W^{*}-DYNAMICAL SYSTEMS

June 2021

DEFINITION

- ${\mathfrak A}$ is a $W^*\operatorname{-algebra}$ if
 - \mathfrak{A} is a C*-algebra,
 - there exists a Banach space \mathfrak{A}_* such that $(\mathfrak{A}_*)^* \simeq \mathfrak{A}$.

DEFINITION

A linear functional $\varphi \colon \mathfrak{A} \to \mathbb{C}$ is normal if it is w^* -continuous. \mathfrak{A}_* is the space of normal functionals.

Example

- $\mathfrak{A} = L^{\infty}(X, \mu), \, \varphi(f) = \int_X f \, d\mu$, where $\mu \ge 0$ finite measure.
- $\mathfrak{A} = B(\mathcal{H}), \varphi(a) = Tr(Ta)$, where $T \ge 0$ trace class.

DEFINITION

 (\mathfrak{A},T,φ) is a $W^*\text{-dynamical system if}$

- ${\mathfrak A}$ is a $W^*\mbox{-algebra},$
- φ is a faithful normal state on \mathfrak{A} ,
- $T: \mathfrak{A} \to \mathfrak{A}$ is completely positive s.t. $T(\mathbb{1}) = \mathbb{1}$ and $T^*(\varphi) = \varphi$.

Remark

One can show that T is normal, hence the preadjoint $T_*\colon \mathfrak{A}_*\to \mathfrak{A}_*$ exists.

DEFINITION

A W*-dynamical system $(\mathfrak{A}, T, \varphi)$ is irreducible if the fixed point space of T equals \mathbb{Cl} .

Theorem

- Let $(\mathfrak{A}, T, \varphi)$ be an irreducible W^* -dynamical system.
 - The sets of peripheral eigenvalues of T and T_{*} are equal. It is a subgroup of T.
 - ${\it 2}$ There exists a faithful normal conditional expectation Q

$$Q: \mathfrak{A} \to \mathfrak{M} = \overline{\operatorname{span}}^{w^*} \{ x \in \mathfrak{A} \, | \, T(x) = \alpha x, \, |\alpha| = 1 \}.$$

Theorem

- Let $(\mathfrak{A}, T, \varphi)$ be an irreducible W^* -dynamical system.
 - The sets of peripheral eigenvalues of T and T_* are equal. It is a subgroup of \mathbb{T} .
 - ${\it @}$ There exists a faithful normal conditional expectation Q

$$Q: \mathfrak{A} \to \mathfrak{M} = \overline{\operatorname{span}}^{w^*} \{ x \in \mathfrak{A} \, | \, T(x) = \alpha x, \, |\alpha| = 1 \}.$$

3 $\mathfrak{M} \subseteq \mathfrak{A}$ is a W^* -subalgebra and φ is a trace on \mathfrak{M} .

 \bullet There exists a faithful normal conditional expectation Q

$$Q: \mathfrak{A} \to \mathfrak{M} = \overline{\operatorname{span}}^{w^*} \{ x \in \mathfrak{A} \, | \, T(x) = \alpha x, \, |\alpha| = 1 \}.$$

• Existence of Q uses Jacobs-DeLeeuw-Glicksberg theory and theory of compact semigroups (see "Decomposition of operator semigroups on W* algebras" – Bátkai, Groh, Kunszenti-Kovács, Schreiber).

Theorem

Let $(\mathcal{B}(\mathcal{H}), T, \varphi)$ be an irreducible W^* -dynamical system. Then the set of peripheral eigenvalues of T equals Γ_h , the group of all h-th roots of unity for some $h \ge 1$.

Sketch of proof:

- We have a normal faithful conditional expectation $Q: B(\mathcal{H}) \to \mathfrak{M}$.
- (Tomiyama) This means that \mathfrak{M} is purely atomic, i.e. there is a set $\{p_i\}$ of minimal projections with $\sum_i p_i = \mathbb{1}$.
- Consequently \mathfrak{M} is of type I and finite (φ is a faithful trace on \mathfrak{M}).
- It follows that $\mathcal{Z}(\mathfrak{M})$ is also purely atomic, i.e. $\mathcal{Z}(\mathfrak{M}) \simeq \ell^{\infty}(S)$ for some set $S \neq \emptyset$.

- Assume by contradiction that Z(𝔅) is infinite dimensional,
 Z(𝔅) ≃ ℓ[∞](ℕ).
- One can show that $T|_{\mathfrak{M}}$ is a *-automorphism, hence $T|_{\mathcal{Z}(\mathfrak{M})}$ is also a *-automorphism induced by some bijection $\tau \colon \mathbb{N} \to \mathbb{N}$.
- $\varphi|_{\mathcal{Z}(\mathfrak{A})} \in \ell^{\infty}(\mathbb{N})^+_* = \ell^1(\mathbb{N})^+$ is given by $\varphi(f) = \sum_{n=1}^{\infty} \varphi_n f(n)$ for some $\varphi_n > 0$. $T_*(\varphi) = \varphi$ gives

$$\varphi_n = \varphi_{\tau(n)} \quad (n \in \mathbb{N}).$$

• If the orbit $\{1, \tau(1), \tau^2(1), \dots\}$ is finite then $\mathbb{1} \neq \sum_{k=0}^{k_0} \delta_{\tau^k(1)}$ is invariant under T, contradiction. Otherwise $\varphi(\mathbb{1}) = +\infty$, also contradiction.

- It follows that $\dim \mathcal{Z}(\mathfrak{M}) < +\infty$.
- \bullet Recall that ${\mathfrak M}$ is of type I and finite, hence

$$\mathfrak{M}\simeq \mathrm{M}_{n_1}\oplus\cdots\oplus\mathrm{M}_{n_k}$$

for some $n_1, \ldots, n_k \in \mathbb{N}$.

• Consequently $\dim \mathfrak{M} < +\infty$ and since

$$\mathfrak{M} = \overline{\operatorname{span}}^{w^*} \{ x \in \mathfrak{A} \, | \, T(x) = \alpha x, \, |\alpha| = 1 \}$$

the peripheral point spectrum of T is finite. It is a subgroup of \mathbb{T} , consequently is equal to Γ_h for some root of unity h.

Bibliography

- Batkai, A., Groh, U., Kunszenti-Kovacs, D., Schreiber, M.: Decomposition of operator semigroups on W*-algebras. Semigroup Forum 84(1), 8–24 (2012).
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of C*-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III.
- Groh, U.: Spectrum and asymptotic behaviour of completely positive maps on B(H). Math. Jpn. 29(3), 395–402 (1984).
- Takesaki, M.: Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5. Springer-Verlag, Berlin, (2002).

Thank you!