Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

Examples are Manifold de Rham Cohomology

Friedrich Günther, Eileen Oberringer, Nikolaos Tsakanikas

September 11th 2020

Examples are Manifold de Rham Cohomology

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

Sketching physical origins

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

 Sketching physical origins and seeing natural examples for

Cochain complexes,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

 Sketching physical origins and seeing natural examples for

- Cochain complexes,
- Homology,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

 Sketching physical origins and seeing natural examples for

- Cochain complexes,
- Homology,
- Chain maps,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology

- Sketching physical origins
- and seeing natural examples for
 - Cochain complexes,
 - Homology,
 - Chain maps,
 - Induced Maps on cohomology.

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

Section 1

Physical motivation

æ

≣⇒

< □ > < □ > < □

Examples are Manifold de Rham Cohomology

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology 0000000

▶ Consider negative point charge q located in $0 \in \mathbb{R}^3$

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology 0000000

- ▶ Consider negative point charge q located in $0 \in \mathbb{R}^3$
- ▶ By "experiment", Coulomb verified that *q* excerts the force

$$\mathbf{F}_C = \frac{1}{4\pi\varepsilon_0} q Q \frac{x_0}{\|x_0\|_2^3}$$

on negative point charge Q located at $x_0 \in \mathbb{R}^3 - \{0\}$

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology

- ▶ Consider negative point charge q located in $0 \in \mathbb{R}^3$
- ▶ By "experiment", Coulomb verified that *q* excerts the force

$$\mathbf{F}_C = \frac{1}{4\pi\varepsilon_0} q Q \frac{x_0}{\|x_0\|_2^3}$$

on negative point charge Q located at $x_0 \in \mathbb{R}^3 - \{0\}$ > Using assignment

$$\mathbf{E} \colon \mathbb{R}^3 - \{0\} \longrightarrow \mathbb{R}^3 - \{0\}, \qquad x_0 \longmapsto \frac{1}{4\pi\varepsilon_0} q \frac{x_0}{\|x_0\|_2^3}$$

the force on negative point charge Q at x_0 can be expressed as $Q\mathbf{E}(x_0)$. **E** is eletrical field of point charge q

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology 0000000

 Because of superposition principle (i.e. "linearity of forces") this toy example is useful even for more complicated setups

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

 Because of superposition principle (i.e. "linearity of forces") this toy example is useful even for more complicated setups
 The function

$$\phi \colon \mathbb{R}^3 - \{0\} \longrightarrow \mathbb{R}^3 - \{0\}, \qquad x_0 \longmapsto \frac{1}{4\pi\varepsilon_0} \frac{q_0}{\|x_0\|_2}$$

satisfies $- \operatorname{grad} \phi = \mathbf{E}. \phi$ is called potential for **E**, fields with potentials are called *conservative*

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

 Because of superposition principle (i.e. "linearity of forces") this toy example is useful even for more complicated setups
 The function

$$\phi \colon \mathbb{R}^3 - \{0\} \longrightarrow \mathbb{R}^3 - \{0\}, \qquad x_0 \longmapsto \frac{1}{4\pi\varepsilon_0} \frac{q_0}{\|x_0\|_2}$$

satisfies $- \operatorname{grad} \phi = \mathbf{E}. \phi$ is called potential for **E**, fields with potentials are called *conservative*

Work W (work = force × distance) required to move negative point charge Q along (smooth) path γ throught E is given by

$$W = \int_{\gamma} (Q\mathbf{E}|\,d\mathbf{x}) := Q \int_{a}^{b} (\mathbf{E}(\gamma(t))|\dot{\gamma}(t))\,dt$$

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

▶ Intuition for this formula: For partition a = t₀ < · · · < t_n = b of [a, b], consider

$$\sum_{i=1}^{n} (\mathsf{E}(\gamma(t_{i-1})|\gamma(t_i) - \gamma(t_{i-1})),$$

each summand gives work required to move Q (at constant force) along cycle $\gamma(t_i) - \gamma(t_{i-1})$. Passing to limit gives $\int_{\gamma} (\mathbf{E} | d\mathbf{x})$

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

▶ Intuition for this formula: For partition a = t₀ < · · · < t_n = b of [a, b], consider

$$\sum_{i=1}^{n} (\mathsf{E}(\gamma(t_{i-1})|\gamma(t_i) - \gamma(t_{i-1})),$$

each summand gives work required to move Q (at constant force) along cycle $\gamma(t_i) - \gamma(t_{i-1})$. Passing to limit gives $\int_{\gamma} (\mathbf{E} | d\mathbf{x})$

▶ Think of $(\mathbf{E}(\gamma(t))|\dot{\gamma}(t))$ as part of $\mathbf{E}(\gamma(t))$ tangential γ in t

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

▶ Intuition for this formula: For partition a = t₀ < · · · < t_n = b of [a, b], consider

$$\sum_{i=1}^{n} (\mathsf{E}(\gamma(t_{i-1})|\gamma(t_i) - \gamma(t_{i-1})),$$

each summand gives work required to move Q (at constant force) along cycle $\gamma(t_i) - \gamma(t_{i-1})$. Passing to limit gives $\int_{\gamma} (\mathbf{E} | d\mathbf{x})$

- ▶ Think of $(\mathbf{E}(\gamma(t))|\dot{\gamma}(t))$ as part of $\mathbf{E}(\gamma(t))$ tangential γ in t
- ▶ Because $\mathbf{E} = -\operatorname{grad} \phi$, have

$$(\mathsf{E}(\gamma(t))|\dot{\gamma}(t)) = -(\operatorname{\mathsf{grad}} \phi(\gamma(t))|\dot{\gamma}(t)) = -(\phi \circ \gamma)'(t)$$

i.e. W only depends on start and end point of path γ

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

Ulomb Theory

Natural questions: How to determine if given field is conservative? Classification of conservative/non-conservative fields possible? Construction of potential possible in case field is conservative?

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

Ulomb Theory

- Natural questions: How to determine if given field is conservative? Classification of conservative/non-conservative fields possible? Construction of potential possible in case field is conservative?
- Answers to all questions: Yes

Physical motivation	Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000				

Ulomb Theory

- Natural questions: How to determine if given field is conservative? Classification of conservative/non-conservative fields possible? Construction of potential possible in case field is conservative?
- Answers to all questions: Yes
- In the following will concern with dual concept of differential forms instead of fields, i.e. will be studying Ulomb theory

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000			

Section 2

Basics from Linear Algebra and Analysis

・ロト・雪・・雨を・・雨・ うぐる

Examples are Manifold de Rham Cohomology

Finite-dimensional speciality

Remark 1

For finite-dimensional K-vector space V have

$$\bigwedge^{n} V^{*} \cong \operatorname{Alt}_{K}^{n}(V, K) = \{ \mu \colon V^{n} \to K \text{ alternating, multilinear} \}.$$

Will regard *n*-forms on V^* as *n*-times multilinear forms on V when convenient

(日)

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000			

The Functor " \wedge^{n} "

Lemma 2

Let $n \in \mathbb{N}$, let V and W be finite-dimensional K-vector spaces and let $f \in \text{Hom}_{K}(V, W)$. Have linear map $\bigwedge^{n} f \colon \bigwedge^{n} V \to \bigwedge^{n} W$ such that for all $v_{1}, \ldots, v_{n} \in V$:

$$\bigwedge^n f(v_1 \wedge \cdots \wedge v_n) = f(v_1) \wedge \cdots \wedge f(v_n).$$

Pullback of an *n*-form

Definition 3

In the situation of Lemma 2: Have dual map $f^* \colon W^* \to V^*$, $\psi \mapsto \psi \circ f$ and linear map $\bigwedge^n f^* \colon \bigwedge^n W^* \to \bigwedge^n V^*$ uniquely determined by

$$\bigwedge^n f^*(\psi^1 \wedge \cdots \wedge \psi^n) = f^*(\psi^1) \wedge \cdots \wedge f^*(\psi^n).$$

For *n*-form $\omega \in \bigwedge^n W^*$, $\bigwedge^n f^*(\omega)$ is called *pullback of* ω *along* f.

(日)

Pullback of an *n*-form

Definition 3

In the situation of Lemma 2: Have dual map $f^* \colon W^* \to V^*$, $\psi \mapsto \psi \circ f$ and linear map $\bigwedge^n f^* \colon \bigwedge^n W^* \to \bigwedge^n V^*$ uniquely determined by

$$\bigwedge^n f^*(\psi^1 \wedge \cdots \wedge \psi^n) = f^*(\psi^1) \wedge \cdots \wedge f^*(\psi^n).$$

For *n*-form $\omega \in \bigwedge^n W^*$, $\bigwedge^n f^*(\omega)$ is called *pullback of* ω *along* f.

Note: Often $f^*\omega$ instead of $\bigwedge^n f^*(\omega)$ by abuse of notation.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
000000			

Differentiability for $f : \mathbb{R}^N \to \mathbb{R}$

Let $U \subseteq \mathbb{R}^N$ be open, let $f: U \to \mathbb{R}$ and let $p_0 \in U$.

▶ If there is linear $L: \mathbb{R}^N \to \mathbb{R}$ with

$$\lim_{p \to p_0} \frac{\|f(p) - f(p_0) - L(p_0)(p - p_0)\|}{\|p - p_0\|} = 0,$$

then f is differentiable at p_0 . $df(p_0) := L$ is called *differential* of f at p_0 .

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
000000			

Differentiability for $f : \mathbb{R}^N \to \mathbb{R}$

Let $U \subseteq \mathbb{R}^N$ be open, let $f: U \to \mathbb{R}$ and let $p_0 \in U$.

▶ If there is linear $L: \mathbb{R}^N \to \mathbb{R}$ with

$$\lim_{p \to p_0} \frac{\|f(p) - f(p_0) - L(p_0)(p - p_0)\|}{\|p - p_0\|} = 0,$$

then f is differentiable at p_0 . $df(p_0) := L$ is called *differential* of f at p_0 .

For $v \in \mathbb{R}^N$ the limit (if it exists)

$$D_{v}f(p_{0}) = \lim_{t \to 0} \frac{f(p_{0} + tv) - f(p_{0})}{t}$$

is called *directional derivative of* f *in direction* v *at* p_0 . For $1 \le i \le N$ and $v = e_i$, $\partial_i f(p_0) := D_v f(p_0)$ are called *partial derivatives of* f *at* p_0 .

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
000000			

Differentiability of $f : \mathbb{R}^N \to \mathbb{R}$

▶ If *f* is differentiable at $p_0 \in U$, then for any $v \in \mathbb{R}^N$:

 $D_v f(p_0) = df(p_0)v.$

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
000000			

Differentiability of $f : \mathbb{R}^N \to \mathbb{R}$

▶ If *f* is differentiable at $p_0 \in U$, then for any $v \in \mathbb{R}^N$:

$$D_v f(p_0) = df(p_0) v.$$

► The transformation matrix of $df(p_0)$ w.r.t the canonical basis of \mathbb{R}^N is

$$\left(\frac{\partial f}{\partial x^1}(p_0),\ldots,\frac{\partial f}{\partial x^n}(p_0)\right).$$

Transformation matrix is called the Jacobian.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
00000			

Differentiability of $f : \mathbb{R}^N \to \mathbb{R}$

▶ If *f* is differentiable at $p_0 \in U$, then for any $v \in \mathbb{R}^N$:

$$D_{v}f(p_{0})=df(p_{0})v.$$

▶ The transformation matrix of $df(p_0)$ w.r.t the canonical basis of \mathbb{R}^N is

$$\left(\frac{\partial f}{\partial x^1}(p_0),\ldots,\frac{\partial f}{\partial x^n}(p_0)\right).$$

Transformation matrix is called the Jacobian.

▶ If *f* is differentiable on *U* then

$$\mathit{df} \colon U \longrightarrow (\mathbb{R}^N)^*, \qquad p \longmapsto (\mathit{df})(p)$$

is called Fréchet derivative of f or derivative of f.

Physical motivation	The Spaces ●00	The maps 0000	de Rham Cohomology 0000000

Section 3

The Spaces

æ

≣⇒

・ロト ・回ト ・ ヨト・

Examples are Manifold de Rham Cohomology

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

Definition 4 (Differential Form of Degree n) Let $n \in \mathbb{N}$, let $U \subseteq \mathbb{R}^N$ be open. A map

$$\omega \colon U \longrightarrow \bigwedge^{n} (\mathbb{R}^{N})^{*},$$
$$u \longmapsto \sum_{1 \leq i_{1} < \cdots < i_{n} \leq N} f_{(i_{1}, \dots, i_{n})}(u) \, dx^{i_{1}} \wedge \cdots \wedge dx^{i_{n}},$$

where $f_{(i_1,...,i_n)}$: $U \to \mathbb{R}$, is differential form of degree n on U; briefly *n*-form. Put

$$\Omega^n(U) := \{ \omega \colon U \to \bigwedge^n (\mathbb{R}^N)^* \text{ smooth differential form} \}.$$

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

Definition 4 (Differential Form of Degree n) Let $n \in \mathbb{N}$, let $U \subseteq \mathbb{R}^N$ be open. A map

$$\omega \colon U \longrightarrow \bigwedge^{n} (\mathbb{R}^{N})^{*},$$
$$u \longmapsto \sum_{1 \leq i_{1} < \cdots < i_{n} \leq N} f_{(i_{1}, \dots, i_{n})}(u) \, dx^{i_{1}} \wedge \cdots \wedge dx^{i_{n}},$$

where $f_{(i_1,...,i_n)}$: $U \to \mathbb{R}$, is differential form of degree n on U; briefly *n*-form. Put

$$\Omega^n(U) := \{ \omega \colon U \to \bigwedge^n (\mathbb{R}^N)^* \text{ smooth differential form} \}.$$

Note:

•
$$\Omega^n(U)$$
 is free $C^{\infty}(U)$ -module of dimension $\binom{N}{n}$,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

Definition 4 (Differential Form of Degree n) Let $n \in \mathbb{N}$, let $U \subseteq \mathbb{R}^N$ be open. A map

$$\omega \colon U \longrightarrow \bigwedge^{n} (\mathbb{R}^{N})^{*},$$
$$u \longmapsto \sum_{1 \leq i_{1} < \cdots < i_{n} \leq N} f_{(i_{1}, \dots, i_{n})}(u) \, dx^{i_{1}} \wedge \cdots \wedge dx^{i_{n}},$$

where $f_{(i_1,...,i_n)}$: $U \to \mathbb{R}$, is differential form of degree n on U; briefly *n*-form. Put

$$\Omega^n(U) := \{ \omega \colon U \to \bigwedge^n (\mathbb{R}^N)^* \text{ smooth differential form} \}.$$

Note:

•
$$\Omega^n(U)$$
 is free $C^{\infty}(U)$ -module of dimension $\binom{N}{n}$,
• $\Omega^0(U) = C^{\infty}(U)$.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

"∧" is associative,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

"∧" is associative,

"∧" is distributive,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

• "
$$\wedge$$
" is $C^{\infty}(U)$ -bilinear,

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

- "∧" is associative,
- "∧" is distributive,
- " \wedge " is $C^{\infty}(U)$ -bilinear,
- " \wedge " is anticommutative, i.e. for $\omega \in \Omega^n(U), \eta \in \Omega^m(U)$: $\omega \wedge \eta = (-1)^{nm} \eta \wedge \omega.$

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
	000		

$$\omega \wedge \eta \colon U \longrightarrow \bigwedge^{n+m} (\mathbb{R}^N)^*, \qquad u \longmapsto \omega(u) \wedge \eta(u)$$

is called wedge product of ω and η .

"∧" is associative,

- "∧" is distributive,
- " \wedge " is $C^{\infty}(U)$ -bilinear,
- " \wedge " is anticommutative, i.e. for $\omega \in \Omega^n(U), \eta \in \Omega^m(U)$: $\omega \wedge \eta = (-1)^{nm} \eta \wedge \omega.$

 $\Omega(U) := \bigoplus_{n=0}^{\infty} \Omega^n(U)$ together with " \wedge " is a graded algebra.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
		0000	

Section 4

The maps

æ

< □ > < □ > < □

Examples are Manifold de Rham Cohomology

Fréchet Derivative Reinterpreted

Remark 6

Let $U \subseteq \mathbb{R}^N$ be open, let $f \in C^{\infty}(U)$. The derivative df of f is 1-form on U and w.r.t. the canonical basis of \mathbb{R}^N :

$$df(p) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) dx^{i}.$$

(日)

Fréchet Derivative Reinterpreted

Remark 6

Let $U \subseteq \mathbb{R}^N$ be open, let $f \in C^{\infty}(U)$. The derivative df of f is 1-form on U and w.r.t. the canonical basis of \mathbb{R}^N :

$$df(p) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) dx^{i}.$$

Rephrasing: Have a map

$$d: \Omega^0(U) \longrightarrow \Omega^1(U), \qquad f \longmapsto df.$$

▲ 同 ▶ ▲ 三 ▶ ▲

In the following: Generalise this to arbitrary forms.

Fréchet Derivative Reinterpreted

Remark 6

Let $U \subseteq \mathbb{R}^N$ be open, let $f \in C^{\infty}(U)$. The derivative df of f is 1-form on U and w.r.t. the canonical basis of \mathbb{R}^N :

$$df(p) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(p) dx^{i}.$$

Rephrasing: Have a map

$$d: \Omega^0(U) \longrightarrow \Omega^1(U), \qquad f \longmapsto df.$$

In the following: Generalise this to arbitrary forms.

Note: The Fréchet derivative of $\operatorname{pr}_i \colon \mathbb{R}^N \to \mathbb{R}$, $(x^1, \ldots, x^N)^t \mapsto x^i$ is $d\operatorname{pr}_i = \sum_{j=1}^N \delta_{ij} \varepsilon^j = \varepsilon^i$, hence $dx^i \coloneqq \varepsilon^i$.

	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 7

Let
$$U \subseteq \mathbb{R}^N$$
 be open and let $n \in \mathbb{N}$. For
 $\omega = \sum_{1 \leq i_1 < \dots < i_n \leq N} f_{(i_1,\dots,i_n)} dx^{i_1} \wedge \dots \wedge dx^{i_n} \in \Omega^n(U)$,

$$d\omega := \sum_{1 \le i_1 < \cdots < i_n \le N} \left(\sum_{j=1}^N \frac{\partial f_{(i_1, \dots, i_n)}}{\partial x^j} \, dx^j \right) \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_n}$$

is called *exterior derivative of* ω .

	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 7

Let
$$U \subseteq \mathbb{R}^N$$
 be open and let $n \in \mathbb{N}$. For
 $\omega = \sum_{1 \leq i_1 < \dots < i_n \leq N} f_{(i_1,\dots,i_n)} dx^{i_1} \wedge \dots \wedge dx^{i_n} \in \Omega^n(U)$,

$$d\omega := \sum_{1 \le i_1 < \cdots < i_n \le N} \left(\sum_{j=1}^N \frac{\partial f_{(i_1, \dots, i_n)}}{\partial x^j} \, dx^j \right) \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_n}$$

is called exterior derivative of ω .

 Definition of exterior derivative does not depend on choice of coordinates

	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 7

Let
$$U \subseteq \mathbb{R}^N$$
 be open and let $n \in \mathbb{N}$. For
 $\omega = \sum_{1 \leq i_1 < \dots < i_n \leq N} f_{(i_1,\dots,i_n)} dx^{i_1} \wedge \dots \wedge dx^{i_n} \in \Omega^n(U)$,

$$d\omega := \sum_{1 \le i_1 < \cdots < i_n \le N} \left(\sum_{j=1}^N \frac{\partial f_{(i_1, \dots, i_n)}}{\partial x^j} \, dx^j \right) \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_n}$$

is called exterior derivative of ω .

- Definition of exterior derivative does not depend on choice of coordinates
- Exterior derivative is linear

	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 7

Let
$$U \subseteq \mathbb{R}^N$$
 be open and let $n \in \mathbb{N}$. For
 $\omega = \sum_{1 \leq i_1 < \dots < i_n \leq N} f_{(i_1,\dots,i_n)} dx^{i_1} \wedge \dots \wedge dx^{i_n} \in \Omega^n(U)$,

$$d\omega := \sum_{1 \le i_1 < \cdots < i_n \le N} \left(\sum_{j=1}^N \frac{\partial f_{(i_1, \dots, i_n)}}{\partial x^j} \, dx^j \right) \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_n}$$

is called exterior derivative of ω .

- Definition of exterior derivative does not depend on choice of coordinates
- Exterior derivative is linear
- ► $d \circ d = 0$, i.e. d is differential for a certain cochain complex

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 8

Let $U \subseteq \mathbb{R}^N$, $V \subseteq \mathbb{R}^M$ be open, let $\varphi \colon U \to V$ be smooth and let $\omega \in \Omega^n(V)$. Then,

$$(\varphi^*\omega)\colon U \longrightarrow \bigwedge^n (\mathbb{R}^N)^*, u \longmapsto [(v_1, \ldots, v_n) \mapsto \omega(\varphi(u))[(D\varphi)(u)(v_1), \ldots, (D\varphi)(u)(v_n)]]$$

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
		0000	

Definition 8

Let $U \subseteq \mathbb{R}^N$, $V \subseteq \mathbb{R}^M$ be open, let $\varphi \colon U \to V$ be smooth and let $\omega \in \Omega^n(V)$. Then,

$$(\varphi^*\omega)\colon U \longrightarrow \bigwedge^n (\mathbb{R}^N)^*, \\ u \longmapsto [(v_1, \ldots, v_n) \mapsto \omega(\varphi(u))[(D\varphi)(u)(v_1), \ldots, (D\varphi)(u)(v_n)]]$$

$$\triangleright \ \varphi^*(\omega + \eta) = \varphi^*(\omega) + \varphi^*(\eta),$$

Definition 8

Let $U \subseteq \mathbb{R}^N$, $V \subseteq \mathbb{R}^M$ be open, let $\varphi \colon U \to V$ be smooth and let $\omega \in \Omega^n(V)$. Then,

$$(\varphi^*\omega)\colon U \longrightarrow \bigwedge^n (\mathbb{R}^N)^*, \\ u \longmapsto [(v_1, \ldots, v_n) \mapsto \omega(\varphi(u))[(D\varphi)(u)(v_1), \ldots, (D\varphi)(u)(v_n)]]$$

• 同 • • 三 • •

$$\varphi^*(\omega + \eta) = \varphi^*(\omega) + \varphi^*(\eta),$$

$$\varphi^*(\omega \wedge \eta) = \varphi^*(\omega) \wedge \varphi^*(\eta),$$

Definition 8

Let $U \subseteq \mathbb{R}^N$, $V \subseteq \mathbb{R}^M$ be open, let $\varphi \colon U \to V$ be smooth and let $\omega \in \Omega^n(V)$. Then,

$$\begin{aligned} (\varphi^*\omega)\colon U &\longrightarrow \bigwedge^n (\mathbb{R}^N)^*, \\ u &\longmapsto [(v_1,\ldots,v_n) \mapsto \omega(\varphi(u))[(D\varphi)(u)(v_1),\ldots,(D\varphi)(u)(v_n)]] \end{aligned}$$

• 同 • • 三 • •

•
$$\varphi^*(\omega + \eta) = \varphi^*(\omega) + \varphi^*(\eta),$$

• $\varphi^*(\omega \wedge \eta) = \varphi^*(\omega) \wedge \varphi^*(\eta),$
• $\varphi^*(d\omega) = d\varphi^*(\omega).$

	The Spaces	The maps	de Rham Cohomology
			●000000

Section 5

de Rham Cohomology

æ

≣⇒

< □ > < □ > < □

Examples are Manifold de Rham Cohomology

Definition de Rham Cohomology

Definition 9

Let $U \subseteq \mathbb{R}^N$ be open. Have the cochain complex

$$0 \longrightarrow \Omega^{0}(U) \stackrel{d^{0}}{\longrightarrow} \Omega^{1}(U) \stackrel{d^{1}}{\longrightarrow} \dots \stackrel{d^{N-1}}{\longrightarrow} \Omega^{N}(U) \longrightarrow 0$$

Put $H^n(U) := \ker d^n / \operatorname{im} d^{n-1}$, the *n*-th de Rham cohomology of U, and put $H^{\bullet}(U) := \bigoplus_{n=0}^{N} H^n(U)$, the de Rham Cohomology of U.

| 4 同 ト 4 ヨ ト 4 ヨ ト

Definition de Rham Cohomology

Definition 9

Let $U \subseteq \mathbb{R}^N$ be open. Have the cochain complex

$$0 \longrightarrow \Omega^{0}(U) \stackrel{d^{0}}{\longrightarrow} \Omega^{1}(U) \stackrel{d^{1}}{\longrightarrow} \dots \stackrel{d^{N-1}}{\longrightarrow} \Omega^{N}(U) \longrightarrow 0$$

Put $H^n(U) := \ker d^n / \operatorname{im} d^{n-1}$, the *n*-th de Rham cohomology of U, and put $H^{\bullet}(U) := \bigoplus_{n=0}^{N} H^n(U)$, the de Rham Cohomology of U.

Note: Let $[\omega] \in H^n(U)$, $[\eta] \in H^m(U)$. Then

$$[\omega] \wedge [\eta] := [\omega \wedge \eta] \in H^{n+m}(U)$$

is well-defined making $H^{\bullet}(U)$ a graded algebra.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
			000000

Pullback as Chain Map

Example 10

Let $U, V \subseteq \mathbb{R}^N$ be open and let $\varphi \colon U \to V$ be smooth. For each *n*, obtain $\varphi^* \colon \Omega^n(V) \to \Omega^n(U)$ and the diagram

Because of $\varphi^*(d\omega) = d\varphi^*\omega$, the pullback is a chain map. Also get induced map $\varphi^* \colon H^n(V) \to H^n(U), \ [\omega] \mapsto [\varphi^*\omega].$

< ロ > < 同 > < 三 > < 三 >

	The Spaces	The maps	de Rham Cohomology
			0000000

Hands on Pullback

Example 11

• Consider $\omega \in \Omega^1(U)$ (and fix ω in the following) with

$$\omega(x,y) = \frac{x}{x^2 + y^2} \, dy - \frac{y}{x^2 + y^2} \, dx \, .$$

(Of interest for differential geometry, "winding form")

Hands on Pullback

Example 11

• Consider $\omega \in \Omega^1(U)$ (and fix ω in the following) with

$$\omega(x,y) = \frac{x}{x^2 + y^2} \, dy - \frac{y}{x^2 + y^2} \, dx \, .$$

(Of interest for differential geometry, "winding form")
► This form is closed (i.e. dω = 0):

$$d\omega(x,y) = rac{y^2 - x^2}{(x^2 + y^2)^2} \, dx \wedge dy - rac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \wedge dx = 0$$

Hands on Pullback

Example 11

• Consider $\omega \in \Omega^1(U)$ (and fix ω in the following) with

$$\omega(x,y) = \frac{x}{x^2 + y^2} \, dy - \frac{y}{x^2 + y^2} \, dx \, .$$

(Of interest for differential geometry, "winding form")
► This form is closed (i.e. dω = 0):

$$d\omega(x,y) = rac{y^2 - x^2}{(x^2 + y^2)^2} \, dx \wedge dy - rac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \wedge dx = 0$$

▶ Is ω exact? No, but how do we see this?

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
			0000000

▶ **Reminder:** For $\eta \in \Omega^1(U)$ and $\gamma : [a, b] \to U$,

$$\int_{\gamma} \eta := \int_{a}^{b} \gamma^{*} \eta(t) \, dt = \int_{a}^{b} \langle \eta(\gamma(t)), \gamma'(t) \rangle \, dt$$

is called *line integral of* η *along* γ .

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
			0000000

▶ **Reminder:** For $\eta \in \Omega^1(U)$ and $\gamma : [a, b] \to U$,

$$\int_{\gamma} \eta := \int_{a}^{b} \gamma^{*} \eta(t) \, dt = \int_{a}^{b} \langle \eta(\gamma(t)), \gamma'(t) \rangle \, dt$$

is called *line integral of* η *along* γ .

▶ Fact: If $\eta = df$ for some $f \in \Omega^0(U)$, then

$$\int_{\gamma} df = \int_{a}^{b} \gamma^{*}(df)$$
$$= \int_{a}^{b} d(\gamma^{*}f) = \int_{a}^{b} (f \circ \gamma)'(t) dt = f(\gamma(b)) - f(\gamma(a))$$

In particular, for closed paths γ it holds $\int_{\gamma} df = 0$.

Basics from Linear Algebra and Analysis	The Spaces	The maps	de Rham Cohomology
			0000000

▶ For pullback of 1-form, we need to understand two things:

$$\gamma^* f := f \circ \gamma, \qquad \gamma^* dx^i = d(\gamma^* \circ \mathrm{pr}_i) = d(\mathrm{pr}_i \circ \gamma) = d\gamma^i$$

	The Spaces	The maps	de Rham Cohomology
			0000000

▶ For pullback of 1-form, we need to understand two things:

$$\gamma^* f := f \circ \gamma, \qquad \gamma^* dx^i = d(\gamma^* \circ \mathrm{pr}_i) = d(\mathrm{pr}_i \circ \gamma) = d\gamma^i$$

▶ For $\gamma : [0, 2\pi] \to \mathbb{R}^2 - \{0\}$, $t \mapsto (\cos(t), \sin(t))^\top$ and ω have

$$\gamma^* dx = d\gamma^1 = -\sin t \, dt, \qquad \gamma^* dy = d\gamma^2 = \cos t \, dt,$$

$$\gamma^* \omega = \cos(t) \, \gamma^*(dy) - \sin(t) \, \gamma^*(dx) = dt \, .$$

	The Spaces	The maps	de Rham Cohomology
			0000000

▶ For pullback of 1-form, we need to understand two things:

$$\gamma^* f := f \circ \gamma, \qquad \gamma^* dx^i = d(\gamma^* \circ \mathrm{pr}_i) = d(\mathrm{pr}_i \circ \gamma) = d\gamma^i$$

• For $\gamma : [0, 2\pi] \to \mathbb{R}^2 - \{0\}$, $t \mapsto (\cos(t), \sin(t))^{\top}$ and ω have

$$\gamma^* dx = d\gamma^1 = -\sin t \, dt, \qquad \gamma^* dy = d\gamma^2 = \cos t \, dt,$$

 $\gamma^* \omega = \cos(t) \gamma^* (dy) - \sin(t) \gamma^* (dx) = dt.$

Alternatively,

$$egin{aligned} &\langle \omega(\gamma(t)),\gamma'(t)
angle &= \cos(t)\langle dy,-\sin(t)e_x+\cos(t)e_y
angle \ &-\sin(t)\langle dx,-\sin(t)e_x+\cos(t)e_y
angle &= 1. \end{aligned}$$

	The Spaces	The maps	de Rham Cohomology
			0000000

▶ For pullback of 1-form, we need to understand two things:

$$\gamma^* f := f \circ \gamma, \qquad \gamma^* dx^i = d(\gamma^* \circ \mathrm{pr}_i) = d(\mathrm{pr}_i \circ \gamma) = d\gamma^i$$

• For $\gamma : [0, 2\pi] \to \mathbb{R}^2 - \{0\}$, $t \mapsto (\cos(t), \sin(t))^{\top}$ and ω have

$$\gamma^* dx = d\gamma^1 = -\sin t \, dt, \qquad \gamma^* dy = d\gamma^2 = \cos t \, dt,$$

 $\gamma^* \omega = \cos(t) \gamma^* (dy) - \sin(t) \gamma^* (dx) = dt.$

Alternatively,

$$egin{aligned} &\langle \omega(\gamma(t)),\gamma'(t)
angle &= \cos(t)\langle dy,-\sin(t)e_x+\cos(t)e_y
angle \ &-\sin(t)\langle dx,-\sin(t)e_x+\cos(t)e_y
angle &= 1. \end{aligned}$$

• Get $\int_{\gamma} \omega = \int_{0}^{2\pi} dt = 2\pi \neq 0$, i.e. ω can't be exact.

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology 000000●

Conclusion

▶ In general, the form

$$\omega = \frac{1}{\|x\|^N} \sum_{i=1}^N (-1)^{i-1} x_i \, dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^N$$

is closed but not exact

문▶ 문

Physical motivation	The Spaces	The maps 0000	de Rham Cohomology

Conclusion

▶ In general, the form

$$\omega = \frac{1}{\|x\|^N} \sum_{i=1}^N (-1)^{i-1} x_i \, dx^1 \wedge \cdots \wedge \widehat{dx^i} \wedge \cdots \wedge dx^N$$

is closed but not exact

► It can be shown that the non-trivial cohomology spaces of ℝ^N - {0} are

$$H^0(\mathbb{R}^N - \{0\}) = \mathbb{R}, \qquad H^{N-1}(\mathbb{R}^N - \{0\}) = \mathbb{R}\omega \cong \mathbb{R}$$