

Proseminar Geometrische Strukturen

Endliche Gruppen

Lars Lauer

Universität des Saarlandes - Jan. 26, 2021

• Beispiele endlicher Gruppen

• Beispiele endlicher Gruppen

• Sylow-Sätze

• Beispiele endlicher Gruppen

• Sylow-Sätze

• Einige Gruppen kleiner Ordnung

• Beispiele endlicher Gruppen

Sylow-Sätze

• Einige Gruppen kleiner Ordnung

• Klassifikationsprogramm der einfachen endlichen Gruppen

• Zyklische Gruppe $(\mathbb{Z}_n, +_n)$ $\{0, 1, ..., n-1\}$ mit $a +_n b = (a + b) \mod n$

- Zyklische Gruppe $(\mathbb{Z}_n, +_n)$ $\{0, 1, ..., n-1\}$ mit $a +_n b = (a + b)$ mod n
- Produkt zyklischer Gruppen $(\mathbb{Z}_n \times \mathbb{Z}_m, +)$ mit $(a,b)+(c,d)=(a+_n c,b+_m d)$

- Zyklische Gruppe $(\mathbb{Z}_n, +_n)$ $\{0, 1, ..., n-1\}$ mit $a +_n b = (a + b)$ mod n
- Produkt zyklischer Gruppen $(\mathbb{Z}_n \times \mathbb{Z}_m, +)$ mit $(a,b) + (c,d) = (a +_n c, b +_m d)$
- Symmetrische Gruppe (S_n,\circ) bijektiven Abbildungen von $\{1,...,n\} \to \{1,...,n\}$

- Zyklische Gruppe $(\mathbb{Z}_n, +_n)$ $\{0, 1, ..., n-1\}$ mit $a +_n b = (a + b)$ mod n
- Produkt zyklischer Gruppen $(\mathbb{Z}_n \times \mathbb{Z}_m, +)$ mit $(a,b) + (c,d) = (a +_n c, b +_m d)$
- Symmetrische Gruppe (S_n,\circ) bijektiven Abbildungen von $\{1,...,n\} o \{1,...,n\}$
- Alternierende Gruppe $A_n \subseteq S_n$ Erzeugnis der 3-Zyklen $\langle (a,b,c) \rangle, (a,b,c) \in S_n$

Diedergruppe

Definition

Diedergruppe
$$D_n = \{id, d, d^2, ..., d^{n-1}, s, sd, sd^2, ..., sd^{n-1}\}$$

mit $s^2 = id$, $sdsd = id$ und $d^n = id$

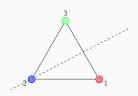
Diedergruppe D_n sind die Isometrien des gleichmäßigen n-Ecks d ist die Drehung um $\frac{360}{n}$ Grad s ist die Spiegelung an der Symmetrieachse

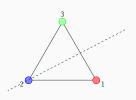
Diedergruppe D_3

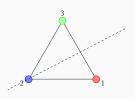
Isometrien des gleichmäßigen Dreiecks

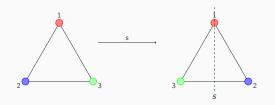
$$D_3 = \{id, d, d^2, s, sd, sd^2\}$$

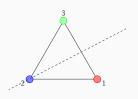
d ist die Drehung um 120 Grad s, sd, sd^2 sind die drei Spiegelungen

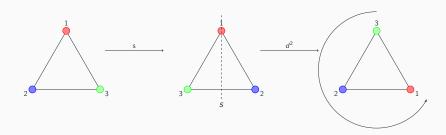


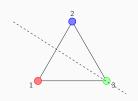


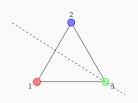


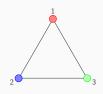


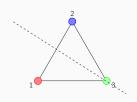


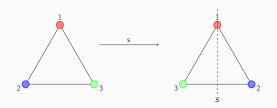


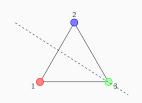


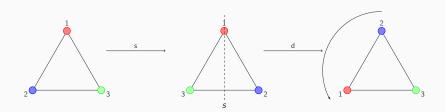


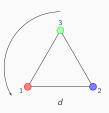


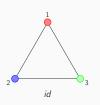


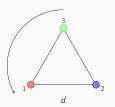


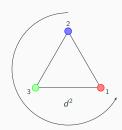


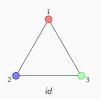


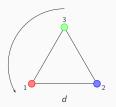


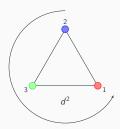


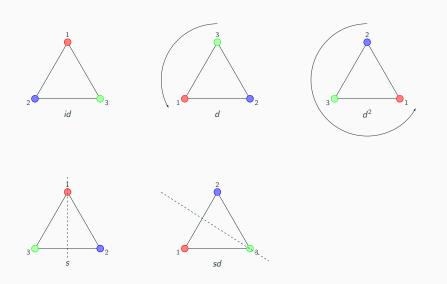


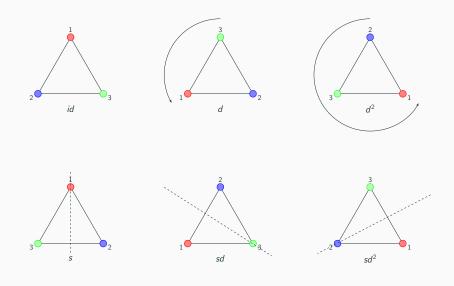












Sylow-Sätze

1.Sylow-Satz

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

Die Untergruppe H wird auch p-Sylow-Untergruppe oder Sylow-Untergruppe genannt.

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Beweis:

• $\binom{n}{p^l} = \frac{n(n-1)\dots(n-j)(n-p^l+1)}{p^l(p^l-1)\dots(p^l-j)\dots 1}$ Man ordne jedem Faktor (n-j) den Faktor (p^l-j) im Nenner zu.

C

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Beweis:

- $\binom{n}{p'} = \frac{n(n-1)\dots(n-j)(n-p'+1)}{p'(p'-1)\dots(p'-j)\dots 1}$ Man ordne jedem Faktor (n-j) den Faktor (p'-j) im Nenner zu.
- $j = p^e k$, wobei $k \nmid p$ ist.

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Beweis:

- $\binom{n}{p'} = \frac{n(n-1)\dots(n-j)(n-p'+1)}{p'(p'-1)\dots(p'-j)\dots 1}$ Man ordne jedem Faktor (n-j) den Faktor (p'-j) im Nenner zu.
- $j = p^e k$, wobei $k \nmid p$ ist.
- Da e < l, sind n und p^l teilbar durch p^e . Somit sind n-j und p^l-j teilbar durch p^e aber nicht durch p^l .

9

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Beweis:

- $\binom{n}{p'} = \frac{n(n-1)\dots(n-j)(n-p'+1)}{p'(p'-1)\dots(p'-j)\dots 1}$ Man ordne jedem Faktor (n-j) den Faktor (p'-j) im Nenner zu.
- $j = p^e k$, wobei $k \nmid p$ ist.
- Da e < l, sind n und p^l teilbar durch p^e . Somit sind n - j und $p^l - j$ teilbar durch p^e aber nicht durch p^l .
- Also ist der Nenner genauso oft teilbar durch p wie der Zähler.

Vorbereitungslemma 1

Es sei $n = p^l m, l \ge 1$ und $p \nmid m$. Dann gilt $p \nmid \binom{n}{p^l}$.

Beweis:

- $\binom{n}{p'} = \frac{n(n-1)\dots(n-j)(n-p'+1)}{p'(p'-1)\dots(p'-j)\dots 1}$ Man ordne jedem Faktor (n-j) den Faktor (p'-j) im Nenner zu.
- $j = p^e k$, wobei $k \nmid p$ ist.
- Da e < l, sind n und p^l teilbar durch p^e . Somit sind n - j und $p^l - j$ teilbar durch p^e aber nicht durch p^l .
- Also ist der Nenner genauso oft teilbar durch p wie der Zähler.
- Somit ist $p \nmid \binom{n}{p^l}$

Vorbereitungslemma 2

Die endliche Gruppe G operiere auf der Menge aller Teilmengen von G bzgl. der Linksmultiplikation. Sei $U \subseteq G$, dann ist $|G_U|$ ein Teiler von |U|.

Vorbereitungslemma 2

Die endliche Gruppe G operiere auf der Menge aller Teilmengen von G bzgl. der Linksmultiplikation. Sei $U \subseteq G$, dann ist $|G_U|$ ein Teiler von |U|.

Beweis:

• U besteht aus Bahnen G_Ug mit $g \in U$.

Vorbereitungslemma 2

Die endliche Gruppe G operiere auf der Menge aller Teilmengen von G bzgl. der Linksmultiplikation. Sei $U \subseteq G$, dann ist $|G_U|$ ein Teiler von |U|.

- U besteht aus Bahnen G_Ug mit $g \in U$.
- ullet $G_{U}g$ sind Rechtsnebenklassen. Somit ist U eine Vereinigung von Rechtsnebenklassen.

Vorbereitungslemma 2

Die endliche Gruppe G operiere auf der Menge aller Teilmengen von G bzgl. der Linksmultiplikation. Sei $U \subseteq G$, dann ist $|G_U|$ ein Teiler von |U|.

- U besteht aus Bahnen G_Ug mit $g \in U$.
- ullet G_Ug sind Rechtsnebenklassen. Somit ist U eine Vereinigung von Rechtsnebenklassen.
- Es gilt $G_Ug_1 = G_Ug_2$ oder G_Ug_1 und G_Ug_2 sind disjunkt.

Vorbereitungslemma 2

Die endliche Gruppe G operiere auf der Menge aller Teilmengen von G bzgl. der Linksmultiplikation. Sei $U \subseteq G$, dann ist $|G_U|$ ein Teiler von |U|.

- U besteht aus Bahnen G_Ug mit $g \in U$.
- G_Ug sind Rechtsnebenklassen.
 Somit ist U eine Vereinigung von Rechtsnebenklassen.
- Es gilt $G_Ug_1 = G_Ug_2$ oder G_Ug_1 und G_Ug_2 sind disjunkt.
- Es folgt $|U| = |G_U g_{i_1}| + ... + |G_U g_{i_r}|$ und auch $|G_U|$ teilt |U|.

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

Beweis:

• G operiert auf $X = \{M \subset G | p^l = |M|\}$ mit g(M) = gM. $|G| = p^l m$ und $|X| = \binom{n}{p^l}$ und $p \nmid |X|$ (1.Lemma).

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

- G operiert auf $X = \{M \subset G | p^l = |M|\}$ mit g(M) = gM. $|G| = p^l m$ und $|X| = \binom{n}{p^l}$ und $p \nmid |X|$ (1.Lemma).
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

- G operiert auf $X = \{M \subset G | p^I = |M|\}$ mit g(M) = gM. $|G| = p^I m$ und $|X| = \binom{n}{p^I}$ und $p \nmid |X|$ (1.Lemma).
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

- G operiert auf $X = \{M \subset G | p^l = |M|\}$ mit g(M) = gM. $|G| = p^l m$ und $|X| = \binom{n}{p^l}$ und $p \nmid |X|$ (1.Lemma).
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.
- Sei $U \in X$ und $U \in B_i$. Dann ist $|G_U|$ eine p-Potenz (2.Lemma)

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

- G operiert auf $X = \{M \subset G | p^l = |M|\}$ mit g(M) = gM. $|G| = p^l m$ und $|X| = \binom{n}{p^l}$ und $p \nmid |X|$ (1.Lemma).
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.
- Sei $U \in X$ und $U \in B_i$. Dann ist $|G_U|$ eine p-Potenz (2.Lemma)
- $p^l m = |G| = |G_U||B_i|$ (Bahnformel) und somit $|G_U| = p^l$

1.Sylow-Satz

Sei G eine Gruppe der Ordnung $p^l m$ mit $p \nmid m$ und $l \ge 1$. Dann enthält G eine Untergruppe H der Ordnung p^l .

- G operiert auf $X = \{M \subset G | p^l = |M|\}$ mit g(M) = gM. $|G| = p^l m$ und $|X| = \binom{n}{p^l}$ und $p \nmid |X|$ (1.Lemma).
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.
- Sei $U \in X$ und $U \in B_i$. Dann ist $|G_U|$ eine p-Potenz (2.Lemma)
- $p^l m = |G| = |G_U||B_i|$ (Bahnformel) und somit $|G_U| = p^l$
- Aus $G_U < G$ folgt die Behauptung.

2.Sylow-Satz

2.Sylow-Satz

Sei G eine endliche Gruppe und J eine Untergruppe von G. Sei p eine Primzahl und p teile |J|. H sei eine p-Sylow-Untergruppe von G. Dann gibt es eine zu H konjugierte Untergruppe $H'=gHg^{-1}$, so dass $J\cap H'$ eine Sylow-Untergruppe von J ist.

Index einer Gruppe

Definition Index

Sei H < G, dann ist der Index von H in G die Anzahl der Nebenklassen von H in G. Geschrieben [G:H]

Index einer Gruppe

Definition Index

Sei H < G, dann ist der Index von H in G die Anzahl der Nebenklassen von H in G. Geschrieben [G:H]

Satz 3.16

Sei G endlich und H < G: |G| = |H|[G : H].

Index einer Gruppe

Definition Index

Sei H < G, dann ist der Index von H in G die Anzahl der Nebenklassen von H in G. Geschrieben [G:H]

Satz 3.16

Sei G endlich und H < G: |G| = |H|[G : H].

Satz 3.17

Sei G endlich und J < H < G: [G : J] = [G : H][H : J]

•
$$X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$$

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx$ somit $G_{gx} = gHg^{-1}$

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $\bullet \ gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx \ \text{somit} \ \ G_{gx} = gHg^{-1}$
- Auf *J* operiert auf *X* einschränken

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx$ somit $G_{gx} = gHg^{-1}$
- Auf *J* operiert auf *X* einschränken
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx$ somit $G_{gx} = gHg^{-1}$
- Auf *J* operiert auf *X* einschränken
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- |X| = |G|/|H| = m somit $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx$ somit $G_{gx} = gHg^{-1}$
- Auf *J* operiert auf *X* einschränken
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- |X| = |G|/|H| = m somit $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.
- Für $gx \in B_i$ gilt $G_{gx} = H' = gHg^{-1}$ und $J_{gx} = H' \cap J$

- $X = G/H = \{gH|g \in G\} \text{ mit } g(g_1H) = (gg_1)H$
- Stabilisator von x = 1H ist H
- $gHg^{-1}gx = gHg^{-1}gH = gHH = gH = gx$ somit $G_{gx} = gHg^{-1}$
- Auf J operiert auf X einschränken
- X teilen in disjunkte Bahnen $|X| = |B_1| + |B_2| + ... + |B_k|$
- |X| = |G|/|H| = m somit $p \nmid |X|$ folgt es gibt B_i mit $p \nmid |B_i|$.
- Für $gx \in B_i$ gilt $G_{gx} = H' = gHg^{-1}$ und $J_{gx} = H' \cap J$
- $[J:(H'\cap J)] = |B_i|$ und $|J| = |H'\cap J|[J:(H'\cap J)]$ folgt aus p teilt|J| und $p \nmid |B_i|$, dass $H'\cap J$ p-Sylow-Untergruppe von J ist

3.Sylow-Satz

3.Sylow-Satz

Sei G eine Gruppe der Ordnung p^lm , wobei p nicht m teilt und $l \geq 1$. Sei k die Anzahl der p-Sylow-Untergruppen von G. Dann ist p ein Teiler von k-1 und k ein Teiler von m.

Vorbereitungslemma 1

- 1. Sei J < G und $|J| = p^k$.
- Dann ist J in einer p-Sylow-Untergruppe enthalten
- 2. Alle p-Sylow-Untergruppen sind zueinander konjugiert.

Vorbereitungslemma 1

- 1. Sei J < G und $|J| = p^k$.
- Dann ist J in einer p-Sylow-Untergruppe enthalten
- 2. Alle p-Sylow-Untergruppen sind zueinander konjugiert.

Beweis:

• Aus $|J| = p^k$ folgt, dass nur J p-Sylow-UG von J ist

Vorbereitungslemma 1

- 1. Sei J < G und $|J| = p^k$.
- Dann ist J in einer p-Sylow-Untergruppe enthalten
- 2. Alle p-Sylow-Untergruppen sind zueinander konjugiert.

- Aus $|J| = p^k$ folgt, dass nur J p-Sylow-UG von J ist
- Sei H p-Sylow-Untergruppe von G, dann gibt es $H'=gHg^{-1}$ mit $J\cap H'=J$ und somit gilt $J\subset H'$

Vorbereitungslemma 1

- 1. Sei J < G und $|J| = p^k$.
- Dann ist J in einer p-Sylow-Untergruppe enthalten
- 2. Alle p-Sylow-Untergruppen sind zueinander konjugiert.

- Aus $|J| = p^k$ folgt, dass nur J p-Sylow-UG von J ist
- Sei H p-Sylow-Untergruppe von G, dann gibt es $H'=gHg^{-1}$ mit $J\cap H'=J$ und somit gilt $J\subset H'$
- Aus |H| = |H'| folgt H' ist p-Sylow-Untergruppe (1.)

Vorbereitungslemma 1

- 1. Sei J < G und $|J| = p^k$.
- Dann ist J in einer p-Sylow-Untergruppe enthalten
- 2. Alle p-Sylow-Untergruppen sind zueinander konjugiert.

- Aus $|J| = p^k$ folgt, dass nur J p-Sylow-UG von J ist
- Sei H p-Sylow-Untergruppe von G, dann gibt es $H'=gHg^{-1}$ mit $J\cap H'=J$ und somit gilt $J\subset H'$
- Aus |H| = |H'| folgt H' ist p-Sylow-Untergruppe (1.)
- Wenn J p-Sylow-Untergruppe war, folgt |J| = |H| = |H'| und somit $J = H' = gHg^{-1}$ (2.)

Definition

$$G(H) = \{g \in G | gHg^{-1} = H\}$$
 heißt Normalisator.

• $G(H) = G \Leftrightarrow H$ ist Normalteiler in G

Vorbereitungslemma 2

Sei H < G, so gilt G(H) < G und $H \lhd G(H)$

Vorbereitungslemma 2

Sei H < G, so gilt G(H) < G und $H \lhd G(H)$

Beweis:

• $g, j \in G(H)$, dann $H = gHg^{-1} = gjHj^{-1}g^{-1}$ also $gj \in G(H)$

Vorbereitungslemma 2

Sei H < G, so gilt G(H) < G und $H \lhd G(H)$

- $g, j \in G(H)$, dann $H = gHg^{-1} = gjHj^{-1}g^{-1}$ also $gj \in G(H)$
- $g \in G(H)$, dann $g^{-1}Hg = g^{-1}gHg^{-1}g = H$ also $g^{-1} \in G(H)$

Vorbereitungslemma 2

Sei H < G, so gilt G(H) < G und $H \lhd G(H)$

- $g, j \in G(H)$, dann $H = gHg^{-1} = gjHj^{-1}g^{-1}$ also $gj \in G(H)$
- $g \in G(H)$, dann $g^{-1}Hg = g^{-1}gHg^{-1}g = H$ also $g^{-1} \in G(H)$
- 1H1 = H also $1 \in G(H)$

Vorbereitungslemma 2

Sei H < G, so gilt G(H) < G und $H \lhd G(H)$

- $g, j \in G(H)$, dann $H = gHg^{-1} = gjHj^{-1}g^{-1}$ also $gj \in G(H)$
- $g \in G(H)$, dann $g^{-1}Hg = g^{-1}gHg^{-1}g = H$ also $g^{-1} \in G(H)$
- $1H1 = H \text{ also } 1 \in G(H)$
- $h \in H$ erfüllt $hHh^{-1} = H$ und somit ist $H \subset G(H)$ und damit $H \lhd G(H)$

3.Sylow-Satz

3.Sylow-Satz

Sei G eine Gruppe der Ordnung p^lm , wobei p nicht m teilt und $l \geq 1$. Sei k die Anzahl der p-Sylow-Untergruppen von G. Dann ist p ein Teiler von k-1 und k ein Teiler von m.

Beweis: k teilt m

• G operiert auf $X = \{M|p^l = |M|\}$ mit $g(M) = gMg^{-1}$

Beweis des 3.Sylow-Satzes

Beweis: k teilt m

- G operiert auf $X = \{M|p^l = |M|\}$ mit $g(M) = gMg^{-1}$
- Da H p-Sylow-UG folgt aus Lemma 2, dass $GH = \{U|U \text{ ist p-Sylow-UG von G}\}$

Beweis des 3.Sylow-Satzes

Beweis: k teilt m

- G operiert auf $X = \{M|p^l = |M|\}$ mit $g(M) = gMg^{-1}$
- Da H p-Sylow-UG folgt aus Lemma 2, dass $GH = \{U|U \text{ ist p-Sylow-UG von G}\}$
- Es gilt |G| = |G(H)|k = |G(H)|[G:G(H)] und somit [G:G(H)] = k

Beweis des 3. Sylow-Satzes

Beweis: k teilt m

- G operiert auf $X = \{M|p^l = |M|\}$ mit $g(M) = gMg^{-1}$
- Da H p-Sylow-UG folgt aus Lemma 2, dass $GH = \{U|U \text{ ist p-Sylow-UG von G}\}$
- Es gilt |G| = |G(H)|k = |G(H)|[G:G(H)] und somit [G:G(H)] = k
- Aus $mp^l = |G| = |H|[G:H]$ folgt m = [G:H] und somit m = [G:H] = [G:G(H)][G(H):H] = k[G(H):H]

Beweis des 3. Sylow-Satzes

Beweis: p teilt k-1

• H operiert auf $X = \{H_i | p^l = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$

Beweis des 3.Sylow-Satzes

- H operiert auf $X = \{H_i | p^l = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$
- X teilen in disjunkte Bahnen $B_1, ..., B_r$ mit $B_1 = \{H\}$

Beweis des 3.Sylow-Satzes

- H operiert auf $X = \{H_i | p^l = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$
- X teilen in disjunkte Bahnen $B_1, ..., B_r$ mit $B_1 = \{H\}$
- Sei B_j eine Bahn mit $B_j = \{H_i\}$, aus $|H| = |H(H_i)||B_j|$ folgt $hH_ih^{-1} = H_i$ für alle $h \in H$

Beweis des 3. Sylow-Satzes

- H operiert auf $X = \{H_i | p^l = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$
- X teilen in disjunkte Bahnen $B_1, ..., B_r$ mit $B_1 = \{H\}$
- Sei B_j eine Bahn mit $B_j = \{H_i\}$, aus $|H| = |H(H_i)||B_j|$ folgt $hH_ih^{-1} = H_i$ für alle $h \in H$
- Somit gilt $H \subset G(H_i)$ und $H_i \subset G(H_i)$ und somit H, H_i sind p-Sylow-UG von $G(H_i)$

Beweis des 3. Sylow-Satzes

- H operiert auf $X = \{H_i | p^i = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$
- X teilen in disjunkte Bahnen $B_1, ..., B_r$ mit $B_1 = \{H\}$
- Sei B_j eine Bahn mit $B_j = \{H_i\}$, aus $|H| = |H(H_i)||B_j|$ folgt $hH_ih^{-1} = H_i$ für alle $h \in H$
- Somit gilt H ⊂ G(H_i) und H_i ⊂ G(H_i) und somit H, H_i sind p-Sylow-UG von G(H_i)
- Da $H_i \triangleleft G(H_i)$ (Lemma 2) gilt für $g \in G(H_i)$ $H \stackrel{Lemma2}{=} gH_ig^{-1} = H_i$

Beweis des 3.Sylow-Satzes

- H operiert auf $X = \{H_i | p^i = |H_i| \land H_i < G\}, \ h(H_i) = hH_ih^{-1}$
- X teilen in disjunkte Bahnen $B_1, ..., B_r$ mit $B_1 = \{H\}$
- Sei B_j eine Bahn mit $B_j = \{H_i\}$, aus $|H| = |H(H_i)||B_j|$ folgt $hH_ih^{-1} = H_i$ für alle $h \in H$
- Somit gilt $H \subset G(H_i)$ und $H_i \subset G(H_i)$ und somit H, H_i sind p-Sylow-UG von $G(H_i)$
- Da $H_i \triangleleft G(H_i)$ (Lemma 2) gilt für $g \in G(H_i)$ $H \stackrel{Lemma2}{=} gH_ig^{-1} = H_i$
- Aus $|B_j| > 1$ für $j \neq 1$ und $p^l = |H| = |H(H_i)||B_j|$ folgt $k = |X| = 1 + p^{k_1} + p^{k_2} + ... + p^{k_r}$ und somit p teilt k 1

Satz von Cauchy

Sei G eine endliche Gruppe und p eine Primzahl, die die Ordnung der Gruppe teilt. Dann enthält G ein Element der Ordnung p.

Satz von Cauchy

Sei G eine endliche Gruppe und p eine Primzahl, die die Ordnung der Gruppe teilt. Dann enthält G ein Element der Ordnung p.

Für endliche Gruppen gilt $\langle g \rangle = \{e, g, g^2, ..., g^n\}.$

Satz von Cauchy

Sei G eine endliche Gruppe und p eine Primzahl, die die Ordnung der Gruppe teilt. Dann enthält G ein Element der Ordnung p.

Für endliche Gruppen gilt $\langle g \rangle = \{e, g, g^2, ..., g^n\}.$

Beweis:

ullet Sei H Sylow-Untergruppe der Ordnung p^I und $1 \neq h \in H$

Satz von Cauchy

Sei G eine endliche Gruppe und p eine Primzahl, die die Ordnung der Gruppe teilt. Dann enthält G ein Element der Ordnung p.

Für endliche Gruppen gilt $\langle g \rangle = \{e, g, g^2, ..., g^n\}.$

- ullet Sei H Sylow-Untergruppe der Ordnung p^I und $1 \neq h \in H$
- $|\langle h \rangle|$ teilt $|H| \Rightarrow |\langle h \rangle| = |h| = p^k, 0 < k \le I$

Satz von Cauchy

Sei G eine endliche Gruppe und p eine Primzahl, die die Ordnung der Gruppe teilt. Dann enthält G ein Element der Ordnung p.

Für endliche Gruppen gilt $\langle g \rangle = \{e, g, g^2, ..., g^n\}.$

- ullet Sei H Sylow-Untergruppe der Ordnung p^I und $1
 eq h \in H$
- $|\langle h \rangle|$ teilt $|H| \Rightarrow |\langle h \rangle| = |h| = p^k, 0 < k \le I$
- $g=h^{p^{k-1}}$ hat Ordnung p, da $g^p=h^{p*p^{k-1}}=1$ und $g\neq 1$ und Ordnung von g muss |H| teilen

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Es gibt nur eine zyklische Gruppe der Ordnung p. (2.15 [Rosebrock, 2019])

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Es gibt nur eine zyklische Gruppe der Ordnung p. (2.15 [Rosebrock, 2019])

Beweis:

• Sei G eine Gruppe mit |G| = p

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Es gibt nur eine zyklische Gruppe der Ordnung p. (2.15 [Rosebrock, 2019])

- Sei G eine Gruppe mit |G| = p
- Aus dem Satz von Cauchy folgt, es gibt $g \in G$ mit |g| = p

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Es gibt nur eine zyklische Gruppe der Ordnung p. (2.15 [Rosebrock, 2019])

- Sei G eine Gruppe mit |G| = p
- Aus dem Satz von Cauchy folgt, es gibt $g \in G$ mit |g| = p
- Somit ist $\langle g \rangle = G$ und somit G zyklisch.

Korollar

Sei p eine Primzahl, dann gibt es bis auf Isomorphie nur eine Gruppe der Ordnung p.

Es gibt nur eine zyklische Gruppe der Ordnung p. (2.15 [Rosebrock, 2019])

- Sei G eine Gruppe mit |G| = p
- Aus dem Satz von Cauchy folgt, es gibt $g \in G$ mit |g| = p
- Somit ist $\langle g \rangle = G$ und somit G zyklisch.
- Also ist $G \cong \mathbb{Z}_p$

• Sei p eine Primzahl mit $p \ge 3$ und G eine Gruppe der Ordnung 2p, so ist G isomorph zu \mathbb{Z}_{2p} oder D_p

• Sei p eine Primzahl mit $p \ge 3$ und G eine Gruppe der Ordnung 2p, so ist G isomorph zu \mathbb{Z}_{2p} oder D_p

• Ist p eine Primzahl, so sind alle Gruppen der Ordnung p^2 abelsch

• Sei p eine Primzahl mit $p \ge 3$ und G eine Gruppe der Ordnung 2p, so ist G isomorph zu \mathbb{Z}_{2p} oder D_p

• Ist p eine Primzahl, so sind alle Gruppen der Ordnung p^2 abelsch

• Seien p>q Primzahlen und sei G eine Gruppe der Ordnung pq und $q \nmid (p-1)$, dann ist G isomorph zu \mathbb{Z}_{pq}

Ordnung	Anzahl	Abelsch	Nichtabelsch
1	1	Triviale Gruppe $\{e\}$	
2	1	\mathbb{Z}_2	
3	1	$\mathbb{Z}_3 \cong A_3$	
4	2	$\mathbb{Z}_4,D_2\cong\mathbb{Z}_2\times\mathbb{Z}_2$	
5	1	\mathbb{Z}_5	
6	2	$\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$	$D_3 \cong S_3$
7	1	\mathbb{Z}_7	
8	5	$\mathbb{Z}_8, \mathbb{Z}_4 \times \mathbb{Z}_2, \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	D_4, Q
9	2	$\mathbb{Z}_9,\mathbb{Z}_3 imes\mathbb{Z}_3$	
10	2	$\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$	D_5
11	1	\mathbb{Z}_{11}	
12	5	$\mathbb{Z}_{12}, \mathbb{Z}_6 imes \mathbb{Z}_2$	$D_6, A_4, \mathbb{Z}_3 \rtimes \mathbb{Z}_4$
13	1	\mathbb{Z}_{13}	
14	2	$\mathbb{Z}_{14} \cong \mathbb{Z}_2 \times \mathbb{Z}_7$	D_7
15	1	\mathbb{Z}_{15}	

[Rosebrock, 2019]

Klassifikationsprogramm der

einfachen endlichen Gruppen

Definition: einfache Gruppe

Eine Gruppe heißt einfach, falls sie als Normalteiler nur G und $\{e\}$ besitzt und falls $G \neq \{e\}$

Es gibt das Klassifikationsprogramm der einfachen endlichen Gruppen in dem alle einfachen endlichen Gruppen bestimmt sind.

 Über 100 Mathematiker waren von Ende der 1920er bis Anfang der 1980er Jahre daran beteiligt

- Über 100 Mathematiker waren von Ende der 1920er bis Anfang der 1980er Jahre daran beteiligt
- Der frühere Beweis verteilt sich auf über 500 Fachartikel mit zusammen fast 15.000 gedruckten Seiten

- Über 100 Mathematiker waren von Ende der 1920er bis Anfang der 1980er Jahre daran beteiligt
- Der frühere Beweis verteilt sich auf über 500 Fachartikel mit zusammen fast 15.000 gedruckten Seiten
- Um 1980 "vorläufiger" Abschluss aber erst 2002 wurden alle Lücken geschlossen

- Über 100 Mathematiker waren von Ende der 1920er bis Anfang der 1980er Jahre daran beteiligt
- Der frühere Beweis verteilt sich auf über 500 Fachartikel mit zusammen fast 15.000 gedruckten Seiten
- Um 1980 "vorläufiger" Abschluss aber erst 2002 wurden alle Lücken geschlossen
- Diese Version hat ungefähr 1200 Seiten

- Über 100 Mathematiker waren von Ende der 1920er bis Anfang der 1980er Jahre daran beteiligt
- Der frühere Beweis verteilt sich auf über 500 Fachartikel mit zusammen fast 15.000 gedruckten Seiten
- Um 1980 "vorläufiger" Abschluss aber erst 2002 wurden alle Lücken geschlossen
- Diese Version hat ungefähr 1200 Seiten
- Ronald Solomon, Richard Lyons und Daniel Gorenstein begannen 1994 eine auf 12 Bände angelegte Darstellung des Beweises, die 2023 abgeschlossen werden soll

• \mathbb{Z}_p , wobei p eine Primzahl ist

- \mathbb{Z}_p , wobei p eine Primzahl ist
- A_n für n > 4

- ullet \mathbb{Z}_p , wobei p eine Primzahl ist
- A_n für n > 4
- 26 sporadische Gruppen

- \bullet \mathbb{Z}_p , wobei p eine Primzahl ist
- A_n für n > 4
- 26 sporadische Gruppen
- 16 Familien von Lie-Typ, die sich von gewissen Lie-Algebren herleiten

Quellen:

Rosebrock, S. (2019).

Anschauliche Gruppentheorie: Eine computerorientierte geometrische Einführung.

Springer Berlin Heidelberg.

Wikipedia (2021).

Endliche einfache Gruppe — Wikipedia, the free encyclopedia.

http://de.wikipedia.org/w/index.php?title= Endliche%20einfache%20Gruppe&oldid=207008386. [Online; accessed 24-January-2021].