such that
π ◦ ϕ = idP . In this case, B = imϕ⊕ ker π.
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Injective Modules

Codefinition 2
Let M, N and I be modules. If for every injective homomorphism
f : M → N and any homomorphism g : M → I there is a
homomorphism h : N → I rendering commutative the diagram

M N

I

f

g
h

then I is called injective.

Note: I is injective iff every short exact sequence

0 I M N 0

splits.
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Central Fact on Projective Modules

Theorem 3

Every module M is the homomorphic image of a projective module.

Proof.
I Define ϕm : R → M, 1 7→ m and obtain (ϕm : R → M)m∈M

I By universal property of coproduct have commutative diagrams

R M

⊕
m∈M Rm

ι

ϕm

ϕ
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Central Fact on Injective Modules

Cotheorem 4

M can be embedded into an injective module.

No proof, but sketchy sketch:
I Over principal ideal domains, injectivity equals divisibility
I Show that each Z-module embedds into injective Z-module
I Regard arbitrary unital ring R as Z-module and “lift”

statement to R-modules
Let M be module over principal ideal domain R. If for every
r ∈ R − {0} it holds M = rM, then M is called divisible.
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Cochain Complexes

Codefinition 5
Let C = (Mn, αn)n∈Z be a family of modules and linear maps of the
form

C : . . . Mn−1 Mn Mn+1 . . .αn−1 αn

If for all integers n it holds αn+1 ◦ αn = 0, then C is called a
cochain complex. For the integer n, the quotient

Hn(C) = kerαn/ imαn−1

is called the n-th cohomology module of C.

I By “reflection”, make chain complex into cochain complex: For
chain complex M = (Mn, αn)n∈Z put Nn := M−n, βn := α−n
and obtain N = (Nn, αn)n∈Z.
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Deleted (Co)Chain Complexes

Definition 6
Let C be a positive chain complex

C : . . . Mn . . . M0 M 0

Then CM , the so called deleted chain complex, denotes the complex
where M is omitted.

Codefinition 7
Let C be the positive cochain complex

C : 0 M M1 . . . Mn . . .

CM denotes the cochain complex where M is omitted.
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Projective Resolutions

Definition 8
Let P′ = (Pn, αn)n∈N0 be an exact positive chain complex. If all Pn
are projective and if the chain complex

P : . . . Pn . . . P1 P0 M 0αn α1 α0

is exact, then P is called a projective resolution of M. In this case,
PM := P′ is called the deleted projective resolution.

Note: Since

H0(PM) = ker(P0 → 0)/ imα1 = P0/ imα1 = P0/ kerα0 ∼= M

we do not suffer loss of information when deleting M.
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Injective Resolutions

Codefinition 9
Let E′ = (En, αn)n∈N0 be an exact positive cochain complex. If all
En are injective and if the cochain complex

E : 0 M E 0 E 1 E 2 . . .α−1 α0 α1

is exact, then E is called an injective resolution of M and EM := E′
is called the deleted injective resolution.

In the following: Concepts and proofs for chain complexes. Can
be adapted to cochain complexes by “reflection”.
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Existence of Projective Resolutions

Theorem 10
Every module M has a projective resolution.

Cotheorem 11
Every module M has an injective resolution.

Proof.
We want to build fences out of short exact sequences:
I Use Theorem 3 to get a surjection π0 : P0 → M and thus the

short exact sequence

0 ker π0 P0 M 0ι0 π0
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Proof.
I Continue inductively for the emerging kernels and construct

short exact sequences

0 ker πn Pn ker πn−1 0 (n ∈ N)ιn πn

I Bend each short exact sequence into a triangle, weave together
a fence

. . . Pn Pn−1 . . . P1 P0 M 0

ker πn−1 ker π0

0 0 0 0

αn

πn π1

α1 π0

ιn−1 ι0

and put αn := ιn−1 ◦ πn for n ≥ 1, α0 := π0.
I Obtain imαn = kerαn−1 = ker πn−1 for n ≥ 1.
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Section 3

Induced Chain Maps
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Lift to Chain Map

Lemma 12

Let P : . . .→ Pn → . . .→ P0 → M → 0 be a chain complex (with
differentials αn : Pn → Pn−1) such that the Pn are projective and let
Q : . . .→ Nn → . . .→ N0 → N → 0 be an exact chain complex
(with differentials βn : Nn → Nn−1). Then for any module
homomorphism f : M → N there is a chain map f : PM → QN such
that the following diagram commutes:

. . . Pn Pn−1 . . . P0 M 0

. . . Nn Nn−1 . . . N0 N 0

αn

fn

αn−1

fn−1

α1 α0

f0 f

βn βn−1 β1 β0
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Proof.
We want to work inductively and for commutativity we want to use
projectivity.
I In the first step, we stage the use of projectivity:

P0 M 0

N0 N 0

α0

f0 f ◦α0 f

β0β0

I Suppose we have f0, . . . , fn−1. We need fn : Pn → Nn with
βn ◦ fn = fn−1 ◦ αn and for projectivity, we need

Pn

Nn ?
fn

?

βn
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Proof.
I Easiest shot for ? is imβn and easiest shot for ? is fn−1 ◦ αn.

Is this legal?

I Because fn−1 satisifes βn−1 ◦ fn−1 = fn−2 ◦ αn−1 we get
βn−1 ◦ fn−1 ◦ αn = fn−2 ◦ αn−1 ◦ αn = 0 and thus
im fn−1 ◦ αn ⊆ ker βn−1 = imβn

I Projectivity yields desired fn : Pn → Nn.

Note: In particular, we get from Lemma 12: If f : M → N is linear
and PM and QN are deleted projective resolutions for M resp. N,
then there is an induced chain map f : PM → QN . We call f the
chainmap generated by f .
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Generated Chain Maps Induce the same map on Homology

Lemma 13
Let P and Q be projective resolutions of M resp. N. If f : M → N
is a homomorphism and f, g : PM → QN are chain maps generated
by f , then f and g are homotopic, i.e. induce the same map
between the homologies.

Proof.
Again, we want to work inductively to construct family
(ϕn : Pn → Nn)n∈Z of homomorphisms such that for all n ∈ Z

fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn.
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Proof.
Because P is positive, ϕn = 0 for n < 0.
I Consider

P0 M

N1 N0 N

α0

f0g0 f

β1 β0

Because of β0 ◦ g0 = f ◦ α0 = β0 ◦ f0 we have

β0 ◦ (f0 − g0) = f ◦ (α0 − α0) = 0,

thus im f0 − g0 ⊆ ker β0 = imβ1. Same trick as before yields
ϕ : P0 → N1 with f0 − g0 = β1 ◦ ϕ0.
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Proof.
I Suppose we have ϕ0, . . . , ϕn−1. We need ϕn : Pn → Nn+1 such

that
fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn

I For 0 ≤ k ≤ n − 1, we know we have

fk − gk − βk+1 ◦ ϕk = ϕk−1 ◦ αk ⇐⇒ fk − gk = βk+1 ◦ ϕk + ϕk−1 ◦ αk .

I To make use of projectivity, we need

Pn

Nn+1 ?
ϕn

?

βn+1

I We want to put ? to be imβn+1 and need to check, if we can
put ? to be fn − gn − ϕn−1 ◦ αn : Pn → Nn (because we want
βn+1 ◦ ϕn = fn − gn − ϕn−1 ◦ αn)

Projective and Injective Resolutions



Projective and Injective Modules Projective and Injective Resolutions Induced Chain Maps

Proof.
I Suppose we have ϕ0, . . . , ϕn−1. We need ϕn : Pn → Nn+1 such

that
fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn

I For 0 ≤ k ≤ n − 1, we know we have

fk − gk − βk+1 ◦ ϕk = ϕk−1 ◦ αk ⇐⇒ fk − gk = βk+1 ◦ ϕk + ϕk−1 ◦ αk .

I To make use of projectivity, we need

Pn

Nn+1 ?
ϕn

?

βn+1

I We want to put ? to be imβn+1 and need to check, if we can
put ? to be fn − gn − ϕn−1 ◦ αn : Pn → Nn (because we want
βn+1 ◦ ϕn = fn − gn − ϕn−1 ◦ αn)

Projective and Injective Resolutions



Projective and Injective Modules Projective and Injective Resolutions Induced Chain Maps

Proof.
I Suppose we have ϕ0, . . . , ϕn−1. We need ϕn : Pn → Nn+1 such

that
fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn

I For 0 ≤ k ≤ n − 1, we know we have

fk − gk − βk+1 ◦ ϕk = ϕk−1 ◦ αk ⇐⇒ fk − gk = βk+1 ◦ ϕk + ϕk−1 ◦ αk .

I To make use of projectivity, we need

Pn

Nn+1 ?
ϕn

?

βn+1

I We want to put ? to be imβn+1 and need to check, if we can
put ? to be fn − gn − ϕn−1 ◦ αn : Pn → Nn (because we want
βn+1 ◦ ϕn = fn − gn − ϕn−1 ◦ αn)

Projective and Injective Resolutions



Projective and Injective Modules Projective and Injective Resolutions Induced Chain Maps

Proof.
I Suppose we have ϕ0, . . . , ϕn−1. We need ϕn : Pn → Nn+1 such

that
fn − gn = βn+1 ◦ ϕn + ϕn−1 ◦ αn

I For 0 ≤ k ≤ n − 1, we know we have

fk − gk − βk+1 ◦ ϕk = ϕk−1 ◦ αk ⇐⇒ fk − gk = βk+1 ◦ ϕk + ϕk−1 ◦ αk .

I To make use of projectivity, we need

Pn

Nn+1 ?
ϕn

?

βn+1

I We want to put ? to be imβn+1 and need to check, if we can
put ? to be fn − gn − ϕn−1 ◦ αn : Pn → Nn (because we want
βn+1 ◦ ϕn = fn − gn − ϕn−1 ◦ αn)

Projective and Injective Resolutions



Projective and Injective Modules Projective and Injective Resolutions Induced Chain Maps

Proof.
I We have

βn ◦ (fn − gn ◦ ϕn−1 ◦ αn)
= βn ◦ fn − βn ◦ gn − βn ◦ ϕn−1 ◦ αn

= fn−1 ◦ αn − gn−1 ◦ αn − βn ◦ ϕn−1 ◦ αn

= (fn−1 − gn−1 − βn ◦ ϕn−1) ◦ αn

= ϕn−2 ◦ αn−1 ◦ αn = 0,

thus im(fn − gn − ϕn−1 ◦ αn) ⊆ ker βn = imβn+1.

I Now we are done by induction.
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Propsition 14
Let M be a module and let P, Q be projective resolutions of M.
Then PM and QM have the same homotopy type.

Proof.
Consider idM : M → M. This map generates chain maps
f : PM → QM and g : QM → PM . By the previous lemma,
g ◦ f = idPM and f ◦ g = idQM .
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