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Part I:
Strongly closed *-subalgebras of B(H)

Titus Pinta, Aaron Kettner
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The SOT
The strong operator topology (SOT):

Locally convex topology on B(H) defined by the family of seminorms

px (T ) = ‖Tx‖

A net converges SOT iff it converges pointwise, i.e.

lim
α

Tα = T ⇐⇒ ∀x ∈ H : lim
α

Tαx = Tx

Coarsest topology such that the sets
S(T , x) = {A ∈ B(H) : ‖(T − A)x‖ < 1} are open
Basis neighborhood of the origin:

n⋂
i=1
S(0, xi ) = {T ∈ B(H) : ‖Txi‖ < 1, 1 ≤ i ≤ n}
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The SOT

Some basic facts about the SOT:
The adjoint map T 7→ T ∗ is not continuous

Left and right multiplication are continuous
Multiplication is not jointly continuous, but restricted to the unit ball
it is
The unit ball of B(H) is not compact
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The WOT
The weak operator topology (WOT):

Locally convex topology on B(H) defined by the family of seminorms

px ,y (T ) = |(Tx , y)|

A net converges WOT iff it converges pointwise weakly, i.e.

lim
α

Tα = T ⇐⇒ ∀x , y ∈ H : lim
α

(Tαx , y) = (Tx , y)

Coarsest topology such that the sets
W(T , x , y) = {A ∈ B(H) : |((T − A)x , y)| < 1} are open
Basis neighborhood of the origin:

n⋂
i=1
W(0, xi , yi ) = {T ∈ B(H) : |(Txi , yi )| < 1, 1 ≤ i ≤ n}
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The WOT

Some basic facts about the WOT:
The adjoint map T 7→ T ∗ is continuous
Left and right multiplication are continuous
Multiplication is not jointly continuous, not even restricted to the unit
ball
The unit ball of B(H) is compact (adapted version of
Banach-Alaoglu)
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SOT and WOT

Theorem
The WOT-continuous linear functionals on B(H) and the SOT-continuous
linear functionals coincide, and each functional has the form

f (T ) =
n∑

i=1
(Txi , yi )

for a finite set of vectors x1, ..., xn, y1, ..., yn in H.

Corollary
B(H) has the same closed convex sets in WOT and SOT.
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Commutant of a W*-algebra

W*-Algebra: WOT-closed unital C*-subalgebra of B(H)
Commutant of a set S ⊂ B(H):

S ′ := {T ∈ B(H) : ST = TS for all S ∈ S}

S ′ is a WOT-closed unital algebra
S selfadjoint =⇒ S ′ is selfadjoint, hence a W*-Algebra
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Von Neumann bicommutant theorem

Theorem (Von Neumann bicommutant theorem)
Suppose that U is a C*-subalgebra of B(H) with trivial null space (i.e.
Uy = 0 implies y = 0). Then

U ′′ = USOT = UWOT
.
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Von Neumann bicommutant theorem

Theorem (Von Neumann bicommutant theorem)
Suppose that U is a C*-subalgebra of B(H) with trivial null space (i.e.
Uy = 0 implies y = 0). Then

U ′′ = USOT = UWOT
.

Proof: USOT ⊂ U ′′ is clear. Let T ∈ U ′′ and fix x1, ...xn ∈ H.
To show:

∃A ∈ U :
n∑

i=1
‖(T − A)xi‖2 < 1
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Von Neumann bicommutant theorem

To show:
∃A ∈ U :

n∑
i=1
‖(T − A)xi‖2 < 1

First consider n = 1. We will show that Tx1 ∈ Ux1.
Let P :=

[
Ux1

]
. =⇒ P ∈ U ′ =⇒ PT = TP

U has trivial null space =⇒ x1 ∈ Ux1
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Von Neumann bicommutant theorem

To show:
∃A ∈ U :

n∑
i=1
‖(T − A)xi‖2 < 1

For arbitrary n: Lift everything to the direct sum of Hilbert spaces H(n)

Define A(n)(v1, ..., vn) = (Av1, ...,Av2) and U (n) := {A(n) : A ∈ U}

(U ′′)(n) ⊂
(
U (n)

)′′
(easy) =⇒ T (n) ∈

(
U (n)

)′′
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Von Neumann bicommutant theorem

To show:
∃A ∈ U :

n∑
i=1
‖(T − A)xi‖2 < 1

For arbitrary n: Lift everything to the direct sum of Hilbert spaces H(n)

Define A(n)(v1, ..., vn) = (Av1, ...,Av2) and U (n) := {A(n) : A ∈ U}

(U ′′)(n) ⊂
(
U (n)

)′′
(easy) =⇒ T (n) ∈

(
U (n)

)′′
=⇒ Use the n = 1 case with x = (x1, ..., xn) to find an A ∈ U such that

1 >
∥∥∥(T (n) − A(n))x

∥∥∥2

H(n)
=

n∑
i=1
‖(T − A)xi‖2 .
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Kaplansky’s density theorem

Theorem (Kaplansky’s density theorem)
If U is a C*-subalgebra of B(H) with trivial null space, then the unit ball
of Usa is SOT-dense in the unit ball of U ′′sa and the unit ball of U is
SOT-dense in the unit ball of U ′′. ...
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The σ-SOT

The σ-strong operator topology (σ-SOT):
Locally convex topology on B(H) defined by the family of seminorms

px (T ) =
√∑

i
‖Txi‖2, with x ∈ `2(H)

Coarsest topology such that the sets
Sσ(T , x) = {A ∈ B(H) :

∑
i ‖(T − A)xi‖2 < 1} are open

Basis neighborhood of the origin:
n⋂

i=1
Sσ(0, xi ) = {T ∈ B(H) :

∑
j
‖Txj‖2 < 1, 1 ≤ i ≤ n}
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The σ-WOT

The σ-weak operator topology (σ-WOT):
Locally convex topology on B(H) defined by the family of seminorms
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The σ-WOT

Some basic facts about the σ-WOT:

The adjoint map T 7→ T ∗ is continuous
Left and right multiplication is continuous
Multiplication is not jointly continuous, not even restricted to the unit
ball
The unit ball of B(H) is compact (Banach-Alaoglu)
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Relationships between the Topologies

σ-WOT σ-SOT Norm

WOT SOT

On bounded sets σ-SOT coincides with SOT and σ-WOT with WOT.
On convex sets σ-SOT closed is equivalent with σ-WOT closed and SOT
closed with WOT closed.
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Predual of a W*-algebra

Theorem
Suppose U is a W*-subalgebra of B(H), then there exists a Banach space
U∗ with

(U∗)∗ = U

Lemma
For ϕ ∈ B(H)∗ the following statements are equivalent

i ∃x1, . . . , xn, y1, . . . , yn such that ϕ(T ) =
∑n

i=1(Txi , yi )
ii ϕ is WOT continuous
iii ϕ is SOT continuous
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Predual of a W*-algebra
Proof: (iii) ⇒ (i)

ϕ−1(D) is open in SOT, so it contains an SOT ball
around 0

∃x1, . . . xn :
n∑

i=1
‖Txi‖2 < 1⇒ |ϕ(T )| < 1

∀T ∈ B(H)

∃x1, . . . xn :
n∑

i=1

∥∥∥∥∥∥ T√
4
∑n

j=1 ‖Txj‖2
xi

∥∥∥∥∥∥
2

= 1
2 ⇒

∣∣∣∣∣∣ϕ
 T√

4
∑n

j=1 ‖Txj‖2

∣∣∣∣∣∣ < 1

Consider ψ : {(Tx1, . . . ,Txn) : ∀T ∈ B(H)} ⊆ H(n),
ψ(Tx1, . . . ,Txn) = ϕ(T ), from Riesz representation theorem

ϕ(T ) =
n∑

i=1
(Txi , yi )
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Predual of a W*-algebra

Lemma
For ϕ ∈ B(H)∗ the following statements are equivalent

i ∃x , y ∈ `2(H) such that ϕ(T ) =
∑

i (Txi , yi )
ii ϕ is σ-WOT continuous
iii ϕ is σ-SOT continuous

Proof: (iii) ⇒ (i) B(H) is included in B(`2(H)) and ϕ is SOT continuous
and by Hahn-Banach there exists an extension ψ ∈ B(`2(H))∗ ψ is SOT
continuous, so by the previous lemma

ϕ(T ) = ψ(T , . . . ) =
n∑

i=1

∑
j

(Txij , yij)

21
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Predual of a W*-algebra
Proof of the Theorem: Let U∗ = {φ ∈ B(H)∗ : φ is σ-WOT continuous}

From the previous Lemma

U∗ ∼= `2(H)(2)/⊥U

where ⊥U = {x , y ∈ `2(H) :
∑

i (Txi , yi ) = 0,∀T ∈ U}

(U∗)∗ = (⊥U)⊥

(⊥U)⊥ = {T ∈ B(H)∗∗ :
∑

i
(Txi , yi ) = 0,∀x , y ∈ ⊥U}

(⊥U)⊥ = Uweak∗

(U∗)∗ = U
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Reminder on C*-algebras
Theorem (Thm. 5.18)
A C*-algebra. Then:
∃ H Hilbert space, π : A → B(H) injective (=faithful) *-homomorphism

Proof.
• (single) Hilbert space

(a, b)ϕ := ϕ(b∗a) inner product if ϕ(a∗a) > 0 for a 6= 0
(ϕ state on A)
⇒ Use Kϕ := A/{a ∈ A

∣∣ϕ(a∗a) = 0} for Hϕ := Kϕ
(.,.)ϕ

• (single) Representation
γ : A → Kϕ quotient map
πϕ : A → B(Hϕ), a 7→ πϕ(a), where πϕ(a)(γ(b)) 7→ γ(ab)

• Injective representation
π : A → B

(⊕
ϕ∈S Hϕ

)
, a 7→ (πϕ(a))ϕ∈S (S=State space of A)

- Injectivity by „Hahn-Banach-like“-Theorem
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New for weak topology

Definition
A C*-algebra, ∃X Banach space: (X )∗ ∼= A. Then:
A is called W*-algebra

New requirement
• π weakly continuous (called: W*-representation)

Consequences
1. B(H) needs to be W*-algebra (here: existence of predual)
2. ∀f ∈ B(H)∗: f ◦ π weakly continuous functional in A
3. Proof of injectivity needs an update
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W*-algebra B(H)

• Definition predual

- Trace class operators N(H):
T (·) =

∑∞
n=1 an (·, yn) xn, ‖xn‖H = ‖yn‖H = 1, (an) ∈ `1

- Norm:
‖T‖nuc = inf

{
‖(an)‖`1

∣∣T (·) =
∑∞

n=1 an (·, yn) xn
}

• Trace
tr : N(H)→ C,

∑∞
n=1 an (·, yn) xn 7→

∑∞
n=1 an (xn, yn)

• Identification predual
B(H)→ N(H)∗,S 7→ tr(S ·), isometric isomorphism

• Elements of predual
f ∈ B(H)∗, then f (·) =

∑∞
n=1 an (·xn, yn) with (an) ∈ `1 possible
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Weak continuity of multiplication

Theorem
A W*-algebra, y ∈ A. Then:
x 7→ yx, x 7→ xy are weakly continuous

Proof.
• (xα) ⊆ A converges weakly to 0
• Aim: ∀f ∈ A∗ : f (xαy)→ 0
• Show:

1 Linear combinations of projections are dense

2 Multiplication with projections are weakly continuous

3 Restriction to bounded nets is sufficient
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Convergence in σ(A,A∗) : aα −→ a ⇐⇒ ∀f ∈ A∗ aα(f ) −→ a(f )

Definition (W*-homomorphism)
Let A1, A2 be W*-algebras and φ : A1 → A2 be a *-homomorphism. Then
φ is W*-homomorphism. :⇐⇒ φ is σ(A1,A1∗)-σ(A2,A2∗)-continuous.

Proposition:
φ : A1 → A2 W*-homomorphism =⇒ φ(A1) is σ(A2,A2∗)-closed.

Proof.
1 ker(φ) is σ(A1,A1∗)-closed 2-sided ideal. =⇒ ∃ a central proj.

z ∈ A1 : ker(φ) = A1z .

2 φ(x) = φ(x(1− z)) =⇒ A1
x 7→x(1−z)−−−−−−→ A1(1− z)

φ|A1(1−z)−−−−−→ A2
3 φ|A1(1−z) is injective. =⇒ isometry
4 =⇒ φ(B) = unit ball of φ(A1), where B = unit ball of A1(1− z)
5 φ(B) σ(A2,A2∗)-compact =⇒ φ(A1) = φ(A1(1− z)) W*-subalge.
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Theorem
A is a W*-algebra. =⇒ ∃ a faithful W*-representation π : A → B(H).

Proof.
1 Sn := {ϕ | ϕ ∈ normal states of A} and {Hϕ, πϕ} is the GNS

representation corresponding to ϕ.
2 Set π : A → B(H), π(a) :=

⊕
ϕ∈Sn πϕ(a), where H :=

⊕
ϕ∈Sn Hϕ.

3 Let ξ :=
∑k

i=1 ξi , η :=
∑k

i=1 ηi ∈ H, where ξi , ηi ∈ Hϕi .
Set f : A → C, f (a) := 〈π(a)ξ, η〉 =

∑k
i=1〈πϕi (a)ξi , ηi〉. =⇒ f ∈ A∗

4 Elements of type ξ, η dense in H =⇒ 〈π(·)ξ′, η′〉 ∈ A∗, ξ′, η′ ∈ H
5 Therefore, π is a W*-representation of A.
6 Faithfulness :

I Hahn-Banach like fact : ϕ(a) = 0 ∀ ϕ ∈ Sn =⇒ a = 0
I π(a) = 0 =⇒ πϕ(a) = 0 ∀ϕ ∈ Sn =⇒ ϕ(a) = 0 =⇒ a = 0
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Definition
A C*-algebra A is called a von Neumann algebra or W*-algebra if there
exists a Banach space A∗ such that A = (A∗)∗.

A measure space (Γ, µ) is said to be decomposable if Γα ∩ Γβ = ∅ for
α 6= β and µ(Γα) <∞ for all α.

Example
Let (Γ, ν) be a decomposable measure space.

We have
L∞(Γ, ν) =

(
L1(Γ, ν)

)∗. Hence L∞(Γ, ν) is a commutative von Neumann
algebra.

Later we are going to show that L∞(Γ, ν) is the only commutative von
Neumann algebra.
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Definition
Let X be a Banach space and X ∗ be its dual. Then xα → 0 in X w.r.t.
σ(X ,X ∗) iff ∀f ∈ X ∗ : f (xα)→ 0. Similarly, fα → 0 in X ∗ w.r.t.
σ(X ∗,X ) iff ∀x ∈ X : fα(x)→ 0.

Lemma(
X ∗, σ(X ∗,X )

)∗ = X and
(
X , σ(X ,X ∗)

)∗ = X ∗.

Definition
A positive linear functional ϕ : A → C is said to be normal if
ϕ(supα(xα)) = supα(ϕ(xα)) for every uniformly bounded increasing direct
net (xα) of positive elements in A.

Remark: A positive linear functional is normal if and only if it is
σ(A,A∗)-continuous.

Example(
A, σ(A,A∗)

)∗ =
(
(A∗)∗, σ(A,A∗)

)∗ = A∗
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Example
Let A = L∞(Γ, ν). Given f ∈ L1(Γ, ν), f ≥ 0, define
φ(g) :=

∫
fg dν, ∀g ∈ L∞(Γ, ν). Then φ is normal on L∞(Γ, ν). If∫

f dν = 1, then φ is a normal state on L∞(Γ, ν).

Theorem
Let A, B be W*-algebras. Let Φ : A → B be a W*-homomorphism. Then
Φ(A) is closed in B in the σ(B,B∗)-topology.

Theorem
(Polar decomposition for functional) Let A be W*-algebra. Then every
weakly continuous linear functional f ∈ A∗ can be written as
f (·) = |f |(·v), where v ∈ A is a partial isometry and |f | ∈ A∗ is a normal
functional.
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Definition
Let A be W*-algebra and let a ∈ A. Let L = {xa : xa = 0, x ∈ A. Then L
is a σ(A,A∗)-closed left ideal. Hence L = Ae for a unique projection e in
A. Then 1− e is the least projection of all the projections q in A such
that qa = a. Projection 1− e is called the left support of a and is denoted
by l(a). Similarly we can define right support r(a) of a. If a is self-adjoint,
then l(a) = r(a) and is called the support of a and is denoted by s(a).

Theorem
(Polar decomposition for elements) Let A be W*-algebra and let a ∈ A.
Then a can be decomposed as a = u|a| where |a| = (a∗a) 1

2 and u is a
partial isometry in A such that u∗u = s(|a|). Such a decomposition is
unique.
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Proof.

For each natural number n, define hn =
(
a∗a + 1

n

) 1
2 and

an = a
(
a∗a + 1

n

)−1
2 . Then ‖an‖ ≤ 1 for all n and an

(
a∗a + 1

n

) 1
2 = a.

Since hn converges to (a∗a) 1
2 , given ε > 0, there exists n0 such that

‖hn − (a∗a)
1
2 ‖ < ε,∀n ≥ n0.

Since the unit sphere S of A is compact in the weak*-topology, there
exists a limit point, say b of {an}. We then have

an(a∗a)
1
2 ∈ a + εS,∀n ≥ n0 and b(a∗a)

1
2 ∈ a + εS

Since ε was arbitrary a = b(a∗a) 1
2 . Let p be the support of (a∗a) 1

2 and q
be the support of (aa∗) 1

2 . A little calculation says that p = pb∗qbp.
Define u = qbp. Then u becomes partial isometry and a = u|a|.
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Proof.
Suppose a = u|a| = u′|a| is another polar decomposition of a. Then
(p − (u′)∗u)|a| = 0. Let

R = {x |(p − (u′)∗u)x = 0, x ∈ A}.

Then R is a σ-closed left ideal. Hence R = eA for some projection e.
Hence s(|a|) = p ≤ e. Therefore (p − (u′)∗u)p = 0. We also have
p = (u′)∗u.Therefore u′ = u.
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Proposition
Let A be a W*-algebra and S be its unit sphere. Then S has an extreme
point iff A has an identity.

Theorem
Any W*-algebra A is unital.

Sketch of Proof:
By the Banach-Alaoglu theorem ⇒ closed unit sphere S of A is
σ(A,A∗)-compact.

Then S is equal to the closed convex hull of its extreme points by
Krein-Milman Theorem. S has an extreme point
This implies A has an identity.
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Theorem
Let A be a commutative W*-algebra. Then there exists a decomposable
measure space (Γ, ν) such that A and L∞(Γ, ν) are W*-isomorphic.

Lemma
Let Λ :M→N be a linear map between W*-algebra. Then Λ is
σ-continuous iff for any σ-continuous linear functional ϕ on N , ϕ ◦ Λ is a
σ-continuous linear functional onM.

Lemma
Let Ω be a compact Hausdorff space. Then for any Radon measure µ on
Ω, C(Ω) is σ-dense in L∞(Ω, µ).
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Lemma
Let Ω be a compact Hausdorff space. Then for any Radon measure µ on
Ω, C(Ω) is σ-dense in L∞(Ω, µ).

Proof.
Let f ∈ L∞(Ω, µ) and n ∈ N.

By Lusin Theorem, there exists fn ∈ C(Ω) and Kn ⊆ Ω compact s.t.
‖fn‖∞ ≤ ‖f ‖L∞ , f |Kn = fn|Kn and µ(K c

n ) < 1
n .

Let g ∈ L1(Ω, µ) and ε > 0. There is N ∈ N s.t.
∫

B |g |dµ < ε
whenever µ(B) < 1

N .
Thus,

|g(fn)− g(f )| < 2‖f ‖L∞ε

for all n ≥ N.
Therefore, fn

σ−→ f .
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First Part of the proof:

1 Since A is unital commutative W*-algebra ⇒ A ∼= C(Ω).
2 Let ϕ be a normal state on A. By Riesz-Markov-Kakutani Theorem,

there exists a unique probability Radon measure µϕ on Ω such that

ϕ(x) =
∫

Ω
x̂ dµϕ

where A 3 x 7→ x̂ ∈ C(Ω) is the Gelfand transform.
3 Set Λϕ : A 3 x 7→ x̂ ∈ L∞(Ω, µϕ). Then Λϕ is a ∗-homomorphism.
4 Let g ∈ L1(Ω, µϕ). We define g := g ◦ Λϕ : A → C by

(g ◦ Λϕ)(x) =
∫

Ω
x̂g dµϕ.

Indeed, g is linear functional on A.
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First Part of the proof:

5 Since Ω is compact Hausdorff, µϕ is Radon measure ⇒ C(Ω)
L1

= L1(Ω, µϕ).

6 There exists a sequence (gi ) ⊆ A such that ĝi
L1

−→ g
7 We also define gi : A → C such that

gi (x) =
∫

Ω
x̂ ĝi dµϕ = ϕ(xgi ).

8 Since ϕ and right multiplication is σ-continuous then gi is σ-continuous.
That is gi ∈ A∗.

9 Moreover, we have that (gn) is a Cauchy sequence in A∗. Thus, there exists
z ∈ A∗ s.t. gn −→ z .

10 Finally, we have for all x ∈ A,

z(x) = lim
n→∞

gn(x) = g(x)

41
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First Part of the proof:
11 On other words, g is σ-continuous. g ∈ A∗.

12 This implies that Λϕ is σ(L∞, L1)-continuous.

13 Consequently, Λϕ is a W*-homomorphism, and so Λϕ(A) is a
W*-subalgebra of L∞(Ω, µϕ).

14 Furthermore

Λϕ(A) = C(Ω)σ(L∞,L1) = L∞(Ω, µϕ).
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Lemma
Let L be a σ(A,A∗)-closed left ideal ⇒ ∃!p ∈ A proj. s.t. L = Ap.

Proof.

Let x ∈ L⇒ x∗x ∈ L ∩ L∗, where L∗ := {x∗ : x ∈ L}.

Thus, B := L ∩ L∗ is non-trivial W*-subalg.

Let p be the unit of B ⇒ p is proj.

For x ∈ L, x∗x ∈ B ⇒ px∗xp = px∗x = x∗xp = x∗x .

Hence,
(
x(1− p)

)∗(x(1− p)
)

= 0⇒ x(1− p) = 0⇒ L = Ap.

Let q be proj. s.t. L = Aq ⇒ ∃x ∈ A : p = xq = xq2 = pq.

Similarly, ∃y ∈ A : q = yp ⇒ q = q∗q = p2y∗yp = pq ⇒ q = p.
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Remarks

Let ϕ be a normal state on A ⇒ N(ϕ) := {x ∈ A : ϕ(x∗x) = 0} is a
σ(A,A∗)-closed left ideal.

The proj. pϕ s.t. N(ϕ) = Apϕ is the greatest of all proj’s q s.t.
ϕ(q) = 0.

The proj. s(ϕ) := 1− pϕ is the so-called support of ϕ.

Note that ϕ is faithful iff s(ϕ) = 1, and ϕ(x) = ϕ(xs(ϕ)) (∀x ∈ A).

For f ∈ L1(Γ, ν) normal state on L∞(Γ, ν), s(f ) corresponds to the
characteristic function of its support.
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Second Part of the proof:

15 Let p be the proj. s.t. Kϕ := ker(Λϕ) = Ap (p unit of Kϕ).

16 Note that ϕ(p) =
∫

Ω Λϕ(p)dµϕ = 0 ⇒ p ≤ pϕ the greatest of all
proj’s q s.t. ϕ(q) = 0.

17 On the other hand, 0 = ϕ(pϕ) =
∫

Ω p̂ϕdµϕ ⇒ pϕ ∈ Kϕ

⇒ 0 ≤ (p − pϕ)2 = p − 2ppϕ + pϕ = p − pϕ

=⇒ p = pϕ

18 Thus, As(ϕ) ∼= L∞(supp(µϕ), µϕ) since s(ϕ) := 1− pϕ.
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Second Part of the Proof (cont’d):

19 Now, consider a maximal family (ϕλ) of normal states on A s.t.
s(ϕλ)s(ϕ′λ) = 0 for λ 6= λ′

(i.e. As(ϕλ)∩As(ϕλ′) = {0} for λ 6= λ′)
20 Then,

∑
s(ϕλ) σ−→ s ∈ A projection. Actually, s = 1 by the

maximality of (ϕλ).
21 Hence, the ∗-homomorphisms

Φ1 : A 3 x 7→ (xs(ϕλ)) ∈
⊕
As(ϕλ)

and
Φ2 :

⊕
As(ϕλ) 3 (xλs(ϕλ)) 7→

∑
xλs(ϕλ) ∈ A

are inverse to each other
22 Finally,
A ∼=

⊕
As(ϕλ) ∼=.
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Second Part of the Proof (cont’d):

19 Now, consider a maximal family (ϕλ) of normal states on A s.t.
s(ϕλ)s(ϕ′λ) = 0 for λ 6= λ′ (i.e. As(ϕλ)∩As(ϕλ′) = {0} for λ 6= λ′)

20 Then,
∑
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maximality of (ϕλ).

21 Hence, the ∗-homomorphisms

Φ1 : A 3 x 7→ (xs(ϕλ)) ∈
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As(ϕλ)

and
Φ2 :

⊕
As(ϕλ) 3 (xλs(ϕλ)) 7→

∑
xλs(ϕλ) ∈ A

are inverse to each other
22 Finally,
A ∼=

⊕
As(ϕλ) ∼=

⊕
L∞(supp(µϕλ), µϕλ) ∼= L∞(tsupp(µϕλ),

⊕
µϕλ).
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Remarks

Any commutative W*-algebra can be decomposed as the direct sum
of essentially bounded functions on probability spaces.

Moreover, each term of the decomposition is equal to the space of
continuous functions on the support of the corresponding measure.
This shows how remarkable are the spectra of abelian W*-algebras.

The topological spaces Ω such that C(Ω) is a W*-algebra are called
hyper-Stonean.
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Many thanks for your attention!
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