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Aims of this Talk

I Sketching physical origins

and seeing natural examples for
I Cochain complexes,
I Homology,
I Chain maps,
I Induced Maps on cohomology.
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Section 1

Physical motivation
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Coulomb Theory

I Consider negative point charge q located in 0 ∈ R3

I By “experiment”, Coulomb verified that q excerts the force

FC = 1
4πε0

qQ x0
‖x0‖32

on negative point charge Q located at x0 ∈ R3 − {0}
I Using assignment

E : R3 − {0} −→ R3 − {0}, x0 7−→
1

4πε0
q x0
‖x0‖32

the force on negative point charge Q at x0 can be expressed as
QE(x0). E is eletrical field of point charge q
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Coulomb Theory

I Because of superposition principle (i.e. “linearity of forces”)
this toy example is useful even for more complicated setups

I The function

φ : R3 − {0} −→ R3 − {0}, x0 7−→
1

4πε0

q0
‖x0‖2

satisfies − gradφ = E. φ is called potential for E, fields with
potentials are called conservative

I Work W (work = force × distance) required to move negative
point charge Q along (smooth) path γ throught E is given by

W =
∫
γ

(QE| dx) := Q
∫ b

a
(E(γ(t))|γ̇(t)) dt

Examples are Manifold de Rham Cohomology
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I Intuition for this formula: For partition a = t0 < · · · < tn = b
of [a, b], consider

n∑
i=1

(E(γ(ti−1)|γ(ti )− γ(ti−1)),

each summand gives work required to move Q (at constant
force) along cycle γ(ti )− γ(ti−1). Passing to limit gives∫
γ(E| dx)

I Think of (E(γ(t))|γ̇(t)) as part of E(γ(t)) tangential γ in t
I Because E = − gradφ, have

(E(γ(t))|γ̇(t)) = −(gradφ(γ(t))|γ̇(t)) = −(φ ◦ γ)′(t)

i.e. W only depends on start and end point of path γ

Examples are Manifold de Rham Cohomology
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Ulomb Theory

I Natural questions: How to determine if given field is
conservative? Classification of conservative/non-conservative
fields possible? Construction of potential possible in case field
is conservative?

I Answers to all questions: Yes
I In the following will concern with dual concept of differential

forms instead of fields, i.e. will be studying Ulomb theory
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Section 2

Basics from Linear Algebra and Analysis
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Finite-dimensional speciality

Remark 1
For finite-dimensional K -vector space V have

n∧
V ∗ ∼= Altn

K (V ,K ) = {µ : V n → K alternating, multilinear}.

Will regard n-forms on V ∗ as n-times multilinear forms on V when
convenient

Examples are Manifold de Rham Cohomology
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The Functor “∧n”

Lemma 2

Let n ∈ N, let V and W be finite-dimensional K-vector spaces and
let f ∈ HomK (V ,W ) . Have linear map

∧n f :
∧n V →

∧n W such
that for all v1, . . . , vn ∈ V :

n∧
f (v1 ∧ · · · ∧ vn) = f (v1) ∧ · · · ∧ f (vn).

Examples are Manifold de Rham Cohomology



Physical motivation Basics from Linear Algebra and Analysis The Spaces The maps de Rham Cohomology

Pullback of an n-form

Definition 3
In the situation of Lemma 2: Have dual map f ∗ : W ∗ → V ∗,
ψ 7→ ψ ◦ f and linear map

∧n f ∗ :
∧n W ∗ →

∧n V ∗ uniquely
determined by

n∧
f ∗(ψ1 ∧ · · · ∧ ψn) = f ∗(ψ1) ∧ · · · ∧ f ∗(ψn).

For n-form ω ∈
∧n W ∗,

∧n f ∗(ω) is called pullback of ω along f .

Note: Often f ∗ω instead of
∧n f ∗(ω) by abuse of notation.

Examples are Manifold de Rham Cohomology
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Differentiability for f : RN → R

Let U ⊆ RN be open, let f : U → R and let p0 ∈ U.
I If there is linear L : RN → R with

lim
p→p0

‖f (p)− f (p0)− L(p0)(p − p0)‖
‖p − p0‖

= 0,

then f is differentiable at p0. df (p0) := L is called differential
of f at p0.

I For v ∈ RN the limit (if it exists)

Dv f (p0) = lim
t→0

f (p0 + tv)− f (p0)
t

is called directional derivative of f in direction v at p0. For
1 ≤ i ≤ N and v = ei , ∂i f (p0) := Dv f (p0) are called partial
derivatives of f at p0.

Examples are Manifold de Rham Cohomology
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Differentiability of f : RN → R

I If f is differentiable at p0 ∈ U, then for any v ∈ RN :

Dv f (p0) = df (p0)v .

I The transformation matrix of df (p0) w.r.t the canonical basis
of RN is (

∂f
∂x1 (p0), . . . , ∂f

∂xn (p0)
)
.

Transformation matrix is called the Jacobian.
I If f is differentiable on U then

df : U −→ (RN)∗, p 7−→ (df )(p)

is called Fréchet derivative of f or derivative of f .

Examples are Manifold de Rham Cohomology
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Section 3

The Spaces
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Definition 4 (Differential Form of Degree n)
Let n ∈ N, let U ⊆ RN be open. A map

ω : U −→
n∧

(RN)∗,

u 7−→
∑

1≤i1<···<in≤N
f(i1,...,in)(u) dx i1 ∧ · · · ∧ dx in ,

where f(i1,...,in) : U → R, is differential form of degree n on U; briefly
n-form. Put

Ωn(U) := {ω : U →
n∧

(RN)∗ smooth differential form}.

Note:
I Ωn(U) is free C∞(U)-module of dimension

(N
n
)
,

I Ω0(U) = C∞(U).

Examples are Manifold de Rham Cohomology
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Definition 5 (Wedge Product for Differential Forms)
Let U ⊆ RN be open, let n,m ∈ N and let ω ∈ Ωn(U), η ∈ Ωm(U).

ω ∧ η : U −→
n+m∧

(RN)∗, u 7−→ ω(u) ∧ η(u)

is called wedge product of ω and η.

I “∧” is associative,
I “∧” is distributive,
I “∧” is C∞(U)-bilinear,
I “∧” is anticommutative, i.e. for ω ∈ Ωn(U), η ∈ Ωm(U):
ω ∧ η = (−1)nmη ∧ ω.

Ω(U) :=
⊕∞

n=0 Ωn(U) together with “∧” is a graded algebra.

Examples are Manifold de Rham Cohomology
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Section 4

The maps
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Fréchet Derivative Reinterpreted

Remark 6
Let U ⊆ RN be open, let f ∈ C∞(U). The derivative df of f is
1-form on U and w.r.t. the canonical basis of RN :

df (p) =
n∑

i=1

∂f
∂x i (p) dx i .

Rephrasing: Have a map

d : Ω0(U) −→ Ω1(U), f 7−→ df .

In the following: Generalise this to arbitrary forms.

Note: The Fréchet derivative of pri : RN → R, (x1, . . . , xN)t 7→ x i

is dpri =
∑N

j=1 δijε
j = εi , hence dx i := εi .

Examples are Manifold de Rham Cohomology



Physical motivation Basics from Linear Algebra and Analysis The Spaces The maps de Rham Cohomology

Fréchet Derivative Reinterpreted

Remark 6
Let U ⊆ RN be open, let f ∈ C∞(U). The derivative df of f is
1-form on U and w.r.t. the canonical basis of RN :

df (p) =
n∑

i=1

∂f
∂x i (p) dx i .

Rephrasing: Have a map

d : Ω0(U) −→ Ω1(U), f 7−→ df .

In the following: Generalise this to arbitrary forms.

Note: The Fréchet derivative of pri : RN → R, (x1, . . . , xN)t 7→ x i

is dpri =
∑N

j=1 δijε
j = εi , hence dx i := εi .

Examples are Manifold de Rham Cohomology



Physical motivation Basics from Linear Algebra and Analysis The Spaces The maps de Rham Cohomology

Fréchet Derivative Reinterpreted

Remark 6
Let U ⊆ RN be open, let f ∈ C∞(U). The derivative df of f is
1-form on U and w.r.t. the canonical basis of RN :

df (p) =
n∑

i=1

∂f
∂x i (p) dx i .

Rephrasing: Have a map

d : Ω0(U) −→ Ω1(U), f 7−→ df .

In the following: Generalise this to arbitrary forms.

Note: The Fréchet derivative of pri : RN → R, (x1, . . . , xN)t 7→ x i

is dpri =
∑N

j=1 δijε
j = εi , hence dx i := εi .

Examples are Manifold de Rham Cohomology



Physical motivation Basics from Linear Algebra and Analysis The Spaces The maps de Rham Cohomology

Exterior Derivative

Definition 7
Let U ⊆ RN be open and let n ∈ N. For
ω =

∑
1≤i1<···<in≤N f(i1,...,in) dx i1 ∧ · · · ∧ dx in ∈ Ωn(U),

dω :=
∑

1≤i1<···<in≤N

( N∑
j=1

∂f(i1,...,in)
∂x j dx j

)
∧ dx i1 ∧ · · · ∧ dx in

is called exterior derivative of ω.

I Definition of exterior derivative does not depend on choice of
coordinates

I Exterior derivative is linear
I d ◦ d = 0, i.e. d is differential for a certain cochain complex

Examples are Manifold de Rham Cohomology
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I d ◦ d = 0, i.e. d is differential for a certain cochain complex

Examples are Manifold de Rham Cohomology
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Pullback of Differential Form

Definition 8
Let U ⊆ RN , V ⊆ RM be open, let ϕ : U → V be smooth and let
ω ∈ Ωn(V ). Then,

(ϕ∗ω) : U −→
n∧

(RN)∗,
u 7−→

[
(v1, . . . , vn) 7→ ω(ϕ(u))[(Dϕ)(u)(v1), . . . , (Dϕ)(u)(vn)]

]
is called pullback of ω along ϕ.

I ϕ∗(ω + η) = ϕ∗(ω) + ϕ∗(η),
I ϕ∗(ω ∧ η) = ϕ∗(ω) ∧ ϕ∗(η),
I ϕ∗(dω) = dϕ∗(ω).

Examples are Manifold de Rham Cohomology
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Section 5

de Rham Cohomology

Examples are Manifold de Rham Cohomology
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Definition de Rham Cohomology

Definition 9
Let U ⊆ RN be open. Have the cochain complex

0 Ω0(U) Ω1(U) . . . ΩN(U) 0d0 d1 dN−1

Put Hn(U) := ker dn/ im dn−1, the n-th de Rham cohomology of U,
and put H•(U) :=

⊕N
n=0 Hn(U), the de Rham Cohomology of U.

Note: Let [ω] ∈ Hn(U), [η] ∈ Hm(U). Then

[ω] ∧ [η] := [ω ∧ η] ∈ Hn+m(U)

is well-defined making H•(U) a graded algebra.

Examples are Manifold de Rham Cohomology
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Pullback as Chain Map

Example 10
Let U,V ⊆ RN be open and let ϕ : U → V be smooth. For each n,
obtain ϕ∗ : Ωn(V )→ Ωn(U) and the diagram

0 Ω0(V ) Ω1(V ) . . . ΩN(V ) 0

0 Ω0(U) Ω1(U) . . . ΩN(U) 0

d

ϕ∗

d

ϕ∗

d

ϕ∗

d d d

Because of ϕ∗(dω) = dϕ∗ω, the pullback is a chain map. Also get
induced map ϕ∗ : Hn(V )→ Hn(U), [ω] 7→ [ϕ∗ω].

Examples are Manifold de Rham Cohomology
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Hands on Pullback

Example 11
I Consider ω ∈ Ω1(U) (and fix ω in the following) with

ω(x , y) = x
x2 + y2 dy − y

x2 + y2 dx .

(Of interest for differential geometry, “winding form”)

I This form is closed (i.e. dω = 0):

dω(x , y) = y2 − x2

(x2 + y2)2 dx ∧ dy − x2 − y2

(x2 + y2)2 dy ∧ dx = 0

I Is ω exact? No, but how do we see this?

Examples are Manifold de Rham Cohomology
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Example 11 (Continuation)
I Reminder: For η ∈ Ω1(U) and γ : [a, b]→ U,∫

γ
η :=

∫ b

a
γ∗η(t) dt =

∫ b

a
〈η(γ(t)), γ′(t)〉 dt

is called line integral of η along γ.

I Fact: If η = df for some f ∈ Ω0(U), then∫
γ
df =

∫ b

a
γ∗(df )

=
∫ b

a
d(γ∗f ) =

∫ b

a
(f ◦ γ)′(t) dt = f (γ(b))− f (γ(a))

In particular, for closed paths γ it holds
∫
γ df = 0.

Examples are Manifold de Rham Cohomology
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Example 11 (Continuation)
I For pullback of 1-form, we need to understand two things:

γ∗f := f ◦ γ, γ∗ dx i = d(γ∗ ◦ pri ) = d(pri ◦γ) = dγ i

I For γ : [0, 2π]→ R2 − {0}, t 7→ (cos(t), sin(t))> and ω have

γ∗ dx = dγ1 = − sin t dt, γ∗ dy = dγ2 = cos t dt,
γ∗ω = cos(t) γ∗(dy)− sin(t) γ∗(dx) = dt .

I Alternatively,

〈ω(γ(t)), γ′(t)〉 = cos(t)〈dy ,− sin(t)ex + cos(t)ey 〉
− sin(t)〈dx ,− sin(t)ex + cos(t)ey 〉 = 1.

I Get
∫
γ ω =

∫ 2π
0 dt = 2π 6= 0, i.e. ω can’t be exact.

Examples are Manifold de Rham Cohomology
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Conclusion

I In general, the form

ω = 1
‖x‖N

N∑
i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂x i ∧ · · · ∧ dxN

is closed but not exact

I It can be shown that the non-trivial cohomology spaces of
RN − {0} are

H0(RN − {0}) = R, HN−1(RN − {0}) = Rω ∼= R

Examples are Manifold de Rham Cohomology
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