Dynamical systems and crossed products of C^{*}-algebras

Moritz Weber
Saarland University, Saarbrücken, Germany

ISem23, 25 June 2020

Context: „Quantum Mathematics"

Classical	Quantum
Topology	C^{*}-Algebras [Gelfand-Naimark 1940s]
Measure Theory	Von Neumann Algebras [Murray-von Neumann 1940s]
Probability Theory	Free Probability Theory [Voiculescu 1980s]
	\& Quantum Probability [Accardi, Hudson-Parthasarathy 1970s]
Differential Geometry	Noncommutative Geometry [Connes 1980s]
(Compact) Groups	Compact Quantum Groups [Woronowicz 1980s]
Information Theory	Quantum Information Theory [Feynmann, Deutsch 1980s]
Complex Analysis	Free Analysis [J.L.Taylor 1970s]

1st Fundamental Theorem of C^{*}-Algebras (Gelfand-Naimark 1940s)
A unital C^{*}-algebra.
A commutative $\Longleftrightarrow \exists X$ compact $: A \cong C(X):=\{f: X \rightarrow \mathbb{C}$ cont. $\}$

Context: „Quantum Mathematics"

Classical	Quantum
Topology	C^{*}-Algebras [Gelfand-Naimark 1940s]
Measure Theory	Von Neumann Algebras [Muray-von Neumann 1940s]
Probability Theory	Free Probability Theory [Voiculescu 1980s]
	\& Quantum Probability [Accardi, Hudson-Parthasarathy 1970s]
Differential Geometry	Noncommutative Geometry [Connes 1980s]
(Compact) Groups	Compact Quantum Groups [Woronowicz 1980s]
Information Theory	Quantum Information Theory [Feynmann, Deutsch 1980s]
Complex Analysis	Free Analysis [J.LTaylor 1970s]

Philosophy behind Quantum Mathematics:
commutative algebras \Longleftrightarrow classical situation noncommutative algebras \Longleftrightarrow quantum situation

Introduction to C^{*}-Algebras: Examples first

Example (Algebra of functions)
Let X be a compact Hausdorff space.

$$
C(X):=\{f: X \rightarrow \mathbb{C} \mid f \text { continuous }\}
$$

has nice structure:

- algebra (ptwise oper.): multiplication $(f g)(x):=f(x) g(x)$ addition $(f+g)(x):=f(x)+g(x)$ scalar multiplication $(\lambda f)(x):=\lambda f(x), \lambda \in \mathbb{C}$
- unital: $1(x):=1$ for all $x \in X$ (constant map)
- $f^{*}(x):=\overline{f(x)}$ complex conjugation
- supremum norm $\|f\|_{\infty}:=\sup _{x \in X}|f(x)|$
- complete with respect to this norm

Introduction to C^{*}-Algebras: Examples first

Example (Bounded linear operators)
Let H be a Hilbert space.

$$
B(H):=\{T: H \rightarrow H \mid T \text { linear and bounded (aka continuous) }\}
$$

has nice structure:

- algebra: multiplication $(S T)(x):=S(T x)$ (composition) addition $(S+T)(x):=S x+T x$ scalar multiplication $(\lambda S)(x):=\lambda S x, \lambda \in \mathbb{C}$
- unital: $1(x):=x$ for all $x \in X$ (identity map)
- T^{*} adjoint: $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x, y \in H$
- operator norm $\|T\|_{\infty}:=\sup _{x \in H,\|x\|=1}\|T x\|$
- complete with respect to this norm

Introduction to C^{*}-Algebras: Definition

Definition (Gelfand-Naimark, Segal 1940s)

$A C^{*}$-algebra A is

- an algebra over \mathbb{C}
- which may or may not be unital (today: always unital)
- with an involution *: $A \rightarrow A$
i.e. $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*}$ for $\lambda, \mu \in \mathbb{C},(a b)^{*}=b^{*} a^{*},\left(a^{*}\right)^{*}=a$
- and a norm satisfying $\|a b\| \leq\|a\|\|b\|$ and $\left\|a^{*} a\right\|=\|a\|^{2}$
- complete with respect to this norm (i.e.: A Banach algebra)

Example

- $C(X)$ with $\|\cdot\|_{\text {sup }}$
- $B(H)$ or $M_{N}(\mathbb{C})$
- every closed (unital) *-subalgebra $A \subseteq B(H)$

Introduction to C^{*}-Algebras: More Examples

Example (rotation algebra/noncommutative torus)
H separable Hilbert space, $\operatorname{ONB}\left(e_{n}\right)_{n \in \mathbb{Z}}, \vartheta \in \mathbb{R}$.

$$
\begin{array}{rlr}
U e_{n}:=e^{2 \pi i n \vartheta} e_{n}=\lambda^{n} e_{n} & \lambda:=e^{2 \pi i \vartheta} \in \mathbb{C} \\
V e_{n}:=e_{n+1} & \text { bilateral shift } \\
A_{\vartheta}:=C^{*}(U, V) \subseteq B(H) & \text { smallest closed *-subalgebra }
\end{array}
$$

Check (easy):

- $U V=\lambda V U$
- U and V are unitaries $: \Leftrightarrow U U^{*}=U^{*} U=1$ $\Leftrightarrow U$ surj. and isometric $(\|U\|=1)$, i.e. Hilbert space isomorphism
Check (hard): Given any $u, v \in A$ with $u v=\lambda v u, u, v$ unitaries, we have:

$$
A_{\vartheta} \cong C^{*}(u, v) \subseteq A
$$

1st Fundamental Theorem of C^{*}-Algebras (GN 1940s)
A unital C^{*}-algebra.
A commutative $\Longleftrightarrow \exists X$ compact $: A \cong C(X):=\{f: X \rightarrow \mathbb{C}$ cont. $\}$
Proof (rough sketch for \Rightarrow):

- $X:=\operatorname{Spec}(A):=\{\varphi: A \rightarrow \mathbb{C} \mid \varphi$ algebra hom., $\varphi \neq 0\}$ compact H.dorff
- Define $\chi: A \rightarrow C(X)$ by $\chi(x)(\varphi):=\varphi(x)$
- check (easy): χ algebra hom.
- check (less easy): any φ is *-preserving and so is χ
- check (hard): χ isometric (in particular injective)
- use Stone-Weierstraß: $\chi(A)$ is a closed unital ${ }^{*}$-subalgebra of $C(X)$ separating the points $\quad \Longrightarrow \quad \chi(A)=C(X)$

1st Fundamental Theorem of C^{*}-Algebras (GN 1940s)
A unital C^{*}-algebra.
A commutative $\Longleftrightarrow \exists X$ compact $: A \cong C(X):=\{f: X \rightarrow \mathbb{C}$ cont. $\}$
Getting back to the rotation algebra

$$
A_{\vartheta} \cong C^{*}\left(u, v \mid u, v \text { unitaries, } u v=e^{2 \pi i \vartheta} v u\right)
$$

What happens for $\vartheta=0$? Then:

$$
u v=v u
$$

Thus, by the 1st Fundamental Theorem:

$$
\exists X: A_{\vartheta} \cong C(X)
$$

What is X in this case? It is \mathbb{T}^{2}, the torus. Hence for $\vartheta \in \mathbb{R} \backslash\{0\}$:

$$
" A_{\vartheta}=C\left(\mathbb{T}_{\vartheta}^{2}\right)^{\prime \prime} \quad \text { noncommutative torus }
$$

1st Fundamental Theorem of C^{*}-Algebras (GN 1940s)
A unital C^{*}-algebra.
A commutative $\Longleftrightarrow \exists X$ compact $: A \cong C(X):=\{f: X \rightarrow \mathbb{C}$ cont. $\}$
Continuous functional calculus for free:
A unital C^{*}-algebra, $x \in A$ with $x^{*} x=x x^{*}$ ("normal").
Then $C^{*}(x, 1) \subseteq A$ commutative (smallest C^{*}-subalg. containing x and 1)
Thus, there is an X (in fact, the "spectrum of x ") and an isomorphism:

$$
\Phi: C(X) \rightarrow C^{*}(x, 1) \subseteq A
$$

Hence, we can "apply" continuous functions to x, for instance \sqrt{x} or $\log x$ (if the spectrum is nice), simply by putting $f(x):=\Phi(f) \in A$ for $f \in C(X)$.
Ex.: $\quad \sqrt{\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$

1st Fundamental Theorem of C^{*}-Algebras (GN 1940s)
A unital C^{*}-algebra.
A commutative $\Longleftrightarrow \exists X$ compact $: A \cong C(X):=\{f: X \rightarrow \mathbb{C}$ cont. $\}$
2nd Fundamental Theorem of C^{*}-Algebras (GN+Segal 1940s) A unital C^{*}-algebra. There is a Hilbert space H and an injective *-homomorphism $\pi: A \rightarrow B(H)$. Hence, we have:

$$
A \cong \pi(A) \subseteq B(H)
$$

Dynamical Systems and Crossed Products

Definition

$A C^{*}$-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is a compact group and $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a cont. group hom.

Dynamical system for topological spaces:

- X compact space, $\varphi: X \rightarrow X$ homeomorphism (bij., cont., φ^{-1} cont.)
- Then: $C(X) \rightarrow C(X), f \mapsto f \circ \varphi$ automorphism (bij. *-algebra hom.)
- Assume φ depends on $t \in \mathbb{Z}$ (or $t \in \mathbb{R}$), i.e. $\varphi_{t}: X \rightarrow X$; put $\varphi_{0}:=\mathrm{id}$
- Assume $\varphi_{s+t}=\varphi_{s} \circ \varphi_{t}$
- Then: $A=C(X), G=\mathbb{Z}, \alpha: \mathbb{Z} \rightarrow \operatorname{Aut}(C(X)), \alpha_{t}(f):=f \circ \varphi_{t}$ (Note: $\operatorname{Aut}(A)$ is a group with respect to the composition)

Example
$\vartheta \in \mathbb{R}, X=S^{1}:=\{z \in \mathbb{C}| | z \mid=1\} \subseteq \mathbb{C}$ sphere, $\varphi_{t}: S^{1} \rightarrow S^{1}, z \mapsto e^{2 \pi i t \vartheta} z$

Definition

$A C^{*}$-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is
a (locally) compact group and $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a cont. group hom.

Goal: Want to have a C^{*}-algebra $A \rtimes_{\alpha} G$ containing the whole information on the C^{*}-dynamical system.

Quick look at $\operatorname{Aut}(B(H))$: Let $U \in B(H)$ be unitary $\left(U U^{*}=U^{*} U=1\right)$.

$$
T \mapsto U T U^{*}
$$

is an automorphism of $B(H)$ (with inverse $T \mapsto U^{*} T U$)
Can show: All automorphisms of $B(H)$ are of this form ("inner")

Strategy: Add unitaries u_{t} to A to make all $\alpha_{t} \in \operatorname{Aut}(A)$ inner

Dynamical Systems and Crossed Products

Definition

$A C^{*}$-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is a (locally) compact group and $\alpha: G \rightarrow \operatorname{Aut}(A)$ is a cont. group hom.

Definition (informal)
Assume that G is discrete (for instance: $G=\mathbb{Z}$). The crossed product $A \rtimes_{\alpha} G$ is given by adding elements $u_{t}, t \in G$ to A such that:

- the u_{t} are unitaries: $u_{t} u_{t}^{*}=u_{t}^{*} u_{t}=1$
- the unitaries respect the group G : $u_{s} u_{t}=u_{s+t}, u_{t}^{*}=u_{t^{-1}}$
- the unitaries make the α_{t} inner: $\alpha_{t}(a)=u_{t} a u_{t}^{*}$

Dynamical Systems and Crossed Products

Example

Consider $\vartheta \in \mathbb{R}, X=S^{1} \subseteq \mathbb{C}$ sphere, $\varphi_{t}: S^{1} \rightarrow S^{1}, z \mapsto e^{2 \pi i t \vartheta} z$.
C^{*}-dyn. syst.: $A=C\left(S^{1}\right), G=\mathbb{Z}, \alpha: \mathbb{Z} \rightarrow \operatorname{Aut}\left(C\left(S^{1}\right)\right), \alpha_{t}(f)=f \circ \varphi_{t}$ Note: $\alpha_{t}=\alpha_{1} \circ \ldots \alpha_{1}$ for $t>0$ and $\alpha_{t}=\alpha_{1}^{-1} \circ \ldots \alpha_{1}^{-1}$ for $t<0$

Add a unitary u_{1} to $C\left(S^{1}\right)$ with $\alpha_{1}(a)=u_{1} a u_{1}^{*}$ and put $u_{t}:=u_{1}^{t}$
Then: u_{t} are unitaries, $u_{s} u_{t}=u_{s+t}, u_{t}^{*}=u_{t^{-1}}, \alpha_{t}(a)=u_{t} a u_{t}^{*}$
Check that $v:=\mathrm{id}: S^{1} \rightarrow S^{1}$ is a unitary element in $C\left(S^{1}\right)$ with $\alpha_{1}(v)=v \circ \varphi_{1}=\operatorname{id} \circ \varphi_{1}=e^{2 \pi i \vartheta} \mathrm{id}=e^{2 \pi i \vartheta} v$. Hence

$$
e^{2 \pi i \vartheta} v=\alpha_{1}(v)=u_{1} v u_{1}^{*} \quad \Longleftrightarrow \quad u_{1} v=e^{2 \pi i \vartheta} v u_{1}
$$

from which we infer:

$$
A_{\vartheta} \cong C\left(S^{1}\right) \rtimes_{\alpha} \mathbb{Z}
$$

Dynamical Systems and Crossed Products

Some facts about crossed products:

- Note that $C(X) \rtimes G$ may be noncommutative (see A_{ϑ})
- Takai duality: $(A \rtimes G) \rtimes \hat{G} \cong A \otimes \mathcal{K}(H)$ where G is an abelian group, $\hat{G}:=\{\psi: G \rightarrow \mathbb{C}$ group hom. $\}$ is the dual group and $\mathcal{K}(H)$ compact operators on some Hilbert space (Compare with Pontryagin duality: $\hat{\hat{G}} \cong G$ for abelian groups)
- Gootman-Rosenberg-Sauvageot Theorem: In the classical situation of a compact group G acting on a compact space X, if things are nice (G amenable, second countable, G acts "freely" on X), we have:

$C(X) \rtimes_{\alpha} G$ simple (i.e. has no ideals) $\Longleftrightarrow G$ acts minimal

$\rtimes \quad$ ISem24 C^{*}-algebras and dynamićs

24th Internet Seminar

Virtual Lectures
Xin Li (Glasgow)
Christian Voigt (Glasgow)
Moritz Weber (Saarbrücken)

Organisation

Christian Budde (Potchefstroom)
Moritz Weber (Saarbrücken)

Lecture Phase

October, 2020 - February 2021

Project Phase
March 2021 - June 2021
Final Workshop
$6=12$ June 2021
isem24@nwu.ac.za
https://www.math.uni-sb.de/ag/speicher/ISem24.html

