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The SOT
The strong operator topology (SOT):
@ Locally convex topology on B(H) defined by the family of seminorms

px(T) = I x|

@ A net converges SOT iff it converges pointwise, i.e.

IimT,=T <<= VxeH:limT,x = Tx
« 6%

@ Coarsest topology such that the sets
S(T,x)={AeB(H):|(T —A)x| <1} are open
@ Basis neighborhood of the origin:

mS(O,X,') ={TeBH):||Tx| <1,1<i<n}
i=1



The SOT

Some basic facts about the SOT:

@ The adjoint map T +— T* is not continuous



The SOT

Some basic facts about the SOT:
@ The adjoint map T +— T* is not continuous

@ Left and right multiplication are continuous



The SOT

Some basic facts about the SOT:
@ The adjoint map T +— T* is not continuous
@ Left and right multiplication are continuous

@ Multiplication is not jointly continuous, but restricted to the unit ball
it is



The SOT

Some basic facts about the SOT:
@ The adjoint map T +— T* is not continuous
@ Left and right multiplication are continuous
@ Multiplication is not jointly continuous, but restricted to the unit ball
it is

@ The unit ball of B(#) is not compact



The WOT

The weak operator topology (WOT):

@ Locally convex topology on B(H) defined by the family of seminorms

Pxy(T) = |(Tx, )|

@ A net converges WOT iff it converges pointwise weakly, i.e.
imTy =T < Vx,y € H:lim(Tox,y) = (Tx,y)
(0% (63

o Coarsest topology such that the sets
W(T,x,y)={A€ B(H):|((T —A)x,y)| <1} are open
@ Basis neighborhood of the origin:

n

ﬂ W(0,x;,y;)) ={T € B(H) : (Txi,yi)| < 1,1 <i<n}
i=1



The WOT

Some basic facts about the WOT:
@ The adjoint map T +— T* is continuous
o Left and right multiplication are continuous

@ Multiplication is not jointly continuous, not even restricted to the unit
ball

@ The unit ball of B(#) is compact (adapted version of
Banach-Alaoglu)



SOT and WOT

Theorem

The WOT-continuous linear functionals on B(H) and the SOT-continuous
linear functionals coincide, and each functional has the form

n

F(T) = (T, )

i=1

for a finite set of Vectors Xi, ..., Xn, Y1, -+, ¥n in H.

Corollary

B(#) has the same closed convex sets in WOT and SOT.
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Commutant of a W*-algebra

W*-Algebra: WOT-closed unital C*-subalgebra of B(H)
Commutant of a set S C B(H):

S :={TeB(H):ST =TS forall S S}

e &' is a WOT-closed unital algebra
o S selfadjoint = &’ is selfadjoint, hence a W*-Algebra
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Theorem (Von Neumann bicommutant theorem)
Suppose that U is a C*-subalgebra of B(H) with trivial null space (i.e.
Uy =0 implies y =0). Then

L[” _ 27507_ _ HWOT.

Proof: U°°T c U" is clear. Let T € 1" and fix X1, ... Xn € H.
To show:

AU > (T - Axil? <1
i=1
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Von Neumann bicommutant theorem

To show:

n
AU D (T - Axil? <1
i=1

First consider n = 1. We will show that Tx; € Ux;.
o Let P:= [u_xl] — PeclU = PT=TP

@ U has trivial null space = x1 € Uxg

— Txy = TPx; = PTxq € Uxq
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Von Neumann bicommutant theorem

To show:

AU (T - Axl? <1
i=1

For arbitrary n: Lift everything to the direct sum of Hilbert spaces H("
o Define A (vq, ..., v) = (Avi, ..., Awo) and UM = {Al") . A c U}

"

o UMM c (UM)” (easy) = T e ()"
= Use the n =1 case with x = (x1, ..., x,) to find an A € U such that

1> |7 - A(n))XH;(n) — ST = Ay,
i=1



Kaplansky’s density theorem

Theorem (Kaplansky's density theorem)

IfU is a C*-subalgebra of B(H) with trivial null space, then the unit ball
of Us, is SOT-dense in the unit ball of UL, and the unit ball of U is
SOT-dense in the unit ball of U". ...
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The o-SOT

The o-strong operator topology (0-SOT):
@ Locally convex topology on B(H) defined by the family of seminorms

pu(T) = /Z | 7|12, with x € £2(H)

@ Coarsest topology such that the sets
So(T,x) ={A€ B(H): ¥ (T — A)xi||* < 1} are open
@ Basis neighborhood of the origin:

()50(0.5) = (T € B - Y Tl < 11 < 7 < n}

i=1 J
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The o-WOT

The o-weak operator topology (o-WOT):
@ Locally convex topology on B(H) defined by the family of seminorms

Pxy(T) =

> (Txi, yi)

]

with x,y € la(H)

@ Coarsest topology such that the sets
Wo(T,x,y) ={A € B(H) : 3;|((T — A)x;,yj)| < 1} are open

@ Basis neighborhood of the origin:

N\ Ws(0,%,y:) ={T € B(H) : >_[(Tx,y))] < 1,1 <i < n}
i=1 J
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Some basic facts about the o-WOT:
@ The adjoint map T — T is continuous
@ Left and right multiplication is continuous

@ Multiplication is not jointly continuous, not even restricted to the unit
ball

@ The unit ball of B(#) is compact (Banach-Alaoglu)
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Relationships between the Topologies

o-WOT +—— o-SOT +—— Norm

| |

WOT «+—— SOT

On bounded sets 0-SOT coincides with SOT and o-WOT with WOT.
On convex sets 0-SOT closed is equivalent with o-WOT closed and SOT
closed with WOT closed.



Predual of a W*-algebra

Theorem

Suppose U is a W*-subalgebra of B(H), then there exists a Banach space
U, with

)" =u




Predual of a W*-algebra

Theorem

Suppose U is a W*-subalgebra of B(H), then there exists a Banach space
U, with

)" =u

Lemma

For o € B(H)* the following statements are equivalent

Q@ Ixi,...,Xm)1,...,¥n such that o(T) = > 1(Txi, yi)
Q@ ¢ is WOT continuous

@ ¢ is SOT continuous




Predual of a W*-algebra
Proof: (iii) = (i)
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Proof: (iii) = (i) ¢~ (D) is open in SOT, so it contains an SOT ball
around 0

n
Ixy, .. X Z ITxill? <1=]e(T) <1
i=1



Predual of a W*-algebra

Proof: (iii) = (i) ¢~ (D) is open in SOT, so it contains an SOT ball
around 0

n
Ixy, .. Xp Z HTX1H2 <l=p(T) <1

i—1
2
T 1 T
n 2Xi - 5 = |® n 2
45 I T 450 1 Tl

VT € B(H)

n

Elxl,...x,,:z

i=1

20

<1




Predual of a W*-algebra

Proof: (iii) = (i) ¢ 1(ID) is open in SOT, so it contains an SOT ball
around 0

n
Ixy, .. Xp Z HTX1H2 <l=|p(T) <1

i=1
2
Xi = = (2]
2 45 || Tl

Consider t : {(Tx1,..., Txn) : VT € B(H)} C 1,
Y(Tx1, -5 Txa) = (T)

VT € B(H)

n

Hxl,...x,,:z

i=1

-
2
45 1 1T

<1

20



Predual of a W*-algebra

Proof: (iii) = (i) ¢ 1(ID) is open in SOT, so it contains an SOT ball
around 0

n
Ixy, .. Xp Z HTX1H2 <l=|p(T) <1

i=1
2
Xi = = (2]
2 45 || Tl

Consider t : {(Tx1,..., Txn) : VT € B(H)} C 1,
W(Txa, ..., Txy) = @(T), from Riesz representation theorem

VT € B(H)

n

Hxl,...x,,:z

i=1

-
2
45 1 1T

<1

n

e(T) =D (Txi, )

i=1

20
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Lemma

For o € B(H)* the following statements are equivalent
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Q@ ¢ is o-WOT continuous
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Predual of a W*-algebra

Lemma

For o € B(H)* the following statements are equivalent
Q@ 3x,y € la(H) such that o(T) = > ;(Txi, yi)

Q@ ¢ is o-WOT continuous

@ ¢ iso-SOT continuous

Proof: (iii) = (i) B(#) is included in B(¢2(H)) and ¢ is SOT continuous
and by Hahn-Banach there exists an extension ¢ € B(¢2(H))* v is SOT
continuous, so by the previous lemma

n

o(T) = Z Txij, ¥ij)
1

=
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From the previous Lemma
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Predual of a W*-algebra

Proof of the Theorem: Let U, = {¢ € B(H)* : ¢ is o-WOT continuous}
From the previous Lemma

U, = l(H)P
where “U = {x,y € lr(H) : :{(Tx;,y;) = 0,YT € U}

(U)* = (FU)*

(FU)E ={T e BH)™ : > (T, yi) = 0,%x,y € *U}

]

(J_U)J_ _ Hweak*
) =u
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3 H Hilbert space, m : A — B(H) injective (=faithful) *-homomorphism

v

Proof.




Reminder on C*-algebras

Theorem (Thm. 5.18)
A C*-algebra. Then:
3 H Hilbert space, m : A — B(H) injective (=faithful) *-homomorphism

V.

Proof.
e (single) Hilbert space

a,b), = ¢(b*a) inner product if p(a*a) >0 for a # 0
©
(o state on A)

= Use K, = A/{a € Alp(a*a) = 0} for H,, = E("')w




Reminder on C*-algebras

Theorem (Thm. 5.18)
A C*-algebra. Then:
3 H Hilbert space, m : A — B(H) injective (=faithful) *-homomorphism

v

Proof.
e (single) Hilbert space
(a,b), = p(b*a) inner product if p(a*a) >0 for a # 0
(p state on A)
= Use K, = A/{a € A|p(a*a) = 0} for H, = IC_w(”')V’
e (single) Representation
v : A — K, quotient map

7o A— B(Hy), a — my(a), where m,(a)(v(b)) — ~(ab)




Reminder on C*-algebras

Theorem (Thm. 5.18)

A C*-algebra. Then:
3 H Hilbert space, m : A — B(H) injective (=faithful) *-~homomorphism

i

Proof.
e (single) Hilbert space
(a,b), = p(b*a) inner product if p(a*a) >0 for a # 0
(¢ state on A)
= Use K, = A/{a € A|p(a*a) = 0} for H, = E("')W
e (single) Representation
v : A — K, quotient map
7o A— B(Hy), a — my(a), where m,(a)(v(b)) — ~(ab)
e Injective representation
T A—B (EB%S 7—[@) , @ (mp(3)) pes (S=State space of A)
- Injectivity by ,,Hahn-Banach-like"-Theorem O
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New for weak topology

Definition
A C*-algebra, 3X Banach space: (X)* = A. Then:
A is called W*-algebra

New requirement

e 7 weakly continuous (called: W*-representation)

Consequences
1. B(H) needs to be W*-algebra (here: existence of predual)
2. Vf € B(H).: f om weakly continuous functional in A

3. Proof of injectivity needs an update
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e Definition predual

- Trace class operators N(H):
T() =31 an (oyn) X [xallae = llynlle = 1, (an) € £1

- Norm:
T llnue = inf {{[(@n)lle| T() = 32521 2n (-, vn) Xn }
e Trace
tr: N(H) — C, 22021 an (4 yn) Xn > 32021 @n (Xn, Yn)
e lIdentification predual

B(H) — N(H)*,S — tr(S-), isometric isomorphism



W*-algebra B(H)

e Definition predual

- Trace class operators N(H):
T() =212 (o yn) xn, xalle = Iyl =1, (an) € £

- Norm:
T llnue = inf {{[(@n)lle| T() = 32521 2n (-, vn) Xn }
Trace
tr: N(H) — C, 22021 an (4 yn) Xn > 32021 @n (Xn, Yn)
Identification predual

B(H) — N(H)*,S — tr(S-), isometric isomorphism

Elements of predual
f € B(H)s, then £(:) = 320° 1 an (-Xn, yn) with (a,) € ¢* possible
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Weak continuity of multiplication

Theorem

A WH*algebra, y € A. Then:
X — yx, X — xy are weakly continuous

Proof.
e (xo) C A converges weakly to 0
o Aim: Vf € A, : f(xqy) — 0

e Show:
© Linear combinations of projections are dense

@ Multiplication with projections are weakly continuous

© Restriction to bounded nets is sufficient

. <Xa <y _ ZA>> < 17 (sup )

—0

n
y = Z i€
i=1
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Convergence in 0(A, A.): an — a <= Vf € A, a,(f) — a(f)

Definition (\W*-homomorphism)

Let A;, As be W*-algebras and ¢: A; — Ay be a *-~homomorphism. Then
¢ is W*-homomorphism. : <= ¢ is o(A1, A1.)-0(Az, Az, )-continuous.

Proposition:
¢: A1 — Az W*-homomorphism = ¢(.A;1) is o( Az, Az )-closed.

Proof.

Q ker(¢) is 0(A1, A1s)-closed 2-sided ideal. = 3 a central proj.
ze Ay ker(¢) = Ajz.




Convergence in 0(A, A.): an — a <= Vf € A, a,(f) — a(f)

Definition (\W*-homomorphism)

Let A;, As be W*-algebras and ¢: A; — Ay be a *-~homomorphism. Then
¢ is W*-homomorphism. : <= ¢ is o(A1, A1.)-0(Az, Az, )-continuous.

Proposition:
¢: A1 — Az W*-homomorphism = ¢(.A;1) is o( Az, Az )-closed.

Proof.

Q ker(¢) is 0(A1, A1s)-closed 2-sided ideal. = 3 a central proj.
ze Ay ker(¢) = Ajz.

Q ¢(x) = ¢(x(1 - 2)) = A

x—x(1—2) Al(]. . Z) ?la(1-2) Ay




Convergence in 0(A, A.): an — a <= Vf € A, a,(f) — a(f)

Definition (\W*-homomorphism)

Let A;, As be W*-algebras and ¢: A; — Ay be a *-~homomorphism. Then
¢ is W*-homomorphism. : <= ¢ is o(A1, A1.)-0(Az, Az, )-continuous.

Proposition:
¢: A1 — Az W*-homomorphism = ¢(.A;1) is o( Az, Az )-closed.

Proof.

Q ker(¢) is 0(A1, A1s)-closed 2-sided ideal. = 3 a central proj.
ze Ay ker(¢) = Ajz.

Q o(x)=0(x(1-2)) = A
© ¢|4,(1—z) is injective. == isometry

x—x(1—2) Al(]. . Z) ?la(1-2) Ay




Convergence in 0(A, A.): an — a <= Vf € A, a,(f) — a(f)

Definition (\W*-homomorphism)

Let A;, As be W*-algebras and ¢: A; — Ay be a *-~homomorphism. Then
¢ is W*-homomorphism. : <= ¢ is o(A1, A1.)-0(Az, Az, )-continuous.

Proposition:
¢: A1 — Az W*-homomorphism = ¢(.A;1) is o( Az, Az )-closed.

Proof.
Q ker(¢) is 0(A1, A1s)-closed 2-sided ideal. = 3 a central proj.
ze Ay ker(¢) = Ajz.
Q ¢(x) =o(x(1-2)) = A
© ¢|4,(1—z) is injective. == isometry
Q@ — ¢(B) = unit ball of ¢(.A1), where B = unit ball of A;(1 — z)

x—x(1—z

] —z
)y Ay(1— 7) 0D,y




Convergence in 0(A, A.): an — a <= Vf € A, a,(f) — a(f)

Definition (\W*-homomorphism)

Let A;, As be W*-algebras and ¢: A; — Ay be a *-~homomorphism. Then
¢ is W*-homomorphism. : <= ¢ is o(A1, A1.)-0(Az, Az, )-continuous.

Proposition:
¢: A1 — Az W*-homomorphism = ¢(.A;1) is o( Az, Az )-closed.
Proof.
Q ker(¢) is 0(A1, A1s)-closed 2-sided ideal. = 3 a central proj.
z € A; : ker(¢) = Az z.
Q@ ¢(x) =d(x(1-2)) = A
© ¢|4,(1—z) is injective. == isometry
Q@ — ¢(B) = unit ball of ¢(.A1), where B = unit ball of A;(1 — z)
Q@ ¢(B) o( A2, Azi)-compact = ¢(A1) = ¢(A1(1 — z)) W*-subalge.
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Theorem
A is a W*-algebra. = 3 a faithful W*-representation m: A — B(H).

v

Proof.

@ S, :={p | v € normal states of A} and {H,, 7.} is the GNS
representation corresponding to .

Q Set m: A — B(H), m(a) := Des, mp(a), where H := D cs, Ho-
Q Let & = Zle &, = Zf—‘zl ni € H, where &, n; € Hy,.

Set f: A — C, f(a) := (m(a)&,n) = Sk 1 (7, (3)&i,mi). = f €A,
© Elements of type &,n dense in H = (n(-)¢',n) € A, ¢, e H
@ Therefore, w is a W*-representation of A.

@ Faithfulness :

Hahn-Banach like fact : ¢(a) =0 VeSS, — a=0
ma)=0 = 7,(a) =0 Vp €S, = ¢(a) =0 = a=0




Part III:
Commutative W*-algebras

Made Benny Prasetya, Mahesh Krishna Krishnanagara,
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Definition
A C*-algebra A is called a von Neumann algebra or W*-algebra if there
exists a Banach space A, such that A = (A,)*.

A measure space (I', i) is said to be decomposable if [ = Ul,,
FoNlg=10fora#p and u(la) < oo for all .

Example

Let (I, v) be a decomposable measure space. We have
L(T,v) = (LXT,v))". Hence L°(T',v) is a commutative von Neumann
algebra.

Later we are going to show that L°°(T", ) is the only commutative von
Neumann algebra.
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Let X be a Banach space and X* be its dual. Then x, — 0 in X w.r.t.
o(X, X*)iff Vf € X*: f(xq) — 0. Similarly, f, — 0 in X* w.r.t.
o(X*,X) iff Vx € X 1 fu(x) = 0.

Lemma
(X*,0(X*, X)) =X and (X,0(X, X)) = x*.

Definition

A positive linear functional ¢ : A — C is said to be normal if
©w(sup,(xa)) = sup,(p(xa)) for every uniformly bounded increasing direct
net (x,) of positive elements in A.

Remark: A positive linear functional is normal if and only if it is
o(A, A,)-continuous.

Example
(A, (A A))" = ((A)*, (A, AL))" = A
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Let A= L>®(T,v). Given f € LY, v), f >0, define

o(g) = [fgdv,Vg € L>°(T,v). Then ¢ is normal on L*°(I',v). If
[fdv =1, then ¢ is a normal state on L*(I,v).

Theorem

Let A, B be W*-algebras. Let & : A — B be a W*-homomorphism. Then
®(.A) is closed in B in the o(B, B,)-topology.

Theorem

(Polar decomposition for functional) Let A be W*-algebra. Then every
weakly continuous linear functional f € A, can be written as

f(:) =|f|(-v), where v € A is a partial isometry and |f| € A, is a normal
functional.
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by /(a). Similarly we can define right support r(a) of a. If a is self-adjoint,
then /(a) = r(a) and is called the support of a and is denoted by s(a).




Definition

Let A be W*-algebra and let a € A. Let L = {xa:xa=0,x € A. Then L
is a 0(A, A, )-closed left ideal. Hence L = Ae for a unique projection e in
A. Then 1 — e is the least projection of all the projections g in A such
that ga = a. Projection 1 — e is called the left support of a and is denoted
by /(a). Similarly we can define right support r(a) of a. If a is self-adjoint,
then /(a) = r(a) and is called the support of a and is denoted by s(a).

Theorem
(Polar decomposition for elements) Let A be W*-algebra and let a € A.

1 .
Then a can be decomposed as a = u|a| where |a| = (a*a)2 and u is a
partial isometry in A such that u*u = s(|al). Such a decomposition is
unique.




Proof.

NI

For each natural number n, define h, = (a a+ ) nd

-1

=i 1
a, = a (a*a—i— %) ? . Then |lap|| < 1 for all n and a, (a*a+ %)2 = a.

Since h,, converges to (a*a)%, given € > 0, there exists ng such that
lhn — (a*a)2|| < €,¥n > no.

Since the unit sphere S of A is compact in the weak*-topology, there
exists a limit point, say b of {a,}. We then have

il )% €a+eS,Yn>ny and b(a*a)% €a+eS
Since € was arbitrary a = b(a*a)%. Let p be the support of (a*a)% and q

be the support of (aa*)%. A little calculation says that p = pb*qbp.
Define u = gbp. Then u becomes partial isometry and a = ula|. O




Proof.
Suppose a = u|a| = U/|a| is another polar decomposition of a. Then
(p— (v)*u)al = 0. Let

R={x|(p— (V)" u)x =0,x € A}.

Then R is a o-closed left ideal. Hence R = e A for some projection e.
Hence s(|a|) = p < e. Therefore (p — (v')*u)p = 0. We also have
p = (v')*u.Therefore ' = u. O
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Proposition
Let A be a W*-algebra and S be its unit sphere. Then S has an extreme
point iff A has an identity.

Theorem
Any W*-algebra A is unital.

Sketch of Proof:
@ By the Banach-Alaoglu theorem = closed unit sphere S of A is
o(A, A,)-compact.
@ Then S is equal to the closed convex hull of its extreme points by
Krein-Milman Theorem. S has an extreme point

@ This implies A has an identity.
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Lemma
Let Q be a compact Hausdorff space. Then for any Radon measure y on
Q, C(Q) is o-dense in L>°(Q, ).

Proof.

o Let f € L*°(Q, ) and n € N.

@ By Lusin Theorem, there exists f, € C(Q2) and K, C Q compact s.t.
folls < Il Fli, = foli, and pu(KS) < -

o Let g € LY(Q,uu) and € > 0. Thereis N € Nst. [5lgldu<e
whenever 1i(B) < 5.

@ Thus,

g(fa) — g(F) < 2|[f|r~e

forall n> N.

o Therefore, f, -2 f.
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First Part of the proof:
@ Since A is unital commutative W*-algebra = A = C(Q).

@ Let ¢ be a normal state on A. By Riesz-Markov-Kakutani Theorem,
there exists a unique probability Radon measure pi, on € such that

o) = [ % di,

where A 5 x — %X € C(Q) is the Gelfand transform.
Q Set A\, : A>x—=X€ L*®(Q,pu,). Then A, is a *~homomorphism.
Q Let g € L1(Q,p,). We defineg:=goA,: A— Cby

(goN)() = | %¢ duy.

Indeed, g is linear functional on A.
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First Part of the proof:

1
© Since Q is compact Hausdorff, i, is Radon measure = C(Q)L = LY, py).

1
O There exists a sequence (g;) C A such that g; LN g
@ We also define g; : A — C such that

gi(x) = /Q Xgi duy, = p(xgi).

© Since ¢ and right multiplication is o-continuous then g; is o-continuous.
That is g; € A,.

© Moreover, we have that (g;) is a Cauchy sequence in A,. Thus, there exists
z€ A, st. g, — z.

@ Finally, we have for all x € A,

2() = lim Z(x) = 2(x)
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First Part of the proof:
@ On other words, g is o-continuous. g € A,.

@ This implies that A, is (L, L1)-continuous.

@ Consequently, A, is a W*-homomorphism, and so A,(A) is a
W*-subalgebra of L>(, ).

@ Furthermore

—U(LOO,L]')

As(A) = C(@Q) = 1°°(Q, ).
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@ Let ¢ be a normal state on A = MN(p) := {x € A: p(x*x) =0} is a
o(A, A,)-closed left ideal.

@ The proj. p, s.t. N(p) = Ap, is the greatest of all proj's g s.t.
v(q) =0.

@ The proj. s(¢) :=1— p, is the so-called support of ¢.
o Note that ¢ is faithful iff s(¢) = 1, and p(x) = p(xs(¢)) (¥x € A).

e For f € L}(I',v) normal state on L°(I",v), s(f) corresponds to the
characteristic function of its support.
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@ Let p be the proj. s.t. Ky, 1= ker(A,) = Ap (p unit of K,).

@ Note that ¢(p) = [ Ap(p)dpy, =0 = p < p, the greatest of all
proj's g s.t. ¢(q) =0.

@ On the other hand, 0= ¢(p,) = [q Ppdpy, = Py € Ky

= 0<(p—py)°=p—2ppy+ Py =P — Py
—— p:p(p

@ Thus, As(p) = L>®(supp(tiy), t1,) since s(p) =1 — p,.
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@ Now, consider a maximal family (¢y) of normal states on A s.t.
s(pa)s(@y) =0 for X # X (i.e. As(pa) NAs(py) = {0} for A # X)

@ Then, Y s(py) = s € A projection. Actually, s =1 by the
maximality of (©y).

@ Hence, the x-homomorphisms

A x = (xs(py)) € @AS(QO)\

and
s - P As(2) 3 (as(r)) = D xas(ex) € A
are inverse to each other

@ Finally,
AZ P As(pn) = D L(Q, 1)
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@ Now, consider a maximal family (¢y) of normal states on A s.t.
s(pa)s(@y) =0 for X # X (i.e. As(pa) NAs(py) = {0} for A # X)

@ Then, Y s(py) = s € A projection. Actually, s =1 by the
maximality of (©y).

@ Hence, the x-homomorphisms

A x = (xs(py)) € @AS(QO)\

and
s - P As(2) 3 (as(r)) = D xas(ex) € A
are inverse to each other
@ Finally,

A= D As(pr) = D L(supp(figy ), tpy ) = L (Usupp(fiey ), D Hepy )-
O
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@ Any commutative W*-algebra can be decomposed as the direct sum
of essentially bounded functions on probability spaces.

@ Moreover, each term of the decomposition is equal to the space of
continuous functions on the support of the corresponding measure.
This shows how remarkable are the spectra of abelian W*-algebras.

@ The topological spaces Q such that C(Q2) is a W*-algebra are called
hyper-Stonean.




Many thanks for your attention!



