
ISEM24
C∗-ALGEBRAS AND DYNAMICS

LECTURE NOTES

Abstract. In these lectures, we aim at providing an introduction to the general
theory of C∗-algebras (first two thirds of the lectures) as well as to the more
particular area of C∗-dynamical systems as a tool to deal with dynamics (last
third of the lectures).

Date: October 6, 2020.
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Introduction and Motivation

Let us briefly motivate the lectures on C∗-algebras and dynamics and the main
results we want to learn. This introduction is meant to serve as a teaser for the
lectures omitting any technical details – the mathematical background for the fol-
lowing will be developed throughout the upcoming lectures. So, sit back and enjoy
a short overview and motivation for the future lectures.

Recall that matrices T ∈ MN(C) may be seen as linear maps T : CN → CN .
In functional analysis, we deal with infinite dimensional versions of these and we
consider linear maps

T : H → H

between possibly infinite dimensional Hilbert spaces H. In contrast to linear algebra
– i.e. the finite dimensional setting – these maps do not need to be continuous (which
is equivalent to being bounded), so this comes as an extra assumption making life
easier. So, let us consider

B(H) := {T : H → H | T is linear and bounded},
where H is some Hilbert space H. If dim(H) = N , then B(H) = MN(C).

A main feature of bounded, linear operators on a Hilbert space is noncommuta-
tivity: We have ST 6= TS in general, where S, T ∈ B(H) and the multiplication
is defined via composition of maps. We know such a feature already from the ma-
trix multiplication in linear algebra. This noncommutativity appears in quantum
physics, in linear algebra, in the representation theory of groups and in many further
areas of mathematics and science.

The theory of operator algebras captures this noncommutativity turning it into a
powerful tool in mathematics. The pioneers Francis Murray and John von Neumann
wrote in their very first article [3] on von Neumann algebras in 1936 that

“various aspects of the quantum mechanical formalism suggest strongly
the elucidation of this subject.”

In addition, they claim that their work may be viewed as part of

“attempts to generalise the theory of unitary group-representations
[sic!] essentially beyond their classical frame [. . .].”

Representing groups as unitary operators in B(H) has also been in the scope of
Israel Gelfand and Mark Naimark, when they wrote their seminal article [1] in 1943
introducing C∗-algebras. In 1993, Richard Kadison commented [2] on this article

“from the vantage point of a fifty year history, it is safe to say that
that paper changed the face of modern analysis. Together with the
monumental ‘Rings of operators’ series [. . .] authored by F. J. Murray
and J. von Neumann, it introduced ‘non-commutative analysis’, the
vast area of mathematics that provides the mathematical model for
quantum physics.”
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Nowadays, the following areas may be counted to such a “non-commutative analysis”
or “quantum mathematics”:

Classical theory Quantum/noncomm. version Founders and pioneers
Topology C∗-Algebras Gelfand-Naimark 1940s

Measure Theory von Neumann Algebras Murray-vonNeumann 1930s

Probability Theory Free Probability Theory, Voiculescu 1980s

Quantum Probability Theory Accardi,

Hudson-Parthasarathy 1970s

Differential Geometry Noncommutative Geometry Connes 1980s

(Compact) Groups (Compact) Quantum Groups Woronowicz 1980s

Information Theory Quantum Information Theory Feynman, Deutsch 1980s

Complex Analysis Free Analysis J. L. Taylor 1970s

The main reason why C∗-algebras may be seen as a “quantum version” of topology
comes from the famous Gelfand-Naimark Theorem, which we allow ourselves to call
the 1st Fundamental Theorem of C∗-Algebras in these lectures.

1st Fundamental Theorem of C∗-Algebras (Gelfand-Naimark 1940s).
Let A be a unital C∗-algebra. We have the following equivalence.

A is commutative ⇐⇒ ∃X compact : A ∼= C(X) := {f : X → C is continuous}
Hence, any compact topological space gives rise to a commutative unital C∗-

algebra – on the other hand any commutative C∗-algebra is exactly of this form. In
this sense, commutative C∗-algebras “correspond” to topology and we may view the
theory of noncommutative C∗-algebras as a kind of “noncommutative topology”.

This Gelfand duality is also the basis for other quantum theories (namely von Neu-
mann algebras, Free probability, noncommutative geometry and quantum groups).

Besides proving the above first fundamental theorem, our goal is to prove that any
(abstractly defined) C∗-algebra may be represented concretely on a Hilbert space:

2nd Fundamental Theorem of C∗-Algebras (Gelfand-Naimark, Segal 1940s).
Any C∗-algebra is isomorphic to a norm closed ∗-subalgebra of B(H), for some H.

From these fundamental theorems, we should keep in mind, that the algebra C(X)
of continuous functions on a compact space X as well as closed (in the operator norm
topology) ∗-subalgebras of B(H) are our main examples of C∗-algebras.

We will spend about two thirds of the lecture (October – December 2020) in order
to develop the above basic knowledge on C∗-algebras including also a treatment of
universal C∗-algebras. Afterwards (January – February 2021), we turn to dynamical
systems. Let us sketch some basic ideas of the latter, referring to [4] for a nice survey
on dynamical systems and operator algebras.

Our starting point is a group G and a compact space X. Assume that G acts on
this space, i.e. we have a map α : G × X → X. This is a topological dynamical
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system. See [4] for a motivation how to derive this setting from more physically
motivated dynamical systems or from differential equations.

Now, let us define αg : C(X) → C(X) via αg(f)(x) := f(α(g, x)). This induces
a group homomorphism from G to the automorphism group of C(X) by g 7→ αg.
We may then construct a C∗-algebra C(X) oα G containing the information of X,
of G and of the action of G on X (in terms of conjugation with unitaries) – hence,
C(X) oα G encodes the whole dynamical system!

Surprisingly, although C(X) is commutative, the crossed product C∗-algebra
C(X)oαG may fail to be commutative. In fact, this is the generic situation: Unless
the action is trivial, C(X) oα G is always noncommutative (as conjugation with
unitaries is trivial in commutative C∗-algebras). Hence, although our input X and
G is classical data, we might want to enter the “nonclassical” or “quantum” world
of noncommutative C∗-algebras in order to study this dynamical system. The phi-
losophy is, that the theory of C∗-algebras provides a number of tools whith which
we may investigate C(X) oα G – in order to learn something about the classical
dynamical system.

More generally, we will treat C∗-dynamical systems, i.e. actions α of compact
groups G on possibly noncommutative C∗-algebras A, leading to crossed products
Aoα G.

We wish you a pleasant reading of the lecture notes and we hope you will enjoy the
theory of C∗-algebras as much as we do!
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