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Overview

1. Two subspaces in generic position of a Hilbert space H:
MAN=MnaN=M-AN=MnN={0}1

2. Existence of a C*-algebra C*(p, q), s.t. 3 a representation 7
of C*(p,q) with m(p) = P and 7(q) = Q for all projections
P,QeH 2

3. Unitary equivalence of projections P and Q in a
van-Neumann-algebra M: Find some unitary U € M satisfying
UPU* = Q and minimising |1 - U] 2

4. Unitary equivalence of pairs of projections {P, @} and
{P’, Ql} 2

'P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969),
381-389.

%], Raeburn, A. M. Sinclair, The C*-algebra generated by two projections,

MATHEMATICA SCANDINAVICA 65 (1989), 278—-290. 2 /55
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Overview

Two subspaces in generic position of a Hilbert space H:
MnAN=MnN-=MnN=MnN*={0}

\ MJ_
N+

N M <~ P

wi 1l = Mt <~ 1-P
M N < C?

Nt - 1-Q

» Topic arose in the study of invariant subspaces of operators

» Rotation of eigenvectors by perturbation
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Motivation

» Perturbation theory
» K-theory of C*-algebras

» Quantum mechanics
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Two subspaces

& MJ_

1. T be a linear transformation on a
dense subset of K (closed graph, zero
g kernel, dense range)

2. Write H=K o K
3. M be the "horizontal axis" — (f,0)
4. N be the graph of T — (f, Tf)

MnN| (f,0)=(g,Tg) =>Tg=0=>g=0=f=0
= MnN ={0}
~MnNt=MnN=MnNt={0}
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Two subspaces
Theorem 1 (Halmos): (M, N) ~ (KC @ 0, graph T)

Theorem 1 (Halmos): Let M and N be subspaces in generic
position in a Hilbert space H.

» 3 Hilbert space IC,

» 3 linear transformation T on K (closed graph, zero kernel and
dense range), s.t.

(K®0,graph T) ~ (M, N) (unitary equivalence)

Unitary equivalence: (My, Ni) ~ (Mo, Ny), if there exists a
unitary operator U, s.t. UM; = My and UN; = N>.
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Two subspaces
Proof of Theorem 1 (Halmos)

Let P be the orthogonal projection with range M and P|y be the
restriction of P to N

» P|n is dense in M and has zero kernel

> Forall ge N be Pg=0
=geMnN
=g=0

» BefeMand f 1P|y
= If g € N, then
0=(f,Pg)=(Pf,g)=(f,8)
=feMnN*
=f=0

» All spaces M, N, M+, N* have the same dimension:
3 isomerty V : M — M+
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Two subspaces
Proof of Theorem 1 (Halmos)

> IC =M
» Define T on the dense subset P|y of M by
TPg- V(1-P)g| (g N)

> |dea: (f, Tf) in the decomposition H = M & M* would be Pg
and (1 - P)g. The "closesest" Tf can come to (1-P)g is
V-1(1-P)g

» If fand g arein K(=M): |U(f,g)=Ff+ Vg

It remains to show, that K, T and U have the required properties.
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Two subspaces
Theorem 2 (Halmos)

Theorem 2 (Halmos):

If M and N are subspaces in generic position in H, with respective
projections P and Q, then

» 3 a Hilbert space K and

» 3 positive contractions S and C on IC, with

» S2+C%?=1and kerS =ker C =0, s.t.

1 0 c* CS .
PN(O O) and QN(CS 52) respectively.
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Two subspaces
Proof (sketch) of Theorem 2 (Halmos)

1 0 c* CS
PN(O o) anc QN(CS 52)

» Identify H=K & K
» M and M* are the axis X ® 0 and 0@ K

» |dea:
projection of rank 1 acting on a space of dimension 2, whose
range is line of inclination with angle 6 is

Assertion:

cosf sinf sin“0

( cos20 cost sin@)
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Two subspaces
Theorem 3 (Halmos)

Theorem 3 (Halmos): If M and N are subspaces in generic
position in a Hilbert space H, then there exists a Hilbert space IC,
and there exists a positive contraction Ty on IC, with

ker To = ker(1— Tp) =0, such that

(M, N) ~ (graph To, graph (- To))

Idea of the proof:
Underlying geometric fact: « rotated by 0/2
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Two subspaces
Theorem 3 (Halmos)
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Two subspaces

Corollary: Dixmier's Theorem

Corollary:
The unitary equivalence class of (M, ) is the one of the Hermitian
operator P + Q.

Proof (sketch):

» Use Theorem 3 to see:

2 ¢S 2 _cs\,
P‘(CS 52) and Q‘(—CS 52)

C 0
» Consider R=P 1= A
onsider + Q@ (O —C)

» Unitary equivalence class of R determines that of C, and
thence that of P and @

'C?+C*=C*+(1-5%):=C+1and
§$?+65°=5°+(1-C*=-C+1
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lain RAEBURN /Allan M. SINCLAIR: The C*-Algebra
Generated by Two Projections, Math.Scand. 65(1989),
278-290
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lain RAEBURN /Allan M. SINCLAIR: The C*-Algebra
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What is it about?

1. The existence of a free algebra generated by two projections.
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lain RAEBURN /Allan M. SINCLAIR: The C*-Algebra
Generated by Two Projections, Math.Scand. 65(1989),
278-290

What is it about?
1. The existence of a free algebra generated by two projections.
2. A very convenient isomorphic version.

3. A decomposition of a representation of the algebra.

15 /55



Raeburn/Sinclair §1

1. The existence

"There is a unital C*-algebra A generated by two projections p, g

with the following universal property: whenever P, @ are a pair of
projections in a unital C*-algebra B, there is a unital
homomorphism

¢ : A— B such that ®(p) =P and ®(gq) =Q ."
(Proposition 1.1. in Raeburn/Sinclair)
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Raeburn/Sinclair §1

1. The existence

"There is a unital C*-algebra A generated by two projections p, g
with the following universal property: whenever P, Q are a pair of
projections in a unital C*-algebra B, there is a unital
homomorphism

®: A— B such that ®(p) =P and ®(q)=Q ."
(Proposition 1.1. in Raeburn/Sinclair)

» The algebra A is given as the concrete object
C*(Zy * Zy) (i.e. the free product of two copies

Of Zz). 1 u
» Z» is generated by a self-adjoint unitary v £ 1 1|1 u
(resp. v for the second copy). ulu 1

» If you take p = %, q-= % you obtain the two
projections, which generate the same C*-algebra.
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Raeburn/Sinclair §1

2. The isomorphic version
"There is an isomorphism of the C*-algebra C*(p, q) generated by
two projections onto

A={feC([0,1],My(C)) : £(0),f(1) are diagonal}."

(Theorem 1.3. in Raeburn/Sinclair)
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Raeburn/Sinclair §1

2. The isomorphic version
"There is an isomorphism of the C*-algebra C*(p, q) generated by
two projections onto

A={feC([0,1],My(C)) : £(0),f(1) are diagonal}."

(Theorem 1.3. in Raeburn/Sinclair)

» T he elements of A are continuous functions with the

matrix-multiplication as the multiplication, i.e. for
x€|0,1], f,g €A

(f - 8Kx=f(x) = g(x)

mult. in A mult. in M2 (C)
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Raeburn/Sinclair §1

2. The isomorphic version
"There is an isomorphism of the C*-algebra C*(p, q) generated by
two projections onto

A={feC([0,1],My(C)) : £(0),f(1) are diagonal}."

(Theorem 1.3. in Raeburn/Sinclair)

» T he elements of A are continuous functions with the

matrix-multiplication as the multiplication, i.e. for
x€|0,1], f,g €A

(f - 8Kx=f(x) = g(x)

mult. in A mult. in M2 (C)

1 0 X x(1-x)
=(o o) = Vi)

[cf. x = cos?f in the Halmos-paper]
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Raeburn/Sinclair §1

2. The isomorphic version

Remember: A={fe C([0,1], M(C)) : £(0), f(1) are diagonal}

3¢:C*(p,q) — A with

o(p) - (x» p(x) - ((1) 8)) anc

<D(CI)=(X|—>q(X)=(\/X()1<_X) Wl(f;X))).

Let B:=®(C*(p,q)).

® is surjective (idea of proof):

p(x) - q(x) - p(x) ~ (;; 8] B

(g 8) :()B 8]68 (neN)
ﬁl(X) 0\

0 O)GB

= Vf11 polynomial: (
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Raeburn/Sinclair §1

2. The isomorphic version

Remember: A={fe C([0,1], M>(C)) : £(0),f(1) are diagonal}
d: C*(p,q) — A

® is Iinjective:

This is (not) shown in three steps. C*(p,q) . » B(H)
» Every irreducible representation
of C*(p,q) must be one- or o

two-dimensional.

» Every irreducible representation l
of C*(p, q) factors through A. A

» @ is injective.

®(f)=d(g) = n(f)=m(g)

- J
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Raeburn/Sinclair §1

2. The isomorphic version

T 0rr.

C*(p,q) » B(H)

» Every irreducible representation
of C*(p, q) factors through A. o

J

» @ is injective.

A

®(f)=d(g) = n(f)=7(g)

Assume ® is not injective. Then thereisa 0% ac C*(p,q) with
®(a) = 0. By Isem-lecture notes Rem. 5.31 then there is an
irreducible representation m of C*(p, q) with ||7(a)| =|a|. But
d(a) =0 =P(0) entails by the last item that w(a) =w(0) =0, so
a =0 and we have a contradiction.

J
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Raeburn/Sinclair §1

3. The decomposition

" 7 has a direct sum decomposition 7 = 7. ® 79 ® 71, In which 7.

is nondegenerate on the ideal /, m factors through the map
f — f(0), and m; factors through f — f(1). Further we can
identify the summands as follows:

(1) If {f,} is an approximate identity in /, then 7(f,) converges
strongly to the projection onto H. = H(w¢) = w(/)H,

(Lemma 1.8. in Raeburn/Sinclair)
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3. The decomposition

" 7 has a direct sum decomposition 7 = 7. ® 79 ® 71, In which 7.

is nondegenerate on the ideal /, m factors through the map

f — f(0), and m; factors through f — f(1). Further we can
identify the summands as follows:

(1) If {f,} is an approximate identity in /, then 7(f,) converges
strongly to the projection onto H. = H(w¢) = w(/)H,

(2) Hp is the direct sum of the subspaces Hj = mo(p)H and
Hg = Wo(q)H;

(3) Hi is the direct sum of the subspaces H; = m1(p)H = m1(q)H
and H;y P =m(1-p)H=m1(1-g)H."

(Lemma 1.8. in Raeburn/Sinclair)
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Raeburn/Sinclair §1

3. The decomposition

A={feC([0,1], M>(C)) : f(0),f(1) are diagonal}
[={feA:f(0)=Ff(1)=0}

| is an ideal in A inducing the equivalence relation
frgef-gel<f(0)=g(0)and f(1)=g(1)

Let m: A— B(H) be a representation.
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Raeburn/Sinclair §1

3. The decomposition

-

S

feA=C*(p,q), n(f)e B(H)

I={feA:f(0)=f(1)=0)

Hc := span(m(l)H)

ﬂ(f)IH=(7T(fo)|Hc w(f(;“,cl)
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Raeburn/Sinclair §1

3. The decomposition

-

feA=C*(p,q), n(f) e B(H) A T B(HY)
f
[={feA:f(0)=F(1)=0} ]
f(0) @ f(1) S
H: := span(w(I)H)
7T(f)|H _ (ﬂ-(fo)|Hc W(f(;h_ll) C2 él; C2

m|; =0 on H:

| ist the kernel of f — f(0) & f(1)
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Raeburn/Sinclair §1

3. The decomposition

-

.

feA=C*(p,q), n(f) e B(H) A T B(HY)
f
I={feA:f(0)=f(1)=0) I
f(0) @ f(1) S
H: := span(w(I)H)
7T(f)|H _ (ﬂ-(fo)|Hc W(fo)|Hl) C2 ; C2

m|; =0 on H:

T(f)=mc(F)@P(F(0) @ (1)) =7 (f)®mo(f) ®m1(f)

| ist the kernel of f — f(0) & f(1)
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Raeburn/Sinclair §1

3. The decomposition

A>3 f on / on f(0) on (1)
U J U U
B(H)> =w(f) = 7 (f) @& mo(f) ® m1(f)
J
H = H. @& H:
- H. @ Hy ® H;
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Raeburn/Sinclair §1

3. The decomposition

A>3

B(H) >

.F

J
m(f)
J
H

on |/

J

on (0)
J
mo(f)

on (1)
J
S, 7T1(f)
H;
S H
@ HP @ H, "
HY = m1(p)H
=7T1(CI)H
H P =n1(1-p)H
= 7T1(1 - Q)H
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Raeburn/Sinclair §1

Comparison with Halmos

HY =m(p)H =m1(q)H =ranw(p) nran7(q) == Mn N
Hll_p =m(l-p)H=m1(1-q)H =kerm(p) nkerm(q) = M* n N*
HE = mo(p)H =ranm(p) nkerm(q) = Mn N+

Hy = mo(q)H = kerm(p) nranm(q) = M n N

So, if M and N are in generic position, all of these spaces will
vanish and we will be back in the constellation of Halmos.
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State of the art so far...

» Whenever there is a pair of projections P and Q on a Hilbert

space in a unital C*-algebra, there is a unital homomorphism
7 such as

m(p) =P and 7(q)=Q

» 7 has a direct sum decomposition

T ="Tc®mo DM
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Unitary equivalence of two projections
Theorem 2.1 (Raeburn/Sinclair)

Theorem 2.1 (Raeburn/Sinclair)

Suppose P and Q are projections in a von Neumann algebra M.

If it exists an element W such that :
1. WW?™ is the projection onto ker Pnran Q
2. W*W is the projection onto ker @ nran P

Then there is a unitary U € M such that :
a. UPU™ = Q
b. U commutes with | P - Q |

¢ [1-UEV2(1-(1-]P-QP)2): < V2| P-Q]
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Proof

Let M c B(H) and 7 be the representation of C*(p, q) such that
m(p) =P and w(q)=Q
We consider the ideal
J={feC(p,q):f(0)=0}
By the decomposition result, 7 has a direct sum decomposition

7T=7T2€B7T0€B7T1

» m. is nondegenerate on the ideal J

» 7o and 71 factors through the map f - f(0) and f — 7 (1)
respectively
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Proof

We take

7TC=7T2697T1
We get
T =T @ o

» T is nondegenerate on the ideal J

» o factors through the map f — (0)

We first solve the problem in C([0,1], M>(C)) and then transfer
the solution to the von Neumann algebra M c B(H).
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Proof

» We verify the required properties (a, b and c) relative to the
projections 7.(p) and 7.(q).

(10 N Vx(1-x)
=0 o) 0= (i i)

For each pair (p(x),q(x)) we set

- (5 )
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Proof

Property a. p and g are unitary equivalent

By direct calculation we get
u(x)p(x)u”(x) = q(x)

u*(x):( VX l_X)
-V1-x /x

where

Property b. u(x) commutes with | p(x) — g(x) |

| p(x) —q(x) |= V1-x1
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Proof

Property c. minimizing | 1 — u(x) |

| 1-u(x) |=V2v1-/x1

f2\/1—\/>‘<=ﬁ\/l—\/1—(1—x)sﬁ\/1—x

We get

11— u(x) |= V2(1 = (1- | p(x) - q(x) [2)2)2 < V2| p(x) = q(x) |
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Proof

» To complete the proof of Theorem 2.1 we verify the
properties (a, b and c) for Hy

Property a. p and q are unitary equivalent
We set
U =W-W*

Where W an element such that
» WW?™ is the projection onto ker Pnran Q
» W*W is the projection onto ker @ nran P

Using W = WW*W we get U; is unitary (Ui U] =1 and Uj U; = 1)

U1 (x)mo(p) Us (x) = mo(q)
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Proof

Property b. U; commutes with | mo(p) — mo(q) |
| mo(p) = mo(q) = mo(p(0)) = m0(q(0)) [=| mo(1) |= 1

Property c. minimizing |1 - U, |

[1- U1 P= (1-U7)(1- Lh)
|1- Uy [P=11+ U Uy =21

Thus Uy has the required properties for Hg
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Proof

For
U= 7Tc(u) + U;

a. UPU" = Q
b. U commutes with | P - Q |

¢ [1-U=vV2(1-(1-|P-QP)2)2 < V2| P-Q]
hold for a unitary U € M.

Which completes the proof of Theorem 2.1.
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Unitary equivalence of two projections
Remark 2.3 (Raeburn/Sinclair)

Remark 2.3 (Raeburn/Sinclair)

If we suppose that P and Q are projections in a von Neumann
algebra M satisfying |P — Q| <1 then

» There is a unitary U € M such that UPU* = Q

>

I1- U] =v2(1-(1-|P-Q[»)32)? <V2|P- Q|

and the constant v/2 is the best possible constant for P and Q.
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Proof

Let

EeckerPnran@
then P¢ =0 and 3X, such that QX =&

Thus € = QX = %X = Q€ and

[(P-Q)¢] =gl <P - Q<]

The condition |P - Q| <1 implies£=0

ker Pnran Q = ker @ nran P = {0}
Theorem 2.1 applies for W =0
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Proof

Observe that f is increasing on [0,1]

()= (1- (1- 2))12
Therefore |F(|S])| = f(||S]) for all operators S with ||S| < 1.

L5

I1- U] =v2(1-(1-|P-Q»)3)? <V2|P-Q|
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Proof
Besides the inequality (1 — (1 - t%)1/2)1/2 < t holds for t € [0,1]
(1 _ (1 _ t2)1/2)1/2

t
is also increasing in [0, 1], thus for 0 <t < <1 we have

g(t) =

(1—(1—t2)1/2)1/2 (1_(1_52)1/2)1/2
t - 0
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Proof

For 6 <1, where 6 =1 - x

Ip(x) —q(x)] =0
Let v satisfies v(x)p(x)v(x)* = g(x),

v(x) = ( A/ X —,u\/l—x)
W1 -x /X

for X\, € with |A| = |u| =1
Thus

[1-v] > V21~ Vx = V2(1 - (1~ 82)H%)H2

Letting & — 1 shows that \/2 is the best possible value for arbitary
P and Q.
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Unitary equivalence of two finite projections
Corollary 2.4 (Raeburn/Sinclair)

Corollary 2.4 (Raeburn/Sinclair)
P, @ are two finite projections in a von Neumann algebra M.

P and @ are equivalent, i.e., there exists T € M such that
» TT* =P
» T°T =Q
if and only if there exists an element W € M such that
» WW?™ is the projection onto ker Pnran Q
» W*W is the projection onto ker @ nran P

If so, there is a unitary U € M such that
a. UPU" = Q
b. UP-Q|=|P-Q|U
c. 1-Ul=Vv2(1-(1-|P-QP)"*)?<V2|P-Q
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Proof

Let m: C*(p,q) -~ B(H) be the representation such as w(p) = P
and 7(q) = Q

T =Tc® T

** As the unitary u satisfies w.(upu™) = w.(q), mc(p) is always
equivalent to m-(q).

** Because P, Q are finite, P is equivalent to Q if and only if
mo(p) = P —7c(p) is equivalent to mp(q) = Q@ — 7<(q).

» ranmo(p) =ker@nranP
» ranmo(q) = ker Pnran @

so mo(p) equivalent to mg(q) means precisely that 3W € M as
claimed, which ends the proof.
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Unitary equivalence of two finite projections
Corollary 2.5

Corollary 2.5 (Raeburn/Sinclair)
P, Q are two finite projections in a von Neumann algebra M.

P and Q are equivalent, i.e., there exists T € M and it exists an
element W € M such that

» WW?™ is the projection onto ker Pnran Q

» W*W is the projection onto ker @ nran P
Then there is an element V' of M such that

a. VWV*=Q and V*V =P

b. VIP-Q|=|P-Q|V

c. |IP-V|[<V2|P-Q|and |Q@-V|<V2|P-Q
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Proof

First hypothesis implies the existence of partial isometry W.
Now let

T =Tc® T

and consider

V(x) = (% 8) e M(J)

This has all the properties relative to p,qg e M(J).

V=mn.(v)+W

is an element of the von Neumann algebra M satisfying a, b, and c.
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Unitary equivalence of pairs of projections

Theorem 3.1. (Raeburn, Sinclair) Let H be a Hilbert space. Fix
A > 1 and two pairs of orthogonal projections P, Q and P’ Q’.
Then, the following assertions are equivalent.

(i) There is a unitary operator U such that

UPU* = P" and UQU" = Q'

(i) There is a unitary operator U such that
UMNP+Q)U" =P + Q'

l.e., AP + Q is unitarily equivalent to AP’ + Q’.
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Remarks

1. By swapping P and Q also A € (0,1) can be considered.
2. The theorem is a version of Dixmier's theorem:

> Question: Let P, @ and P’, Q' be two pairs of projections.
When is there a unitary U such that

UPU* = P" and UQU™ = Q'7?
> Diximier. Let P, Q be in generic position, i.e.,

ker(P) nker(l- Q) =ker(Q) nker(1-P)={0}
ker(P) nker(Q) =ker(1- Q) nker(1-P) ={0}.
Then, the self-adjoint operator P + @ is a complete unitary

invariant of the pair P, Q. That corresponds to the theorem
with parameter A = 1.
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Proof (main idea)

» It is clear that Assertion (i) implies Assertion (ii). Hence, only
the reverse implications needs a proof.

» Consider the C*-algebra C*(p,q) and define
s:=Ap+q.

» The key idea is that an irreducible representation of C*(p, q)
Is determined up to unitary equivalence by its restriction to
C*(s).

» For Diximier's version of the theorem, the subalgebra C*(a),
a = p+ q does not distinguish between the irreducible
components of the representation f — f(0). Thus, extra
assumptions are needed, namely that P, Q are in generic
position.
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Proof (sketch)

» Assume AP + Q is unitary equivalent to AP’ + Q’.
» Let m, p be representations of C*(p, q) with

m(p) =P, w(q)=Q and p(p)=P', p(q)=Q"
> Write
Ss=Ap+q.

Then mc«(s)y and pjc+(s) are unitarily equivalent. Without loss
of generality assume 7|cx(s) = pc#(s)-
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We know that there is an isomorphism of C*(p, q) generated by
two projections onto

A:={f:C([0,1]; Ma(C)) :f(0),f(1) diagonal}.

The elements p, g corresponds to

p(X):(cl) 8) and q(X):(W(T—X) Vxl(i;X))’

p,q € A. Hence

S(X):( A+ X \/X(].—X))
Vx(1=x) 1-x ’

s e A.
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Computing o(s)

» The Gelfand transform induces an isomporphism C*(s) onto
C(o(s)).

» An element f € A is invertible if and only if f(x) is invertible
for all x. Thus,

o(s)= | o(s())= U %(1+)\i\/()\—1)2+4)\x)

x€[0,1] €[0,1]
=[0,1]u [\ A +1].
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Decomposing m and p

» Consider the ideal | ={f ¢ C*(p,g):f(0)=f(1) =0} as
before and decompose

T=Tc®mog® 7 and p = pc ® po ® p1.
» We consider the subspaces
J%?(WC)75%?(WO)7J%?(W1) and J%Q(pC)aJ%?(pO)vé%?(pl)

where J7(v) is the so-called essential space of v defined by

(V) :=span{v(a)f:aec C*(p,q),£ € H}

for v e {7TC77T077T1710C71007/01}-
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Claim: c%ﬂ(ﬂ'j) = %(pj),j: C,O,l

» j=c. First, let f, € Co((0,1) U (A, A+1)) that is equal to 1 on

{1(1+)\i\/()\—1)2+4)\x: Leoxe 1_1} c o(s).

2 n n
Since fi(s)(x) =1 for k> n, m(f,(s)) (and p(f,(s)))
converges strongly to the orthogonal projection onto 7 (7.)
(and JZ(pc)). Since mc+(s) = p|c+(s) We obtain that
H(mc) = I (pc)-

» j=0,1. s(j),1 generate the diagonal subalgebra of M,(C).
Since f — f(j) is surjective on C*(s), the representations
7, pj factor through these quotient maps and ¢+ (s) = p|cx(s)
we obtain 7; = p;.
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In remains to show: 7. is unitarily equivalent to p.

We diagonalise s by using the following lemma.
Lemma 3.2. (Raeburn, Sinclair)

» Let f e C([0,1], Ma(C) be self-adjoint.

» Let v e C([0,1],C?) such that v(x) is a unit eigenvector for
f(x), xe[0,1].

» Let p1(x) be the orthogonal projection onto span(v(x)).
Then there isa w e C([0,1], M>(C)) such that

w(x) w(x) = p1(x), w(x)w(x)" =1 - p1(x).

Moreover, we can find for arbitrary g € C([0,1], M>(C)) functions
a,b,c,d e C([0,1]) such that

g=ap1+bw”+cw+d(1-p1)
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» We apply the Lemma 3.2 to s. After messy computations, we
find a function v € C([0,1], M2(C)) such that v(x) is a unit
eigenvector for s(x), x € [0,1].

» Note that p1 = 1) y417(s) € C*(s). So we set
we(p1) = pc(p1) =1 P1. Let V=7 (w), W = pc(w). Defining
U=W?*V +(1- Py) yields an unitary operator satisfying

Urc(g) = pc(g)U

for arbitrary g € C*(p, q) using the decomposition of the
Lemma.

» Hence, 7. is unitary equivalent to p..
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Summary

1. Two subspaces in generic position of a Hilbert space H:
MnAN=MnN-=MnN=MnN*={0}

2. Existence of a C*-algebra C*(p, q), s.t. 3 a representation 7

of C*(p,q) with m(p) = P and w(q) = Q for all projections
P,QeH

3. Unitary equivalence of projections P and Q in a
van-Neumann-algebra M: Find some unitary U € M satistying
UPU* = Q and minimising |1 - U]

4. Unitary equivalence of pairs of projections {P, @} and {P’, Q'}
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