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The Duality of Geometry and Algebra

Geometric World Algebraic World

{Euclidean Geometry} {vector spaces}

{smooth manifolds} {commutative R-algebras}

{measure spaces} {commutative von Neumann algebras}

{compact Hausdorff spaces} {commutative unital C*-algebras}

{affine schemes} {commutative rings}
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Non-Commutative Geometry in a Nutshell

▶ Find an association “ ” between a geometric space and a
commutative algebraic structure (classical setting)

▶ Apply “ ” to the non-commutative version of said algebraic
structure (quantum or non-classical setting)

quantum tools

generalize
classical results /

statements /
theorems to the
quantum setting

discover theories
/ concepts /

methods that are
“invisible” in the
classical setting
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Naïve Correspondence

Gelfand-Naimark
𝐴 is a commutative C*-algebra

⇕
𝐴 ≅ C0(𝑋) for some locally compact Hausdorff space 𝑋,

which is unique up to homeomorphism.

Let’s phrase this in terms of categories!
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The Categories

The Category C∗
com.

▶ Obj(C∗
com.) ≔ {𝐴 ∣ 𝐴 is a commutative C*-algebra}

▶ Mor(𝐴, 𝐵) ≔ {𝜑∶ 𝐴 → M(𝐵) ∣ 𝜑 is a non-degen. ∗-hom.}
for any 𝐴, 𝐵 ∈ Obj(C∗

com.)

The Category Toploc.cpt.

▶ Obj(Toploc.cpt.) ≔ {𝑋 ∣ 𝑋 is a locally compact Hausdorff space}
▶ Mor(𝑋, 𝑌 ) ≔ {𝑓∶ 𝑋 → 𝑌 ∣ 𝑓 is a continuous map}

for any 𝑋, 𝑌 ∈ Obj(Toploc.cpt.)
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Functorial Correspondence

Gelfand’s Duality
The functors C0 and Spec form an anti-equivalence of categories , i.e.

Toploc.cpt.

Spec
←−−−−−−−−−−−−−−−−−−−−−−−−→

C0
C∗

com..

We also say that Toploc.cpt. and C∗
com. are dual categories.

We now have established “ ” for the classical setting.

Next we need to extend C∗
com. to arbitrary C*-algebras.

6 / 38



Motivation Gelfand’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples

Extending C∗
com.

The Category of C*-algebras

▶ Obj(C∗) ≔ {𝐴 ∣ 𝐴 is a C*-algebra}
▶ Mor(𝐴, 𝐵) ≔ {𝜑∶ 𝐴 → M(𝐵) ∣ 𝜑 is a non-degen. ∗-hom.}

for any 𝐴, 𝐵 ∈ Obj(C∗)

⟶ Note: With our definitions C∗
com. is a so-called full subcategory of C∗.

Quantum spaces
We call an object in the dual category of C∗ a quantum space.

Notation: X,Y, … – quantum spaces
C0(X), C0(Y), … – corresponding C*-algebras
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Quantum Space Dictionary

How do we define topological properties of quantum spaces?

Idea: Use Gelfandesque equivalences, e.g.

𝑋 is compact ⇔ C0(𝑋) is unital

to generalize classical concepts!

Dictionary of the Quantum Space Language

X is a quantum space ∶⇔ C0(X) is a C*-algebra
X is compact ∶⇔ C(X) ≔ C0(X) is unital
X is finite ∶⇔ C0(X) is finite-dimensional

X is compact and metrizable ∶⇔ C(X) is separable
⋮
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Our Classical Blueprint: Families of Maps and Jackson’s Theorem

Setting: Let 𝑋, 𝑌 and 𝑃 be topological spaces.
We call a continuous map

𝜓 ∶ 𝑋 × 𝑃 ⟶ 𝑌

a (classical) family of maps parametrized or indexed over 𝑃.

The Problem
Find a (categorically) natural bijection

C(𝑋 × 𝑃, 𝑌 ) ≅ C (𝑃 , 𝑌 𝑋) ,

where we call 𝑌 𝑋 the exponential space with respect to 𝑋 and 𝑌.

9 / 38



Motivation Gelfand’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples

Our Classical Blueprint: Jackson’s Answer

C(𝑋 × 𝑃, 𝑌 ) ≅ C (𝑃 , 𝑌 𝑋) (∗)

⟶Note: If we ignore the topologies on 𝑋, 𝑌 and 𝑃,

𝑌 𝑋 = {𝑓 ∣ 𝑓 ∶ 𝑋 → 𝑌 is a map} .

Jackson’s Theorem (1952)
If 𝑋 is a locally compact Hausdorff space, then the bijection (∗) holds for

𝑌 𝑋 = C(𝑋, 𝑌 )

with the compact-open topology.
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The Quantum Version
classical ⟶ quantum

topological spaces 𝑋, 𝑌 , 𝑃 ⟶ quantum spaces X, Y, P
C0(X) ≅ 𝐴, C0(Y) ≅ 𝐵, C0(P) ≅ 𝐶

Cartesian product × ⟶ topological tensor product ⊗ ≔ ⊗min
continuous maps C(⋅, ⋅) ⟶ morphisms Mor(⋅, ⋅)

New Problem
Find a natural bijection

Mor(𝐵, 𝐴 ⊗ 𝐶) ≅ Mor(C0(MX,Y), 𝐶)

for some quantum space MX,Y.

We call Ψ ∈ Mor(𝐵, 𝐴 ⊗ 𝐶) a quantum family of maps indexed by P.
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A Universal Property for Quantum Families of Maps

We say that
ΦX,Y ∶ C0(Y) ⟶ C0(X) ⊗ C0(MX,Y)

is universal if
▶ for all quantum spaces P and
▶ for all quantum families of maps Ψ ∈ Mor(C0(Y), C0(X) ⊗ C0(P))

there exists a unique Λ ∈ Mor(C0(MX,Y), C0(P)) such that

C0(X) ⊗ C0(MX,Y)

C0(Y)

C0(X) ⊗ C0(P)

id⊗Λ

ΦX,Y

Ψ

commutes.
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Simple Case

Existence of a Universal Family of Maps
If X and Y are compact quantum spaces such that

▶ C(X) = Mat𝑛(C) is a simple matrix algebra and
▶ C(Y) = C∗(Z) = C({𝑧 ∈ C ∣ |𝑧| = 1}) is the algebra freely generated

by a unitary 𝛿,
the universal family of maps

ΦX,Y ∶ C(Y) → C(X) ⊗ C(MX,Y)

and the mapping space MX,Y do exist.
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Simple Case

Construction
▶ Generators: 𝑢𝑖𝑗 ∈ 𝐴 for 0 ≤ 𝑖, 𝑗 < 𝑛
▶ Matrix: 𝑈 = (𝑢𝑖𝑗)𝑖𝑗 ∈ Mat𝑛(𝐴) = C(X) ⊗ 𝐴
▶ Choose 𝐴 as the Brown algebra: universal such that 𝑈 is unitary
▶ Take C(MX,Y) = 𝐴 and ΦX,Y(𝛿) = 𝑈

Reminder
▶ C(X) = Mat𝑛(C) is a simple matrix algebra
▶ C(Y) is the universal algebra with a unitary generator 𝛿
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Simple Case

Property

▶ Morphisms C(Y) → C(X) ⊗ 𝐵
▶ Unitary elements of M(C(X) ⊗ 𝐵)
▶ Unitary elements of Mat𝑛(M(𝐵))
▶ Morphisms C(MX,Y) → 𝐵

Reminder
▶ C(Y) is the universal algebra with a unitary generator 𝛿
▶ C(X) = Mat𝑛(C) is a simple matrix algebra
▶ Mat𝑛(C(MX,Y)) is universal with a unitary 𝑛 × 𝑛 matrix
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Larger Spaces

X finite
▶ C(X) = ⨁0≤𝑘<𝑚 Mat𝑛𝑘

(C)
▶ Generators: 𝑢𝑘

𝑖𝑗 with 0 ≤ 𝑖, 𝑗 < 𝑛𝑘, 0 ≤ 𝑘 < 𝑚 (𝑢𝑘
𝑖𝑗 ∈ C(MX,Y))

More generators

▶ C(Y) = C∗(Fℓ) freely generated by unitary 𝛿𝑝 for 0 ≤ 𝑝 < ℓ
▶ Generators: 𝑢𝑝

𝑖𝑗 with 0 ≤ 𝑖, 𝑗 < 𝑛, 0 ≤ 𝑝 < ℓ (𝑢𝑝
𝑖𝑗 ∈ C(MX,Y))
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Subspaces

More relations
▶ C(Y) generated by unitary 𝛿𝑝, subject to relations
▶ Impose relations on 𝑈𝑝 = (𝑢𝑝

𝑖𝑗)𝑖𝑗

Algebraic quotients

▶ C(Ŷ) = C(Y)/𝐾 for some ideal 𝐾
▶ 𝐼 = ⟨(𝜔 ⊗ id)ΦX,Y(𝑘) ∣ 𝜔 ∈ C(X)∗, 𝑘 ∈ 𝐾⟩
▶ C(M

X,Ŷ) = C(MX,Y)/𝐼
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General Case

Existence of a Universal Family of Maps
If X and Y are compact quantum spaces such that

▶ X is finite, i.e. C(X) is finite-dimensional, and
▶ C(Y) is finitely generated,

the universal family of maps

ΦX,Y ∶ C(Y) → C(X) ⊗ C(MX,Y)

and the mapping space MX,Y do exist.
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Universal Property

Isomorphic Functors
Mor(C(MX,Y), −) ≅ Mor(C(Y), C(X) ⊗ (−))

Diagram
C(X) ⊗ C(MX,Y) C(MX,Y)

C(Y)

C(X) ⊗ 𝐵 𝐵

id⊗Λ Λ

ΦX,Y

Ψ
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Definitions

Functors, covariant and contravariant
▶ 𝐹∶ C → D
▶ 𝑋, 𝑌 ∈ Obj(𝐶): 𝑋 ↦ 𝐹(𝑋)
▶ 𝑓 ∈ Mor(𝑋, 𝑌 ) ↦ 𝐹(𝑓) ∈ Mor(𝐹(𝑋), 𝐹(𝑌 )) (covariant) or

𝑓 ∈ Mor(𝑋, 𝑌 ) ↦ 𝐹(𝑓) ∈ Mor(𝐹(𝑌 ), 𝐹 (𝑋)), s.t.
▶ 1. 𝐹(id𝑋) = id𝐹(𝑋), 𝑋 ∈ Obj(𝐶).
▶ 2a. 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓), 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍 (Covariant)
▶ 2b. 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑓) ∘ 𝐹(𝑔), 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍. (Contravariant)

Bifunctors
▶ 𝐺∶ C × C′ → D
▶ Functor (co- or contravariant) in both arguments
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Set-up

Spaces and maps

▶ X𝑖, Y𝑖 are quantum spaces such that C(X𝑖) is finite dimensional &
C(Y𝑖) is finitely generated and unital (for any index, including empty
indices)

▶ Given any 𝜋∶ C(Y2) → C(Y1), there is a unique morphism
Λ∶ C(MX,Y2

) → C(MX,Y1
) making the upper diagram on the next

slide commute.
▶ Given any 𝜌∶ C(X1) → C(X2), there is a unique morphism

Λ̃ ∶ C(MX2,Y) → C(MX1,Y) making the lower diagram on the next
page commute.
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Defining Λ and Λ̃

Diagrams

C(Y2) C(X) ⊗ C(MX,Y2
)

C(Y1) C(X) ⊗ C(MX,Y1
)

ΦX,Y2

𝜋 id⊗Λ
ΦX,Y1

C(Y) C(X2) ⊗ C(MX2,Y)

C(X1) ⊗ C(MX1,Y) C(X2) ⊗ C(MX1,Y)

ΦX2,Y

ΦX1,Y id⊗Λ̃
𝜌⊗id
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Notation

▶ Given 𝜋∶ C(Y2) → C(Y1) & 𝜌∶ C(X1) → C(X2), consider

(𝜌 ⊗ id) ∘ ΦX1,Y1
∘ 𝜋∶ C(Y2) → C(X2) ⊗ C(MX1,Y1

)

▶ This morphism is also of the form (id ⊗ Λ) ∘ ΦX2,Y2
for some

Λ∶ C(MX2,Y2
) → C(MX1,Y1

)

The New Notation
Call this unique Λ ≝ M𝜌,𝜋
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Notation continued

▶ Hence M𝜌,𝜋 is the unique morphism making the following diagram
commute:

C(Y2) C(Y1)

C(X2) ⊗ C(MX2,Y2
) C(X2) ⊗ C(MX1,Y1

)

𝜋

ΦX2,Y2 (𝜌⊗id)∘(ΦX1,Y1)

id⊗M𝜌,𝜋
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Functoriality of M⋅,⋅

Theorem
M⋅,⋅ is a bifunctor which assigns the object MX,Y to a pair of objects
(X,Y).
Additionally, M⋅,⋅ is covariant in the first slot and contravariant in the
second slot.

▶ In the proof of the above theorem, we will denote ΦX𝑖,Y𝑖
by Φ𝑖 for

notational simplicity.
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Proof of the Functoriality of M⋅,⋅

Proof.
▶ Consider the maps

C(Y3)
𝜋2
−→ C(Y2)

𝜋1
−→ C(Y1)

and
C(X1)

𝜌1
−→ C(X2)

𝜌2
−→ C(X3)

▶ M𝜌1,𝜋1
and M𝜌2,𝜋2

are respectively defined by

(id ⊗M𝜌1,𝜋1
) ∘ Φ2 = (𝜌1 ⊗ id) ∘ Φ1 ∘ 𝜋1,

(id ⊗M𝜌2,𝜋2
) ∘ Φ3 = (𝜌2 ⊗ id) ∘ Φ2 ∘ 𝜋2
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Proof of the Functoriality of M⋅,⋅

Proof continued.
▶ This implies

id ⊗ (M𝜌1,𝜋1
∘M𝜌2,𝜋2

) ∘ Φ3 = (id ⊗M𝜌1,𝜋1
) ∘ (id ⊗M𝜌2,𝜋2

) ∘ Φ3)
= (id ⊗M𝜌1,𝜋1

) ∘ (𝜌2 ⊗ id) ∘ Φ2 ∘ 𝜋2

= (𝜌2 ⊗ id) ∘ ((id ⊗M𝜌1,𝜋1
) ∘ Φ2) ∘ 𝜋2

= (𝜌2 ⊗ id) ∘ (𝜌1 ⊗ id) ∘ Φ1 ∘ 𝜋1 ∘ 𝜋2

= ((𝜌2 ∘ 𝜌1) ⊗ id) ∘ Φ1 ∘ (𝜋1 ∘ 𝜋2)
= (id ⊗M𝜌2∘𝜌1,𝜋1∘𝜋2

) ∘ Φ3

▶ It follows that M𝜌1,𝜋1
∘M𝜌2,𝜋2

= M𝜌2∘𝜌1,𝜋1∘𝜋2
as desired.
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Theorem on surjectivity and injectivity

Full theorem
▶ if 𝜋 is surjective, Mid,𝜋 ∶ C(MX,Y2

) → C(MX,Y1
) is surjective

▶ if 𝜌 is injective, M𝜌,id ∶ C(MX2,Y) → C(MX1,Y) is surjective
▶ if 𝜋 is injective, Mid,𝜋 ∶ C(MX,Y2

) → C(MX,Y1
) is injective

▶ if 𝜌 is surjective, M𝜌,id ∶ C(MX2,Y) → C(MX1,Y) is injective
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Proving the theorem

Proof of part 1

▶ if 𝜋 is surjective, Mid,𝜋 ∶ C(MX,Y2
) → C(MX,Y1

) is surjective
▶ {(𝜔 ⊗ id)ΦX,Y1

(𝑦1)|𝑦1 ∈ C(Y1), 𝜔 ∈ C(X)∗}
= {(𝜔 ⊗ id)ΦX,Y1

(𝜋(𝑦2)) ∣ 𝑦2 ∈ C(Y2), 𝜔 ∈ C(X)∗}
= Mid,𝜋({(𝜔 ⊗ id)ΦX,Y2

(𝑦2) ∣ 𝑦2 ∈ C(Y2), 𝜔 ∈ C(X)∗}).

Proof of part 2

▶ if 𝜌 is injective, M𝜌,id ∶ C(MX2,Y) → C(MX1,Y) is surjective
▶ M𝜌,id({(𝜔2 ⊗ id)ΦX2,Y(𝑦) ∣ 𝑦 ∈ C(Y), 𝜔2 ∈ C(X2)∗})

= {((𝜔2 ∘ 𝜌) ⊗ id)ΦX1,Y(𝑦) ∣ 𝑦 ∈ C(Y), 𝜔2 ∈ C(X2)∗}
= {(𝜔1 ⊗ id)ΦX1,Y(𝑦) ∣ 𝑦 ∈ C(Y), 𝜔1 ∈ C(X1)∗}.

29 / 38



Motivation Gelfand’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples

Proving the theorem, continued

Proof of part 3

▶ if 𝜋 is injective, Mid,𝜋 ∶ C(MX,Y2
) → C(MX,Y1

) is injective
▶ See [Arkadiusz Bochniak, Paweł Kasprzak, Piotr M. Sołtan. Quantum

correlations on quantum spaces,
https://arxiv.org/abs/2105.07820, May 2021]
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Proving the theorem, continued

Proof of part 4

▶ if 𝜌 is surjective, M𝜌,id ∶ C(MX2,Y) → C(MX1,Y) is injective
▶ C(X1) and C(X2) finite dimensional, 𝜌∶ C(X1) → C(X2) surjective
▶ ∃𝑋′, 𝜎 ∶ C(X′) ⊕ C(X2) → C(X1) isomorphism s. th.

𝜌 ∘ 𝜎∶ C(X′) ⊕ C(X2) → C(X2) is the projection onto C(X2)
▶ Fact: C(MX′⊔X2,Y) ≅ C(MX′,Y) ˇ C(MX2,Y)
▶ Inclusion mapping 𝜄2 ∶ C(MX2,Y) → C(MX′⊔X2,Y)
▶ Then ((𝜌 ∘ 𝜎) ⊗ id) ∘ ΦX2⊔X′,Y = (id ⊗ 𝜄2) ∘ ΦX2,Y
▶ Find the associated M𝜎,id ∶ C(MX1,Y) → C(MX2⊔X′,Y),

which satisfies (𝜎 ⊗ id) ∘ ΦX2⊔X′,Y = (id ⊗M𝜎,id) ∘ ΦX1,Y

▶ Equivalently (𝜎 ⊗M−1
𝜎,id) ∘ ΦX2⊔X′,Y = ΦX1,Y.
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Proving the theorem, continued

Proof of part 4, continued

▶ Combine ((𝜌 ∘ 𝜎) ⊗ id) ∘ ΦX2⊔X′,Y = (id ⊗ 𝜄2) ∘ ΦX2,Y and
ΦX1,Y = (𝜎 ⊗M−1

𝜎,id) ∘ ΦX2⊔X′,Y

▶ (𝜌 ⊗ id) ∘ ΦX1,Y = (𝜌 ⊗ id) ∘ (𝜎 ⊗M−1
𝜎,id) ∘ ΦX2⊔X′,Y =

((𝜌 ∘ 𝜎) ⊗M−1
𝜎,id) ∘ ΦX2⊔X′,Y =(id ⊗ (M−1

𝜎,id ∘ 𝜄2)) ∘ ΦX2,Y
▶ By definition, (𝜌 ⊗ id) ∘ ΦX1,Y = (id ⊗M𝜌,id) ∘ ΦX2,Y

▶ Conclusion: M𝜌,id = M−1
𝜎,id ∘ 𝜄2
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Maps from a set to a compact quantum space

Quantum family of maps from 𝑋 to A

▶ A quantum family Ψ of maps indexed by B (with 𝐴 ≔ C(A),
𝐵 ≔ C0(B)):

Ψ ∈Mor(𝐴, C0(𝑋) ⊗ 𝐵) ≃ Mor(𝐴, Cb(𝑋, M(𝐵)))

≃ Mor(𝐴, ℓ∞
𝑋 (M(𝐵))) ≃ {Mor(𝐴, M(𝐵))}𝑋 (∗∗)

▶ By (∗∗), to give such a Ψ is the same as to give a family of unital
C*-morphisms from 𝐴 to M(𝐵). Universal way to do this is

▶ Universal quantum family of maps: C(M𝑋,A) = ˇ𝑋 𝐴 (free power
of 𝐴 over 𝑋), Φ determined by (𝜄𝑥 ∶ 𝐴 → ˇ𝑋 𝐴)𝑥∈𝑋 on r.h.s. of (∗∗)
with 𝐵 = C(M𝑋,A).
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Maps from a two point set to itself

▶ Special case of the previous case with A = 𝑋 = Z2 ≔ Z/2Z,
𝐴 = C0(𝑋) = C(𝑋) = C2.

▶ Universal quantum family of maps: C(M𝑋,𝑋) = C2 ˇ C2 (free
product of C2 with itself), Φ∶ C2 → C2 ⊗ (C2 ˇ C2) the unital
C*-morphism sending 𝑣 ∈ C2 to 𝑒1 ⊗ 𝜄1(𝑣) + 𝑒2 ⊗ 𝜄2(𝑣).

▶ C(M𝑋,𝑋) as a group algebra: by the universal properties of free
products of C*-algebras and groups, C2 ˇ C2 ≃ C∗(Z2 ˇZ2).

▶ Z2 ˇZ2 ≃ Z ⋊Z2. Proof: A presentation for Z2 ˇZ2 is
⟨𝑎, 𝑏 ∣ 𝑎2 = 𝑏2 = 1⟩. Then Z2 ˇZ2 = 𝐴𝑁 = 𝑁𝐴 = 𝑁 ⋊ 𝐴, where
𝑁 = ⟨𝑎𝑏⟩ ≃ Z, 𝐴 = ⟨𝑎⟩ ≃ Z2.

▶ C(M𝑋,𝑋) = C∗(Z2 ˇZ2) = C∗(Z ⋊Z2) = C∗(Z) ⋊Z2, where the
semidirect product and the cross product are the unique non-trivial
ones.

▶ By sharp contrast, in the classical case, |{𝑋 → 𝑋}| = 4.
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MX,X as a compact quantum semi-group

▶ X a finite quantum space, so the universal quantum family of
maps Φ ∈ Mor(C(X), C(X) ⊗ C(MX,X)) exists and is unique up to
isomorphism.

▶ Consider

Ψ∶ C(X)
Φ
−→ C(X) ⊗ C(MX,X)

Φ⊗id
−−−→ C(X) ⊗ C(MX,X) ⊗ C(MX,X).

▶ (Sołtan) Uniqueness part of the universal property of Φ yields a unique
unital C*-morphism Δ∶ C(MX,X) → C(MX,X) ⊗ C(MX,X), such that
Ψ = (id ⊗ Δ)Φ. The morphism Δ (called comultiplication) is
coassociative, i.e. (id ⊗ Δ)Δ = (Δ ⊗ id)Δ (uniqueness part of the
universal property of Φ again).

▶ (Sołtan) Similarly, the morphism id ∶ C(X) → C(X) = C(X) ⊗ ℂ
yields a counit 𝜖 ∶ C(MX,X) → C for Δ. So (C(MX,X), Δ, 𝜖) is a
counital coalgebra.
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MMat2,Z2
is not a compact quantum group

▶ (Woronowicz) Definition. A compact quantum group is given by a
pair 𝔾 = (𝐴, Δ), where 𝐴 is a unital C*-algebra (we often write
𝐴 = C(𝔾)), Δ∶ 𝐴 → 𝐴 ⊗ 𝐴 a unital C*-morphism that is
coassociative, such that Δ is bi-simplifiable in the sense that the linear
spans of both {(1 ⊗ 𝑎)Δ(𝑏) | 𝑎, 𝑏 ∈ 𝐴} and {(𝑎 ⊗ 1)Δ(𝑏) | 𝑎, 𝑏 ∈ 𝐴}
are dense in 𝐴 ⊗ 𝐴.

▶ 𝔾 = (𝐴, Δ) a compact quantum group implies that
𝜒(𝔾) ∶= {nonzero multiplicative functionals on 𝐴} is a compact
Hausdorff group, where the multiplication is the convolution
𝑓 ∗ 𝑔 ≔ (𝑓 ⊗ 𝑔)Δ, and the underlying topology is the weak-∗ topology.

▶ (Sołtan) C(MMat2,Z2
) is the unital universal C*-algebra generated by

𝑝, 𝑞, 𝑧 with the relations
𝑝 = 𝑝2 + 𝑧∗𝑧, 𝑞 = 𝑞2 + 𝑧𝑧∗, 𝑝𝑧 = (1 − 𝑧)𝑞,

𝑝 = 𝑝∗, 𝑞 = 𝑞∗.
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MMat2,Z2
is not a compact quantum group (continued)

Theorem (Sołtan)
𝜒(C(MMat2,Z2

)) is homeomorphic to the topological sum the two sphere
𝑆2 and two isolated points, thus does not carry a topological group
structure. Consequently, MMat2,Z2

can not be a compact quantum group.

Remark
▶ (S. Wang) If 𝐴 = C(𝔾) for some compact quantum group, 𝑛 ∈ ℕ,

then the free power 𝐴ˇ𝑛 carries a compact quantum group structure.
▶ 𝐴ˇ𝑛 = C(M𝑋,𝔾) where 𝑋 is a set of 𝑛 points.
▶ The analogue result of S. Wang fails even for 𝔾 = Z2 if one replaces

𝑋 with Mat2 (new phenomenon of the quantum mapping space).
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Further results

Suppose X is a finite quantum space, Y a compact quantum space.
Recall

▶ A C*-algebra 𝐴 is said to be RFD (residually finite dimensional), if for
all 0 ≠ 𝑎 ∈ 𝐴, there is a finite dimensional representation
𝜋∶ 𝐴 → Mat𝑛 such that 𝜋(𝑎) ≠ 0.

▶ A C*-algebra 𝐵 is said to have the lifting property, if whenever 𝐽 is a
closed ideal of 𝐵, 𝑢∶ 𝐶 → 𝐵/𝐽 is a c.c.p map, then 𝑢 lifts to a c.c.p
map �̃� ∶ 𝐶 → 𝐵.

Theorem (Bochniak, Kasprzak and Sołtan)

▶ If C(Y) is RFD, then C(MX,Y) is RFD.
▶ If C(Y) is separable and has the lifting property, then C(MX,Y) has

the lifting property.

38 / 38


	Motivation
	Gelfand's Duality
	Families of Maps
	Existence of Mapping Spaces
	Functoriality
	Examples

