Project 11: W*-algebras

Made Benny Prasetya, Mahesh Krishna Krishnanagara, Juan Galvis, Mino Nicola Kraft, Chaitanya J. Kulkarni, Titus Pinta, Aaron Kettner

June 11, 2021

Part I: Strongly closed *-subalgebras of $\mathcal{B}(\mathcal{H})$

Titus Pinta, Aaron Kettner

The strong operator topology (SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

 $p_x(T) = \|Tx\|$

The strong operator topology (SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_x(T) = \|Tx\|$$

• A net converges SOT iff it converges pointwise, i.e.

$$\lim_{\alpha} T_{\alpha} = T \iff \forall x \in \mathcal{H} : \lim_{\alpha} T_{\alpha} x = T x$$

The strong operator topology (SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{X}(T) = \|Tx\|$$

• A net converges SOT iff it converges pointwise, i.e.

$$\lim_{\alpha} T_{\alpha} = T \iff \forall x \in \mathcal{H} : \lim_{\alpha} T_{\alpha} x = T x$$

• Coarsest topology such that the sets $\mathcal{S}(\mathcal{T}, x) = \{A \in \mathcal{B}(\mathcal{H}) : ||(\mathcal{T} - A)x|| < 1\}$ are open

The strong operator topology (SOT):

• Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{X}(T) = \|Tx\|$$

• A net converges SOT iff it converges pointwise, i.e.

$$\lim_{\alpha} T_{\alpha} = T \Longleftrightarrow \forall x \in \mathcal{H} : \lim_{\alpha} T_{\alpha} x = T x$$

- Coarsest topology such that the sets $\mathcal{S}(\mathcal{T}, x) = \{A \in \mathcal{B}(\mathcal{H}) : \|(\mathcal{T} A)x\| < 1\}$ are open
- Basis neighborhood of the origin:

$$\bigcap_{i=1}^{n} \mathcal{S}(0, x_i) = \{T \in \mathcal{B}(\mathcal{H}) : \|Tx_i\| < 1, 1 \le i \le n\}$$

Some basic facts about the SOT:

• The adjoint map $T \mapsto T^*$ is not continuous

Some basic facts about the SOT:

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication are continuous

Some basic facts about the SOT:

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication are continuous
- Multiplication is not jointly continuous, but restricted to the unit ball it is

Some basic facts about the SOT:

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication are continuous
- Multiplication is not jointly continuous, but restricted to the unit ball it is
- The unit ball of $\mathcal{B}(\mathcal{H})$ is not compact

The WOT

The weak operator topology (WOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{x,y}(T) = |(Tx,y)|$$

• A net converges WOT iff it converges pointwise weakly, i.e.

$$\lim_{\alpha} T_{\alpha} = T \iff \forall x, y \in \mathcal{H} : \lim_{\alpha} (T_{\alpha}x, y) = (Tx, y)$$

- Coarsest topology such that the sets $\mathcal{W}(\mathcal{T}, x, y) = \{A \in \mathcal{B}(\mathcal{H}) : |((\mathcal{T} A)x, y)| < 1\}$ are open
- Basis neighborhood of the origin:

$$\bigcap_{i=1}^{n} \mathcal{W}(0, x_i, y_i) = \{T \in \mathcal{B}(\mathcal{H}) : |(Tx_i, y_i)| < 1, 1 \le i \le n\}$$

The WOT

Some basic facts about the WOT:

- The adjoint map $T \mapsto T^*$ is continuous
- Left and right multiplication are continuous
- Multiplication is not jointly continuous, not even restricted to the unit ball
- \bullet The unit ball of $\mathcal{B}(\mathcal{H})$ is compact (adapted version of Banach-Alaoglu)

SOT and WOT

Theorem

The WOT-continuous linear functionals on $\mathcal{B}(\mathcal{H})$ and the SOT-continuous linear functionals coincide, and each functional has the form

$$f(T) = \sum_{i=1}^{n} (Tx_i, y_i)$$

for a finite set of vectors $x_1, ..., x_n, y_1, ..., y_n$ in \mathcal{H} .

Corollary

 $\mathcal{B}(\mathcal{H})$ has the same closed convex sets in WOT and SOT.

Commutant of a W*-algebra

W*-Algebra: WOT-closed unital C*-subalgebra of $\mathcal{B}(\mathcal{H})$ **Commutant** of a set $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$:

$$\mathcal{S}':=\{T\in\mathcal{B}(\mathcal{H}):ST=TS ext{ for all }S\in\mathcal{S}\}$$

Commutant of a W*-algebra

W*-Algebra: WOT-closed unital C*-subalgebra of $\mathcal{B}(\mathcal{H})$ **Commutant** of a set $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$:

$$\mathcal{S}' := \{ T \in \mathcal{B}(\mathcal{H}) : ST = TS ext{ for all } S \in \mathcal{S} \}$$

• \mathcal{S}' is a WOT-closed unital algebra

Commutant of a W*-algebra

W*-Algebra: WOT-closed unital C*-subalgebra of $\mathcal{B}(\mathcal{H})$ **Commutant** of a set $\mathcal{S} \subset \mathcal{B}(\mathcal{H})$:

$$\mathcal{S}':=\{T\in\mathcal{B}(\mathcal{H}):ST=TS ext{ for all }S\in\mathcal{S}\}$$

- \mathcal{S}' is a WOT-closed unital algebra
- S selfadjoint $\Longrightarrow S'$ is selfadjoint, hence a W*-Algebra

Theorem (Von Neumann bicommutant theorem)

Suppose that \mathcal{U} is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ with trivial null space (i.e. $\mathcal{U}y = 0$ implies y = 0). Then

$$\mathcal{U}'' = \overline{\mathcal{U}}^{SOT} = \overline{\mathcal{U}}^{WOT}$$

Theorem (Von Neumann bicommutant theorem)

Suppose that \mathcal{U} is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ with trivial null space (i.e. $\mathcal{U}y = 0$ implies y = 0). Then

$$\mathcal{U}'' = \overline{\mathcal{U}}^{SOT} = \overline{\mathcal{U}}^{WOT}$$

Proof: $\overline{\mathcal{U}}^{SOT} \subset \mathcal{U}''$ is clear. Let $T \in \mathcal{U}''$ and fix $x_1, ..., x_n \in \mathcal{H}$. To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^{n} \| (T-A)x_i \|^2 < 1$$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^n \|(T-A)x_i\|^2 < 1$$

First consider n = 1. We will show that $Tx_1 \in \overline{\mathcal{U}x_1}$.

• Let
$$P := \left[\overline{\mathcal{U}x_1}\right]$$
. $\Longrightarrow P \in \mathcal{U}' \Longrightarrow PT = TP$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^n \|(T-A)x_i\|^2 < 1$$

First consider n = 1. We will show that $Tx_1 \in \overline{\mathcal{U}x_1}$.

• Let
$$P := \left[\overline{\mathcal{U}x_1}\right]$$
. $\Longrightarrow P \in \mathcal{U}' \Longrightarrow PT = TP$

• \mathcal{U} has trivial null space $\Longrightarrow x_1 \in \overline{\mathcal{U}x_1}$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^n \|(T-A)x_i\|^2 < 1$$

First consider n = 1. We will show that $Tx_1 \in \overline{\mathcal{U}x_1}$.

• Let
$$P := \left[\overline{\mathcal{U}x_1} \right]$$
. $\Longrightarrow P \in \mathcal{U}' \Longrightarrow PT = TP$

• \mathcal{U} has trivial null space $\Longrightarrow x_1 \in \overline{\mathcal{U}x_1}$

 \implies $Tx_1 = TPx_1 = PTx_1 \in \overline{\mathcal{U}x_1}$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^{n} \|(T-A)x_i\|^2 < 1$$

For arbitrary *n*: Lift everything to the direct sum of Hilbert spaces $\mathcal{H}^{(n)}$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^{n} \|(T-A)x_i\|^2 < 1$$

For arbitrary *n*: Lift everything to the direct sum of Hilbert spaces $\mathcal{H}^{(n)}$

• Define $A^{(n)}(v_1,...,v_n) = (Av_1,...,Av_2)$ and $\mathcal{U}^{(n)} := \{A^{(n)} : A \in \mathcal{U}\}$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^{n} \| (T - A) x_i \|^2 < 1$$

For arbitrary *n*: Lift everything to the direct sum of Hilbert spaces $\mathcal{H}^{(n)}$

- Define $A^{(n)}(v_1, ..., v_n) = (Av_1, ..., Av_2)$ and $\mathcal{U}^{(n)} := \{A^{(n)} : A \in \mathcal{U}\}$ • $(\mathcal{U}'')^{(n)} \subset (\mathcal{U}^{(n)})''$ (easy) $\Longrightarrow \mathcal{T}^{(n)} \in (\mathcal{U}^{(n)})''$

To show:

$$\exists A \in \mathcal{U} : \sum_{i=1}^{n} \| (T-A)x_i \|^2 < 1$$

For arbitrary *n*: Lift everything to the direct sum of Hilbert spaces $\mathcal{H}^{(n)}$

• Define $A^{(n)}(v_1, ..., v_n) = (Av_1, ..., Av_2)$ and $\mathcal{U}^{(n)} := \{A^{(n)} : A \in \mathcal{U}\}$ • $(\mathcal{U}'')^{(n)} \subset (\mathcal{U}^{(n)})''$ (easy) $\Longrightarrow T^{(n)} \in (\mathcal{U}^{(n)})''$

 \implies Use the n=1 case with $oldsymbol{x}=(x_1,...,x_n)$ to find an $A\in\mathcal{U}$ such that

$$1 > \left\| (T^{(n)} - A^{(n)}) \mathbf{x} \right\|_{\mathcal{H}^{(n)}}^2 = \sum_{i=1}^n \| (T - A) x_i \|^2$$
 .

Kaplansky's density theorem

Theorem (Kaplansky's density theorem)

If \mathcal{U} is a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ with trivial null space, then the unit ball of \mathcal{U}_{sa} is SOT-dense in the unit ball of \mathcal{U}''_{sa} and the unit ball of \mathcal{U} is SOT-dense in the unit ball of \mathcal{U}''

The σ -strong operator topology (σ -SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{X}(T) = \sqrt{\sum_{i} ||Tx_{i}||^{2}}, \text{ with } x \in \ell_{2}(\mathcal{H})$$

The $\sigma\text{-}\mathsf{SOT}$

The σ -strong operator topology (σ -SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_x(T) = \sqrt{\sum_i \|Tx_i\|^2}, \text{ with } x \in \ell_2(\mathcal{H})$$

• Coarsest topology such that the sets $S_{\sigma}(T, x) = \{A \in \mathcal{B}(\mathcal{H}) : \sum_{i} ||(T - A)x_{i}||^{2} < 1\}$ are open

The σ -SOT

The σ -strong operator topology (σ -SOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_x(T) = \sqrt{\sum_i \|Tx_i\|^2}, \text{ with } x \in \ell_2(\mathcal{H})$$

- Coarsest topology such that the sets $S_{\sigma}(T, x) = \{A \in \mathcal{B}(\mathcal{H}) : \sum_{i} ||(T A)x_{i}||^{2} < 1\}$ are open
- Basis neighborhood of the origin:

$$\bigcap_{i=1}^{n} \mathcal{S}_{\sigma}(0, x_i) = \{T \in \mathcal{B}(\mathcal{H}) : \sum_{j} \|Tx_j\|^2 < 1, 1 \le i \le n\}$$

Some basic facts about the σ -SOT:

• The adjoint map $T \mapsto T^*$ is not continuous

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication is continuous

The $\sigma\text{-}\mathsf{SOT}$

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication is continuous
- Multiplication is not jointly continuous, but restricted to the unit ball it is

The $\sigma\text{-}\mathsf{SOT}$

- The adjoint map $T \mapsto T^*$ is not continuous
- Left and right multiplication is continuous
- Multiplication is not jointly continuous, but restricted to the unit ball it is
- The unit ball of $\mathcal{B}(\mathcal{H})$ is not compact

The σ -weak operator topology (σ -WOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{x,y}(T) = \left|\sum_{i} (Tx_i, y_i)\right|$$
 with $x, y \in \ell_2(\mathcal{H})$

The σ -weak operator topology (σ -WOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{x,y}(T) = \left|\sum_{i} (Tx_i, y_i)\right|$$
 with $x, y \in \ell_2(\mathcal{H})$

• Coarsest topology such that the sets $\mathcal{W}_{\sigma}(\mathcal{T}, x, y) = \{A \in \mathcal{B}(\mathcal{H}) : \sum_{j} |((\mathcal{T} - A)x_{j}, y_{j})| < 1\}$ are open

The σ -weak operator topology (σ -WOT):

 \bullet Locally convex topology on $\mathcal{B}(\mathcal{H})$ defined by the family of seminorms

$$p_{x,y}(T) = \left|\sum_{i} (Tx_i, y_i)\right|$$
 with $x, y \in \ell_2(\mathcal{H})$

- Coarsest topology such that the sets $\mathcal{W}_{\sigma}(\mathcal{T}, x, y) = \{A \in \mathcal{B}(\mathcal{H}) : \sum_{j} |((\mathcal{T} A)x_{j}, y_{j})| < 1\}$ are open
- Basis neighborhood of the origin:

$$\bigcap_{i=1}^{n} \mathcal{W}_{\sigma}(0, x_i, y_i) = \{T \in \mathcal{B}(\mathcal{H}) : \sum_{j} |(Tx_j, y_j)| < 1, 1 \le i \le n\}$$

Some basic facts about the $\sigma\text{-WOT}$:

Some basic facts about the σ -WOT:

• The adjoint map $T \mapsto T^*$ is continuous

Some basic facts about the σ -WOT:

- The adjoint map $T \mapsto T^*$ is continuous
- Left and right multiplication is continuous

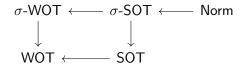
Some basic facts about the σ -WOT:

- The adjoint map $T \mapsto T^*$ is continuous
- Left and right multiplication is continuous
- Multiplication is not jointly continuous, not even restricted to the unit ball

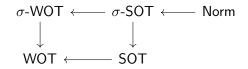
Some basic facts about the σ -WOT:

- The adjoint map $T \mapsto T^*$ is continuous
- Left and right multiplication is continuous
- Multiplication is not jointly continuous, not even restricted to the unit ball
- The unit ball of $\mathcal{B}(\mathcal{H})$ is compact (Banach-Alaoglu)

Relationships between the Topologies

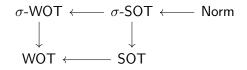


Relationships between the Topologies



On bounded sets σ -SOT coincides with SOT and σ -WOT with WOT.

Relationships between the Topologies



On bounded sets σ -SOT coincides with SOT and σ -WOT with WOT. On convex sets σ -SOT closed is equivalent with σ -WOT closed and SOT closed with WOT closed.

Theorem

Suppose U is a W^* -subalgebra of $\mathcal{B}(\mathcal{H})$, then there exists a Banach space \mathcal{U}_* with

 $(\mathcal{U}_*)^* = \mathcal{U}$

Theorem

Suppose U is a W^* -subalgebra of $\mathcal{B}(\mathcal{H})$, then there exists a Banach space \mathcal{U}_* with

$$(\mathcal{U}_*)^* = \mathcal{U}$$

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

$$\exists x_1, \ldots, x_n, y_1, \ldots, y_n \text{ such that } \varphi(T) = \sum_{i=1}^n (Tx_i, y_i)$$

- **(1)** φ is WOT continuous
- **(1)** φ is SOT continuous

Predual of a $\mathbf{W}^*\text{-algebra}$

Proof: (iii) \Rightarrow (i)

Proof: (iii) \Rightarrow (i) $\varphi^{-1}(\mathbb{D})$ is open in SOT, so it contains an SOT ball around 0

$$\exists x_1, \ldots x_n : \sum_{i=1}^n \|Tx_i\|^2 < 1 \Rightarrow |\varphi(T)| < 1$$

Proof: (iii) \Rightarrow (i) $\varphi^{-1}(\mathbb{D})$ is open in SOT, so it contains an SOT ball around 0

$$\exists x_1,\ldots x_n: \sum_{i=1}^n \|Tx_i\|^2 < 1 \Rightarrow |\varphi(T)| < 1$$

 $\forall T \in \mathcal{B}(\mathcal{H})$

$$\exists x_1, \dots, x_n : \sum_{i=1}^n \left\| \frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} x_i \right\|^2 = \frac{1}{2} \Rightarrow \left| \varphi \left(\frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} \right) \right| < 1$$

Proof: (iii) \Rightarrow (i) $\varphi^{-1}(\mathbb{D})$ is open in SOT, so it contains an SOT ball around 0

$$\exists x_1, \ldots x_n : \sum_{i=1}^n \|Tx_i\|^2 < 1 \Rightarrow |\varphi(T)| < 1$$

 $\forall T \in \mathcal{B}(\mathcal{H})$

$$\exists x_1, \dots, x_n : \sum_{i=1}^n \left\| \frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} x_i \right\|^2 = \frac{1}{2} \Rightarrow \left| \varphi \left(\frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} \right) \right| < 1$$

Consider
$$\psi$$
: $\overline{\{(Tx_1, \ldots, Tx_n) : \forall T \in \mathcal{B}(\mathcal{H})\}} \subseteq \mathcal{H}^{(n)}$,
 $\psi(Tx_1, \ldots, Tx_n) = \varphi(T)$

Proof: (iii) \Rightarrow (i) $\varphi^{-1}(\mathbb{D})$ is open in SOT, so it contains an SOT ball around 0

$$\exists x_1, \ldots x_n : \sum_{i=1}^n \|Tx_i\|^2 < 1 \Rightarrow |\varphi(T)| < 1$$

 $\forall T \in \mathcal{B}(\mathcal{H})$

$$\exists x_1, \dots, x_n : \sum_{i=1}^n \left\| \frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} x_i \right\|^2 = \frac{1}{2} \Rightarrow \left| \varphi \left(\frac{T}{\sqrt{4\sum_{j=1}^n \|Tx_j\|^2}} \right) \right| < 1$$

Consider ψ : $\overline{\{(Tx_1, \dots, Tx_n) : \forall T \in \mathcal{B}(\mathcal{H})\}} \subseteq \mathcal{H}^{(n)}$, $\psi(Tx_1, \dots, Tx_n) = \varphi(T)$, from Riesz representation theorem

$$\varphi(T) = \sum_{i=1}^{n} (Tx_i, y_i)$$

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

- $\exists x, y \in \ell_2(\mathcal{H}) \text{ such that } \varphi(T) = \sum_i (Tx_i, y_i)$
- **(1)** φ is σ -WOT continuous
- **(i)** φ is σ -SOT continuous

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

- $\exists x, y \in \ell_2(\mathcal{H}) \text{ such that } \varphi(T) = \sum_i (Tx_i, y_i)$
- **(1)** φ is σ -WOT continuous
- **(i)** φ is σ -SOT continuous

Proof: (iii) \Rightarrow (i)

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

- **1** $\exists x, y \in \ell_2(\mathcal{H}) \text{ such that } \varphi(T) = \sum_i (Tx_i, y_i)$
- **(1)** φ is σ -WOT continuous
- **(i)** φ is σ -SOT continuous

Proof: (iii) \Rightarrow (i) $\mathcal{B}(\mathcal{H})$ is included in $\mathcal{B}(\ell_2(\mathcal{H}))$ and φ is SOT continuous and by Hahn-Banach there exists an extension $\psi \in \mathcal{B}(\ell_2(\mathcal{H}))^*$

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

- **1** $\exists x, y \in \ell_2(\mathcal{H}) \text{ such that } \varphi(T) = \sum_i (Tx_i, y_i)$
- **(1)** φ is σ -WOT continuous
- **(i)** φ is σ -SOT continuous

Proof: (iii) \Rightarrow (i) $\mathcal{B}(\mathcal{H})$ is included in $\mathcal{B}(\ell_2(\mathcal{H}))$ and φ is SOT continuous and by Hahn-Banach there exists an extension $\psi \in \mathcal{B}(\ell_2(\mathcal{H}))^* \psi$ is SOT continuous

Lemma

For $\varphi \in \mathcal{B}(\mathcal{H})^*$ the following statements are equivalent

- $\exists x, y \in \ell_2(\mathcal{H})$ such that $\varphi(T) = \sum_i (Tx_i, y_i)$
- **(1)** φ is σ -WOT continuous
- **(i)** φ is σ -SOT continuous

Proof: (iii) \Rightarrow (i) $\mathcal{B}(\mathcal{H})$ is included in $\mathcal{B}(\ell_2(\mathcal{H}))$ and φ is SOT continuous and by Hahn-Banach there exists an extension $\psi \in \mathcal{B}(\ell_2(\mathcal{H}))^* \psi$ is SOT continuous, so by the previous lemma

$$\varphi(T) = \psi(T, \dots) = \sum_{i=1}^{n} \sum_{j} (Tx_{ij}, y_{ij})$$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$ From the previous Lemma

 $\mathcal{U}_*\cong \ell_2(\mathcal{H})^{(2)}/^\perp \mathcal{U}$

where $^{\perp}\mathcal{U} = \{x, y \in \ell_2(\mathcal{H}) : \sum_i (Tx_i, y_i) = 0, \forall T \in \mathcal{U}\}$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$ From the previous Lemma

 $\mathcal{U}_* \cong \ell_2(\mathcal{H})^{(2)}/^{\perp}\mathcal{U}$ where $^{\perp}\mathcal{U} = \{x, y \in \ell_2(\mathcal{H}) : \sum_i (Tx_i, y_i) = 0, \forall T \in \mathcal{U}\}$ $(\mathcal{U}_*)^* = (^{\perp}\mathcal{U})^{\perp}$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$ From the previous Lemma

 $\mathcal{U}_*\cong \ell_2(\mathcal{H})^{(2)}/^\perp \mathcal{U}$

where $^{\perp}\mathcal{U} = \{x, y \in \ell_2(\mathcal{H}) : \sum_i (Tx_i, y_i) = 0, \forall T \in \mathcal{U}\}$ $(\mathcal{U}_*)^* = (^{\perp}\mathcal{U})^{\perp}$

$$(^{\perp}\mathcal{U})^{\perp} = \{T \in \mathcal{B}(\mathcal{H})^{**} : \sum_{i} (Tx_i, y_i) = 0, \forall x, y \in ^{\perp}\mathcal{U}\}$$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$ From the previous Lemma

 $\mathcal{U}_*\cong \ell_2(\mathcal{H})^{(2)}/^\perp \mathcal{U}$

where $^{\perp}\mathcal{U} = \{x, y \in \ell_2(\mathcal{H}) : \sum_i (Tx_i, y_i) = 0, \forall T \in \mathcal{U}\}$ $(\mathcal{U}_*)^* = (^{\perp}\mathcal{U})^{\perp}$

$$(^{\perp}\mathcal{U})^{\perp} = \{T \in \mathcal{B}(\mathcal{H})^{**} : \sum_{i} (Tx_{i}, y_{i}) = 0, \forall x, y \in ^{\perp}\mathcal{U}\}$$

 $(^{\perp}\mathcal{U})^{\perp} = \overline{\mathcal{U}}^{\mathsf{weak}^{*}}$

Proof of the Theorem: Let $U_* = \{\phi \in \mathcal{B}(\mathcal{H})^* : \phi \text{ is } \sigma\text{-WOT continuous}\}$ From the previous Lemma

 $\mathcal{U}_*\cong \ell_2(\mathcal{H})^{(2)}/^\perp \mathcal{U}$

where $^{\perp}\mathcal{U} = \{x, y \in \ell_2(\mathcal{H}) : \sum_i (Tx_i, y_i) = 0, \forall T \in \mathcal{U}\}$ $(\mathcal{U}_*)^* = (^{\perp}\mathcal{U})^{\perp}$

$$(^{\perp}\mathcal{U})^{\perp} = \{ T \in \mathcal{B}(\mathcal{H})^{**} : \sum_{i} (Tx_{i}, y_{i}) = 0, \forall x, y \in ^{\perp}\mathcal{U} \}$$

 $(^{\perp}\mathcal{U})^{\perp} = \overline{\mathcal{U}}^{\mathsf{weak}^{*}}$

$$(\mathcal{U}_*)^* = \mathcal{U}$$

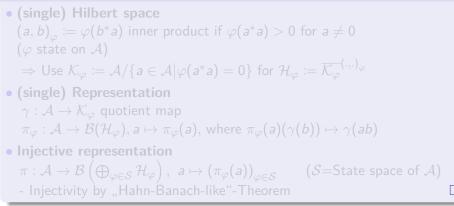
Part II: Non-commutative W*-algebras

Mino Nicola Kraft, Chaitanya J. Kulkarni

Theorem (Thm. 5.18)

 \mathcal{A} C*-algebra. Then: $\exists \mathcal{H}$ Hilbert space, $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ injective (=faithful) *-homomorphism

Proof.



Theorem (Thm. 5.18)

 \mathcal{A} C*-algebra. Then: $\exists \mathcal{H}$ Hilbert space, $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ injective (=faithful) *-homomorphism

Proof.

• (single) Hilbert space $(a,b)_{\alpha} \coloneqq \varphi(b^*a)$ inner product if $\varphi(a^*a) > 0$ for $a \neq 0$ (φ state on \mathcal{A}) $\Rightarrow \mathsf{Use} \ \mathcal{K}_{\varphi} \coloneqq \mathcal{A} / \{ \mathbf{a} \in \mathcal{A} | \varphi(\mathbf{a}^* \mathbf{a}) = 0 \} \ \mathsf{for} \ \mathcal{H}_{\varphi} \coloneqq \overline{\mathcal{K}_{\varphi}}^{(.,.)_{\varphi}}$ • (single) Representation Injective representation

Theorem (Thm. 5.18)

 \mathcal{A} C*-algebra. Then: $\exists \mathcal{H}$ Hilbert space, $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ injective (=faithful) *-homomorphism

Proof.

 (single) Hilbert space $(a,b)_{\varphi} \coloneqq \varphi(b^*a)$ inner product if $\varphi(a^*a) > 0$ for $a \neq 0$ (φ state on \mathcal{A}) $\Rightarrow \mathsf{Use} \ \mathcal{K}_{\varphi} \coloneqq \mathcal{A} / \{ \mathbf{a} \in \mathcal{A} | \varphi(\mathbf{a}^* \mathbf{a}) = 0 \} \ \mathsf{for} \ \mathcal{H}_{\varphi} \coloneqq \overline{\mathcal{K}_{\varphi}}^{(.,.)_{\varphi}}$ (single) Representation $\gamma: \mathcal{A} \to \mathcal{K}_{\omega}$ quotient map $\pi_{\varphi}: \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\varphi}), a \mapsto \pi_{\varphi}(a), \text{ where } \pi_{\varphi}(a)(\gamma(b)) \mapsto \gamma(ab)$ Injective representation

Theorem (Thm. 5.18)

 \mathcal{A} C*-algebra. Then: $\exists \mathcal{H}$ Hilbert space, $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ injective (=faithful) *-homomorphism

Proof.

 (single) Hilbert space $(a,b)_{\alpha} \coloneqq \varphi(b^*a)$ inner product if $\varphi(a^*a) > 0$ for $a \neq 0$ (φ state on \mathcal{A}) $\Rightarrow \mathsf{Use} \ \mathcal{K}_{\varphi} \coloneqq \mathcal{A} / \{ \mathbf{a} \in \mathcal{A} | \varphi(\mathbf{a}^* \mathbf{a}) = 0 \} \ \mathsf{for} \ \mathcal{H}_{\varphi} \coloneqq \overline{\mathcal{K}_{\varphi}}^{(.,.)_{\varphi}}$ (single) Representation $\gamma: \mathcal{A} \to \mathcal{K}_{\omega}$ quotient map $\pi_{\varphi}: \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\varphi}), a \mapsto \pi_{\varphi}(a), \text{ where } \pi_{\varphi}(a)(\gamma(b)) \mapsto \gamma(ab)$ Injective representation $\pi: \mathcal{A} o \mathcal{B}\left(\bigoplus_{\varphi \in \mathcal{S}} \mathcal{H}_{\varphi}\right), \ \mathsf{a} \mapsto \left(\pi_{\varphi}(\mathsf{a})\right)_{\varphi \in \mathcal{S}}$ (S = State space of A)- Injectivity by "Hahn-Banach-like"-Theorem

Definition

 \mathcal{A} C*-algebra, $\exists \mathcal{X}$ Banach space: $(\mathcal{X})^* \cong \mathcal{A}$. Then: \mathcal{A} is called W*-algebra

New requirement

• π weakly continuous (called: W*-representation)

- 1. $\mathcal{B}(\mathcal{H})$ needs to be W*-algebra (here: existence of predual)
- **2.** $\forall f \in \mathcal{B}(\mathcal{H})_*$: $f \circ \pi$ weakly continuous functional in \mathcal{A}
- 3. Proof of injectivity needs an update

Definition

 \mathcal{A} C*-algebra, $\exists \mathcal{X}$ Banach space: $(\mathcal{X})^* \cong \mathcal{A}$. Then: \mathcal{A} is called W*-algebra

New requirement

• π weakly continuous (called: W*-representation)

- 1. $\mathcal{B}(\mathcal{H})$ needs to be W*-algebra (here: existence of predual)
- 2. $\forall f \in \mathcal{B}(\mathcal{H})_*$: $f \circ \pi$ weakly continuous functional in \mathcal{A}
- 3. Proof of injectivity needs an update

Definition

 \mathcal{A} C*-algebra, $\exists \mathcal{X}$ Banach space: $(\mathcal{X})^* \cong \mathcal{A}$. Then: \mathcal{A} is called W*-algebra

New requirement

• π weakly continuous (called: W*-representation)

- 1. $\mathcal{B}(\mathcal{H})$ needs to be W*-algebra (here: existence of predual)
- 2. $\forall f \in \mathcal{B}(\mathcal{H})_*$: $f \circ \pi$ weakly continuous functional in \mathcal{A}
- 3. Proof of injectivity needs an update

Definition

 \mathcal{A} C*-algebra, $\exists \mathcal{X}$ Banach space: $(\mathcal{X})^* \cong \mathcal{A}$. Then: \mathcal{A} is called W*-algebra

New requirement

• π weakly continuous (called: W*-representation)

- 1. $\mathcal{B}(\mathcal{H})$ needs to be W*-algebra (here: existence of predual)
- 2. $\forall f \in \mathcal{B}(\mathcal{H})_*$: $f \circ \pi$ weakly continuous functional in \mathcal{A}
- 3. Proof of injectivity needs an update

New for weak topology

Definition

 \mathcal{A} C*-algebra, $\exists \mathcal{X}$ Banach space: $(\mathcal{X})^* \cong \mathcal{A}$. Then: \mathcal{A} is called W*-algebra

New requirement

• π weakly continuous (called: W*-representation)

Consequences

- 1. $\mathcal{B}(\mathcal{H})$ needs to be W*-algebra (here: existence of predual)
- 2. $\forall f \in \mathcal{B}(\mathcal{H})_*$: $f \circ \pi$ weakly continuous functional in \mathcal{A}
- 3. Proof of injectivity needs an update

Definition predual

- Trace class operators $N(\mathcal{H})$:

$$T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n, \ \|x_n\|_{\mathcal{H}} = \|y_n\|_{\mathcal{H}} = 1, \ (a_n) \in \ell^1$$

- Norm:

$$||T||_{nuc} = \inf \{ ||(a_n)||_{\ell^1} | T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \}$$

• Trace

 $\operatorname{tr}: N(\mathcal{H}) \to \mathbb{C}, \ \sum_{n=1}^{\infty} a_n(\cdot, y_n) \, x_n \mapsto \sum_{n=1}^{\infty} a_n(x_n, y_n)$

- Identification predual $\mathcal{B}(\mathcal{H}) o \mathcal{N}(\mathcal{H})^*, S \mapsto \operatorname{tr}(S \cdot)$, isometric isomorphism
- Elements of predual

Definition predual

- Trace class operators $N(\mathcal{H})$:

$$T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n, \ \|x_n\|_{\mathcal{H}} = \|y_n\|_{\mathcal{H}} = 1, \ (a_n) \in \ell^1$$

- Norm:

$$\|T\|_{nuc} = \inf \{\|(a_n)\|_{\ell^1} | T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \}$$

• Trace

$$\operatorname{tr}: N(\mathcal{H}) \to \mathbb{C}, \ \sum_{n=1}^{\infty} a_n(\cdot, y_n) \, x_n \mapsto \sum_{n=1}^{\infty} a_n(x_n, y_n)$$

- Identification predual $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{N}(\mathcal{H})^*, S \mapsto \operatorname{tr}(S \cdot)$, isometric isomorphism
- Elements of predual

Definition predual

- Trace class operators $N(\mathcal{H})$:

$$T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n, \ \|x_n\|_{\mathcal{H}} = \|y_n\|_{\mathcal{H}} = 1, \ (a_n) \in \ell^1$$

- Norm:

$$||T||_{nuc} = \inf \{ ||(a_n)||_{\ell^1} | T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \}$$

Trace

tr :
$$N(\mathcal{H}) \to \mathbb{C}$$
, $\sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \mapsto \sum_{n=1}^{\infty} a_n(x_n, y_n)$

- Identification predual $\mathcal{B}(\mathcal{H}) \rightarrow \mathcal{N}(\mathcal{H})^*, S \mapsto \operatorname{tr}(S \cdot)$, isometric isomorphism
- Elements of predual

Definition predual

- Trace class operators $N(\mathcal{H})$:

$$T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n, \ \|x_n\|_{\mathcal{H}} = \|y_n\|_{\mathcal{H}} = 1, \ (a_n) \in \ell^1$$

- Norm:

$$||T||_{nuc} = \inf \{ ||(a_n)||_{\ell^1} | T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \}$$

Trace

$$\operatorname{tr}: N(\mathcal{H}) \to \mathbb{C}, \ \sum_{n=1}^{\infty} a_n(\cdot, y_n) \, x_n \mapsto \sum_{n=1}^{\infty} a_n(x_n, y_n)$$

Identification predual

 $\mathcal{B}(\mathcal{H})
ightarrow \mathsf{N}(\mathcal{H})^*, \mathcal{S} \mapsto \mathrm{tr}(\mathcal{S} \cdot)$, isometric isomorphism

• Elements of predual

Definition predual

- Trace class operators $N(\mathcal{H})$:

$$T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n, \ \|x_n\|_{\mathcal{H}} = \|y_n\|_{\mathcal{H}} = 1, \ (a_n) \in \ell^1$$

- Norm:

$$||T||_{nuc} = \inf \{ ||(a_n)||_{\ell^1} | T(\cdot) = \sum_{n=1}^{\infty} a_n(\cdot, y_n) x_n \}$$

Trace

$$\operatorname{tr}: N(\mathcal{H}) \to \mathbb{C}, \ \sum_{n=1}^{\infty} a_n(\cdot, y_n) \, x_n \mapsto \sum_{n=1}^{\infty} a_n(x_n, y_n)$$

Identification predual

 $\mathcal{B}(\mathcal{H})
ightarrow \mathcal{N}(\mathcal{H})^*, \mathcal{S} \mapsto \operatorname{tr}(\mathcal{S} \cdot)$, isometric isomorphism

Elements of predual

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

- $(x_{lpha}) \subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \to 0$
- Show:
 - Linear combinations of projections are dense
 - Multiplication with projections are weakly continuous
 - Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:

Linear combinations of projections are dense

Multiplication with projections are weakly continuous

Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:
 - Linear combinations of projections are dense

2 Multiplication with projections are weakly continuous

3 Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:

Linear combinations of projections are dense

$$f(x_{\alpha}y) = f\left(x_{\alpha}\left(\sum_{i=1}^{n}\lambda_{i}e_{i}\right)\right) + f\left(x_{\alpha}\left(y-\sum_{i=1}^{n}\lambda_{i}e_{i}\right)\right)$$

Multiplication with projections are weakly continuous

3 Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:

Linear combinations of projections are dense

- Ø Multiplication with projections are weakly continuous
 - 3 Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:

Linear combinations of projections are dense

Ø Multiplication with projections are weakly continuous

$$f\left(x_{\alpha}\left(\sum_{i=1}^{n}\lambda_{i}e_{i}\right)\right)\to 0$$

③ Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

Proof.

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:

Linear combinations of projections are dense

- Ø Multiplication with projections are weakly continuous
- 3 Restriction to bounded nets is sufficient

Theorem

 $\mathcal{A} \ W^*$ -algebra, $y \in \mathcal{A}$. Then: $x \mapsto yx, x \mapsto xy$ are weakly continuous

- $(x_{lpha})\subseteq \mathcal{A}$ converges weakly to 0
- Aim: $\forall f \in \mathcal{A}_*$: $f(x_{\alpha}y) \rightarrow 0$
- Show:
 - Linear combinations of projections are dense
 - Ø Multiplication with projections are weakly continuous
 - Sestriction to bounded nets is sufficient

$$\left| f\left(x_{\alpha} \left(y - \sum_{i=1}^{n} \lambda_{i} e_{i} \right) \right) \right| \leq \| f\| \left(\sup_{\alpha} \| x_{\alpha} \| \right) \left\| y - \sum_{i=1}^{n} \lambda_{i} e_{i} \right\| \to 0$$

 $\text{Convergence in } \sigma(\mathcal{A},\mathcal{A}_*) \colon \ \textbf{\textit{a}}_{\alpha} \longrightarrow \textbf{\textit{a}} \iff \forall f \in \mathcal{A}_* \ \textbf{\textit{a}}_{\alpha}(f) \longrightarrow \textbf{\textit{a}}(f)$

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

• ker(
$$\phi$$
) is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ -closed 2-sided ideal. $\implies \exists$ a central proj.
 $z \in \mathcal{A}_1 : \text{ker}(\phi) = \mathcal{A}_1 z.$

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

Proof.

• ker(ϕ) is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ -closed 2-sided ideal. $\implies \exists$ a central proj. $z \in \mathcal{A}_1$: ker(ϕ) = $\mathcal{A}_1 z$.

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

Proof.

• ker(ϕ) is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ -closed 2-sided ideal. $\implies \exists$ a central proj. $z \in \mathcal{A}_1$: ker(ϕ) = $\mathcal{A}_1 z$.

 $\ \, {\mathfrak o} \ \, \phi|_{{\mathcal A}_1(1-z)} \ \, {\rm is \ \, injective.} \ \, \Longrightarrow \ \, {\rm isometry} \ \,$

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

Proof.

• ker(ϕ) is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ -closed 2-sided ideal. $\implies \exists$ a central proj. $z \in \mathcal{A}_1 : \text{ker}(\phi) = \mathcal{A}_1 z.$

• $\phi|_{\mathcal{A}_1(1-z)}$ is injective. \implies isometry • $\phi(B) =$ unit ball of $\phi(\mathcal{A}_1)$, where B = unit ball of $\mathcal{A}_1(1-z)$

Definition (W*-homomorphism)

Let \mathcal{A}_1 , \mathcal{A}_2 be W*-algebras and $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ be a *-homomorphism. Then ϕ is W*-homomorphism. : $\iff \phi$ is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ - $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -continuous.

Proposition:

 $\phi \colon \mathcal{A}_1 \to \mathcal{A}_2$ W*-homomorphism $\implies \phi(\mathcal{A}_1)$ is $\sigma(\mathcal{A}_2, \mathcal{A}_{2*})$ -closed.

Proof.

• ker(ϕ) is $\sigma(\mathcal{A}_1, \mathcal{A}_{1*})$ -closed 2-sided ideal. $\implies \exists$ a central proj. $z \in \mathcal{A}_1 : \text{ker}(\phi) = \mathcal{A}_1 z.$

- $\bullet \ \phi|_{\mathcal{A}_1(1-z)} \text{ is injective. } \implies \text{ isometry }$
- $\begin{tabular}{ll} \bullet & \Rightarrow & \phi(B) = {\sf unit \ ball \ of \ } \phi({\cal A}_1), {\rm \ where \ } B = {\sf unit \ ball \ of \ } {\cal A}_1(1-z) \end{tabular}$
- $\ \, {} { \ \, { \ \, o } } \ \, \phi(B) \ \, \sigma(\mathcal{A}_2,\mathcal{A}_{2*}) \text{-compact} \ \, \Longrightarrow \ \, \phi(\mathcal{A}_1)=\phi(\mathcal{A}_1(1-z)) \ \, \mathbb{W}^* \text{-subalge}.$

\mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

Proof.

• $S_n := \{ \varphi \mid \varphi \in \text{normal states of } \mathcal{A} \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

- $S_n := \{ \varphi \mid \varphi \in \text{normal states of } \mathcal{A} \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .
- $\textbf{ Set } \pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi(\mathbf{a}) := \bigoplus_{\varphi \in \mathcal{S}_n} \pi_{\varphi}(\mathbf{a}), \ \text{where } \mathcal{H} := \bigoplus_{\varphi \in \mathcal{S}_n} \mathcal{H}_{\varphi}.$

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

- $S_n := \{ \varphi \mid \varphi \in \text{normal states of } \mathcal{A} \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .
- $\textbf{Set } \pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi(a) := \bigoplus_{\varphi \in \mathcal{S}_n} \pi_{\varphi}(a), \ \text{where } \mathcal{H} := \bigoplus_{\varphi \in \mathcal{S}_n} \mathcal{H}_{\varphi}.$
- Let $\xi := \sum_{i=1}^{k} \xi_i$, $\eta := \sum_{i=1}^{k} \eta_i \in \mathcal{H}$, where $\xi_i, \eta_i \in \mathcal{H}_{\varphi_i}$. Set $f : \mathcal{A} \to \mathbb{C}$, $f(\mathbf{a}) := \langle \pi(\mathbf{a})\xi, \eta \rangle = \sum_{i=1}^{k} \langle \pi_{\varphi_i}(\mathbf{a})\xi_i, \eta_i \rangle$. $\implies f \in \mathcal{A}_*$

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

- $S_n := \{ \varphi \mid \varphi \in \text{normal states of } A \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .
- $\textbf{Set} \ \pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi(\mathbf{a}) := \bigoplus_{\varphi \in \mathcal{S}_n} \pi_{\varphi}(\mathbf{a}), \ \text{where} \ \mathcal{H} := \bigoplus_{\varphi \in \mathcal{S}_n} \mathcal{H}_{\varphi}.$
- Let $\xi := \sum_{i=1}^{k} \xi_i$, $\eta := \sum_{i=1}^{k} \eta_i \in \mathcal{H}$, where $\xi_i, \eta_i \in \mathcal{H}_{\varphi_i}$. Set $f : \mathcal{A} \to \mathbb{C}$, $f(\mathbf{a}) := \langle \pi(\mathbf{a})\xi, \eta \rangle = \sum_{i=1}^{k} \langle \pi_{\varphi_i}(\mathbf{a})\xi_i, \eta_i \rangle$. $\Longrightarrow f \in \mathcal{A}_*$
- $\textbf{ Selements of type } \xi, \eta \text{ dense in } \mathcal{H} \implies \langle \pi(\cdot)\xi', \eta'\rangle \in \mathcal{A}_*, \ \xi', \eta' \in \mathcal{H}$

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

- $S_n := \{ \varphi \mid \varphi \in \text{normal states of } \mathcal{A} \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .
- $\textbf{ Set } \pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi(\mathbf{a}) := \bigoplus_{\varphi \in \mathcal{S}_n} \pi_{\varphi}(\mathbf{a}), \ \text{where } \mathcal{H} := \bigoplus_{\varphi \in \mathcal{S}_n} \mathcal{H}_{\varphi}.$
- Let $\xi := \sum_{i=1}^{k} \xi_i$, $\eta := \sum_{i=1}^{k} \eta_i \in \mathcal{H}$, where $\xi_i, \eta_i \in \mathcal{H}_{\varphi_i}$. Set $f : \mathcal{A} \to \mathbb{C}$, $f(\mathbf{a}) := \langle \pi(\mathbf{a})\xi, \eta \rangle = \sum_{i=1}^{k} \langle \pi_{\varphi_i}(\mathbf{a})\xi_i, \eta_i \rangle$. $\implies f \in \mathcal{A}_*$
- $\textbf{ Selements of type } \xi, \eta \text{ dense in } \mathcal{H} \implies \langle \pi(\cdot)\xi', \eta' \rangle \in \mathcal{A}_*, \, \xi', \eta' \in \mathcal{H}$
- **(5)** Therefore, π is a W*-representation of \mathcal{A} .

 \mathcal{A} is a W*-algebra. $\implies \exists$ a faithful W*-representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$.

Proof.

- $S_n := \{ \varphi \mid \varphi \in \text{normal states of } \mathcal{A} \}$ and $\{ \mathcal{H}_{\varphi}, \pi_{\varphi} \}$ is the GNS representation corresponding to φ .
- $\textbf{ Set } \pi \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}), \ \pi(a) := \bigoplus_{\varphi \in \mathcal{S}_n} \pi_{\varphi}(a), \ \text{where } \mathcal{H} := \bigoplus_{\varphi \in \mathcal{S}_n} \mathcal{H}_{\varphi}.$
- Let $\xi := \sum_{i=1}^{k} \xi_i$, $\eta := \sum_{i=1}^{k} \eta_i \in \mathcal{H}$, where $\xi_i, \eta_i \in \mathcal{H}_{\varphi_i}$. Set $f : \mathcal{A} \to \mathbb{C}$, $f(\mathbf{a}) := \langle \pi(\mathbf{a})\xi, \eta \rangle = \sum_{i=1}^{k} \langle \pi_{\varphi_i}(\mathbf{a})\xi_i, \eta_i \rangle$. $\implies f \in \mathcal{A}_*$
- $\textbf{ Selements of type } \xi, \eta \text{ dense in } \mathcal{H} \implies \langle \pi(\cdot)\xi', \eta'\rangle \in \mathcal{A}_*, \ \xi', \eta' \in \mathcal{H}$
- **(**) Therefore, π is a W*-representation of \mathcal{A} .

Faithfulness :

- ▶ Hahn-Banach like fact : $\varphi(a) = 0 \quad \forall \ \varphi \in \mathcal{S}_n \implies a = 0$

Part III: Commutative W*-algebras

Made Benny Prasetya, Mahesh Krishna Krishnanagara, & Juan Galvis

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$,

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $\mu(\Gamma_{\alpha}) < \infty$ for all α .

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $\mu(\Gamma_{\alpha}) < \infty$ for all α .

Example

Let (Γ, ν) be a decomposable measure space.

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $\mu(\Gamma_{\alpha}) < \infty$ for all α .

Example

Let (Γ, ν) be a decomposable measure space. We have $L^{\infty}(\Gamma, \nu) = (L^{1}(\Gamma, \nu))^{*}$.

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $\mu(\Gamma_{\alpha}) < \infty$ for all α .

Example

Let (Γ, ν) be a decomposable measure space. We have $L^{\infty}(\Gamma, \nu) = (L^{1}(\Gamma, \nu))^{*}$. Hence $L^{\infty}(\Gamma, \nu)$ is a commutative von Neumann algebra.

A C*-algebra \mathcal{A} is called a **von Neumann algebra** or **W*-algebra** if there exists a Banach space \mathcal{A}_* such that $\mathcal{A} = (\mathcal{A}_*)^*$.

A measure space (Γ, μ) is said to be decomposable if $\Gamma = \cup \Gamma_{\alpha}$, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $\mu(\Gamma_{\alpha}) < \infty$ for all α .

Example

Let (Γ, ν) be a decomposable measure space. We have $L^{\infty}(\Gamma, \nu) = (L^{1}(\Gamma, \nu))^{*}$. Hence $L^{\infty}(\Gamma, \nu)$ is a commutative von Neumann algebra.

Later we are going to show that $L^{\infty}(\Gamma, \nu)$ is the only commutative von Neumann algebra.

Let \mathcal{X} be a Banach space and \mathcal{X}^* be its dual. Then $x_{\alpha} \to 0$ in \mathcal{X} w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^*)$ iff $\forall f \in \mathcal{X}^* : f(x_{\alpha}) \to 0$. Similarly, $f_{\alpha} \to 0$ in \mathcal{X}^* w.r.t. $\sigma(\mathcal{X}^*, \mathcal{X})$ iff $\forall x \in \mathcal{X} : f_{\alpha}(x) \to 0$.

Let \mathcal{X} be a Banach space and \mathcal{X}^* be its dual. Then $x_{\alpha} \to 0$ in \mathcal{X} w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^*)$ iff $\forall f \in \mathcal{X}^* : f(x_{\alpha}) \to 0$. Similarly, $f_{\alpha} \to 0$ in \mathcal{X}^* w.r.t. $\sigma(\mathcal{X}^*, \mathcal{X})$ iff $\forall x \in \mathcal{X} : f_{\alpha}(x) \to 0$.

Lemma

$$\left(\mathcal{X}^*,\sigma(\mathcal{X}^*,\mathcal{X})
ight)^*=\mathcal{X}$$
 and $\left(\mathcal{X},\sigma(\mathcal{X},\mathcal{X}^*)
ight)^*=\mathcal{X}^*$

Let \mathcal{X} be a Banach space and \mathcal{X}^* be its dual. Then $x_{\alpha} \to 0$ in \mathcal{X} w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^*)$ iff $\forall f \in \mathcal{X}^* : f(x_{\alpha}) \to 0$. Similarly, $f_{\alpha} \to 0$ in \mathcal{X}^* w.r.t. $\sigma(\mathcal{X}^*, \mathcal{X})$ iff $\forall x \in \mathcal{X} : f_{\alpha}(x) \to 0$.

Lemma

$$\left(\mathcal{X}^*,\sigma(\mathcal{X}^*,\mathcal{X})
ight)^*=\mathcal{X}$$
 and $\left(\mathcal{X},\sigma(\mathcal{X},\mathcal{X}^*)
ight)^*=\mathcal{X}^*$

Definition

A positive linear functional $\varphi : \mathcal{A} \to \mathbb{C}$ is said to be **normal** if $\varphi(\sup_{\alpha}(x_{\alpha})) = \sup_{\alpha}(\varphi(x_{\alpha}))$ for every uniformly bounded increasing direct net (x_{α}) of positive elements in \mathcal{A} .

Let \mathcal{X} be a Banach space and \mathcal{X}^* be its dual. Then $x_{\alpha} \to 0$ in \mathcal{X} w.r.t. $\sigma(\mathcal{X}, \mathcal{X}^*)$ iff $\forall f \in \mathcal{X}^* : f(x_{\alpha}) \to 0$. Similarly, $f_{\alpha} \to 0$ in \mathcal{X}^* w.r.t. $\sigma(\mathcal{X}^*, \mathcal{X})$ iff $\forall x \in \mathcal{X} : f_{\alpha}(x) \to 0$.

Lemma

$$\left(\mathcal{X}^*,\sigma(\mathcal{X}^*,\mathcal{X})
ight)^*=\mathcal{X}$$
 and $\left(\mathcal{X},\sigma(\mathcal{X},\mathcal{X}^*)
ight)^*=\mathcal{X}^*.$

Definition

A positive linear functional $\varphi : \mathcal{A} \to \mathbb{C}$ is said to be **normal** if $\varphi(\sup_{\alpha}(x_{\alpha})) = \sup_{\alpha}(\varphi(x_{\alpha}))$ for every uniformly bounded increasing direct net (x_{α}) of positive elements in \mathcal{A} .

Remark: A positive linear functional is normal if and only if it is $\sigma(\mathcal{A}, \mathcal{A}_*)$ -continuous.

Example

$$(\mathcal{A}, \sigma(\mathcal{A}, \mathcal{A}_*))^* = ((\mathcal{A}_*)^*, \sigma(\mathcal{A}, \mathcal{A}_*))^* = \mathcal{A}_*$$

Example

Let $\mathcal{A} = L^{\infty}(\Gamma, \nu)$. Given $f \in L^{1}(\Gamma, \nu)$, $f \ge 0$, define $\phi(g) \coloneqq \int fg \, d\nu, \forall g \in L^{\infty}(\Gamma, \nu)$. Then ϕ is normal on $L^{\infty}(\Gamma, \nu)$. If $\int f \, d\nu = 1$, then ϕ is a normal state on $L^{\infty}(\Gamma, \nu)$.

Example

Let $\mathcal{A} = L^{\infty}(\Gamma, \nu)$. Given $f \in L^{1}(\Gamma, \nu)$, $f \geq 0$, define $\phi(g) := \int fg \, d\nu, \forall g \in L^{\infty}(\Gamma, \nu)$. Then ϕ is normal on $L^{\infty}(\Gamma, \nu)$. If $\int f \, d\nu = 1$, then ϕ is a normal state on $L^{\infty}(\Gamma, \nu)$.

Theorem

Let \mathcal{A} , \mathcal{B} be W*-algebras. Let $\Phi : \mathcal{A} \to \mathcal{B}$ be a W*-homomorphism. Then $\Phi(\mathcal{A})$ is closed in \mathcal{B} in the $\sigma(\mathcal{B}, \mathcal{B}_*)$ -topology.

Example

Let $\mathcal{A} = L^{\infty}(\Gamma, \nu)$. Given $f \in L^{1}(\Gamma, \nu)$, $f \geq 0$, define $\phi(g) := \int fg \, d\nu, \forall g \in L^{\infty}(\Gamma, \nu)$. Then ϕ is normal on $L^{\infty}(\Gamma, \nu)$. If $\int f \, d\nu = 1$, then ϕ is a normal state on $L^{\infty}(\Gamma, \nu)$.

Theorem

Let \mathcal{A} , \mathcal{B} be W*-algebras. Let $\Phi : \mathcal{A} \to \mathcal{B}$ be a W*-homomorphism. Then $\Phi(\mathcal{A})$ is closed in \mathcal{B} in the $\sigma(\mathcal{B}, \mathcal{B}_*)$ -topology.

Theorem

(Polar decomposition for functional) Let A be W^* -algebra. Then every weakly continuous linear functional $f \in A_*$ can be written as $f(\cdot) = |f|(\cdot v)$, where $v \in A$ is a partial isometry and $|f| \in A_*$ is a normal functional.

Let \mathcal{A} be W*-algebra and let $a \in \mathcal{A}$. Let $L = \{xa : xa = 0, x \in \mathcal{A}.$ Then L is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal. Hence $L = \mathcal{A}e$ for a unique projection e in \mathcal{A} . Then 1 - e is the least projection of all the projections q in \mathcal{A} such that qa = a. Projection 1 - e is called the left support of a and is denoted by l(a). Similarly we can define right support r(a) of a. If a is self-adjoint, then l(a) = r(a) and is called the support of a and is denoted by s(a).

Let \mathcal{A} be W*-algebra and let $a \in \mathcal{A}$. Let $L = \{xa : xa = 0, x \in \mathcal{A}.$ Then L is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal. Hence $L = \mathcal{A}e$ for a unique projection e in \mathcal{A} . Then 1 - e is the least projection of all the projections q in \mathcal{A} such that qa = a. Projection 1 - e is called the left support of a and is denoted by l(a). Similarly we can define right support r(a) of a. If a is self-adjoint, then l(a) = r(a) and is called the support of a and is denoted by s(a).

Theorem

(Polar decomposition for elements) Let A be W^* -algebra and let $a \in A$. Then a can be decomposed as a = u|a| where $|a| = (a^*a)^{\frac{1}{2}}$ and u is a partial isometry in A such that $u^*u = s(|a|)$. Such a decomposition is unique.

Proof.

For each natural number *n*, define $h_n = \left(a^*a + \frac{1}{n}\right)^{\frac{1}{2}}$ and $a_n = a\left(a^*a + \frac{1}{n}\right)^{\frac{-1}{2}}$. Then $||a_n|| \le 1$ for all *n* and $a_n\left(a^*a + \frac{1}{n}\right)^{\frac{1}{2}} = a$. Since h_n converges to $(a^*a)^{\frac{1}{2}}$, given $\epsilon > 0$, there exists n_0 such that

$$\|h_n-(a^*a)^{\frac{1}{2}}\|<\epsilon,\forall n\geq n_0.$$

Since the unit sphere S of A is compact in the weak*-topology, there exists a limit point, say b of $\{a_n\}$. We then have

$$a_n(a^*a)^{rac{1}{2}} \in a + \epsilon S, \forall n \geq n_0 \quad ext{and} \quad b(a^*a)^{rac{1}{2}} \in a + \epsilon S$$

Since ϵ was arbitrary $a = b(a^*a)^{\frac{1}{2}}$. Let p be the support of $(a^*a)^{\frac{1}{2}}$ and q be the support of $(aa^*)^{\frac{1}{2}}$. A little calculation says that $p = pb^*qbp$. Define u = qbp. Then u becomes partial isometry and a = u|a|.

Proof.

Suppose a = u|a| = u'|a| is another polar decomposition of a. Then $(p - (u')^*u)|a| = 0$. Let

$$R = \{x | (p - (u')^* u) x = 0, x \in \mathcal{A}\}.$$

Then *R* is a σ -closed left ideal. Hence R = eA for some projection *e*. Hence $s(|a|) = p \le e$. Therefore $(p - (u')^*u)p = 0$. We also have $p = (u')^*u$. Therefore u' = u.

Let \mathcal{A} be a W*-algebra and S be its unit sphere. Then S has an extreme point iff \mathcal{A} has an identity.

Let \mathcal{A} be a W*-algebra and S be its unit sphere. Then S has an extreme point iff \mathcal{A} has an identity.

Theorem

Any W^* -algebra \mathcal{A} is unital.

Let \mathcal{A} be a W*-algebra and S be its unit sphere. Then S has an extreme point iff \mathcal{A} has an identity.

Theorem

Any W^* -algebra \mathcal{A} is unital.

Sketch of Proof:

• By the Banach-Alaoglu theorem \Rightarrow closed unit sphere S of A is $\sigma(\mathcal{A}, \mathcal{A}_*)$ -compact.

Let \mathcal{A} be a W*-algebra and S be its unit sphere. Then S has an extreme point iff \mathcal{A} has an identity.

Theorem

Any W^* -algebra \mathcal{A} is unital.

Sketch of Proof:

- By the Banach-Alaoglu theorem \Rightarrow closed unit sphere S of A is $\sigma(\mathcal{A}, \mathcal{A}_*)$ -compact.
- Then S is equal to the closed convex hull of its extreme points by Krein-Milman Theorem. S has an extreme point

Let \mathcal{A} be a W*-algebra and S be its unit sphere. Then S has an extreme point iff \mathcal{A} has an identity.

Theorem

Any W^* -algebra \mathcal{A} is unital.

Sketch of Proof:

- By the Banach-Alaoglu theorem \Rightarrow closed unit sphere S of A is $\sigma(\mathcal{A}, \mathcal{A}_*)$ -compact.
- Then S is equal to the closed convex hull of its extreme points by Krein-Milman Theorem. S has an extreme point
- This implies \mathcal{A} has an identity.

Theorem

Let \mathcal{A} be a commutative W^* -algebra. Then there exists a decomposable measure space (Γ, ν) such that \mathcal{A} and $L^{\infty}(\Gamma, \nu)$ are W^* -isomorphic.

Theorem

Let \mathcal{A} be a commutative W^* -algebra. Then there exists a decomposable measure space (Γ, ν) such that \mathcal{A} and $L^{\infty}(\Gamma, \nu)$ are W^* -isomorphic.

Lemma

Let $\Lambda : \mathcal{M} \to \mathcal{N}$ be a linear map between W^* -algebra. Then Λ is σ -continuous iff for any σ -continuous linear functional φ on $\mathcal{N}, \varphi \circ \Lambda$ is a σ -continuous linear functional on \mathcal{M} .

Theorem

Let \mathcal{A} be a commutative W^* -algebra. Then there exists a decomposable measure space (Γ, ν) such that \mathcal{A} and $L^{\infty}(\Gamma, \nu)$ are W^* -isomorphic.

Lemma

Let $\Lambda : \mathcal{M} \to \mathcal{N}$ be a linear map between W^* -algebra. Then Λ is σ -continuous iff for any σ -continuous linear functional φ on $\mathcal{N}, \varphi \circ \Lambda$ is a σ -continuous linear functional on \mathcal{M} .

Lemma

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Proof.

• Let $f \in L^{\infty}(\Omega, \mu)$ and $n \in \mathbb{N}$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Proof.

- Let $f \in L^{\infty}(\Omega, \mu)$ and $n \in \mathbb{N}$.
- By Lusin Theorem, there exists $f_n \in C(\Omega)$ and $K_n \subseteq \Omega$ compact s.t. $\|f_n\|_{\infty} \leq \|f\|_{L^{\infty}}, f|_{K_n} = f_n|_{K_n}$ and $\mu(K_n^c) < \frac{1}{n}$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Proof.

- Let $f \in L^{\infty}(\Omega, \mu)$ and $n \in \mathbb{N}$.
- By Lusin Theorem, there exists $f_n \in C(\Omega)$ and $K_n \subseteq \Omega$ compact s.t. $\|f_n\|_{\infty} \leq \|f\|_{L^{\infty}}, f|_{K_n} = f_n|_{K_n}$ and $\mu(K_n^c) < \frac{1}{n}$.
- Let $g \in L^1(\Omega, \mu)$ and $\epsilon > 0$. There is $N \in \mathbb{N}$ s.t. $\int_B |g| d\mu < \epsilon$ whenever $\mu(B) < \frac{1}{N}$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Proof.

- Let $f \in L^{\infty}(\Omega, \mu)$ and $n \in \mathbb{N}$.
- By Lusin Theorem, there exists $f_n \in C(\Omega)$ and $K_n \subseteq \Omega$ compact s.t. $\|f_n\|_{\infty} \leq \|f\|_{L^{\infty}}, f|_{K_n} = f_n|_{K_n}$ and $\mu(K_n^c) < \frac{1}{n}$.
- Let $g \in L^1(\Omega, \mu)$ and $\epsilon > 0$. There is $N \in \mathbb{N}$ s.t. $\int_B |g| d\mu < \epsilon$ whenever $\mu(B) < \frac{1}{N}$.

Thus,

$$|g(f_n)-g(f)|<2\|f\|_{L^{\infty}}\epsilon$$

for all $n \ge N$.

Let Ω be a compact Hausdorff space. Then for any Radon measure μ on Ω , $C(\Omega)$ is σ -dense in $L^{\infty}(\Omega, \mu)$.

Proof.

- Let $f \in L^{\infty}(\Omega, \mu)$ and $n \in \mathbb{N}$.
- By Lusin Theorem, there exists $f_n \in C(\Omega)$ and $K_n \subseteq \Omega$ compact s.t. $\|f_n\|_{\infty} \leq \|f\|_{L^{\infty}}, f|_{K_n} = f_n|_{K_n}$ and $\mu(K_n^c) < \frac{1}{n}$.
- Let $g \in L^1(\Omega, \mu)$ and $\epsilon > 0$. There is $N \in \mathbb{N}$ s.t. $\int_B |g| d\mu < \epsilon$ whenever $\mu(B) < \frac{1}{N}$.
- Thus,

$$|g(f_n)-g(f)|<2\|f\|_{L^{\infty}}\epsilon$$

for all $n \ge N$.

• Therefore, $f_n \xrightarrow{\sigma} f$.

• Since \mathcal{A} is unital commutative W*-algebra $\Rightarrow \mathcal{A} \cong C(\Omega)$.

- Since \mathcal{A} is unital commutative W*-algebra $\Rightarrow \mathcal{A} \cong C(\Omega)$.
- **2** Let φ be a normal state on \mathcal{A} . By Riesz-Markov-Kakutani Theorem, there exists a unique probability Radon measure μ_{φ} on Ω such that

$$arphi(x) = \int_{\Omega} \hat{x} \, d\mu_{arphi}$$

where $\mathcal{A} \ni x \mapsto \hat{x} \in C(\Omega)$ is the Gelfand transform.

- Since \mathcal{A} is unital commutative W*-algebra $\Rightarrow \mathcal{A} \cong C(\Omega)$.
- **2** Let φ be a normal state on \mathcal{A} . By Riesz-Markov-Kakutani Theorem, there exists a unique probability Radon measure μ_{φ} on Ω such that

$$arphi(x) = \int_\Omega \hat{x} \ d\mu_arphi$$

where $\mathcal{A} \ni x \mapsto \hat{x} \in C(\Omega)$ is the Gelfand transform.

3 Set $\Lambda_{\varphi} : \mathcal{A} \ni x \mapsto \hat{x} \in L^{\infty}(\Omega, \mu_{\varphi})$. Then Λ_{φ} is a *-homomorphism.

- Since \mathcal{A} is unital commutative W*-algebra $\Rightarrow \mathcal{A} \cong C(\Omega)$.
- **2** Let φ be a normal state on \mathcal{A} . By Riesz-Markov-Kakutani Theorem, there exists a unique probability Radon measure μ_{φ} on Ω such that

$$arphi(x) = \int_{\Omega} \hat{x} \, d\mu_{arphi}$$

where $\mathcal{A} \ni x \mapsto \hat{x} \in C(\Omega)$ is the Gelfand transform.

Set Λ_φ : A ∋ x → x̂ ∈ L[∞](Ω, μ_φ). Then Λ_φ is a *-homomorphism.
Let g ∈ L¹(Ω, μ_φ). We define ḡ := g ∘ Λ_φ : A → C by

$$(g\circ \Lambda_{arphi})(x)=\int_{\Omega}\hat{x}g \; d\mu_{arphi}.$$

Indeed, \overline{g} is linear functional on \mathcal{A} .

Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$

Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$

• There exists a sequence $(g_i) \subseteq \mathcal{A}$ such that $\hat{g_i} \stackrel{L^1}{\longrightarrow} g$

- Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$
- There exists a sequence $(g_i) \subseteq \mathcal{A}$ such that $\hat{g_i} \stackrel{L^1}{\longrightarrow} g$
- **@** We also define $\overline{g_i} : \mathcal{A} \to \mathbb{C}$ such that

$$\overline{g_i}(x) = \int_{\Omega} \hat{x} \hat{g_i} \ d\mu_{\varphi} = \varphi(xg_i).$$

- Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$
- There exists a sequence $(g_i) \subseteq \mathcal{A}$ such that $\hat{g_i} \stackrel{L^1}{\longrightarrow} g$
- We also define $\overline{g_i} : \mathcal{A} \to \mathbb{C}$ such that

$$\overline{g_i}(x) = \int_{\Omega} \hat{x} \hat{g_i} \ d\mu_{\varphi} = \varphi(xg_i).$$

Since φ and right multiplication is σ-continuous then <u>g</u>_i is σ-continuous. That is <u>g</u>_i ∈ A_{*}.

- Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$
- There exists a sequence $(g_i) \subseteq \mathcal{A}$ such that $\hat{g_i} \stackrel{L^1}{\longrightarrow} g$
- We also define $\overline{g_i} : \mathcal{A} \to \mathbb{C}$ such that

$$\overline{g_i}(x) = \int_{\Omega} \hat{x} \hat{g_i} \ d\mu_{\varphi} = \varphi(xg_i).$$

- Since φ and right multiplication is σ-continuous then <u>g</u>_i is σ-continuous. That is <u>g</u>_i ∈ A_{*}.
- **(9)** Moreover, we have that $(\overline{g_n})$ is a Cauchy sequence in \mathcal{A}_* . Thus, there exists $z \in \mathcal{A}_*$ s.t. $\overline{g_n} \longrightarrow z$.

- Since Ω is compact Hausdorff, μ_{φ} is Radon measure $\Rightarrow \overline{C(\Omega)}^{L^1} = L^1(\Omega, \mu_{\varphi}).$
- There exists a sequence $(g_i) \subseteq \mathcal{A}$ such that $\hat{g_i} \stackrel{L^1}{\longrightarrow} g$
- **O** We also define $\overline{g_i} : \mathcal{A} \to \mathbb{C}$ such that

$$\overline{g_i}(x) = \int_{\Omega} \hat{x} \hat{g_i} \ d\mu_{\varphi} = \varphi(xg_i).$$

- Since φ and right multiplication is σ-continuous then <u>g</u>_i is σ-continuous. That is <u>g</u>_i ∈ A_{*}.
- **9** Moreover, we have that $(\overline{g_n})$ is a Cauchy sequence in \mathcal{A}_* . Thus, there exists $z \in \mathcal{A}_*$ s.t. $\overline{g_n} \longrightarrow z$.
- **(**) Finally, we have for all $x \in A$,

$$z(x) = \lim_{n \to \infty} \overline{g_n}(x) = \overline{g}(x)$$

() On other words, \overline{g} is σ -continuous. $\overline{g} \in \mathcal{A}_*$.

- **(**) On other words, \overline{g} is σ -continuous. $\overline{g} \in \mathcal{A}_*$.
- **2** This implies that Λ_{φ} is $\sigma(L^{\infty}, L^1)$ -continuous.

- **(**) On other words, \overline{g} is σ -continuous. $\overline{g} \in \mathcal{A}_*$.
- **2** This implies that Λ_{φ} is $\sigma(L^{\infty}, L^1)$ -continuous.
- ⁽³⁾ Consequently, Λ_{φ} is a W*-homomorphism, and so $\Lambda_{\varphi}(\mathcal{A})$ is a W*-subalgebra of $L^{\infty}(\Omega, \mu_{\varphi})$.

- **(**) On other words, \overline{g} is σ -continuous. $\overline{g} \in \mathcal{A}_*$.
- **2** This implies that Λ_{φ} is $\sigma(L^{\infty}, L^1)$ -continuous.
- ⁽³⁾ Consequently, Λ_{φ} is a W*-homomorphism, and so $\Lambda_{\varphi}(\mathcal{A})$ is a W*-subalgebra of $L^{\infty}(\Omega, \mu_{\varphi})$.

I Furthermore

$$\Lambda_{arphi}(\mathcal{A}) = \overline{C(\Omega)}^{\sigma(L^{\infty}, \mathcal{L}^{1})} = L^{\infty}(\Omega, \mu_{arphi}).$$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Proof.

• Let $x \in \mathfrak{L}$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Proof.

• Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}.$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}.$
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W^* -subalg.
- Let p be the unit of \mathcal{B}

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W^* -subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W^* -subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B}$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let p be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let p be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let p be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A} \text{ proj. s.t. } \mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.
- Hence, $(x(1-p))^*(x(1-p)) = 0$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Proof.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

• For
$$x \in \mathfrak{L}$$
, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

• Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.
- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.
- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

• For
$$x \in \mathfrak{L}$$
, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

• For
$$x \in \mathfrak{L}$$
, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq = xq^2 = pq$.

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.
- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq = xq^2 = pq$.
- Similarly, $\exists y \in \mathcal{A} : q = yp$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.
- For $x \in \mathfrak{L}$, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.
- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq = xq^2 = pq$.
- Similarly, $\exists y \in \mathcal{A} : q = yp \Rightarrow q = q^*q$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

Proof.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

• For
$$x \in \mathfrak{L}$$
, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq = xq^2 = pq$.

• Similarly, $\exists y \in \mathcal{A} : q = yp \Rightarrow q = q^*q = p^2y^*yp = pq$

Let \mathfrak{L} be a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal $\Rightarrow \exists ! p \in \mathcal{A}$ proj. s.t. $\mathfrak{L} = \mathcal{A}p$.

- Let $x \in \mathfrak{L} \Rightarrow x^*x \in \mathfrak{L} \cap \mathfrak{L}^*$, where $\mathfrak{L}^* := \{x^* : x \in \mathfrak{L}\}$.
- Thus, $\mathcal{B} := \mathfrak{L} \cap \mathfrak{L}^*$ is non-trivial W*-subalg.
- Let *p* be the unit of $\mathcal{B} \Rightarrow p$ is proj.

• For
$$x \in \mathfrak{L}$$
, $x^*x \in \mathcal{B} \Rightarrow px^*xp = px^*x = x^*xp = x^*x$.

- Hence, $(x(1-p))^*(x(1-p)) = 0 \Rightarrow x(1-p) = 0 \Rightarrow \mathfrak{L} = \mathcal{A}p.$
- Let q be proj. s.t. $\mathfrak{L} = \mathcal{A}q \Rightarrow \exists x \in \mathcal{A} : p = xq = xq^2 = pq$.
- Similarly, $\exists y \in \mathcal{A} : q = yp \Rightarrow q = q^*q = p^2y^*yp = pq \Rightarrow q = p$.

• Let φ be a normal state on $\mathcal{A} \Rightarrow \mathfrak{N}(\varphi) := \{x \in \mathcal{A} : \varphi(x^*x) = 0\}$ is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal.

- Let φ be a normal state on $\mathcal{A} \Rightarrow \mathfrak{N}(\varphi) := \{x \in \mathcal{A} : \varphi(x^*x) = 0\}$ is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal.
- The proj. p_{φ} s.t. $\mathfrak{N}(\varphi) = \mathcal{A}p_{\varphi}$ is the greatest of all proj's q s.t. $\varphi(q) = 0$.

- Let φ be a normal state on $\mathcal{A} \Rightarrow \mathfrak{N}(\varphi) := \{x \in \mathcal{A} : \varphi(x^*x) = 0\}$ is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal.
- The proj. p_{φ} s.t. $\mathfrak{N}(\varphi) = \mathcal{A}p_{\varphi}$ is the greatest of all proj's q s.t. $\varphi(q) = 0$.
- The proj. $s(\varphi) := 1 p_{\varphi}$ is the so-called support of φ .

- Let φ be a normal state on $\mathcal{A} \Rightarrow \mathfrak{N}(\varphi) := \{x \in \mathcal{A} : \varphi(x^*x) = 0\}$ is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal.
- The proj. p_{φ} s.t. $\mathfrak{N}(\varphi) = \mathcal{A}p_{\varphi}$ is the greatest of all proj's q s.t. $\varphi(q) = 0$.
- The proj. $s(\varphi) := 1 p_{\varphi}$ is the so-called support of φ .
- Note that φ is faithful iff $s(\varphi) = 1$, and $\varphi(x) = \varphi(xs(\varphi)) \ (\forall x \in A)$.

- Let φ be a normal state on $\mathcal{A} \Rightarrow \mathfrak{N}(\varphi) := \{x \in \mathcal{A} : \varphi(x^*x) = 0\}$ is a $\sigma(\mathcal{A}, \mathcal{A}_*)$ -closed left ideal.
- The proj. p_{φ} s.t. $\mathfrak{N}(\varphi) = \mathcal{A}p_{\varphi}$ is the greatest of all proj's q s.t. $\varphi(q) = 0$.
- The proj. $s(\varphi) := 1 p_{\varphi}$ is the so-called support of φ .
- Note that φ is faithful iff $s(\varphi) = 1$, and $\varphi(x) = \varphi(xs(\varphi)) \ (\forall x \in A)$.
- For f ∈ L¹(Γ, ν) normal state on L[∞](Γ, ν), s(f) corresponds to the characteristic function of its support.

(b) Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$

(b) Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$ (p unit of \mathcal{K}_{φ}).

(6) Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0$

(b) Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$ (p unit of \mathcal{K}_{φ}).

• Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.

b Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$ (p unit of \mathcal{K}_{φ}).

• Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.

- **(b)** Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$ (p unit of \mathcal{K}_{φ}).
- $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} \hline & & \end{tabular} \end{tabular} \end{tabular} Note that $\varphi(p)=\int_\Omega \Lambda_\varphi(p) \mathrm{d}\mu_\varphi=0$ \Rightarrow $p\leq p_\varphi$ the greatest of all proj's q s.t. $\varphi(q)=0$. \end{tabular}$
- **1** On the other hand, $\mathbf{0} = \varphi(\mathbf{p}_{\varphi}) = \int_{\Omega} \hat{\mathbf{p}}_{\varphi} d\mu_{\varphi}$

- Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.
- ${}^{\textcircled{0}}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

- Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.
- ${\it O}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

$$\Rightarrow 0 \leq (p - p_{arphi})^2$$

- Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.
- ${\it O}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

$$\Rightarrow 0 \leq (p - p_arphi)^2 = p - 2pp_arphi + p_arphi$$

- Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.
- ${\it O}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

$$rac{1}{rac{2}{
m p}} \Rightarrow 0 \leq (\pmb{p}-\pmb{p}_arphi)^2 = \pmb{p}-2\pmb{p}\pmb{p}_arphi+\pmb{p}_arphi=\pmb{p}-\pmb{p}_arphi$$

- Note that $\varphi(p) = \int_{\Omega} \Lambda_{\varphi}(p) d\mu_{\varphi} = 0 \Rightarrow p \leq p_{\varphi}$ the greatest of all proj's q s.t. $\varphi(q) = 0$.
- ${\it O}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

$$p \Rightarrow 0 \leq (p - p_arphi)^2 = p - 2 p p_arphi + p_arphi = p - p_arphi$$

$$\implies p = p_{\varphi}$$

b Let p be the proj. s.t. $\mathcal{K}_{\varphi} := \ker(\Lambda_{\varphi}) = \mathcal{A}p$ (p unit of \mathcal{K}_{φ}).

- ${\it O}$ On the other hand, $0 = \varphi(p_{\varphi}) = \int_{\Omega} \hat{p}_{\varphi} d\mu_{\varphi} \Rightarrow p_{\varphi} \in \mathcal{K}_{\varphi}$

$$p \Rightarrow 0 \leq (p-p_arphi)^2 = p-2pp_arphi + p_arphi = p-p_arphi$$

$$\implies p = p_{\varphi}$$

1 Thus, $\mathcal{A}s(\varphi) \cong L^{\infty}(\operatorname{supp}(\mu_{\varphi}), \mu_{\varphi})$ since $s(\varphi) := 1 - p_{\varphi}$.

 Now, consider a maximal family (φ_λ) of normal states on A s.t. s(φ_λ)s(φ'_λ) = 0 for λ ≠ λ'

Solution Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \text{ (i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- **2** Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in \mathcal{A}$ projection.

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).

- **O** Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (i.e. \quad \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

- **1** Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (i.e. \ \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

 $\Phi_1:\mathcal{A}
i x\mapsto (xs(arphi_\lambda))\in igoplus\mathcal{A}s(arphi_\lambda)$

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

$$\Phi_1:\mathcal{A}
i x\mapsto (xs(arphi_\lambda))\inigoplus\mathcal{A}s(arphi_\lambda)$$

and

 $\Phi_2:\bigoplus \mathcal{A}s(\varphi_{\lambda}) \ni (x_{\lambda}s(\varphi_{\lambda})) \mapsto \sum x_{\lambda}s(\varphi_{\lambda}) \in \mathcal{A}$

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

$$\Phi_1: \mathcal{A} \ni x \mapsto (xs(\varphi_\lambda)) \in \bigoplus \mathcal{A}s(\varphi_\lambda)$$

and

$$\Phi_2:\bigoplus \mathcal{A}s(\varphi_{\lambda}) \ni (x_{\lambda}s(\varphi_{\lambda})) \mapsto \sum x_{\lambda}s(\varphi_{\lambda}) \in \mathcal{A}$$

are inverse to each other.

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

$$\Phi_1: \mathcal{A} \ni \mathsf{x} \mapsto (\mathsf{xs}(\varphi_\lambda)) \in \bigoplus \mathcal{As}(\varphi_\lambda)$$

and

$$\Phi_2:\bigoplus \mathcal{A}s(\varphi_{\lambda}) \ni (x_{\lambda}s(\varphi_{\lambda})) \mapsto \sum x_{\lambda}s(\varphi_{\lambda}) \in \mathcal{A}$$

are inverse to each other

Pinally,

 $\mathcal{A} \cong \bigoplus \mathcal{A}s(\varphi_{\lambda})$

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

$$\Phi_1: \mathcal{A} \ni \mathsf{x} \mapsto (\mathsf{xs}(\varphi_\lambda)) \in \bigoplus \mathcal{As}(\varphi_\lambda)$$

and

$$\Phi_2:\bigoplus \mathcal{A}s(\varphi_{\lambda}) \ni (x_{\lambda}s(\varphi_{\lambda})) \mapsto \sum x_{\lambda}s(\varphi_{\lambda}) \in \mathcal{A}$$

are inverse to each other

Pinally,

 $\mathcal{A} \cong \bigoplus \mathcal{A}s(\varphi_{\lambda}) \cong \bigoplus L^{\infty}(\Omega, \mu_{\varphi_{\lambda}})$

- Now, consider a maximal family (φ_{λ}) of normal states on \mathcal{A} s.t. $s(\varphi_{\lambda})s(\varphi'_{\lambda}) = 0 \text{ for } \lambda \neq \lambda' \quad (\text{i.e. } \mathcal{A}s(\varphi_{\lambda}) \cap \mathcal{A}s(\varphi_{\lambda'}) = \{0\} \text{ for } \lambda \neq \lambda')$
- O Then, $\sum s(\varphi_{\lambda}) \xrightarrow{\sigma} s \in A$ projection. Actually, s = 1 by the maximality of (φ_λ).
- 4 Hence, the *-homomorphisms

$$\Phi_1: \mathcal{A} \ni \mathsf{x} \mapsto (\mathsf{xs}(\varphi_\lambda)) \in \bigoplus \mathcal{As}(\varphi_\lambda)$$

and

$$\Phi_2:\bigoplus \mathcal{A}s(\varphi_{\lambda}) \ni (x_{\lambda}s(\varphi_{\lambda})) \mapsto \sum x_{\lambda}s(\varphi_{\lambda}) \in \mathcal{A}$$

are inverse to each other

Pinally,

 $\mathcal{A} \cong \bigoplus \mathcal{A}s(\varphi_{\lambda}) \cong \bigoplus L^{\infty}(\operatorname{supp}(\mu_{\varphi_{\lambda}}), \mu_{\varphi_{\lambda}}) \cong L^{\infty}(\sqcup \operatorname{supp}(\mu_{\varphi_{\lambda}}), \bigoplus \mu_{\varphi_{\lambda}}).$

• Any commutative W*-algebra can be decomposed as the direct sum of essentially bounded functions on probability spaces.

- Any commutative W*-algebra can be decomposed as the direct sum of essentially bounded functions on probability spaces.
- Moreover, each term of the decomposition is equal to the space of continuous functions on the support of the corresponding measure. This shows how remarkable are the spectra of abelian W*-algebras.

- Any commutative W*-algebra can be decomposed as the direct sum of essentially bounded functions on probability spaces.
- Moreover, each term of the decomposition is equal to the space of continuous functions on the support of the corresponding measure. This shows how remarkable are the spectra of abelian W*-algebras.
- The topological spaces Ω such that C(Ω) is a W*-algebra are called hyper-Stonean.

Many thanks for your attention!