Dynamical systems and crossed products of C^* -algebras

Moritz Weber

Saarland University, Saarbrücken, Germany

ISem23, 25 June 2020

Moritz Weber (Saarland U)

ISem23, 25 June 2020

Classical	Quantum
Topology	C*-Algebras [Gelfand-Naimark 1940s]
Measure Theory	Von Neumann Algebras [Murray-von Neumann 1940s]
Probability Theory	Free Probability Theory [Voiculescu 1980s]
	& Quantum Probability [Accardi, Hudson-Parthasarathy 1970s]
Differential Geometry	Noncommutative Geometry [Connes 1980s]
(Compact) Groups	Compact Quantum Groups [Woronowicz 1980s]
Information Theory	Quantum Information Theory [Feynmann, Deutsch 1980s]
Complex Analysis	Free Analysis [J.L.Taylor 1970s]

1st Fundamental Theorem of C*-Algebras (Gelfand-Naimark 1940s)

A unital C*-algebra.

A commutative $\iff \exists X \text{ compact} : A \cong C(X) := \{f : X \to \mathbb{C} \text{ cont.}\}$

Classical	Quantum
Topology	C*-Algebras [Gelfand-Naimark 1940s]
Measure Theory	Von Neumann Algebras [Murray-von Neumann 1940s]
Probability Theory	Free Probability Theory [Voiculescu 1980s]
	& Quantum Probability [Accardi, Hudson-Parthasarathy 1970s]
Differential Geometry	Noncommutative Geometry [Connes 1980s]
(Compact) Groups	Compact Quantum Groups [Woronowicz 1980s]
Information Theory	Quantum Information Theory [Feynmann, Deutsch 1980s]
Complex Analysis	Free Analysis [J.L.Taylor 1970s]

Philosophy behind Quantum Mathematics:

commutative algebras	\iff	classical situation
noncommutative algebras	\iff	quantum situation

Example (Algebra of functions)

Let X be a compact Hausdorff space.

 $C(X) \coloneqq \{f : X \to \mathbb{C} \mid f \text{ continuous}\}\$

has nice structure:

- algebra (ptwise oper.): multiplication $(fg)(x) \coloneqq f(x)g(x)$ addition $(f + g)(x) \coloneqq f(x) + g(x)$ scalar multiplication $(\lambda f)(x) \coloneqq \lambda f(x), \lambda \in \mathbb{C}$
- unital: $1(x) \coloneqq 1$ for all $x \in X$ (constant map)
- $f^*(x) \coloneqq \overline{f(x)}$ complex conjugation
- supremum norm $||f||_{\infty} \coloneqq \sup_{x \in X} |f(x)|$
- complete with respect to this norm

Example (Bounded linear operators)

Let H be a Hilbert space.

 $B(H) \coloneqq \{T : H \to H \mid T \text{ linear and bounded (aka continuous)}\}$

has nice structure:

• algebra: multiplication (ST)(x) := S(Tx) (composition) addition (S + T)(x) := Sx + Txscalar multiplication $(\lambda S)(x) := \lambda Sx, \ \lambda \in \mathbb{C}$

• unital: 1(x) := x for all $x \in X$ (identity map)

- T^* adjoint: $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$
- operator norm $||T||_{\infty} \coloneqq \sup_{x \in H, ||x||=1} ||Tx||$
- complete with respect to this norm

Definition (Gelfand-Naimark, Segal 1940s)

A C*-algebra A is

- ullet an algebra over ${\mathbb C}$
- which may or may not be unital (today: always unital)
- with an involution $^* : A \to A$ i.e. $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$ for $\lambda, \mu \in \mathbb{C}$, $(ab)^* = b^* a^*$, $(a^*)^* = a$
- and a norm satisfying $\|ab\| \le \|a\| \|b\|$ and $\|a^*a\| = \|a\|^2$
- complete with respect to this norm (i.e.: A Banach algebra)

Example

- C(X) with $\|\cdot\|_{sup}$
- B(H) or $M_N(\mathbb{C})$
- every closed (unital) *-subalgebra $A \subseteq B(H)$

Example (rotation algebra/noncommutative torus) *H* separable Hilbert space, ONB $(e_n)_{n \in \mathbb{Z}}$, $\vartheta \in \mathbb{R}$.

$$\begin{split} &Ue_n \coloneqq e^{2\pi i n\vartheta} e_n = \lambda^n e_n &\lambda \coloneqq e^{2\pi i \vartheta} \in \mathbb{C} \\ &Ve_n \coloneqq e_{n+1} & \text{bilateral shift} \\ &A_\vartheta \coloneqq C^*(U,V) \subseteq B(H) & \text{smallest closed *-subalgebra} \end{split}$$

Check (easy):

- $UV = \lambda VU$
- U and V are unitaries :⇔ UU* = U*U = 1
 ⇔ U surj. and isometric (||U|| = 1), i.e. Hilbert space isomorphism
 Check (hard): Given any u, v ∈ A with uv = λvu, u, v unitaries, we have:

$$A_{\vartheta} \cong C^*(u,v) \subseteq A$$

1st Fundamental Theorem of C*-Algebras (GN 1940s)

A unital C^{*}-algebra.

A commutative $\iff \exists X \text{ compact} : A \cong C(X) \coloneqq \{f : X \to \mathbb{C} \text{ cont.}\}$

Proof (rough sketch for \Rightarrow):

- $X := \operatorname{Spec}(A) := \{ \varphi : A \to \mathbb{C} \mid \varphi \text{ algebra hom.}, \varphi \neq 0 \}$ compact H.dorff
- Define $\chi: A \to C(X)$ by $\chi(x)(\varphi) \coloneqq \varphi(x)$
- check (easy): χ algebra hom.
- check (less easy): any φ is *-preserving and so is χ
- check (hard): χ isometric (in particular injective)
- use Stone-Weierstraß: $\chi(A)$ is a closed unital *-subalgebra of C(X) separating the points $\implies \chi(A) = C(X)$

1st Fundamental Theorem of C*-Algebras (GN 1940s)

A unital C*-algebra.

A commutative $\iff \exists X \text{ compact} : A \cong C(X) \coloneqq \{f : X \to \mathbb{C} \text{ cont.}\}$

Getting back to the rotation algebra

$$A_{\vartheta} \cong C^*(u, v \mid u, v \text{ unitaries}, uv = e^{2\pi i \vartheta} v u)$$

What happens for $\vartheta = 0$? Then:

uv = vu

Thus, by the 1st Fundamental Theorem:

$$\exists X: A_{\vartheta} \cong C(X)$$

What is X in this case? It is \mathbb{T}^2 , the torus. Hence for $\vartheta \in \mathbb{R} \setminus \{0\}$:

" $A_{\vartheta} = C(\mathbb{T}_{\vartheta}^2)$ " noncommutative torus

1st Fundamental Theorem of C*-Algebras (GN 1940s)

A unital C^{*}-algebra.

A commutative $\iff \exists X \text{ compact} : A \cong C(X) \coloneqq \{f : X \to \mathbb{C} \text{ cont.}\}$

Continuous functional calculus for free:

A unital C^{*}-algebra, $x \in A$ with $x^*x = xx^*$ ("normal").

Then $C^*(x,1) \subseteq A$ commutative (smallest C^* -subalg. containing x and 1) Thus, there is an X (in fact, the "spectrum of x") and an isomorphism:

$$\Phi: C(X) \to C^*(x,1) \subseteq A$$

Hence, we can "apply" continuous functions to x, for instance \sqrt{x} or log x (if the spectrum is nice), simply by putting $f(x) \coloneqq \Phi(f) \in A$ for $f \in C(X)$.

Ex.:
$$\sqrt{\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

A unital C^{*}-algebra.

A commutative $\iff \exists X \text{ compact} : A \cong C(X) := \{f : X \to \mathbb{C} \text{ cont.}\}$

2nd Fundamental Theorem of C*-Algebras (GN+Segal 1940s)

A unital C^{*}-algebra. There is a Hilbert space H and an injective ^{*}-homomorphism $\pi: A \rightarrow B(H)$. Hence, we have:

 $A \cong \pi(A) \subseteq B(H)$

Definition

A C^{*}-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is a compact group and $\alpha : G \to Aut(A)$ is a cont. group hom.

Dynamical system for topological spaces:

- X compact space, $\varphi: X \to X$ homeomorphism (bij., cont., φ^{-1} cont.)
- Then: $C(X) \rightarrow C(X)$, $f \mapsto f \circ \varphi$ automorphism (bij. *-algebra hom.)
- Assume φ depends on $t \in \mathbb{Z}$ (or $t \in \mathbb{R}$), i.e. $\varphi_t : X \to X$; put $\varphi_0 \coloneqq id$

• Assume
$$\varphi_{s+t} = \varphi_s \circ \varphi_t$$

• Then: A = C(X), $G = \mathbb{Z}$, $\alpha : \mathbb{Z} \to Aut(C(X))$, $\alpha_t(f) := f \circ \varphi_t$ (Note: Aut(A) is a group with respect to the composition)

Example

 $\vartheta \in \mathbb{R}, \ X = S^1 \coloneqq \{z \in \mathbb{C} \mid |z| = 1\} \subseteq \mathbb{C} \ sphere, \ \varphi_t : S^1 \to S^1, \ z \mapsto e^{2\pi i t \vartheta} z$

Definition

A C^{*}-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is a (locally) compact group and $\alpha : G \to Aut(A)$ is a cont. group hom.

Goal: Want to have a C^* -algebra $A \rtimes_{\alpha} G$ containing the whole information on the C^* -dynamical system.

Quick look at Aut(B(H)): Let $U \in B(H)$ be unitary ($UU^* = U^*U = 1$). $T \mapsto UTU^*$

is an automorphism of B(H) (with inverse $T \mapsto U^*TU$) Can show: All automorphisms of B(H) are of this form ("inner")

Strategy: Add unitaries u_t to A to make all $\alpha_t \in Aut(A)$ inner

Definition

A C^{*}-dynamical system is a tripel (A, G, α) where A is a C^{*}-algebra, G is a (locally) compact group and $\alpha : G \to Aut(A)$ is a cont. group hom.

Definition (informal)

Assume that G is discrete (for instance: $G = \mathbb{Z}$). The crossed product $A \rtimes_{\alpha} G$ is given by adding elements u_t , $t \in G$ to A such that:

- the u_t are unitaries: $u_t u_t^* = u_t^* u_t = 1$
- the unitaries respect the group G: $u_s u_t = u_{s+t}$, $u_t^* = u_{t^{-1}}$
- the unitaries make the α_t inner: $\alpha_t(a) = u_t a u_t^*$

Example

Consider $\vartheta \in \mathbb{R}$, $X = S^1 \subseteq \mathbb{C}$ sphere, $\varphi_t : S^1 \to S^1$, $z \mapsto e^{2\pi i t \vartheta} z$. C^* -dyn. syst.: $A = C(S^1)$, $G = \mathbb{Z}$, $\alpha : \mathbb{Z} \to \operatorname{Aut}(C(S^1))$, $\alpha_t(f) = f \circ \varphi_t$ Note: $\alpha_t = \alpha_1 \circ \ldots \alpha_1$ for t > 0 and $\alpha_t = \alpha_1^{-1} \circ \ldots \alpha_1^{-1}$ for t < 0

Add a unitary
$$u_1$$
 to $C(S^1)$ with $\alpha_1(a) = u_1 a u_1^*$ and put $u_t := u_1^t$
Then: u_t are unitaries, $u_s u_t = u_{s+t}$, $u_t^* = u_{t-1}$, $\alpha_t(a) = u_t a u_t^*$

Check that $v := id : S^1 \to S^1$ is a unitary element in $C(S^1)$ with $\alpha_1(v) = v \circ \varphi_1 = id \circ \varphi_1 = e^{2\pi i \vartheta} id = e^{2\pi i \vartheta} v$. Hence

$$e^{2\pi i\vartheta}v = \alpha_1(v) = u_1vu_1^* \quad \Longleftrightarrow \quad u_1v = e^{2\pi i\vartheta}vu_1$$

from which we infer:

$$A_{\vartheta} \cong C(S^1) \rtimes_{\alpha} \mathbb{Z}$$

Moritz Weber	(Saarland U)
--------------	--------------

Some facts about crossed products:

- Note that $C(X) \rtimes G$ may be noncommutative (see A_{ϑ})
- Takai duality: (A ⋊ G) ⋊ Ĝ ≅ A ⊗ K(H) where G is an abelian group, Ĝ := {ψ : G → C group hom.} is the dual group and K(H) compact operators on some Hilbert space (Compare with Pontryagin duality: Ĝ ≅ G for abelian groups)
- Gootman-Rosenberg-Sauvageot Theorem: In the classical situation of a compact group *G* acting on a compact space *X*, if things are nice (*G* amenable, second countable, *G* acts "freely" on *X*), we have:

 $C(X) \rtimes_{\alpha} G$ simple (i.e. has no ideals) $\iff G$ acts minimal

JOIN!

X ISem24 X C*-algebras and dynamics 24th Internet Seminar

Virtual Lectures

Xin Li (Glasgow) Christian Voigt (Glasgow) Moritz Weber (Saarbrücken)

Organisation

Christian Budde (Potchefstroom) Moritz Weber (Saarbrücken)

Lecture Phase October 2020 — February 2021

Project Phase March 2021 — June 2021

Final Workshop 6 — 12 June 2021

jsem24@nwu.ac.za https://www.math.uni-sb.de/ag/speicher/ISem24.html

UNIVERSITÄT DES SAARLANDES

University of Glasgow

