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Overview

Von Neumann’s Mean Ergodic Theorem

Mean Ergodic Semigroups

Preliminaries on von Neumann Algebras

On its unit ball, the w.o. and s.o. topologies do not depend on the
concrete representation of the von Neumann algebra.

Proof of the main theorem

1 / 51



Main theorem

Theorem
Let (M,J ) be a dynamical system. If there exists a faithful
family Ω of normal states on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all ω ∈ Ω, T ∈ J , x ∈ M.

Then J is weak∗ mean ergodic.

B. Kümmerer, R. Nagel, Mean ergodic semigroups on
W ∗-algebras, Acta Sci. Math., 41 (1979), 151-159.
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Von Neumann’s Mean Ergodic
Theorem



Let T be a linear operator on a vector space E and let

An := 1
n

n−1∑
j=0

T j (n ∈ N \ {0}),

fix (T ) := {f ∈ E : Tf = f } = ker(I − T ).
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Lemma
Let E be a Banach space and let T ∈ B(E ). Then, the following
assertions hold:

1. If f ∈ fix (T ), then Anf = f for all n ∈ N, and hence
Anf → f ;

2. If 1
n T nf → 0 for all f ∈ E, then Anf → 0 for all

f ∈ ran(I − T ).
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An := 1
n

n−1∑
j=0

T j (n ∈ N \ {0}),

Proof:

For n ∈ N \ {0}, we have

An(I − T ) = 1
n

n−1∑
j=0

(
T j − T j+1

)
= 1

n (I − T n) .

Hence, if 1
n T nf → 0 for all f ∈ E , then Anf → 0 for all

f ∈ ran(I − T ).

5 / 51



An := 1
n

n−1∑
j=0

T j (n ∈ N \ {0}),

Proof:

For n ∈ N \ {0}, we have

An(I − T ) = 1
n

n−1∑
j=0

(
T j − T j+1

)
= 1

n (I − T n) .

Hence, if 1
n T nf → 0 for all f ∈ E , then Anf → 0 for all

f ∈ ran(I − T ).

5 / 51



An := 1
n

n−1∑
j=0

T j (n ∈ N \ {0}),

Proof:

For n ∈ N \ {0}, we have

An(I − T ) = 1
n

n−1∑
j=0

(
T j − T j+1

)
= 1

n (I − T n) .

Hence, if 1
n T nf → 0 for all f ∈ E , then Anf → 0 for all

f ∈ ran(I − T ).

5 / 51



Lemma
Let H be a Hilbert space and T ∈ B(H) be a contraction, i.e.,
||T || ≤ 1. Then fix (T ) = fix (T ∗).

Proof:

Let f ∈ fix (T ∗). Then 〈Tf , f 〉 = 〈f ,T ∗f 〉 = ||f ||2. Since T is a
contraction,

||Tf − f ||2 = ||Tf ||2 − 2Re〈f ,Tf 〉+ ||f ||2 = ||Tf ||2 − ||f ||2 ≤ 0.

Consequently, Tf = f , i.e., f ∈ fix (T ).

Finally, fix (T ) = fix (T ∗).
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Definition
A measure-preserving system is a pair (X , φ) such that
(X ,ΣX , µX ) is a probability space, φ : X → X is measurable and
µX is φ-invariant.

Theorem (Von Neumann’s Theorem)
Let (X , φ) be a measure-preserving system and consider the
Koopman operator T = Tφ := (f 7−→ f ◦ φ), where f : X −→ R
is a function. For each f ∈ L2(X ), the limit

lim
n→∞

Anf = lim
n→∞

1
n

n−1∑
j=0

T j f

exists in the L2-sense and is a fixed point of T .
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Theorem (Mean Ergodic Theorem on Hilbert Spaces)
Let H be a Hilbert space and let T ∈ B(H) be a contraction, i.e.,
||T || ≤ 1.

Then the following assertions hold:

1. H = fix (T )⊕ ran(I − T ) is an orthogonal decomposition;

2. Pf := limn→∞
1
n
∑n−1

j=0 T j f exists for every f ∈ H. And P is
the orthogonal projection onto fix (T ).

8 / 51



Theorem (Mean Ergodic Theorem on Hilbert Spaces)
Let H be a Hilbert space and let T ∈ B(H) be a contraction, i.e.,
||T || ≤ 1. Then the following assertions hold:

1. H = fix (T )⊕ ran(I − T ) is an orthogonal decomposition;

2. Pf := limn→∞
1
n
∑n−1

j=0 T j f exists for every f ∈ H. And P is
the orthogonal projection onto fix (T ).

8 / 51



Theorem (Mean Ergodic Theorem on Hilbert Spaces)
Let H be a Hilbert space and let T ∈ B(H) be a contraction, i.e.,
||T || ≤ 1. Then the following assertions hold:

1. H = fix (T )⊕ ran(I − T ) is an orthogonal decomposition;

2. Pf := limn→∞
1
n
∑n−1

j=0 T j f exists for every f ∈ H. And P is
the orthogonal projection onto fix (T ).

8 / 51



Proof:

1. H = fix (T )⊕ ran(I −T ) is an orthogonal decomposition.

For
S ∈ B(H), we have:

(ran(S∗))⊥ = ker(S).

In fact,

u ∈ (ran(S∗))⊥ ⇐⇒ ∀v ∈ H 〈u|S∗v〉 = 0

⇐⇒ ∀v ∈ H 〈Su|v〉 = 0

⇐⇒ Su = 0.

Hence,

(ran(I − T ))⊥ = ker(I − T ∗) = fix (T ∗) = fix (T ) .
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Proof (continued):

2. Pf := limn→∞
1
n
∑n−1

j=0 T j f exists for every f ∈ H. And P is
the orthogonal projection onto fix (T ).

Take f ∈ H, there exist f1 ∈ fix (T ) and f2 ∈ ran(I − T ) such
that f = f1 + f2. Then

Anf = Anf1 + Anf2.
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Mean Ergodic Semigroups



Introduction

Definition
E : Banach space and J ⊆ B(E ): semigroup, i.e.,

J · J := {ST : S,T ∈ J } ⊆ J .

J is called mean ergodic if ∃ P ∈ B(E ):

(a) TP = PT = P ∀ T ∈ J and

(b) Pf ∈ conv {J f } := conv {Tf : T ∈ J } ∀ f ∈ E .

P is called the mean ergodic projection.
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Example

Recall
J is called mean ergodic if ∃ P ∈ B(H):

(a) TP = PT = P ∀ T ∈ J and

(b) Pf ∈ conv {J f } ∀ f ∈ H.

T is contraction on H (Hilbert)

⇒ {T n : n ∈ N0} is mean ergodic.

T is a contraction⇒ Pf := lim
n→∞

1
n

n−1∑
j=0

T j f exists ∀ f ∈ H

and P is a projection onto fix (T )

⇒ {T n : n ∈ N0} is mean ergodic.
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Observations

Recall
J is mean ergodic iff ∃ P ∈ B(E ): TP = PT = P ∀ T ∈ J and
Pf ∈ conv {J f } ∀ f ∈ E .

13 / 51



Observations

Recall
J is mean ergodic iff ∃ P ∈ B(E ): TP = PT = P ∀ T ∈ J and
Pf ∈ conv {J f } ∀ f ∈ E .

• P is a projection.

TP = P ∀ T ∈ J

⇒ Rg P ⊆ fix (J ) :=
⋂

T∈J
fix (T )

and
Pf ∈ conv {J f } ∀ f ∈ E

⇒ P|fix(J )
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P2 = P.
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Observations

Recall
J is mean ergodic iff ∃ P ∈ B(E ): TP = PT = P ∀ T ∈ J and
Pf ∈ conv {J f } ∀ f ∈ E .

• P is unique.

{Qf } = conv {TQf : T ∈ J }

3 PQf

∈ conv {PTf : T ∈ J }

= {Pf }.

Hence, Q = P.
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Contraction semigroups on Hilbert spaces

Theorem
A contraction semigroup J on H (Hilbert) is mean ergodic.

The
mean ergodic projection P is the projection onto fix (J ).

For each f ∈ H, Pf is the unique element of conv {J f } with
minimal norm.

Proof:
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Bounded mean ergodic semigroups

Theorem (Nagel)
Let J : bounded semigroup on E (Banach). Equivalent:

(i) J is mean ergodic.

(ii) conv {J f } ∩ fix (J ) is a singleton ∀ f ∈ E.

(iii) fix (J ) separates fix (J ∗) and
convw∗{J ∗f ∗} ∩ fix (J ∗) 6= ∅ ∀ f ∗ ∈ E ′.

(iv) conv {J f } ∩ fix (J ) 6= ∅ ∀ f ∈ E and
convw∗{J ∗f ∗} ∩ fix (J ∗) 6= ∅ ∀ f ∗ ∈ E ′.

In this case, conv {J f } ∩ fix (J ) = {Pf } ∀ f ∈ E.
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Preliminaries on von Neumann
Algebras



Main theorem

Theorem
Let (M,J ) be a dynamical system. If there exists a faithful
normal state ω on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M,

then J is sot-ergodic.
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Let (M,J ) be a dynamical system. If there exists a faithful
normal state ω on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M,

then J is sot-ergodic.

M: von Neumann Algebra
J : bounded semigroup of linear operators on M
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Von Neumann algebras

ABSTRACT
DEFINITION

CONCRETE
REPRESENTATION

C∗-algebra M with a predual M∗

M = (M∗)∗

*-subalgebra M of B(H) with

• M closed (w.r.t. sot/wot)

• IdH ∈ M
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Topologies on B(H)

Strong operator topology
The sot is the coarsest topology on B(H) such that all evaluation
mappings

T ∈ B(H) 7→ Tu ∈ H (u ∈ H)

are continuous,

i.e., given a net {Ti} ⊂ B(H)

Ti
sot→ T ⇐⇒ Ti u → Tu ∀u ∈ H.
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Topologies on B(H)

Weak operator topology
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Von Neumann algebras

ABSTRACT
DEFINITION

CONCRETE
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von Neumann’s bicommutant theorem

Theorem
Let M be a unital self-adjoint subalgebra of B(H). The following
conditions are equivalent:

(i) M = M ′′;

(ii) M is weakly closed;

(iii) M is strongly closed.

Remark
The commutant and the bicommutant are defined as follows:

M ′ := {x ∈ B(H) | xy = yx for all y ∈ M}, M ′′ = (M ′)′.

22 / 51



von Neumann’s bicommutant theorem

Theorem
Let M be a unital self-adjoint subalgebra of B(H). The following
conditions are equivalent:

(i) M = M ′′;

(ii) M is weakly closed;

(iii) M is strongly closed.

Remark
The commutant and the bicommutant are defined as follows:

M ′ := {x ∈ B(H) | xy = yx for all y ∈ M}, M ′′ = (M ′)′.

22 / 51



Main theorem
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Normal functionals

Definition
A positive linear functional ω on M is normal if for every
bounded increasing net {xi} of positive elements in M, we have

ω(sup
i

xi ) = sup
i
ω(xi ).
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Von Neumann algebras

ABSTRACT
DEFINITION

CONCRETE
REPRESENTATION

C∗-algebra M with a predual M∗

*-subalgebra M of B(H) with

• M closed (w.r.t. sot/wot)

• IdH ∈ M

M∗ = span{ω | ω positive normal linear functional on M}
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Faithful normal states

Definition
Let ω be a positive normal linear functional on M. We say that ω
is a faithful normal state if it is

• faithful, i.e., (x ≥ 0, ω(x) = 0 ⇒ x = 0)

• a state, i.e., ω(1) = 1
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Weak*-topology on M

weak*-topology
The weak*-topology is the weakest topology in M with respect
to which all ω ∈ M∗ are continuous,

i.e., given a net {xi}

xi
w∗→ x ⇐⇒ ω(xi )→ ω(x) ∀ ω ∈ M∗.
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On its unit ball, the w.o. and s.o.
topologies do not depend on the
concrete representation of the von
Neumann algebra.



Kaplansky density theorem

Let A be a C∗-subalgebra of B(H).

Asot : the closure of A in sot
Awot : the closure of A in wot
A1 : the unit ball of A
Asa : the set of self-adjoint operators in A

Theorem

Let A be a C∗-subalgebra of B(H) and let M = Awot . Then

1. M1 = A1
sot

2. Msa = Asot
sa
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An application of Kaplansky density theorem

Corollary
Let M be a C∗-subalgebra of B(H) with IdH ∈ M. Then M is a
von Neumann algebra iff its unit ball is compact (or equivalently
closed) in wot.

Proof: We have M1 = M ∩ B(H)1. Suppose M is a von Neumann
algebra. Then the unit ball of M is compact in wot.

Conversely, suppose that the unit ball of M is compact in wot.

Let x ∈ Mwot . We may assume ‖x‖ ≤ 1. By Kaplansky density
theorem, there exists (xα) in M1 converging to x in the wot.
Hence x ∈ M.
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Characterizations of normality

We recall that a positive linear functional ω on a von Neumann
algebra M is normal if for every bounded increasing net {xα} of
positive elements in M, we have ω(supα xα) = supα ω(xα).

Theorem
Let ω ≥ 0 be a linear functional on M. The following conditions
are equivalent :

1. ω is normal;

2. ω|M1
is sot-continuous;

3. ω|M1
is wot-continuous.
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Concrete representation of M

Lemma
Let M∗ = span{ω : ω ≥ 0, normal} and τM∗ be the topology
generated by M∗. Then τM∗ = wot on M1.

Proof: Consider the mapping I : (M1,wot)→ (M1, τM∗).

We have: ω is normal ⇐⇒ ω|M1
is wot-continuous.

If M1 3 xα → x ∈ M1( wot), then ω(xα)→ ω(x) is
wot-continuous. So, the map I is continuous.
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Concrete representation of M

Moreover, (M1,wot) is compact and (M1, τM∗) is Hausdorff.

A ⊆ (M1,wot) closed =⇒ A is wot-compact =⇒ A is
τM∗-compact (since I is continuous) =⇒ A is τM∗-closed (since
τM∗ is Hausdorff).

Thus I is homeomorphism.

That is, wot=τM∗ on M1.

Corollary
(M1,wot) does not depend on the concrete representation of M.
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Concrete representation of M

Lemma
Let (xα)α be a net in M. Then xα → 0 in the sot iff x∗αxα → 0 in
the wot.

Proof: The lemma follows from the polarization identity:

〈x∗αxαξ, η〉 = 1
4

3∑
k=0

ik‖xα(ξ + ikη)‖2,

where ξ, η ∈ H are arbitrary vectors.

Corollary
(M1, sot) does not depend on the concrete representation of M.
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GNS representation

We recall that a positive normal linear functional ω on M is a
faithful normal state if

x ≥ 0, ω(x) = 0 ⇒ x = 0.

Definition
Let ω ≥ 0 be a faithful normal state on M.

Define 〈x , y〉ω := ω(y∗x), ‖x‖2
ω := ω(x∗x).

‖ · ‖ω is a norm since Nω = {x : ω(x∗x) = 0} = 0.

We define Mω as the completion of M with respect to the inner
product 〈., .〉ω.
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πω(M) is a von Neumann algebra.

Lemma
For x , y ∈ M, πω : M → B(Mω), πω(x)y = xy . Then πω(M) is a
von Neumann algebra on Mω.

Proof: Let a, b ∈ M.
x 7→ ω(a∗xb) = 〈xb, a〉ω is wot-continuous on M1, by normality.

By the density of M in Mω, we have x 7→ 〈xh, k〉ω is
wot-continuous on M1 for all h, k ∈ Mω.

=⇒ (M1,wot) πω→ (B(Mω),wot) is continuous.
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πω(M) is a von Neumann algebra.

Since πω is injective, hence πω is isometric.

Hence πω(M1) = (πω(M))1 is wot-compact.

By Kaplansky density theorem, πω(M) is a von Neumann algebra
on Mω.
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Proof of the main theorem



Proposition
Let (M,J ) be a dynamical system. Let ω be a faithful normal
state on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M.

Then there exists a P ∈ B(H) with PT̂ = T̂ P = P for all
T̂ ∈ Ĵ , where Ĵ is the extended semigroup of J on B(H).
∀x ∈ M Px ∈ convsotJ x. In particular, Px ∈ M for x ∈ M and
therefore P ∈ π(M).
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Lemma
Let ω be a faithful normal state, H = Mω, π from the GNS
construction. Let (xα)α be a bounded net in M. Then

||xα||ω → 0 ⇐⇒ πxα
sot→ 0
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||xα||ω → 0 =⇒ πxα

sot→ 0

We show ||xα||ω → 0 =⇒ πxα
sot→ 0:

P := P
π(M)′1 = πq for a q ∈ M

since P is in the commutant of π(M).
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||xα||ω → 0 =⇒ πxα

sot→ 0

We show P = I:

ω(1− p) =〈(1− p)1, 1〉ω = 〈(I − P)(1), 1〉ω
=〈(I − P)(1),P(1)〉ω = 0

=⇒ 1− p = 0 since 1− p ≥ 0

=⇒ P = I =⇒ π(M)′1 dense in H
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||xα||ω → 0 =⇒ πxα

sot→ 0

Let T ∈ π(M)′.

||πxαT 1||2ω ≤||T ||2||πxα1||2ω = ||T ||2||xα||2ω → 0

Since (xα)α is bounded, πxα is uniformly bounded. Let h ∈ H. By
uniform boundedness and strong convergence lemma we get

πxαh ω→ 0
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||xα||ω → 0 ⇐= πxα

sot→ 0

We show ||xα||ω → 0 ⇐= πxα
sot→ 0:

πxαh ω→ 0 ∀h ∈ H =⇒ xα = πxα1 ω→ 0
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Lemma

Let (xα)α be bounded in M, xα
ω→ x . Then x ∈ M and

πxα
sot→ πx .

Proof.
||xα − xβ||ω

(α,β)→ 0 =⇒ πxα − πxβ
sot→ 0.

sot is complete on bounded subsets of M

=⇒ ∃y ∈ B(H), πxα
sot→ y .

Since π(M) vN-Algebra y ∈ π(M) =⇒ ∃x ′ ∈ M πxα
sot→ πx ′

=⇒ xα
ω→ x ′ =⇒ x = x ′
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Proposition
Let (M,J ) be a dynamical system. Let ω be a faithful normal
state on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M.

Then there exists a P ∈ B(H) with PT̂ = T̂ P = P for all
T̂ ∈ Ĵ , where Ĵ is the extended semigroup of J on B(H).
∀x ∈ M Px ∈ convsotJ x. In particular, Px ∈ M for x ∈ M and
therefore we get P ∈ π(M).
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Proof of the proposition

Proof. J is extended by density via π to Ĵ , a contraction
semigroup on B(H) with norm || · ||ω.

By Birkhoff-Alaoglu Ergodic theorem:

∃P̂ ∈ B(H) ∀T̂ ∈ Ĵ (P̂T̂ = T̂ P̂ = P̂) ∧ (P̂x ∈ conv||·||ω Ĵ x ∀x ∈ H)

Let x ∈ M. We show that P̂x is in M.

T̂ x ∈ M ∀T̂ ∈ Ĵ

=⇒ T̂ x ∈ M ∀T̂ ∈ convĴ
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Let x ∈ M. We show that P̂x is in M.

T̂ x ∈ M ∀T̂ ∈ Ĵ
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We show, that conv||·||ω Ĵ x ⊆ convsotĴ x :

Let t ∈ conv||·||ω Ĵ x and find (tα)α ω→ t, tα ∈ convĴ x .

Ĵ bounded =⇒ (tα)α bounded

=⇒ tα
sot→ t =⇒ t ∈ convsotĴ x

P̂x ∈ conv||·||ω Ĵ x =⇒ P̂x ∈ convsotĴ x =⇒ P̂x ∈ M
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P̂x ∈ conv||·||ω Ĵ x =⇒ P̂x ∈ convsotĴ x =⇒ P̂x ∈ M

46 / 51



We show, that conv||·||ω Ĵ x ⊆ convsotĴ x :
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Proposition
Let (M,J ) be a dynamical system. Let ω be a faithful normal
state on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M.

Then there exists a P ∈ B(H) with PT̂ = T̂ P = P for all
T̂ ∈ Ĵ , where Ĵ is the extended Semigroup of J on B(H).
∀x ∈ M Px ∈ convsotJ x. In particular Px ∈ M for x ∈ M and
therefore we get P ∈ π(M).
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Main theorem

Theorem
Let (M,J ) be a dynamical system. If there exists a faithful
normal state ω of normal states on M satisfying

ω((Tx)∗(Tx)) ≤ ω(x∗x) for all T ∈ J , x ∈ M,

then J is sot-ergodic.
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Thank you for your attention!
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