Universal C*-algebra of two projections ISem 24 - Project 10

Thea Metzger, Manuel Schiffer, Imame Essadeq, Dipankar Kaundilya, Stefan Wagner

Project Coordinator: Amru Hussein

June 11th, 2021

Overview

- 1. Two subspaces in generic position of a Hilbert space \mathcal{H} : $M \cap N = M \cap N^{\perp} = M^{\perp} \cap N = M^{\perp} \cap N^{\perp} = \{0\}^{-1}$
- Existence of a C*-algebra C*(p,q), s.t. ∃ a representation π of C*(p,q) with π(p) = P and π(q) = Q for all projections P, Q ∈ H²
- 3. Unitary equivalence of projections P and Q in a van-Neumann-algebra M: Find some unitary $U \in M$ satisfying $UPU^* = Q$ and minimising $||1 U||^2$
- 4. Unitary equivalence of pairs of projections $\{P,Q\}$ and $\{P',Q'\}$ 2

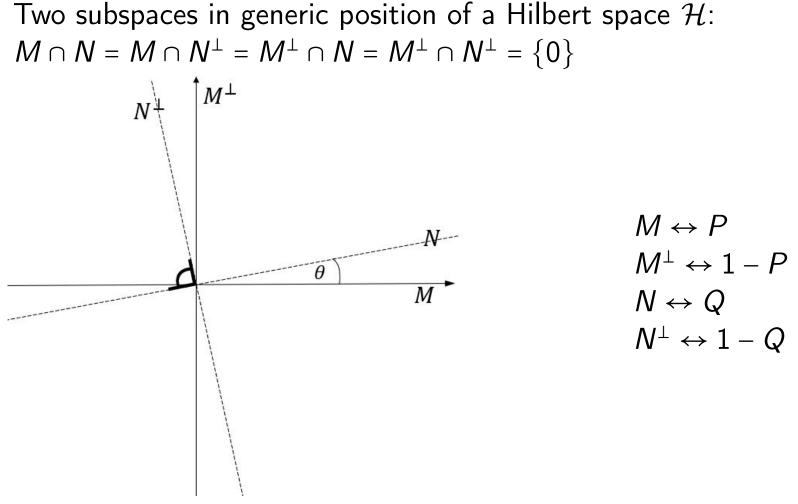
¹P. R. Halmos, *Two subspaces*, Trans. Amer. Math. Soc. 144 (1969), 381-389.

²I. Raeburn, A. M. Sinclair, The C^{*}-algebra generated by two projections, MATHEMATICA SCANDINAVICA 65 (1989), 278–290.

Overview

Two subspaces in generic position of a Hilbert space \mathcal{H} : $M \cap N = M \cap N^{\perp} = M^{\perp} \cap N = M^{\perp} \cap N^{\perp} = \{0\}$ M^{\perp} N θ М

Overview

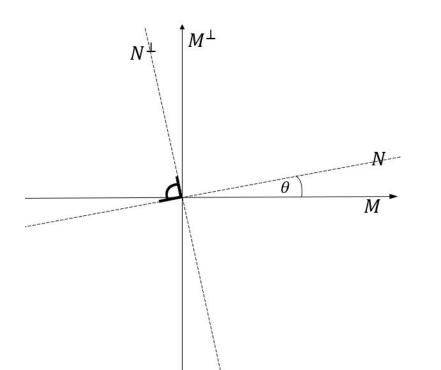


- Topic arose in the study of invariant subspaces of operators
- Rotation of eigenvectors by perturbation

Motivation

- Perturbation theory
- ► K-theory of C*-algebras
- Quantum mechanics

Two subspaces



1. T be a linear transformation on a dense subset of \mathcal{K} (closed graph, zero kernel, dense range)

2. Write
$$\mathcal{H} = \mathcal{K} \oplus \mathcal{K}$$

3. *M* be the "horizontal axis"
$$\rightarrow \langle f, 0 \rangle$$

4. *N* be the graph of
$$T \rightarrow \langle f, Tf \rangle$$

$$\begin{split} \hline{M \cap N} &: \langle f, 0 \rangle = \langle g, Tg \rangle \Rightarrow Tg = 0 \Rightarrow g = 0 \Rightarrow f = 0 \\ \Rightarrow M \cap N = \{0\} \\ &\sim M \cap N^{\perp} = M^{\perp} \cap N = M^{\perp} \cap N^{\perp} = \{0\} \end{split}$$

Two subspaces Theorem 1 (Halmos): $\langle M, N \rangle \sim \langle \mathcal{K} \oplus 0, \text{graph } T \rangle$

Theorem 1 (Halmos): Let M and N be subspaces in generic position in a Hilbert space \mathcal{H} .

- \exists Hilbert space \mathcal{K} ,
- \exists linear transformation T on \mathcal{K} (closed graph, zero kernel and dense range), s.t.

 $\langle \mathcal{K} \oplus 0, \text{graph } T \rangle \sim \langle M, N \rangle$ (unitary equivalence)

Unitary equivalence: $\langle M_1, N_1 \rangle \sim \langle M_2, N_2 \rangle$, if there exists a unitary operator U, s.t. $UM_1 = M_2$ and $UN_1 = N_2$.

Two subspaces Proof of Theorem 1 (Halmos)

Let P be the orthogonal projection with range M and $P|_N$ be the restriction of P to N

• $P|_N$ is dense in M and has zero kernel

• For all
$$g \in N$$
 be $Pg = 0$
 $\Rightarrow g \in M^{\perp} \cap N$
 $\Rightarrow g = 0$
• Be $f \in M$ and $f \perp P|_N$
 \Rightarrow If $g \in N$, then
 $0 = (f, Pg) = (Pf, g) = (f, g)$
 $\Rightarrow f \in M \cap N^{\perp}$
 $\Rightarrow f = 0$

▶ All spaces $M, N, M^{\perp}, N^{\perp}$ have the same dimension: ∃ isomerty $V : M \mapsto M^{\perp}$

Two subspaces Proof of Theorem 1 (Halmos)

• $\mathcal{K} \coloneqq M$

• Define T on the dense subset $P|_N$ of M by $TPg = V^{-1}(1-P)g$ $(g \in N)$

• If f and g are in
$$\mathcal{K}(=M)$$
: $U\langle f,g\rangle = f + Vg$

It remains to show, that K, T and U have the required properties.

Two subspaces Theorem 2 *(Halmos)*

Theorem 2 (Halmos):

If M and N are subspaces in generic position in \mathcal{H} , with respective projections P and Q, then

- \blacktriangleright 3 a Hilbert space ${\cal K}$ and
- \exists positive contractions *S* and *C* on *K*, with
- $S^2 + C^2 = 1$ and ker S = ker C = 0, s.t.

$$P \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $Q \sim \begin{pmatrix} C^2 & CS \\ CS & S^2 \end{pmatrix}$ respectively.

Two subspaces Proof (sketch) of Theorem 2 (Halmos)

Assertion:

$$P \sim \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $Q \sim \begin{pmatrix} C^2 & CS \\ CS & S^2 \end{pmatrix}$

- Identify $\mathcal{H} = \mathcal{K} \oplus \mathcal{K}$
- *M* and M^{\perp} are the axis $\mathcal{K} \oplus 0$ and $0 \oplus \mathcal{K}$
- ► Idea:

projection of rank 1 acting on a space of dimension 2, whose range is line of inclination with angle θ is

$$\begin{pmatrix} \cos^2 heta & \cos heta \sin heta \ \cos heta \sin heta & \sin^2 heta \end{pmatrix}$$

Two subspaces Theorem 3 (Halmos)

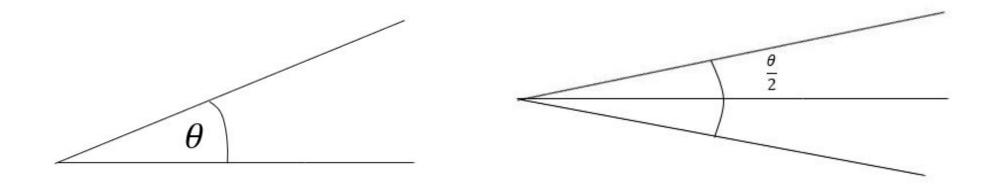
Theorem 3 (Halmos): If M and N are subspaces in generic position in a Hilbert space \mathcal{H} , then there exists a Hilbert space \mathcal{K} , and there exists a positive contraction T_0 on \mathcal{K} , with

ker $T_0 = ker(1 - T_0) = 0$, such that

 $\langle M, N \rangle \sim \langle graph T_0, graph (-T_0) \rangle$

Idea of the proof: Underlying geometric fact: \measuredangle rotated by $\theta/2$

Two subspaces Theorem 3 (Halmos)



Two subspaces

Corollary: Dixmier's Theorem

Corollary:

The unitary equivalence class of $\langle M, N \rangle$ is the one of the Hermitian operator P + Q.

Proof (sketch):

• Use Theorem 3 to see:

$$P = \begin{pmatrix} C^2 & CS \\ CS & S^2 \end{pmatrix} \text{ and } Q = \begin{pmatrix} C^2 & -CS \\ -CS & S^2 \end{pmatrix}^1$$

• Consider $R = P + Q - 1 = \begin{pmatrix} \hat{C} & 0 \\ 0 & -\hat{C} \end{pmatrix}$

 Unitary equivalence class of R determines that of C, and thence that of P and Q

$$\frac{{}^{1}C^{2} + C^{2} = C^{2} + (1 - S^{2}) := \hat{C} + 1}{S^{2} + S^{2} = S^{2} + (1 - C^{2}) = -\hat{C} + 1} \text{ and}$$

What is it about?

1. The existence of a free algebra generated by two projections.

What is it about?

- 1. The existence of a free algebra generated by two projections.
- 2. A very convenient isomorphic version.

What is it about?

- 1. The existence of a free algebra generated by two projections.
- 2. A very convenient isomorphic version.
- 3. A decomposition of a representation of the algebra.

1. The existence

"There is a unital C*-algebra A generated by two projections p, q with the following universal property: whenever P, Q are a pair of projections in a unital C*-algebra B, there is a unital homomorphism

 $\Phi: A \to B$ such that $\Phi(p) = P$ and $\Phi(q) = Q$."

(Proposition 1.1. in Raeburn/Sinclair)

1. The existence

"There is a unital C*-algebra A generated by two projections p, q with the following universal property: whenever P, Q are a pair of projections in a unital C*-algebra B, there is a unital homomorphism

 $\Phi: A \rightarrow B$ such that $\Phi(p) = P$ and $\Phi(q) = Q$." (Proposition 1.1. in Raeburn/Sinclair)

The algebra A is given as the concrete object
 C^{*}(ℤ₂ * ℤ₂) (i.e. the free product of two copies of ℤ₂).

1. The existence

"There is a unital C*-algebra A generated by two projections p, q with the following universal property: whenever P, Q are a pair of projections in a unital C*-algebra B, there is a unital homomorphism

 $\Phi: A \rightarrow B$ such that $\Phi(p) = P$ and $\Phi(q) = Q$." (Proposition 1.1. in Raeburn/Sinclair)

- The algebra A is given as the concrete object
 C^{*}(ℤ₂ * ℤ₂) (i.e. the free product of two copies of ℤ₂).
- \mathbb{Z}_2 is generated by a self-adjoint unitary $u \neq 1$ (resp. v for the second copy).

1

u

1 |

u

1 u

u

1

1. The existence

"There is a unital C*-algebra A generated by two projections p, q with the following universal property: whenever P, Q are a pair of projections in a unital C*-algebra B, there is a unital homomorphism

 $\Phi: A \rightarrow B$ such that $\Phi(p) = P$ and $\Phi(q) = Q$." (Proposition 1.1. in Raeburn/Sinclair)

- The algebra A is given as the concrete object
 C^{*}(Z₂ * Z₂) (i.e. the free product of two copies of Z₂).
- ▶ \mathbb{Z}_2 is generated by a self-adjoint unitary $u \neq 1$ (resp. *v* for the second copy).
- If you take $p = \frac{1-u}{2}$, $q = \frac{1-v}{2}$, you obtain the two projections, which generate the same C^* -algebra.

u

1

1 | 1 u

u

2. The isomorphic version

"There is an isomorphism of the C*-algebra $C^*(p,q)$ generated by two projections onto

 $A = \{ f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal} \}.$

(Theorem 1.3. in Raeburn/Sinclair)

2. The isomorphic version

"There is an isomorphism of the C*-algebra $C^*(p,q)$ generated by two projections onto

 $A = \{ f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal} \}.$

(Theorem 1.3. in Raeburn/Sinclair)

► The elements of A are continuous functions with the matrix-multiplication as the multiplication, i.e. for x ∈ [0,1], f,g ∈ A:

$$(f \underbrace{\cdot}_{mult. in A} g)(x) = f(x) \underbrace{\cdot}_{mult. in M_2(\mathbb{C})} g(x)$$

2. The isomorphic version

"There is an isomorphism of the C*-algebra $C^*(p,q)$ generated by two projections onto

 $A = \{ f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal} \}.$

(Theorem 1.3. in Raeburn/Sinclair)

► The elements of A are continuous functions with the matrix-multiplication as the multiplication, i.e. for x ∈ [0,1], f,g ∈ A:

$$(f \underbrace{\cdot}_{mult. in A} g)(x) = f(x) \underbrace{\cdot}_{mult. in M_2(\mathbb{C})} g(x)$$

$$p(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad q(x) = \begin{pmatrix} x & \sqrt{x(1-x)} \\ \sqrt{x(1-x)} & 1-x \end{pmatrix}$$

[cf. $x = \cos^2\theta$ in the Halmos-paper]

2. The isomorphic version

Remember: $A = \{f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal}\}$ $\exists \Phi : C^*(p,q) \rightarrow A \text{ with}$

$$\Phi(p) = \begin{pmatrix} x \mapsto p(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \text{ and}$$
$$\Phi(q) = \begin{pmatrix} x \mapsto q(x) = \begin{pmatrix} x & \sqrt{x(1-x)} \\ \sqrt{x(1-x)} & 1-x \end{pmatrix} \end{pmatrix}$$

Let $B \coloneqq \Phi(C^*(p,q))$.

 Φ is surjective (idea of proof):

$$p(x) \cdot q(x) \cdot p(x) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \in B$$
$$\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}^n = \begin{pmatrix} x^n & 0 \\ 0 & 0 \end{pmatrix} \in B \qquad (n \in \mathbb{N})$$
$$\Rightarrow \forall f_{11} \text{ polynomial:} \begin{pmatrix} f_{11}(x) & 0 \\ 0 & 0 \end{pmatrix} \in B$$

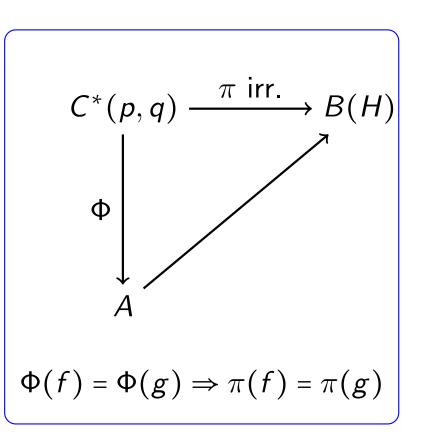
2. The isomorphic version

Remember: $A = \{f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal}\}$ $\Phi : C^*(p,q) \rightarrow A$

 Φ is injective:

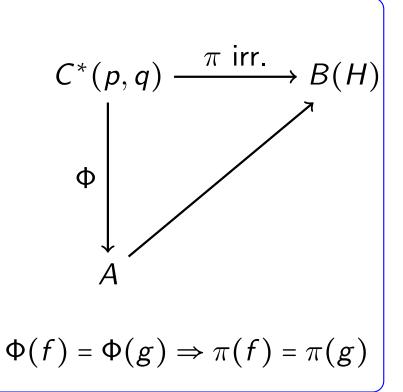
This is (not) shown in three steps.

- Every irreducible representation of C*(p,q) must be one- or two-dimensional.
- Every irreducible representation of C*(p,q) factors through A.
- Φ is injective.



2. The isomorphic version

- Every irreducible representation of C^{*}(p,q) factors through A.
 ↓
- Φ is injective.



Assume Φ is not injective. Then there is a $0 \neq a \in C^*(p,q)$ with $\Phi(a) = 0$. By Isem-lecture notes Rem. 5.31 then there is an irreducible representation π of $C^*(p,q)$ with $||\pi(a)|| = ||a||$. But $\Phi(a) = 0 = \Phi(0)$ entails by the last item that $\pi(a) = \pi(0) = 0$, so a = 0 and we have a contradiction.

3. The decomposition

" π has a direct sum decomposition $\pi = \pi_c \oplus \pi_0 \oplus \pi_1$, in which π_c is nondegenerate on the ideal I, π_0 factors through the map $f \to f(0)$, and π_1 factors through $f \to f(1)$. Further we can identify the summands as follows:

(1) If $\{f_n\}$ is an approximate identity in *I*, then $\pi(f_n)$ converges strongly to the projection onto $H_c = H(\pi_c) = \pi(I)H$;

(Lemma 1.8. in Raeburn/Sinclair)

3. The decomposition

" π has a direct sum decomposition $\pi = \pi_c \oplus \pi_0 \oplus \pi_1$, in which π_c is nondegenerate on the ideal I, π_0 factors through the map $f \to f(0)$, and π_1 factors through $f \to f(1)$. Further we can identify the summands as follows:

- (1) If $\{f_n\}$ is an approximate identity in *I*, then $\pi(f_n)$ converges strongly to the projection onto $H_c = H(\pi_c) = \pi(I)H$;
- (2) H_0 is the direct sum of the subspaces $H_0^p = \pi_0(p)H$ and $H_0^q = \pi_0(q)H$;

(Lemma 1.8. in Raeburn/Sinclair)

3. The decomposition

" π has a direct sum decomposition $\pi = \pi_c \oplus \pi_0 \oplus \pi_1$, in which π_c is nondegenerate on the ideal I, π_0 factors through the map $f \to f(0)$, and π_1 factors through $f \to f(1)$. Further we can identify the summands as follows:

- (1) If $\{f_n\}$ is an approximate identity in *I*, then $\pi(f_n)$ converges strongly to the projection onto $H_c = H(\pi_c) = \pi(I)H$;
- (2) H_0 is the direct sum of the subspaces $H_0^p = \pi_0(p)H$ and $H_0^q = \pi_0(q)H$;

(3) H_1 is the direct sum of the subspaces $H_1^p = \pi_1(p)H = \pi_1(q)H$ and $H_1^{1-p} = \pi_1(1-p)H = \pi_1(1-q)H$."

(Lemma 1.8. in Raeburn/Sinclair)

3. The decomposition

$$A = \{ f \in C([0,1], M_2(\mathbb{C})) : f(0), f(1) \text{ are diagonal} \}$$
$$I := \{ f \in A : f(0) = f(1) = 0 \}$$

I is an ideal in *A* inducing the equivalence relation

$$f \sim g \Leftrightarrow f - g \in I \Leftrightarrow f(0) = g(0) \text{ and } f(1) = g(1)$$

Let $\pi: A \to B(H)$ be a representation.

3. The decomposition

$$f \in A = C^{*}(p,q), \ \pi(f) \in B(H)$$
$$I = \{f \in A : f(0) = f(1) = 0\}$$
$$H_{c} := \overline{span(\pi(I)H)}$$
$$\pi(f)|_{H} = \begin{pmatrix} \pi(f)|_{H_{c}} & 0\\ 0 & \pi(f)|_{H_{c}^{\perp}} \end{pmatrix}$$

3. The decomposition

$$f \in A = C^{*}(p,q), \ \pi(f) \in B(H)$$

$$I = \{f \in A : f(0) = f(1) = 0\}$$

$$H_{c} := \overline{span(\pi(I)H)}$$

$$\pi(f)|_{H} = \begin{pmatrix} \pi(f)|_{H_{c}} & 0 \\ 0 & \pi(f)|_{H_{c}^{\perp}} \end{pmatrix}$$

$$R(f)|_{H} = \begin{pmatrix} \pi(f)|_{H_{c}} & 0 \\ 0 & \pi(f)|_{H_{c}^{\perp}} \end{pmatrix}$$

 $\pi|_I = 0 \text{ on } H_c^{\perp}$ *I* ist the kernel of $f \mapsto f(0) \oplus f(1)$

3. The decomposition

$$f \in A = C^{*}(p,q), \ \pi(f) \in B(H)$$

$$I = \{f \in A : f(0) = f(1) = 0\}$$

$$H_{c} := \overline{span(\pi(I)H)}$$

$$\pi(f)|_{H} = \begin{pmatrix} \pi(f)|_{H_{c}} & 0 \\ 0 & \pi(f)|_{H_{c}^{\perp}} \end{pmatrix}$$

$$R(f)|_{H} = \begin{pmatrix} \pi(f)|_{H_{c}} & 0 \\ 0 & \pi(f)|_{H_{c}^{\perp}} \end{pmatrix}$$

 $\pi|_I = 0 \text{ on } H_c^{\perp}$ *I* ist the kernel of $f \mapsto f(0) \oplus f(1)$

 $\pi(f) = \pi_c(f) \oplus \Phi(f(0) \oplus f(1)) = \pi_c(f) \oplus \pi_0(f) \oplus \pi_1(f)$

3. The decomposition

$$\begin{array}{cccccccc} A \ni & f & \text{on } I & \text{on } f(0) & & \text{on } f(1) \\ & \downarrow & \downarrow & & \downarrow & & \downarrow \\ B(H) \ni & \pi(f) &= & \pi_c(f) \oplus & & \pi_0(f) & \oplus & & \pi_1(f) \\ & \downarrow & & & \\ & H &= & H_c \oplus & & H_c^{\perp} \end{array}$$

 $= H_c \oplus H_0 \oplus H_1$

Raeburn/Sinclair §1

3. The decomposition

Raeburn/Sinclair §1 Comparison with Halmos

$$H_1^p = \pi_1(p)H = \pi_1(q)H = \operatorname{ran} \pi(p) \cap \operatorname{ran} \pi(q) =: M \cap N$$
$$H_1^{1-p} = \pi_1(1-p)H = \pi_1(1-q)H = \ker \pi(p) \cap \ker \pi(q) = M^{\perp} \cap N^{\perp}$$
$$H_0^p = \pi_0(p)H = \operatorname{ran} \pi(p) \cap \ker \pi(q) = M \cap N^{\perp}$$
$$H_0^q = \pi_0(q)H = \ker \pi(p) \cap \operatorname{ran} \pi(q) = M^{\perp} \cap N$$

So, if M and N are in generic position, all of these spaces will vanish and we will be back in the constellation of Halmos.

State of the art so far...

 Whenever there is a pair of projections P and Q on a Hilbert space in a unital C*-algebra, there is a unital homomorphism π such as

$$\pi(p) = P$$
 and $\pi(q) = Q$

• π has a direct sum decomposition

 $\pi = \pi_c \oplus \pi_0 \oplus \pi_1$

Unitary equivalence of two projections Theorem 2.1 (Raeburn/Sinclair)

Theorem 2.1 (Raeburn/Sinclair)

Suppose P and Q are projections in a von Neumann algebra M. If it exists an element W such that :

- 1. WW^* is the projection onto ker $P \cap \operatorname{ran} Q$
- 2. W^*W is the projection onto ker $Q \cap \operatorname{ran} P$

Then there is a unitary $U \in M$ such that :

- a. $UPU^* = Q$
- b. U commutes with |P Q|

c.
$$|1 - U| = \sqrt{2} (1 - (1 - |P - Q|^2)^{\frac{1}{2}})^{\frac{1}{2}} \le \sqrt{2} |P - Q|$$

Let $M \subset B(H)$ and π be the representation of $C^*(p,q)$ such that

$$\pi(p)$$
 = P and $\pi(q)$ = Q

We consider the ideal

$$J = \{f \in C^*(p,q) : f(0) = 0\}$$

By the decomposition result, π has a direct sum decomposition

$$\pi = \pi'_c \oplus \pi_0 \oplus \pi_1$$

- π'_c is nondegenerate on the ideal J
- π_0 and π_1 factors through the map $f \to f(0)$ and $f \to f(1)$ respectively

We take

$$\pi_c = \pi'_c \oplus \pi_1$$

We get

$$\pi = \pi_c \oplus \pi_0$$

- π_c is nondegenerate on the ideal J
- π_0 factors through the map $f \to f(0)$

We first solve the problem in $C([0,1], M_2(\mathbb{C}))$ and then transfer the solution to the von Neumann algebra $M \subset B(H)$.

 We verify the required properties (a, b and c) relative to the projections π_c(p) and π_c(q).

$$p(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad q(x) = \begin{pmatrix} x & \sqrt{x(1-x)} \\ \sqrt{x(1-x)} & 1-x \end{pmatrix}$$

For each pair (p(x), q(x)) we set

$$u(x) = \begin{pmatrix} \sqrt{x} & -\sqrt{1-x} \\ \sqrt{1-x} & \sqrt{x} \end{pmatrix}$$

Property a. p and q are unitary equivalent By direct calculation we get

$$u(x)p(x)u^*(x) = q(x)$$

where

$$u^{*}(x) = \begin{pmatrix} \sqrt{x} & \sqrt{1-x} \\ -\sqrt{1-x} & \sqrt{x} \end{pmatrix}$$

Property b. u(x) commutes with | p(x) - q(x) |

$$p(x) - q(x) \models \sqrt{1-x}\mathbf{1}$$

Property c. minimizing |1 - u(x)|

$$|1-u(x)|=\sqrt{2}\sqrt{1-\sqrt{x}}\mathbf{1}$$

By

$$\sqrt{2}\sqrt{1-\sqrt{x}} = \sqrt{2}\sqrt{1-\sqrt{1-(1-x)}} \le \sqrt{2}\sqrt{1-x}$$

We get

$$|1 - u(x)| = \sqrt{2}(1 - (1 - |p(x) - q(x)|^2)^{\frac{1}{2}})^{\frac{1}{2}} \le \sqrt{2} |p(x) - q(x)|$$

To complete the proof of Theorem 2.1 we verify the properties (a, b and c) for H₀

Property a. p and q are unitary equivalent We set

$$U_1 = W - W^*$$

Where $\ensuremath{\mathcal{W}}$ an element such that

- WW^* is the projection onto ker $P \cap \operatorname{ran} Q$
- W^*W is the projection onto ker $Q \cap \operatorname{ran} P$

Using $W = WW^*W$ we get U_1 is unitary $(U_1U_1^* = 1 \text{ and } U_1^*U_1 = 1)$

 $U_1(x)\pi_0(p)U_1^*(x) = \pi_0(q)$

Property b. U_1 commutes with $|\pi_0(p) - \pi_0(q)|$

$$|\pi_0(p) - \pi_0(q)| = |\pi_0(p(0)) - \pi_0(q(0))| = |\pi_0(1)| = 1$$

Property c. minimizing $|1 - U_1|$

$$|1 - U_1|^2 = (1 - U_1^*)(1 - U_1)$$

$$|1 - U_1|^2 = 1\mathbf{1} + U_1^* U_1 = 2\mathbf{1}$$

Thus U_1 has the required properties for H_0

For

$$U = \pi_c(u) + U_1$$

a.
$$UPU^* = Q$$

b. U commutes with $|P - Q|$
c. $|1 - U| = \sqrt{2}(1 - (1 - |P - Q|^2)^{\frac{1}{2}})^{\frac{1}{2}} \le \sqrt{2} |P - Q|$

hold for a unitary $U \in M$.

Which completes the proof of **Theorem 2.1**.

Unitary equivalence of two projections Remark 2.3 (Raeburn/Sinclair)

Remark 2.3 (Raeburn/Sinclair)

If we suppose that P and Q are projections in a von Neumann algebra M satisfying ||P - Q|| < 1 then

• There is a unitary $U \in M$ such that $UPU^* = Q$

$$||1 - U|| = \sqrt{2}(1 - (1 - ||P - Q||^2)^{\frac{1}{2}})^{\frac{1}{2}} \le \sqrt{2}||P - Q||$$

and the constant $\sqrt{2}$ is the best possible constant for P and Q.

Let

 $\xi \in \ker P \cap \operatorname{ran} Q$ then $P\xi = 0$ and $\exists X$, such that $QX = \xi$ Thus $\xi = QX = Q^2X = Q\xi$ and $\|(P - Q)\xi\| = \|\xi\| \le \|P - Q\|\|\xi\|$

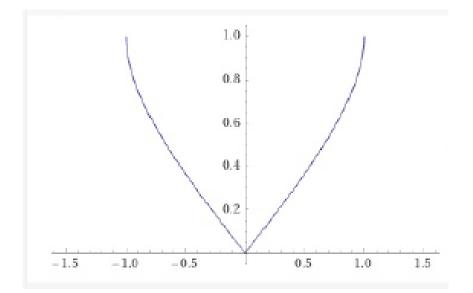
The condition ||P - Q|| < 1 implies $\xi = 0$

ker $P \cap \operatorname{ran} Q = \ker Q \cap \operatorname{ran} P = \{0\}$ Theorem 2.1 applies for W = 0

Observe that f is increasing on [0,1]

$$f(t) = (1 - (1 - t^2)^{1/2})^{1/2}$$

Therefore |f(||S||)| = f(||S||) for all operators S with $||S|| \le 1$.

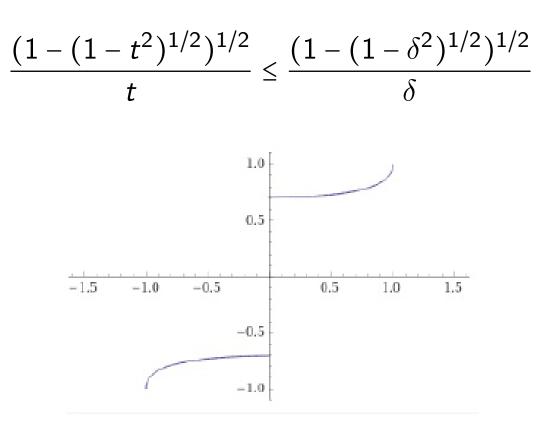


$$\|1 - U\| = \sqrt{2}(1 - (1 - \|P - Q\|^2)^{\frac{1}{2}})^{\frac{1}{2}} \le \sqrt{2}\|P - Q\|^{\frac{1}{2}}$$

Besides the inequality $(1 - (1 - t^2)^{1/2})^{1/2} \le t$ holds for $t \in [0, 1]$

$$g(t) = \frac{(1 - (1 - t^2)^{1/2})^{1/2}}{t}$$

is also increasing in [0,1], thus for $0 \le t \le \delta \le 1$ we have



For $\delta < 1$, where $\delta = \sqrt{1-x}$

 $\|p(x) - q(x)\| = \delta$ Let v satisfies $v(x)p(x)v(x)^* = q(x)$,

$$v(x) = \begin{pmatrix} \lambda \sqrt{x} & -\mu \sqrt{1-x} \\ \lambda \sqrt{1-x} & \mu \sqrt{x} \end{pmatrix}$$

for $\lambda, \mu \in \mathsf{with} \ |\lambda| = |\mu| = 1$

Thus

$$|1 - v|| \ge \sqrt{2}\sqrt{1 - \sqrt{x}} = \sqrt{2}(1 - (1 - \delta^2)^{1/2})^{1/2}$$

Letting $\delta \to 1$ shows that $\sqrt{2}$ is the best possible value for arbitrary P and Q.

Unitary equivalence of two **finite** projections Corollary 2.4 (Raeburn/Sinclair)

Corollary 2.4 (Raeburn/Sinclair)

P, Q are two finite projections in a von Neumann algebra M.

P and Q are equivalent, i.e., there exists $T \in M$ such that

$$TT^* = P$$

•
$$T^*T = Q$$

if and only if there exists an element $W \in M$ such that

- WW^* is the projection onto ker $P \cap \operatorname{ran} Q$
- W^*W is the projection onto ker $Q \cap \operatorname{ran} P$

If so, there is a unitary $U \in M$ such that

a.
$$UPU^* = Q$$

b.
$$U|P-Q| = |P-Q|U$$

c. $|1 - U| = \sqrt{2}(1 - (1 - |P - Q|^2)^{1/2})^{1/2} \le \sqrt{2}|P - Q|$

Let $\pi: C^*(p,q) \to B(H)$ be the representation such as $\pi(p) = P$ and $\pi(q) = Q$

 $\pi = \pi_c \oplus \pi_0$

** As the unitary *u* satisfies $\pi_c(upu^*) = \pi_c(q)$, $\pi_c(p)$ is always equivalent to $\pi_c(q)$.

** Because P, Q are finite, P is equivalent to Q if and only if $\pi_0(p) = P - \pi_c(p)$ is equivalent to $\pi_0(q) = Q - \pi_c(q)$.

- ran $\pi_0(p) = \ker Q \cap \operatorname{ran} P$
- ran $\pi_0(q) = \ker P \cap \operatorname{ran} Q$

so $\pi_0(p)$ equivalent to $\pi_0(q)$ means precisely that $\exists W \in M$ as claimed, which ends the proof.

Unitary equivalence of two **finite** projections Corollary 2.5

Corollary 2.5 (Raeburn/Sinclair)

P, Q are two finite projections in a von Neumann algebra M.

P and *Q* are equivalent, i.e., there exists $T \in M$ and it exists an element $W \in M$ such that

- WW^* is the projection onto ker $P \cap \operatorname{ran} Q$
- W^*W is the projection onto ker $Q \cap \operatorname{ran} P$

Then there is an element V of M such that

a.
$$VV^* = Q$$
 and $V^*V = P$

b.
$$V|P - Q| = |P - Q|V$$

c. $|P - V| \le \sqrt{2}|P - Q|$ and $|Q - V| \le \sqrt{2}|P - Q|$

First hypothesis implies the existence of partial isometry W. Now let

$$\pi = \pi_c \oplus \pi_0$$

and consider

$$V(x) = \begin{pmatrix} \sqrt{x} & 0 \\ \sqrt{1-x} & 0 \end{pmatrix} \in M(J)$$

This has all the properties relative to $p, q \in M(J)$.

 $V = \pi_c(v) + W$

is an element of the von Neumann algebra M satisfying a, b, and c.

Unitary equivalence of pairs of projections

Theorem 3.1. (Raeburn, Sinclair) Let H be a Hilbert space. Fix $\lambda > 1$ and two pairs of orthogonal projections P, Q and P', Q'. Then, the following assertions are equivalent.

(i) There is a unitary operator U such that

 $UPU^* = P'$ and $UQU^* = Q'$

(ii) There is a unitary operator U such that

$$U(\lambda P + Q)U^* = \lambda P' + Q',$$

i.e., $\lambda P + Q$ is unitarily equivalent to $\lambda P' + Q'$.

Remarks

- 1. By swapping P and Q also $\lambda \in (0, 1)$ can be considered.
- 2. The theorem is a version of Dixmier's theorem:
 - Question: Let P, Q and P', Q' be two pairs of projections. When is there a unitary U such that

 $UPU^* = P'$ and $UQU^* = Q'$?

• **Diximier.** Let P, Q be in generic position, i.e.,

$$\ker(P) \cap \ker(1-Q) = \ker(Q) \cap \ker(1-P) = \{0\}$$
$$\ker(P) \cap \ker(Q) = \ker(1-Q) \cap \ker(1-P) = \{0\}.$$

Then, the self-adjoint operator P + Q is a complete unitary invariant of the pair P, Q. That corresponds to the theorem with parameter $\lambda = 1$.

Proof (main idea)

- It is clear that Assertion (i) implies Assertion (ii). Hence, only the reverse implications needs a proof.
- Consider the C^* -algebra $C^*(p,q)$ and define

 $s \coloneqq \lambda p + q.$

- The key idea is that an irreducible representation of C*(p,q) is determined up to unitary equivalence by its restriction to C*(s).
- For Diximier's version of the theorem, the subalgebra C*(a), a = p + q does not distinguish between the irreducible components of the representation f → f(0). Thus, extra assumptions are needed, namely that P, Q are in generic position.

Proof (sketch)

- Assume $\lambda P + Q$ is unitary equivalent to $\lambda P' + Q'$.
- Let π , ρ be representations of $C^*(p,q)$ with

$$\pi(p) = P, \quad \pi(q) = Q \text{ and } \rho(p) = P', \quad \rho(q) = Q'.$$

Write

$$s = \lambda p + q.$$

Then $\pi_{|C^*(s)}$ and $\rho_{|C^*(s)}$ are unitarily equivalent. Without loss of generality assume $\pi_{|C^*(s)} = \rho_{|C^*(s)}$.

We know that there is an isomorphism of $C^*(p,q)$ generated by two projections onto

 $A := \{f : C([0,1]; M_2(\mathbb{C})) : f(0), f(1) \text{ diagonal}\}.$

The elements p, q corresponds to

$$p(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $q(x) = \begin{pmatrix} x & \sqrt{x(1-x)} \\ \sqrt{x(1-x)} & 1-x \end{pmatrix}$,

 $p, q \in A$. Hence

$$s(x) = \begin{pmatrix} \lambda + x & \sqrt{x(1-x)} \\ \sqrt{x(1-x)} & 1-x \end{pmatrix},$$

s ∈ *A*.

Computing $\sigma(s)$

- The Gelfand transform induces an isomporphism C*(s) onto C(σ(s)).
- An element f ∈ A is invertible if and only if f(x) is invertible for all x. Thus,

$$\sigma(s) = \bigcup_{x \in [0,1]} \sigma(s(x)) = \bigcup_{x \in [0,1]} \frac{1}{2} (1 + \lambda \pm \sqrt{(\lambda - 1)^2 + 4\lambda x})$$
$$= [0,1] \cup [\lambda, \lambda + 1].$$

Decomposing π and ρ

Consider the ideal I = {f ∈ C*(p,g) : f(0) = f(1) = 0} as before and decompose

$$\pi = \pi_c \oplus \pi_0 \oplus \pi_1 \text{ and } \rho = \rho_c \oplus \rho_0 \oplus \rho_1.$$

We consider the subspaces

 $\mathscr{H}(\pi_c), \mathscr{H}(\pi_0), \mathscr{H}(\pi_1) \text{ and } \mathscr{H}(\rho_c), \mathscr{H}(\rho_0), \mathscr{H}(\rho_1)$

where $\mathscr{H}(\nu)$ is the so-called *essential space* of ν defined by

$$\mathscr{H}(\nu) \coloneqq \overline{\operatorname{span}\{\nu(a)\xi : a \in C^*(p,q), \xi \in H\}}$$

for $\nu \in \{\pi_c, \pi_0, \pi_1, \rho_c, \rho_0, \rho_1\}.$

Claim: $\mathscr{H}(\pi_j) = \mathscr{H}(\rho_j), j = c, 0, 1$

▶ j = c. First, let $f_n \in C_0((0,1) \cup (\lambda, \lambda + 1))$ that is equal to 1 on

$$\left\{\frac{1}{2}(1+\lambda\pm\sqrt{(\lambda-1)^2+4\lambda x}:\frac{1}{n}\leq x\leq 1-\frac{1}{n}\right\}\subset\sigma(s).$$

Since $f_k(s)(x) = 1$ for $k \ge n$, $\pi(f_n(s))$ (and $\rho(f_n(s))$) converges strongly to the orthogonal projection onto $\mathscr{H}(\pi_c)$ (and $\mathscr{H}(\rho_c)$). Since $\pi_{|C^*(s)} = \rho_{|C^*(s)}$ we obtain that $\mathscr{H}(\pi_c) = \mathscr{H}(\rho_c)$.

• $j = 0, 1. \ s(j), 1$ generate the diagonal subalgebra of $M_2(\mathbb{C})$. Since $f \mapsto f(j)$ is surjective on $C^*(s)$, the representations π_j, ρ_j factor through these quotient maps and $\pi_{|C^*(s)} = \rho_{|C^*(s)}$ we obtain $\pi_j = \rho_j$.

In remains to show: π_c is unitarily equivalent to ρ_c

We diagonalise *s* by using the following lemma. Lemma 3.2. (Raeburn, Sinclair)

- Let $f \in C([0,1], M_2(\mathbb{C})$ be self-adjoint.
- Let v ∈ C([0,1], C²) such that v(x) is a unit eigenvector for f(x), x ∈ [0,1].
- Let $p_1(x)$ be the orthogonal projection onto $\operatorname{span}(v(x))$.

Then there is a $w \in C([0,1], M_2(\mathbb{C}))$ such that

$$w(x)^*w(x) = p_1(x), w(x)w(x)^* = 1 - p_1(x).$$

Moreover, we can find for arbitrary $g \in C([0,1], M_2(\mathbb{C}))$ functions $a, b, c, d \in C([0,1])$ such that

$$g = ap_1 + bw^* + cw + d(1 - p_1)$$

- We apply the Lemma 3.2 to s. After messy computations, we find a function v ∈ C([0,1], M₂(ℂ)) such that v(x) is a unit eigenvector for s(x), x ∈ [0,1].
- Note that $p_1 = \mathbb{1}_{[\lambda,\lambda+1]}(s) \in C^*(s)$. So we set $\pi_c(p_1) = \rho_c(p_1) =: P_1$. Let $V = \pi_c(w)$, $W = \rho_c(w)$. Defining $U = W^*V + (1 - P_1)$ yields an unitary operator satisfying

$$U\pi_c(g) = \rho_c(g)U$$

for arbitrary $g \in C^*(p,q)$ using the decomposition of the Lemma.

• Hence, π_c is unitary equivalent to ρ_c .

Summary

- 1. Two subspaces in generic position of a Hilbert space \mathcal{H} : $M \cap N = M \cap N^{\perp} = M^{\perp} \cap N = M^{\perp} \cap N^{\perp} = \{0\}$
- Existence of a C*-algebra C*(p,q), s.t. ∃ a representation π of C*(p,q) with π(p) = P and π(q) = Q for all projections P, Q ∈ H
- 3. Unitary equivalence of projections P and Q in a van-Neumann-algebra M: Find some unitary $U \in M$ satisfying $UPU^* = Q$ and minimising ||1 U||
- 4. Unitary equivalence of pairs of projections $\{P, Q\}$ and $\{P', Q'\}$

References

- 1. P. R. Halmos, *Two subspaces*, Trans. Amer. Math. Soc. 144 (1969), 381-389.
- I. Raeburn, A. M. Sinclair, The C*-algebra generated by two projections, MATHEMATICA SCANDINAVICA 65 (1989), 278–290.
- 3. A. Böttcher, I.M. Spitkovsky: "A gentle guide to the basics of two projections theory", in: Linear Algebra and its Applications 432 (2010), 1412–1459.