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1. Reminder on bounded operators on Hilbert spaces

Abstract. We recall some basic notions from Hilbert space theory, such as
Hilbert spaces, Cauchy-Schwarz inequality, orthogonality, decomposition of Hilbert
spaces, Riesz Representation Theorem, orthonormal bases and isomorphisms of
Hilbert spaces. We then turn to bounded linear operators on Hilbert spaces, their
operator norms and the existence of adjoints. We define the notion of a C∗-algebra
and verify that B(H) is a unital C∗-algebra. We finish this lecture with a number
of algebraic reformulations of properties of operators on Hilbert spaces (such as
unitaries, isometries, orthogonal projections, etc.), and we give a brief survey on
compact operators. As Lecture 1 is seen as a reminder to lay the foundations for
the upcoming lectures, it does not contain many complete proofs, but we give at
least some ideas. You may take [1, 2, 6] as general references for Lecture 1.

1.1. Hilbert spaces. Informally speaking, Hilbert spaces are vector spaces equipped
with a tool to measure angles between vectors.

Definition 1.1. Let H be a complex vector space. An inner product is a map
〈·, ·〉 : H ×H → C satisfying for all x, y, z ∈ H and all λ, µ ∈ C:

(1) 〈λx+ µy, z〉 = λ〈x, z〉+ µ〈y, z〉
(2) 〈z, λx+ µy〉 = λ̄〈z, x〉+ µ̄〈z, y〉
(3) 〈x, y〉 = 〈y, x〉
(4) 〈x, x〉 ≥ 0
(5) If 〈x, x〉 = 0, then x = 0.

A space equipped with an inner product is called a pre-Hilbert space. An inner
product induces a norm ‖x‖ :=

√
〈x, x〉. A (complex) Hilbert space is a pre-Hilbert

space, which is complete with respect to the induced norm.

Example 1.2. The following spaces are examples of Hilbert spaces.

(a) Given n ∈ N, the vector space Cn endowed with 〈x, y〉 :=
∑n

i=1 xiȳi, x, y ∈ Cn

is a Hilbert space. The induced norm is the well-known Euclidean norm.
(b) The space `2(N) of complex-valued sequences (an)n∈N with

∑
n∈N|an|2 < ∞

endowed with 〈(an)n∈N, (bn)n∈N〉 :=
∑

n∈N anb̄n, (an)n∈N, (bn)n∈N ∈ `2(N) is a
Hilbert space.

(c) More generally, recall that we may define L2(X,µ) where (X,µ) is a measure
space. The inner product is then given by:

〈f, g〉 :=

∫

X

f(x)ḡ(x) dµ(x), f, g ∈ L2(X,µ)

Note that for X = [0, 1] the unit interval and µ = λ the Lebesgue measure,
this defines an inner product on the space C([0, 1]) of continuous complex-
valued functions. However, C([0, 1]) is not complete with respect to the
induced norm (which is the so called L2-norm), i.e. it is only a pre-Hilbert
space but no Hilbert space.
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Choosing X = I a set and µ = ζ the counting measure, we obtain `2(I),
with the above examples `2(N) and Cn as special cases.

(d) Any closed subspace of a Hilbert space is a Hilbert space (closed with respect
to the norm topology, subspace in the sense of a linear subspace).

The most important inequality for inner products is the following one.

Proposition 1.3 (Cauchy-Schwarz inequality). If H is a Hilbert space (or a pre-
Hilbert space), we have for all x, y ∈ H:

|〈x, y〉| ≤ ‖x‖‖y‖
Here, equality holds if and only if x and y are linearly dependent.

Proof (idea): Use 0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉 − |〈x,y〉|2〈y,y〉 with λ = − 〈x,y〉〈y,y〉 . �

Actually, one needs the Cauchy-Schwarz inequality for proving that the norm in
Def. 1.1 is a norm indeed. There are two further important properties of the inner
product and its induced norm.

Proposition 1.4. Let H be a Hilbert space (or a pre-Hilbert space) and let x, y ∈ H.

(a) The parallelogram identity holds: ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).
(b) The polarisation identity holds: 〈x, y〉 = 1

4

∑3
k=0 i

k‖x+ iky‖2.
Proof (idea): (a): Direct computation. (b): Use ‖x+ iky‖2 = 〈x+ iky, x+ iky〉. �

The first of the above identities characterizes pre-Hilbert spaces: A normed space
is a pre-Hilbert space if and only if the parallelogram identity holds. The second
identity shows that the inner product is completely determined by its induced norm.

1.2. Orthogonality and decomposition of Hilbert spaces. As mentioned be-
fore, an inner product is the abstract information of an angle between vectors, see
also Exc. 1.5. The notion of orthogonality plays the role of right angles.

Definition 1.5. Let H be a Hilbert space and K,K1, K2 ⊆ H be subsets.

(a) Two vectors x, y ∈ H are orthogonal (x ⊥ y), if 〈x, y〉 = 0.
(b) We write K1 ⊥ K2, if x ⊥ y for all x ∈ K1 and y ∈ K2.
(c) The orthogonal complement of K is K⊥ := {x ∈ H | x ⊥ y for all y ∈ K}.

Even when K is just a subset without any further structure, its orthogonal com-
plement will be of a nice form.

Lemma 1.6. Given a subset K ⊆ H, its orthogonal complement K⊥ ⊆ H is a
closed subspace of H and we have (K̄)⊥ = K⊥, where K̄ is the closure of K.

Proof (idea): Due to the continuity of the inner product (Exc. 1.4). �
The following is a version of the antique Greek theorem by Pythagoras verifying

that orthogonality corresponds to right angles indeed, see also Exc. 1.5.
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Proposition 1.7 (Pythagoras’ Theorem). If H is a Hilbert space and x, y ∈ H are
orthogonal, then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.
Proof. Direct computation. �

One of the most important features of Hilbert spaces is that we may decompose
them into direct sums.

Definition 1.8. Let K1, K2 ⊆ H be two closed subspaces of a Hilbert space, such
that K1 ⊥ K2. We then write K1 ⊕ K2 ⊆ H for the subspace given by elements
x+ y ∈ H, where x ∈ K1 and y ∈ K2.

Proposition 1.9. Given a closed subspace K ⊆ H, we may decompose the Hilbert
space H as a direct sum:

H = K ⊕K⊥
Then, every vector x ∈ H has a unique decomposition x = x1 + x2 with x1 ∈ K and
x2 ∈ K⊥.

Proof (idea): By Lemma 1.6, K⊥ is closed. Trivially, K ⊥ K⊥. We need to do
some hard work to show that given x ∈ H, there is a unique “best approximation”
x1 ∈ K such that ‖x − x1‖ = inf{‖x − y‖ | y ∈ K}. With some further efforts, we
then show x2 := x− x1 ∈ K⊥. That this decomposition of x is unique easily follows
from K ∩K⊥ = {0}. �
Corollary 1.10. Given a subspace K ⊆ H, the double complement (K⊥)⊥ coincides
with the closure K̄ of K.

Proof. By the previous proposition and using Lemma 1.6, we may decompose H in
two ways, H = K̄ ⊕K⊥ and H = (K⊥)⊥ ⊕K⊥, which shows K̄ = (K⊥)⊥. �

1.3. Dual space and the Representation Theorem of Riesz. Another nice
feature of Hilbert spaces is that they have nice dual spaces – themselves! Given
y ∈ H, we denote by fy : H → C the linear map given by fy(x) := 〈x, y〉. In Exc.
1.4, it is shown that fy is linear and continuous.

Proposition 1.11 (Riesz Representation Theorem). Let H be a Hilbert space and
denote by H ′ its dual space, i.e. the space consisting in all linear, continuous maps
f : H → C. The map j : H → H ′ given by j(y) := fy is an antilinear isometric
isomorphism.

Proof (idea): By Exc. 1.4, j is well defined and isometric (and hence injective);
antilinearity follows from Def. 1.1(2). As for surjectivity, let f ∈ H ′ be non-zero
and decompose H = K ⊕ K⊥, where K := ker f . You will find out that K⊥ is
one-dimensional and j(f) = fy for some y ∈ K⊥. �

This has some nice consequences when working with Hilbert spaces. For instance,
given a linear, continuous functional f : L2(X,µ) → C, then it must come from a
function g ∈ L2(X,µ), i.e. f(h) =

∫
X
hḡ dµ for all h ∈ L2(X,µ).
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1.4. Orthonormal basis for a Hilbert space. In finite dimensions, we usually
understand vector spaces with respect to certain coordinates. We may transport this
concept to the infinite-dimensional setting within the framework of Hilbert spaces.

Lemma 1.12. Let H be a Hilbert space and let (ei)i∈I be an orthonormal system,
i.e. 〈ei, ej〉 = δij. The following are equivalent:

(1) ‖x‖2 =
∑

i∈I |〈x, ei〉|2 for all x ∈ H
(2) x =

∑
i∈I〈x, ei〉ei for all x ∈ H

(3) span{ei | i ∈ I} ⊆ H is dense.
(4) If z ∈ H is orthogonal to all ei, i ∈ I, then z = 0.
(5) (ei)i∈I is a maximal orthonormal family (with respect to inclusion).

Proof (idea): The easy parts are the equivalences of (2) and (3) (just a reformu-
lation), of (4) and (5) (just a reformulation) as well as of (2) and (4) (use z :=
x −∑i∈I〈x, ei〉ei). The hard part is the equivalence of (1) and (2), where we use
Pythagoras (Prop. 1.7) on finite subsets F ⊆ I proving that ‖x −∑i∈F 〈x, ei〉ei‖2
tends to zero. The key words are Bessel’s Inequality and Parseval’s Identity. �

Definition 1.13. An orthonormal system is called an orthonormal basis of a Hilbert
space, if one of the equivalent conditions in Lemma 1.12 is satisfied.

We should not be misled by the word “basis” here: The elements of an orthonor-
mal basis are linearly independent, but they do not necessarily form a basis in the
sense of linear algebra (Hamel basis) – we may not represent any vector in H by a
finite linear combination of the ei. However, passing to infinite linear combination,
we may do so. This is the content of Lemma 1.12(2) – and we even know the coeffi-
cients thanks to our inner product. See also Schauder bases for the general Banach
space setting.

Example 1.14. For Cn, the vectors ei having 1 at the i-th entry and zero otherwise
form an orthonormal basis – in fact, in finite dimensions any orthonormal basis is
also a (Hamel) basis.

More generally, for `2(I), the sequence having 1 at the i-th entry and zero other-
wise form an orthonormal basis. If I is infinite, then this is not a basis.

Lemma 1.15. Any Hilbert space possesses an orthonormal basis (ei)i∈I and the
cardinality of I is independent of the choice of the vectors.

Proof (idea): Use Zorn’s Lemma for the existence and Cantor-Schröder-Bernstein
for the uniqueness of the cardinality. �

Definition 1.16. Given a Hilbert space H with orthonormal basis (ei)i∈I , its
(Hilbert space) dimension is defined as the cardinality of I. If I is countable, we call
H separable.

Thanks to the above lemma, the dimension is well-defined.
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1.5. Isomorphisms of Hilbert spaces. Let us think about isomorphisms of Hilbert
spaces – which structure are they supposed to preserve? Well, the vector space and
the inner product!

Definition 1.17. Let H and K be Hilbert spaces. An isomorphism between H
and K is a surjective linear map U : H → K which is isometric, i.e. it satisfies
〈Ux, Uy〉K = 〈x, y〉H for all x, y ∈ H.

The preservation of the inner product implies that U is injective, which means
that it is an isomorphism of the level of vector spaces, in particular. One can show
that Hilbert spaces are isomorphic if and only if they have the same Hilbert space
dimension in the sense of Def. 1.16. Hence, any Hilbert space is isomorphic to some
`2(I). In particular, `2(N) is the separable Hilbert space.

1.6. Bounded linear operators on Hilbert spaces. In the subsequent lectures,
we are not so much interested in the theory of Hilbert spaces as such but rather in
the theory of bounded linear operators on Hilbert spaces. Let us first prove that
“bounded” and “continuous” means the same for linear operators.

Lemma 1.18. Let H,K be Hilbert spaces and let T : H → K be linear. The
following are equivalent:

(a) T is continuous everywhere.
(b) T is continuous in zero.
(c) T is bounded, i.e. there is a C > 0 such that ‖Tx‖ ≤ C‖x‖ for all x ∈ H.

Proof (idea): The step from (a) to (b) is trivial. Assuming (b) with ε = 1, there is
a δ > 0 such that ‖x‖ ≤ δ implies ‖Tx‖ ≤ 1; put C := δ−1 to derive (c). Passing
from (c) to (a) is straightforward. �
Definition 1.19. Given a Hilbert space H, we denote by B(H) the space of all
bounded, linear operators T : H → H.

Example 1.20. If dim(H) = N , i.e. if H = CN , then B(H) = MN(C), the algebra
of N × N matrices with complex entries. Indeed, in this case, any linear map is
automatically bounded.

Definition 1.21. Given T ∈ B(H), we denote by

‖T‖ := inf{C > 0 | ‖Tx‖ ≤ C‖x‖ for all x ∈ H}
the operator norm of T .

One can check that the operator norm is a norm indeed.

Lemma 1.22. Given T ∈ B(H), we have ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈ H.

Proof. Choosing Cn > ‖T‖ with Cn → ‖T‖ yields ‖Tx‖ ≤ Cn‖x‖ → ‖T‖‖x‖. �
Let us express the operator norm in an alternative way.
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Lemma 1.23. The norm ‖T‖ may be written as

‖T‖ = sup{‖Tx‖ | ‖x‖ = 1}.
You may replace ‖x‖ = 1 by ‖x‖ ≤ 1, if you prefer.

Proof. By Lemma 1.22, we have ‖Tx‖ ≤ ‖T‖, if ‖x‖ ≤ 1. Thus the supremum s
over all ‖Tx‖ with ‖x‖ = 1 is less or equal to ‖T‖. Conversely,

‖Tx‖ = ‖T
(

x

‖x‖

)
‖‖x‖ ≤ s‖x‖

whenever x 6= 0, so ‖T‖ ≤ s by Def. 1.21, which yields ‖T‖ = s in total. The same
proof works if s is the supremum over ‖Tx‖ with ‖x‖ ≤ 1. �
1.7. Existence of adjoints. How does a bounded, linear operator T behave with
respect to evaluations under the inner product? Here, the existence of adjoints is a
useful fact.

Proposition 1.24. Let H be a Hilbert space and T ∈ B(H). There exists a unique
operator T ∗ ∈ B(H) (the adjoint of T ) such that

〈Tx, y〉 = 〈x, T ∗y〉
for all x, y ∈ H.

Proof (idea): Let y ∈ H. We define gy : H → C by gy(x) := 〈Tx, y〉. Then gy ∈ H ′
and by the Riesz Representation Theorem 1.11, there is a z ∈ H such that gy = fz.
Thus 〈Tx, y〉 = 〈x, z〉 and we put T ∗y := z. Check T ∗ ∈ B(H). �
Example 1.25. If H = CN and T ∈ B(H) = MN(C), we may express T by
Tei =

∑
j tjiej for the canonical basis e1, . . . , eN of CN . Thus, T ∈ MN(C) has

coefficients tij and T ∗ ∈MN(C) has coefficients t̄ji.

Some operators coincide with their adjoints; they will play a special role.

Definition 1.26. An operator T ∈ B(H) is called selfadjoint (or Hermitian), if
T = T ∗.

There is a useful formula relating the kernel of T with the image of its adjoint.
We denote by kerT the space of all x ∈ H such that Tx = 0, whereas ranT denotes
the set of all Tx, where x ∈ H.

Lemma 1.27. For T ∈ B(H), we have kerT = (ranT ∗)⊥ and (kerT )⊥ = ranT ∗.

Proof. A vector x is in (ranT ∗)⊥ if and only if 〈Tx, y〉 = 〈x, T ∗y〉 = 0 for all y, i.e.
if and only if x is in the kernel of T . Use Lemma 1.6 for the second part. �

Implicitely, we used the following lemma in the proof above.

Lemma 1.28. Let T ∈ B(H). If 〈Tx, y〉 = 0 for all y ∈ H, then Tx = 0. In
particular, 〈Tx, y〉 = 〈Sx, y〉 for all x, y ∈ H implies S = T .

Proof. Put y = Tx for the first part and use the first part for the second. �
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1.8. Algebraic structure of B(H) and C∗-algebras. Let us now turn to the
main structure of these lectures: to C∗-algebras. It turns out that it describes the
algebraic structure of B(H) pretty well.

Definition 1.29. We define the following algebraic notions.

(a) An algebra A over C is a complex vector space equipped with a bilinear
associative multiplication · : A × A → A satisfying λ(xy) = (λx)y = x(λy)
for x, y ∈ A and λ ∈ C. The algebra is unital, if it contains a unit 1 with
respect to the multiplication, i.e. 1x = x1 = x for all x ∈ A.

(b) A normed algebra A is an algebra which is also a normed vector space and
whose norm is submultiplicative: It satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.

(c) A Banach algebra is a normed algebra which is complete.
(d) An involution on an algebra A is an antilinear map ∗ : A → A such that

(x∗)∗ = x and (xy)∗ = y∗x∗ for all x, y ∈ A.
(e) A C∗-algebra is a Banach algebra A with an involution satisfying the

C∗-identity ‖x∗x‖ = ‖x‖2 for all x ∈ A.

We conclude that a C∗-algebra combines algebraic structures (algebra with in-
volution) with topological ones (norm and completion). The most important link
between these two worlds is the C∗-identity, which turns C∗-algebras into a very
special subclass of Banach algebras. We will see later how this identity comes into
play. Also, we will discuss basic properties of the above definition in the next lecture.
For now, let us be patient and let us only check that B(H) is a C∗-algebra.

Proposition 1.30. Given a Hilbert space H, the adjoint operators T 7→ T ∗ give rise
to an involution and the composition of maps gives rise to a multiplication. Together
with the operator norm, this turns B(H) into a unital C∗-algebra.

Proof. Using Lemma 1.28, we may directly check that we have an involution on
B(H) given by the adjoints. For instance:

〈(T ∗)∗x, y〉 = 〈x, T ∗y〉 = 〈Tx, y〉
By Lemma 1.28 this yields (T ∗)∗ = T . Submultiplicativity of the norm follows from
Lemma 1.23 when taking the supremum over ‖S(Tx)‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖.

Let us now check that the involution is isometric (a fact that holds in general in
C∗-algebras). Using Cauchy-Schwarz (Prop. 1.3), we have:

‖T ∗x‖2 = 〈T ∗x, T ∗x〉 = 〈TT ∗x, x〉 ≤ ‖TT ∗x‖‖x‖ ≤ ‖T‖‖T ∗x‖‖x‖
This implies ‖T ∗x‖ ≤ ‖T‖‖x‖ and taking the supremum, we obtain ‖T ∗‖ ≤ ‖T‖,
by Lemma 1.23. On the other hand, ‖T‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖ which proves that the
involution satisfies ‖T ∗‖ = ‖T‖.

We may now check the C∗-identity. Again, Cauchy-Schwarz yields

‖Tx‖2 ≤ ‖T ∗T‖‖x‖2 = ‖T ∗T‖,
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in case ‖x‖ = 1. Taking the supremum and using that the involution is isometric,
we obtain:

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2
Hence, we have equality in the above computation.

As for the completeness of B(H) with respect to the operator norm, this is a
general fact on Banach spaces, which we omit here.

The unit on B(H) is the identity map x 7→ x, denoted by 1. �
We now have a good example of a C∗-algebra at hand: it is B(H), or MN(C), if

you prefer the finite-dimensional setting. We may easily obtain further examples.

Example 1.31. Any closed ∗-subalgebra of B(H) is a C∗-algebra. More precisely,
let A ⊆ B(H) be a linear subspace, which is closed under taking products and
adjoints (i.e. it is a ∗-subalgebra), and which is also closed in the operator norm
topology. Then, A is a C∗-algebra.

Finally, let us remark that B(H) is also closed under taking inverses with respect
to the composition, i.e. the inverse as a map is also the inverse with respect to the
multiplication.

Proposition 1.32. Let T ∈ B(H) be a bijective map. Then also T−1 ∈ B(H) and
(T−1)∗ = (T ∗)−1.

Proof (idea): It is easy to see that T−1 is linear, but we need the Open Mapping
Theorem for boundedness. The second assertion follows from Lemma 1.28. �

1.9. Algebraic formulations of Hilbert space features. Being aware of the
algebraic structure of B(H) has some advantages: We may express certain properties
of operators by purely algebraic means.

Definition 1.33. Let A be a unital C∗-algebra. Let U, V, P ∈ A.

(a) U is called unitary, if U∗U = UU∗ = 1.
(b) V is called isometry, if V ∗V = 1.
(c) P is called (orthogonal) projection, if P = P ∗ = P 2.

Let us take a look at the above definition in the special case A = B(H) and see
how the naming is motivated. Recall that 1 ∈ B(H) denotes the identity map.

Proposition 1.34. Let U, V, P ∈ B(H).

(a) U is a unitary if and only if it is a Hilbert space isomorphism of H.
(b) V is an isometry if and only if 〈V x, V y〉 = 〈x, y〉 for all x, y ∈ H.
(c) P is a projection if and only if there is a closed subspace K ⊆ H such that

P (x+ y) = x for x+ y ∈ K ⊕K⊥ = H, i.e. ranP = K.

Proof. Item (b) is an easy consequence of Lemma 1.28. As for (a), assume that U
is a unitary. By (b), it is isometric, and from UU∗ = 1 follows surjectivity. Hence,
it is a Hilbert space isomorphism in the sense of Def. 1.17. Conversely, if U is a
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Hilbert space isomorphism, we use (b) to deduce U∗U = 1. We prove UU∗ = 1 as
follows, making use of Lemma 1.28. Given x, y ∈ H there is x0 ∈ H with Ux0 = x
and hence:

〈UU∗x, y〉 = 〈UU∗Ux0, y〉 = 〈Ux0, y〉 = 〈x, y〉
Showing (c), let us first assume that P is a projection. Put K := ranP , the
range of P . Then K is a linear subspace of H. Moreover, any x ∈ ranP satisfies
Px = x, since P 2 = P . Thus, for any sequence xn → x with xn ∈ ranP , we have
xn = Pxn → Px by continuity of P . As the limit is unique, we have x = Px ∈ ranP ,
which means that K is closed. We may hence decompose H = K ⊕ K⊥ and we
observe that K⊥ = kerP using Lemma 1.27 and P = P ∗. Thus, P (x + y) = x for
x ∈ K and y ∈ K⊥.

Conversely, let K ⊆ H be a closed subspace and P (x+ y) = x as in the assertion.
Then P 2 = P . Moreover, P ∗ = P holds, since for x, x′ ∈ K and y, y′ ∈ K⊥:

〈P ∗(x+ y), x′ + y′〉 = 〈x+ y, P (x′ + y′)〉 = 〈x+ y, x′〉 = 〈x, x′〉 = 〈x, x′ + y′〉
= 〈P (x+ y), x′ + y′〉

We then use Lemma 1.28 to finish the proof. �
We conclude, that even in an abstract C∗-algebra A in the sense of Def. 1.29, we

may define unitaries, isometries and projections as in Def. 1.33 – and this will allow
us to deal abstractly with Hilbert space isomorphisms, the preservation of inner
products and closed subspaces even if there is no underlying Hilbert space at hand!

Example 1.35. Let us briefly look at some examples of unitaries and isometries.

(a) In the finite dimensional setting, any isometry is automatically unitary. In-
deed, by Prop. 1.34 we know that any isometry V ∈ MN(C) is injective:
V x = 0 implies 〈x, x〉 = 〈V x, V x〉 = 0. In finite dimensions, injectivity
implies surjectivity, thus V is a unitary.

(b) In the infinite dimensional setting, these two notions may differ. Consider
the Hilbert space `2(N) with an orthonormal basis en, n ∈ N, see Exm. 1.14
for instance. The unilateral shift S ∈ B(`2(N)) is defined by Sen := en+1,
for all n ∈ N. It is easy to see that S∗en = en−1 for n ≥ 2 and S∗e1 = 0. So,
S∗S = 1, but SS∗ 6= 1. See also Exc. 1.7.

1.10. Compact operators. We have seen that B(H) is a unital C∗-algebra. Let
us come to another important example of a C∗-algebra, in fact a non-unital one.

Definition 1.36. An operator T ∈ B(H) is compact if one of the following equiva-
lent conditions is satisfied:

(a) For any bounded set M ⊆ H, the closed set TM is compact.

(b) The closed image TB(0, 1) of the unit ball B(0, 1) := {x ∈ H | ‖x‖ ≤ 1} is
compact.

(c) For any bounded sequence (xn)n∈N in H, the sequence (Txn)n∈N contains a
convergent subsequence.
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We denote by K(H) ⊆ B(H) the set of all compact operators.

Example 1.37. (a) In MN(C), any operator is compact (Heine-Borel).
(b) Let H be infinite dimensional and assume that T ∈ B(H) has finite rank,

i.e. its image ranT is finite dimensional. Then T is compact. This fol-
lows again from some Heine-Borel argument, since TB(0, 1) is contained in

{y ∈ ranT | ‖y‖ ≤ C} with C = ‖T‖, by Lemma 1.23.
(c) Let H be infinite dimensional. The operator 1 ∈ B(H) (i.e. the identity

map) is not compact, since the closed unit ball is not compact. In fact, any
normed vector space is finite-dimensional if and only if the closed unit ball
is compact. We infer K(H) ( B(H) in infinite dimensions.

So, compact operators seem to be close to the finite dimensional setting – that is
indeed the case: they may be approximated by finite rank operators as we will see
in the next proposition. Thus, compact operators play the role of “small” operators.

Proposition 1.38. The compact operators have the following properties.

(a) K(H) is a closed two-sided ideal of B(H), i.e. it is a closed linear subspace
satisfying ST, TS ∈ K(H) for all S ∈ K(H) and T ∈ B(H).

(b) Given T ∈ K(H), we may find a sequence Tn ∈ B(H) of finite rank operators
approximating T in the operator norm.

(c) K(H) is closed under taking adjoints.
(d) K(H) is a C∗-algebra. It is non-unital, if and only if H is infinite dimen-

sional.

Proof (idea): The proof of (a) is no fun. ThatK(H) is a linear subspace follows easily
from the continuity of the addition. Also, the ideal property is doable. But showing
that K(H) is closed requires some tedious arguments with a diagonal sequence (but
no magic).

In order to show (b), let us restrict to the case when H is separable with orthonor-
mal basis en, n ∈ N. We denote by E(H) the set of finite rank operators. By (a)

and Exm. 1.37, we know E(H) ⊆ K(H). For the converse inclusion, denote by Pn
the projection onto span{e1, . . . , en}. Then Tn := PnT is of finite rank. One can
then directly show that Tnx → Tx, using Lemma 1.12. But this is only pointwise
convergence! In order to show convergence in the operator norm, we need to use
that T is compact.

Part (c) is known as Schauder’s Theorem (which holds for general Banach spaces
H). In our case, it follows easily from (b) (but (b) is not true for general Banach
spaces H): Let T ∈ K(H) and pick a sequence Tn of finite rank operators approx-
imating T . Then T ∗n is also of finite rank, since PmTn = Tn for some m ∈ N and
T ∗n = T ∗nPm, i.e. T ∗n acts only on a finite dimensional subspace. Now, the involution
is isometric and hence continuous, i.e. T ∗n → T ∗ and T ∗ is compact by (b).

(d) We conclude that K(H) is a closed ∗-subalgebra and hence it is a C∗-algebra
by Exm. 1.31. Why isn’t it unital in the infinite dimensional case? Let (ei)i∈I be an
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orthonormal basis of H. Assume P ∈ K(H) was a unit for K(H), i.e. PT = TP = T
for all T ∈ K(H). Then also PQi = QiP = Qi where Qi is the projection onto Cei,
the one-dimensional subspace spanned by the i-th basis vector. This implies Pei = ei
for all i ∈ I, and hence P = 1. But 1 /∈ K(H) by Exm. 1.37. �

1.11. Exercises.

Exercise 1.1. (a) Check that property (2) of Def. 1.1 may be derived from (1)
and (3).

(b) Check that ‖x + y‖2 = ‖x‖2 + 2Re〈x, y〉 + ‖y‖2 holds, where Re is the real
part of a complex number.

Exercise 1.2. Prove the Cauchy-Schwarz inequality (Prop. 1.3) and show that
equality holds if and only if the vectors are linearly dependent.

Exercise 1.3. Show that the norm induced by an inner product is a norm indeed.
Use Cauchy-Schwarz and Exc. 1.1(b). Show that the mapping x 7→ ‖x‖ is continu-
ous. This turns a Hilbert space into a topological vector space.

Exercise 1.4. Show that fy(x) := 〈x, y〉 is linear and bounded with norm ‖fy‖ =
‖y‖. Thus, fy is an element in the dual space of a Hilbert space H and the inner
product is continuous in the sense that x 7→ 〈x, y〉 is continuous.

Exercise 1.5. In Def. 1.1, we defined Hilbert spaces only for complex vector spaces,
but the definition of real Hilbert spaces is completely analogous. Let us consider R2

with the inner product 〈x, y〉 =
∑2

i=1 xiyi.

(a) Describe all unit vectors (i.e. vectors with norm 1) with the help of sine and
cosine.

(b) Describe all vectors that are orthogonal to a given vector x = (x1, x2) ∈ R2.

(c) Show that 〈x,y〉
‖x‖‖y‖ = cosϕ, where ϕ is the angle between x and y.

(d) Convince yourself that Prop. 1.7 is really Pythagoras Theorem for H = R2.

Exercise 1.6. Prove Lemma 1.18.

Exercise 1.7. Consider the unilateral shift S ∈ B(`2(N)) from Exm. 1.35.

(a) Verify S∗en = en−1 for n ≥ 2 and S∗e1 = 0. Verify that S is an isometry but
no unitary.

(b) Now, consider the bilateral shift S̃ ∈ B(`2(Z)) given by Sen = en+1, where
en, n ∈ Z is an orthonormal basis. How about this one, is it an isometry, is
it a unitary?

(c) Which matrix is a reasonable analogue of S̃ in MN(C)?

Exercise 1.8. An operator V ∈ B(H) is called a partial isometry, if V V ∗V = V .

(a) Show that V is a partial isometry if and only if V ∗V is a projection (if and
only if V V ∗ is a projection) in the sense of Def. 1.33.
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(b) Show that V is a partial isometry if and only if there is a closed subspace
K ⊆ H such that 〈V x, V y〉 = 〈x, y〉 for all x, y ∈ K and V x = 0 for x ∈ K⊥.
Compare with Prop. 1.34.
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