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Von Neumann's Mean Ergodic Theorem
Mean Ergodic Semigroups
Preliminaries on von Neumann Algebras

On its unit ball, the w.o. and s.o. topologies do not depend on the

concrete representation of the von Neumann algebra.

Proof of the main theorem
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Theorem

Let (M, J) be a dynamical system. If there exists a faithful

family Q0 of normal states on M satisfying

w((Tx)*(Tx)) <w(x*x) forall weQ, TeJ, xeM.

Then J is weak* mean ergodic.
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Let (M, J) be a dynamical system. If there exists a faithful

family Q0 of normal states on M satisfying

w((Tx)*(Tx)) <w(x*x) forall weQ, TeJ, xeM.

Then J is weak* mean ergodic.

[d B. Kiimmerer, R. Nagel, Mean ergodic semigroups on
W*-algebras, Acta Sci. Math., 41 (1979), 151-159.
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Von Neumann’s Mean Ergodic

Theorem



Let T be a linear operator on a vector space E and let

=15 e o,
j=0
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1i (ne N\ {0}),
=0

fix ( )._{feE. Tf = f} = ker(I — T).

3
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Lemma
Let E be a Banach space and let T € B(E). Then, the following

assertions hold:

1. If f €fix(T), then Aof =f for all n € N, and hence
Apf — f;

2. IfXT"f — 0 for all f € E, then A,f — 0 for all
feran(/l—T).
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T (neN\{0}),

Proof:

For n € N\ {0}, we have

I
—

n

Al =T)= >3 (T - T+ = %(/— .

I
o
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Proof:

For n € N\ {0}, we have

I
—

n

Al =T)=23 (79 - T = %(/— .

n <
J

I
o

Hence, if 1 T"f — 0 for all f € E, then A,f — 0 for all
feran(/—T).
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Lemma
Let H be a Hilbert space and T € B(H) be a contraction, i.e.,
|| T|| < 1. Then fix (T) = fix(T").
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Lemma
Let H be a Hilbert space and T € B(H) be a contraction, i.e.,
|| T|| < 1. Then fix (T) = fix(T").

Proof:

Let f € fix (T*). Then (Tf,f) = (f, T*f) = ||f||*. Since T is a

contraction,
| TF — £11> = | TFII* — 2Re(f, TF) + ||f|]* = || TFII> — [|f]* < 0.

Consequently, Tf = f, i.e., f € fix(T).
Finally, fix (T) = fix (T*).
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Definition
A measure-preserving system is a pair (X, ¢) such that
(X, Xx, ux) is a probability space, ¢ : X — X is measurable and

Wx is ¢-invariant.
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Definition
A measure-preserving system is a pair (X, ¢) such that
(X, Xx, ux) is a probability space, ¢ : X — X is measurable and

Wx is ¢-invariant.

Theorem (Von Neumann’s Theorem)

Let (X, ®) be a measure-preserving system and consider the
Koopman operator T = Ty := (f — f o ¢), where f : X — R
is a function. For each f € L?(X), the limit

1 n—1

> Tf
=0

lim A,f = lim —
n—o00 n—oo n 4
J_

exists in the L%-sense and is a fixed point of T.
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Theorem (Mean Ergodic Theorem on Hilbert Spaces)
Let H be a Hilbert space and let T € B(H) be a contraction, i.e.,
1Tl < 1.
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Theorem (Mean Ergodic Theorem on Hilbert Spaces)
Let H be a Hilbert space and let T € B(H) be a contraction, i.e.,
|| T|| < 1. Then the following assertions hold:

1. H=fix(T)®Ttan(l — T) is an orthogonal decomposition;

2. Pf:=limn 00 + 370 TIf exists for every f € H. And P is
the orthogonal projection onto fix (T).
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Proof:

1. H=fix(T)®rtan(/ — T) is an orthogonal decomposition.
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Proof:

1. H=fix(T)@Ttan(/ — T) is an orthogonal decomposition. For
S € B(H), we have:

(ran(5%))" = ker(S).

In fact,
ue (an(S*))T <= VveH (uS*v)=0
< VveH (Sulv)=0
<— Su=0.
Hence,

(ran(/ — T))* = ker(/ — T*) = fix (T*) = fix (7).
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Proof (continued):

2o [PY 2= Iimn%oo%zj’-’:_ol T/f exists for every f € H. And P is

the orthogonal projection onto fix (T).

10/51



Proof (continued):
2. Pf=limp—co % Zf:_ol T/f exists for every f € H. And P is

the orthogonal projection onto fix (T).
Take f € H, there exist fi € fix(T) and f, € Tan(/ — T) such

that f = f + f. Then
Anf = Anﬂ + Anf2
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Mean Ergodic Semigroups



Introduction

Definition

E: Banach space and J C B(E): semigroup, i.e.,

J-J={ST:5TeJ}CJ.
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E: Banach space and J C B(E): semigroup, i.e.,

J-J={5T:5TeJ}tcJ.
J is called mean ergodic if 3 P € B(E):

(a) TP=PT =PV T €J and
(b) Pf e conv{Jf} :=conv{Tf: T € J} VfeE.

P is called the mean ergodic projection.
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Recall
J is mean ergodic iff 3 P € B(E): TP=PT =PV T € J and
Pf e conv{Jrf}V f € E.

= P is a projection.

TP=PVY TeJ=RgPCfix(J):= () fix(T)
TeJg
and

Pfe@mﬂjf}erE:>mmwf:L

therefore,
PE=P!
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Recall
J is mean ergodic iff 3 P € B(E): TP=PT =PV T € J and
Pf e conv{Jrf}V f € E.

= P is unique.

If @ is another mean ergodic projection, then for all f € E:

{Qf} =conv{TQf : T € J}
> PQf
econv{PTf:TeJ}
= {Pf}.

Hence, Q = P.
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Contraction semigroups on Hilbert spaces

Theorem

A contraction semigroup J on H (Hilbert) is mean ergodic.
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Contraction semigroups on Hilbert spaces

Theorem

A contraction semigroup J on H (Hilbert) is mean ergodic. The

mean ergodic projection P is the projection onto fix (7).

For each f € H, Pf is the unique element of conv{Jf} with

minimal norm.

Proof:
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Bounded mean ergodic semigroups

Theorem (Nagel)
Let J: bounded semigroup on E (Banach). Equivalent:

(i) J is mean ergodic.
(ii) conv{Jf} Nfix(J) is a singleton ¥ f € E.
(i) fix (J) separates fix (J*) and
conv {T*F*} Nfix (T*) A0V f* € E.
(iv) conv{Jrf} Nfix(J)# 0V f € E and
conv {T*F*} Nfix (T*) A0V f* € E.

In this case, conv {Jf} Nfix(J)={Pf} V f €E.
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Let (M, J) be a dynamical system. If there exists a faithful

normal state w on M satisfying
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Theorem

Let (M,J) be a dynamical system. If there exists a faithful

normal state w on M satisfying
w((Tx)*(Tx)) < w(x*x) forall T € J,x € M,
then J is sot-ergodic.

M: von Neumann Algebra

J: bounded semigroup of linear operators on M
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Von Neumann algebras

ABSTRACT CONCRETE
DEFINITION REPRESENTATION
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are continuous,
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The wot is the coarsest topology on B(H) such that all

evaluation mappings
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Von Neumann algebras

ABSTRACT CONCRETE
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C*-algebra M with a predual M, *-subalgebra M of B(H) with
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von Neumann’s bicommutant theorem

Theorem

Let M be a unital self-adjoint subalgebra of B(H). The following
conditions are equivalent:

(I) M — M//,'
(i) M is weakly closed;

(iii) M is strongly closed.
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von Neumann’s bicommutant theorem

Theorem

Let M be a unital self-adjoint subalgebra of B(H). The following
conditions are equivalent:

(I) M _ M//,'
(i) M is weakly closed;

(iii) M is strongly closed.

Remark

The commutant and the bicommutant are defined as follows:

M’ = {x € B(H) | xy = yx for all y € M}, M" = (M'Y.
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Theorem

Let (M, J) be a dynamical system. If there exists a faithful

normal state w on M satisfying
w((Tx)"(Tx)) < w(x*x) forall T € J,x € M,

then J is sot-ergodic.
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Normal functionals

Definition
A positive linear functional w on M is normal if for every

bounded increasing net {x;} of positive elements in M, we have

w(sup xi) = sup w(x;).
i i
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Von Neumann algebras

ABSTRACT CONCRETE
DEFINITION REPRESENTATION

*-subalgebra M of B(H) with
C*-algebra M with a predual M, = M closed (w.r.t. sot/wot)
s ldyeM

M, = span{w | w positive normal linear functional on M}
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Faithful normal states

Definition
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Faithful normal states

Definition
Let w be a positive normal linear functional on M. We say that w

is a faithful normal state if it is

= faithful, i.e., (x >0, w(x) =0 = x =0)

= astate, ie, w(l)=1
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Weak*-topology on M

weak*-topology
The weak*-topology is the weakest topology in M with respect

to which all w € M, are continuous,

27/51



Weak*-topology on M

weak*-topology
The weak*-topology is the weakest topology in M with respect

to which all w € M, are continuous, i.e., given a net {x;}

55 K*>X<:>w(x,-) — w(x)V w e M,.
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On its unit ball, the w.o. and s.o.
topologies do not depend on the
concrete representation of the von

Neumann algebra.




Kaplansky density theorem

Let A be a C*-subalgebra of B(H).

—sot

A
A" . the closure of A in wot
A1 : the unit ball of A

Ass @ the set of self-adjoint operators in A

: the closure of A in sot
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Kaplansky density theorem

Let A be a C*-subalgebra of B(H).

—~sot

A

—wot

A
A1 : the unit ball of A
Ass @ the set of self-adjoint operators in A

: the closure of A in sot
. the closure of A in wot

Theorem

—wot

Let A be a C*-subalgebra of B(H) and let M = A™"". Then

——sot

1. My = A

—sot

2. My, = A2
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An application of Kaplansky density theorem

Corollary
Let M be a C*-subalgebra of B(H) with Idy, € M. Then M is a

von Neumann algebra iff its unit ball is compact (or equivalently

closed) in wot.
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An application of Kaplansky density theorem

Corollary
Let M be a C*-subalgebra of B(H) with Idy, € M. Then M is a
von Neumann algebra iff its unit ball is compact (or equivalently

closed) in wot.

Proof: We have My = M N B(H)1. Suppose M is a von Neumann

algebra. Then the unit ball of M is compact in wot.
Conversely, suppose that the unit ball of M is compact in wot.

Let x € M". We may assume ||x|| < 1. By Kaplansky density
theorem, there exists (x,) in My converging to x in the wot.

Hence x € M.
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Characterizations of normality

We recall that a positive linear functional w on a von Neumann
algebra M is normal if for every bounded increasing net {x,} of

positive elements in M, we have w(sup, Xa) = sup, w(Xq)-
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Characterizations of normality

We recall that a positive linear functional w on a von Neumann
algebra M is normal if for every bounded increasing net {x,} of

positive elements in M, we have w(sup, Xa) = sup, w(Xq)-
Theorem

Let w > 0 be a linear functional on M. The following conditions
are equivalent :

1. w is normal;

2. w\ y iS sot-continuous;

3. w|,, is wot-continuous.
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Concrete representation of MV

Lemma
Let M, = span{w : w > 0, normal} and 7y, be the topology
generated by M,. Then 7y, = wot on M.
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Concrete representation of MV

Lemma
Let M, = span{w : w > 0, normal} and 7y, be the topology

generated by M,. Then 7y, = wot on M.
Proof: Consider the mapping I : (M1, wot) — (My, 7pm,).
We have:  w is normal <= w]Ml is wot-continuous.

If M1 3 xo = x € My( wot), then w(xy) — w(x) is

wot-continuous. So, the map I is continuous.
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Concrete representation of MV

Moreover, (M1, wot) is compact and (My, 7y, ) is Hausdorff.
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Concrete representation of MV

Moreover, (M1, wot) is compact and (My, 7y, ) is Hausdorff.

A C (My, wot) closed = A is wot-compact = A is
Tm,-compact (since I is continuous) = A is T, -closed (since

Tn, is Hausdorff).

Thus I is homeomorphism.

That is, wot=7y,, on Mj.

Corollary
(M1, wot) does not depend on the concrete representation of M.
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Concrete representation of MV

Lemma
Let (xo)a be a net in M. Then x, — 0 in the sot iff xx, — 0 in

the wot.
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Lemma
Let (xo)a be a net in M. Then x, — 0 in the sot iff xx, — 0 in

the wot.

Proof: The lemma follows from the polarization identity:

3

1
(oxab) = 7 O *lbealé + )2

k=0

where &, € H are arbitrary vectors.
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Lemma
Let (xo)a be a net in M. Then x, — 0 in the sot iff xx, — 0 in

the wot.

Proof: The lemma follows from the polarization identity:

3

1
(oxab) = 7 O *lbealé + )2

k=0

where &, € H are arbitrary vectors.

Corollary

(M3, sot) does not depend on the concrete representation of M.
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GNS representation

We recall that a positive normal linear functional w on M is a

faithful normal state if

x>0, w(x)=0 = x=0.
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GNS representation

We recall that a positive normal linear functional w on M is a

faithful normal state if
x>0, w(x)=0 = x=0.
Definition
Let w > 0 be a faithful normal state on M.
Define  (x,y), == w(y*x), [x]|2 = w(x*x).
|| - |l is @ norm since N, = {x : w(x*x) =0} = 0.
We define M,, as the completion of M with respect to the inner

product (.,.).
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(M) is a von Neumann algebra.

Lemma
For x,y € M, m, : M — B(M,,), m,(x)y = xy. Then m,(M) is a

von Neumann algebra on M,,,.
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Lemma
For x,y € M, m, : M — B(M,,), m,(x)y = xy. Then m,(M) is a

von Neumann algebra on M,,,.

Proof: Let a,b € M.

x — w(a*xb) = (xb, a),, is wot-continuous on My, by normality.
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(M) is a von Neumann algebra.

Lemma
For x,y € M, m, : M — B(M,,), m,(x)y = xy. Then m,(M) is a

von Neumann algebra on M,,,.

Proof: Let a,b € M.
x — w(a*xb) = (xb, a),, is wot-continuous on My, by normality.

By the density of M in M,,, we have x — (xh, k),, is

wot-continuous on Mj for all h, k € M,,,.

= (My,wot) ™ (B(M,), wot) is continuous.
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(M) is a von Neumann algebra.

Since 7, is injective, hence 7, is isometric.
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(M) is a von Neumann algebra.

Since 7, is injective, hence 7, is isometric.
Hence 7, (M;) = (7m,(M))1 is wot-compact.

By Kaplansky density theorem, 7,,(M) is a von Neumann algebra
on M,,.

3651



Proof of the main theorem



Proposition
Let (M, J) be a dynamical system. Let w be a faithful normal
state on M satisfying

w((Tx)*(Tx)) < w(x*x) forall T € J,x € M.
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Proposition
Let (M, J) be a dynamical system. Let w be a faithful normal
state on M satisfying

w((Tx)*(Tx)) < w(x*x) forall T € J,x € M.

Then there exists a P € B(H) with PT = TP = P for all

T € J, where J is the extended semigroup of J on B(H).

Vx € M Px € conv*°t 7 x. In particular, Px € M for x € M and
therefore P € m(M).
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Lemma
Let w be a faithful normal state, H = M,,, @ from the GNS

construction. Let (x4)q be a bounded net in M. Then

I%allo = 0 <= m, 30
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[IXallw = 0 = 7y, gy

We show [|xa|lw = 0 = my, 30
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Xo w_>0 — T, ﬂO
[|Xal]

We show [|xa|lw = 0 = my, 30

PZ:PW:Wq foraqE/\/I

since P is in the commutant of 7(M).
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sot

||XﬂHu =0 = m, =0

We show P = [:
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[IXallw = 0 = 7y, gy

We show P = [:

w(l—=p)=((1-p)1, 1)
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Xallo 20 = 7, =
|IXa |l — 0 .20

We show P = [:

w(l—p) =(1-p)1,Du = (/= P)(1), 1w
=((/ = P)(1), P(1)), = 0

—1—p=0 sincel—p>0
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Xallo 20 = 7, =
|IXa |l — 0 .20

We show P = [:

w(l —p) =((1-p)1,1)u = ((/ = P)(1), 1)
=((I=P)(1),P(1))u =0
—1—p=0 sincel—p>0

= P =1 = 7w(M)'1 dense in H

40 /51



Www%0=$ﬂMﬂ0

Let T € m(M)'.

41/51



Xo w_>0 — T, ﬂO
[|Xal]

Let T € (M)

[0 TS SITIR 1m0 LIS = [ T12]xall5 — 0
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Xo w_>0 — T, ﬂO
[|Xal]

Let T € (M)

10 T <ITIP 7o LIS = ITIPlIxalIZ — 0

Since (x4 )q is bounded, 7, is uniformly bounded. Let h € H. By

uniform boundedness and strong convergence lemma we get
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Xo w_>0 — T, ﬂO
[|Xal]

Let T € (M)

10 T <ITIP 7o LIS = ITIPlIxalIZ — 0

Since (x4 )q is bounded, 7, is uniformly bounded. Let h € H. By

uniform boundedness and strong convergence lemma we get

T h = 0
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Xo w_>0 < Ty Si;O
[|Xal]

sot

We show ||x4||lw — 0 <= 7\, = O:
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[IXa|lw = 0 <= 7y, gy

sot

We show ||x4||lw — 0 <= 7\, = O:

7rxah5>0Vh6H — xa:ﬂxali>0
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Lemma
Let (X )o be bounded in M, x,, % x. Then x € M and

sot
T xe, — Tx-
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Lemma

Let (X )o be bounded in M, x,, % x. Then x € M and

sot
T xe, — Tx-

Proof.
)

t
0 = my, —7x 0.

(a7/8
|[xa = xgllw = 5

sot is complete on bounded subsets of M

sot

= dy € B(H), 7x, — -
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Lemma

Let (X )o be bounded in M, x,, % x. Then x € M and

sot
T xe, — Tx-

Proof.
)

t
0 = my, —7x 0.

(a7/8
|[xa = xgllw = 5

sot is complete on bounded subsets of M

sot

= dy € B(H), 7x, — -

Since 7(M) vN-Algebra y € 7(M) = 3x' e M 7, = 7

W, !/ !/
= Xy 9> X — X=X
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Proposition
Let (M, J) be a dynamical system. Let w be a faithful normal
state on M satisfying

w((Tx)*(Tx)) < w(x*x) forall T € J,x € M.

Then there exists a P € B(H) with PT = TP = P for all

T € J, where J is the extended semigroup of J on B(H).

Vx € M Px € conv*°*tJx. In particular, Px € M for x € M and
therefore we get P € w(M).
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Proof of the proposition

Proof. J is extended by density via 7 to j a contraction

semigroup on B(H) with norm || - |-
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Proof of the proposition

Proof. J is extended by density via 7 to j a contraction
semigroup on B(H) with norm || - |-

By Birkhoff-Alaoglu Ergodic theorem:
IPeBH)VT eJ (PT=TP=P)A(PxecconllleFx vx e H)
Let x € M. We show that Px is in M.

'AI'XEI\/IV'AI'EJA

— Txc MV?‘EconvjA
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We show, that convlIll« 7x C convset 7 x:
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We show, that convlIll« 7x C convset 7 x:

Let t € convllll« 7x and find (ta)a — t, to € convJ x.

J bounded = (t,)q bounded
— t, 2t — t e tIx

Px c convllllv 7x — Px c conv*'ix — Pxec M
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Proposition
Let (M, J) be a dynamical system. Let w be a faithful normal
state on M satisfying

w((Tx)*(Tx)) < w(x*x) forall T € J,x € M.

Then there exists a P € B(H) with PT = TP = P for all

T € J, where J is the extended Semigroup of J on B(H).
Vx € M Px € conv*°t T x. In particular Px € M for x € M and
therefore we get P € w(M).
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Theorem
Let (M, J) be a dynamical system. If there exists a faithful

normal state w of normal states on M satisfying
w((Tx)"(Tx)) < w(x*x) forall T € J,x € M,

then J is sot-ergodic.
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Theorem
Let (M, J) be a dynamical system. If there exists a faithful

normal state w of normal states on M satisfying
w((Tx)"(Tx)) < w(x*x) forall T € J,x € M,

then J is weak*-ergodic.
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Thank you for your attention!

51/51



	Von Neumann's Mean Ergodic Theorem
	Mean Ergodic Semigroups
	Preliminaries on von Neumann Algebras
	On its unit ball, the w.o. and s.o. topologies do not depend on the concrete representation of the von Neumann algebra.
	Proof of the main theorem

