Quantum Families of Maps Non-Commutative Mapping Spaces

$$\left\{ \begin{array}{c} \|a+b\|^{2} \\ = \langle a+b,a+b \rangle \\ = \langle a,a \rangle + 2 \langle a,b \rangle + \langle b,b \rangle \\ = \|a\|^{2} + \|b\|^{2} \end{array} \right\}$$

Nikita Cernomazov (TU Darmstadt **=**) Juanda Kelana Putra (UIN Walisongo **=**) Lucas Marten Janssen (TU Delft **=**)

Under the supervision of Piotr M. Sołtan (University of Warsaw 🛁)

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••</t

The Duality of Geometry and Algebra

Geometric World Algebraic World

 $\{ \mathsf{Euclidean \ Geometry} \} \longleftrightarrow \{ \mathsf{vector \ spaces} \}$

 $\{\text{smooth manifolds}\} \longleftrightarrow \{\text{commutative } \mathbb{R}\text{-algebras}\}$

 $\{\text{measure spaces}\} \longleftrightarrow \{\text{commutative von Neumann algebras}\}$

{compact Hausdorff spaces} \longleftrightarrow {commutative unital C^{*}-algebras}

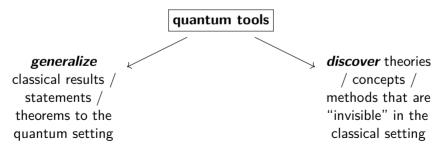
 $\{ \mathsf{affine \ schemes} \} \longleftrightarrow \{ \mathsf{commutative \ rings} \}$

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 0•
 00000
 000000
 0000000
 0000000
 0000000
 0000000

Non-Commutative Geometry in <u>a Nutshell</u>

- ▶ Find an association "↔" between a geometric space and a commutative algebraic structure (*classical setting*)
- ▶ Apply "↔" to the non-commutative version of said algebraic structure (*quantum* or *non-classical setting*)



Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	●0000	0000		00000000000000	000000

Naïve Correspondence

Gelfand-Naimark

A is a commutative C^{*}-algebra $\$ $A \cong C_0(X)$ for some locally compact Hausdorff space X, which is unique up to homeomorphism.

Let's phrase this in terms of categories!

Motivation 00	Gelfand's Duality ○●○○○	Families of Maps	Existence of Mapping Spaces	Functoriality 00000000000000	Examples 000000
The Ca	tegories				

The Category $C^*_{com.}$

The Category Top_{loc.cpt}.

 ▶ Obj(Top_{loc.cpt.}) := {X | X is a locally compact Hausdorff space}
 ▶ Mor(X, Y) := {f: X → Y | f is a continuous map} for any X, Y ∈ Obj(Top_{loc.cpt.})

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00●00	0000		00000000000000	000000

Functorial Correspondence

Gelfand's Duality

The functors C_0 and Spec form an anti-equivalence of categories , i.e.

$$\mathsf{Top}_{\mathrm{loc.cpt.}} \xleftarrow{\mathrm{Spec}}_{\mathrm{C_0}} \mathsf{C}^*_{\mathrm{com.}}.$$

We also say that $\mathsf{Top}_{\mathrm{loc.cpt.}}$ and $\mathsf{C}^*_{\mathrm{com.}}$ are *dual categories*.

We now have established " \leftrightarrow " for the classical setting. Next we need to extend C^{*}_{com} to *arbitrary* C^{*}-algebras.

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	000●0	0000		00000000000000	000000
Extendi	ng C*				

The Category of C^{*}-algebras

com.

 \longrightarrow Note: With our definitions $C^*_{\rm com.}$ is a so-called full subcategory of $C^*.$

Quantum spaces

We call an object in the *dual category* of C* a *quantum space*.

Notation: X,Y,... – quantum spaces $C_0(X),C_0(Y),...$ – corresponding C*-algebras

Motivation 00	Gelfand's Duality 0000●	Families of Maps	Existence of Mapping Spaces	Functoriality 0000000000000	Examples 000000

Quantum Space Dictionary

How do we define topological properties of quantum spaces?

Idea: Use Gelfandesque equivalences, e.g.

 $X ext{ is compact } \Leftrightarrow ext{ } \mathrm{C}_0(X) ext{ is unital }$

to generalize classical concepts!

Dictionary of the Quantum Space Language

÷

 $\begin{array}{rll} \mathbb{X} \text{ is a quantum space} & :\Leftrightarrow & C_0(\mathbb{X}) \text{ is a } \mathsf{C}^*\text{-algebra} \\ \mathbb{X} \text{ is compact} & :\Leftrightarrow & C(\mathbb{X}) \coloneqq C_0(\mathbb{X}) \text{ is unital} \\ \mathbb{X} \text{ is finite} & :\Leftrightarrow & C_0(\mathbb{X}) \text{ is finite-dimensional} \\ \mathbb{X} \text{ is compact and metrizable} & :\Leftrightarrow & C(\mathbb{X}) \text{ is separable} \end{array}$

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 00000000
 0000000
 0000000

Our Classical Blueprint: Families of Maps and Jackson's Theorem

Setting: Let X, Y and P be topological spaces. We call a continuous map

$$\psi: X \times P \longrightarrow Y$$

a (classical) family of maps parametrized or indexed over P.

The Problem

Find a (categorically) natural bijection

$$\mathcal{C}(X \times P, Y) \cong \mathcal{C}\left(P, Y^X\right),$$

where we call Y^X the exponential space with respect to X and Y.

Motivation 00	Gelfand's Duality 00000	Families of Maps 0●00	Existence of Mapping Spaces	Functoriality 0000000000000	Examples 000000
0 0			•		

Our Classical Blueprint: Jackson's Answer

$$\mathbf{C}(X \times P, Y) \cong \mathbf{C}\left(P, Y^X\right) \tag{\ast}$$

 \longrightarrow *Note:* If we ignore the topologies on X, Y and P,

$$Y^X = \{f \mid f \colon X \to Y \text{ is a map}\}.$$

Jackson's Theorem (1952)

If X is a locally compact Hausdorff space, then the bijection (*) holds for

$$Y^X = \mathcal{C}(X, Y)$$

with the compact-open topology.

Motivation 00	Gelfand's Duality 00000	Families of № 00€0	laps	Existence of Mapping Spaces	Functoriality 0000000000000	Examples 000000		
The Qu	The Quantum Version							
	classical		\longrightarrow	quan	tum			
topological spaces X, Y, P		\rightarrow	quantum spa $\mathrm{C}_0(\mathbb{X})\cong A, \mathrm{C}_0(\mathbb{Y})$		C			
Cartesian product \times continuous maps $C(\cdot, \cdot)$				topological tensor morphisms		ıin		

New Problem

Find a natural bijection

$$\operatorname{Mor}(B,A\otimes C)\cong\operatorname{Mor}(\operatorname{C}_0(\operatorname{I\!M}_{\operatorname{X},\operatorname{Y}}),C)$$

for some quantum space $\mathbb{M}_{\mathbb{X},\mathbb{Y}}$.

We call $\Psi \in Mor(B, A \otimes C)$ a *quantum family of maps* indexed by \mathbb{P} .

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 0000
 0000
 00000
 000000
 000000
 000000

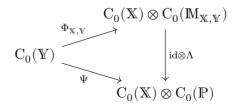
A Universal Property for Quantum Families of Maps

We say that

$$\Phi_{\mathbb{X},\mathbb{Y}}\colon \mathcal{C}_0(\mathbb{Y})\longrightarrow \mathcal{C}_0(\mathbb{X})\otimes \mathcal{C}_0(\mathbb{M}_{\mathbb{X},\mathbb{Y}})$$

is *universal* if

- \blacktriangleright for all quantum spaces $\mathbb P$ and
- ▶ for all quantum families of maps $\Psi \in Mor(C_0(\mathbb{Y}), C_0(\mathbb{X}) \otimes C_0(\mathbb{P}))$ there exists a unique $\Lambda \in Mor(C_0(\mathbb{M}_{\mathbb{X},\mathbb{Y}}), C_0(\mathbb{P}))$ such that



commutes.

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		0000000000000	000000
Simple	Casa				

Existence of a Universal Family of Maps

If ${\mathbb X}$ and ${\mathbb Y}$ are compact quantum spaces such that

- $\blacktriangleright\ {\rm C}({\mathbb X})={\rm Mat}_n({\mathbb C})$ is a simple matrix algebra and
- ▶ $C(Y) = C^*(Z) = C(\{z \in C \mid |z| = 1\})$ is the algebra freely generated by a unitary δ ,

the universal family of maps

$$\Phi_{\mathbb{X},\mathbb{Y}}\colon \mathcal{C}(\mathbb{Y})\to\mathcal{C}(\mathbb{X})\otimes\mathcal{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}})$$

and the mapping space ${\rm I\!M}_{{\mathbb X},{\mathbb Y}}$ do exist.

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		0000000000000	000000
Simpl	e Case				

Construction

• Generators:
$$u_{ij} \in A$$
 for $0 \le i, j < n$

- ▶ Matrix: $U = (u_{ij})_{ij} \in Mat_n(A) = C(X) \otimes A$
- Choose A as the Brown algebra: universal such that U is unitary

• Take
$$C(\mathbb{M}_{\mathbb{X},\mathbb{Y}}) = A$$
 and $\Phi_{\mathbb{X},\mathbb{Y}}(\delta) = U$

Reminder

•
$$C(X) = Mat_n(\mathbb{C})$$
 is a simple matrix algebra

 \blacktriangleright C(\mathbbm{Y}) is the universal algebra with a unitary generator δ

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000000000	000000
Simple	e Case				

Property

- Morphisms $C(Y) \to C(X) \otimes B$
- Unitary elements of $M(C(X) \otimes B)$
- ▶ Unitary elements of $Mat_n(M(B))$
- $\blacktriangleright \text{ Morphisms } C(\mathbb{I}\!\!M_{\mathbb{X},\mathbb{Y}}) \to B$

Reminder

- $\blacktriangleright\ {\rm C}(\mathbb{Y})$ is the universal algebra with a unitary generator δ
- $\blacktriangleright \ \mathrm{C}(\mathbb{X}) = \mathrm{Mat}_n(\mathbb{C})$ is a simple matrix algebra
- ▶ $Mat_n(C(\mathbb{M}_{\mathbb{X},\mathbb{Y}}))$ is universal with a unitary $n \times n$ matrix

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000000000	000000
Larger	Spaces				

${\mathbb X}$ finite

$$\blacktriangleright \ \mathcal{C}(\mathbbm{X}) = \bigoplus_{0 \leq k < m} \operatorname{Mat}_{n_k}(\mathbbm{C})$$

• Generators:
$$u_{ij}^k$$
 with $0 \le i, j < n_k$, $0 \le k < m$

$$[u_{ij}^k \in \mathcal{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}}))$$

More generators

	Notivation	Gelfand's Duality 00000	Families of Maps 0000	Existence of Mapping Spaces	Functoriality 0000000000000	Examples 000000
S	Subspace	es				

More relations

$$\blacktriangleright\ {\rm C}(\mathbb{Y})$$
 generated by unitary $\delta_p,$ subject to relations

• Impose relations on
$$U^p = (u^p_{ij})_{ij}$$

Algebraic quotients

$$\begin{array}{l} \blacktriangleright \quad \mathcal{C}(\widehat{\mathbb{Y}}) = \mathcal{C}(\mathbb{Y})/K \text{ for some ideal } K \\ \blacktriangleright \quad I = \langle (\omega \otimes \mathrm{id}) \Phi_{\mathbb{X},\mathbb{Y}}(k) \mid \omega \in \mathcal{C}(\mathbb{X})^*, k \in K \rangle \\ \blacktriangleright \quad \mathcal{C}(\mathbb{M}_{\mathbb{X},\widehat{\mathbb{Y}}}) = \mathcal{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}})/I \end{array}$$

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000000000	000000
General	Case				

Existence of a Universal Family of Maps

If ${\mathbb X}$ and ${\mathbb Y}$ are compact quantum spaces such that

- \blacktriangleright X is finite, i.e. C(X) is finite-dimensional, and
- \triangleright C(\mathbb{Y}) is finitely generated,

the universal family of maps

$$\Phi_{\mathbb{X},\mathbb{Y}}\colon \mathcal{C}(\mathbb{Y})\to\mathcal{C}(\mathbb{X})\otimes\mathcal{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}})$$

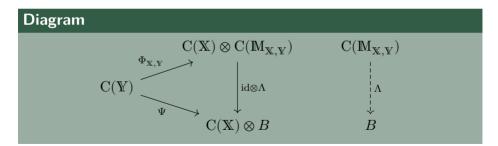
and the mapping space ${\rm I\!M}_{{\rm X},{\rm Y}}$ do exist.

Motivation 00	Gelfand's Duality 00000	Families of Maps 0000	Existence of Mapping Spaces	Functoriality 000000000000	Examples 000000

Universal Property

Isomorphic Functors

$$\operatorname{Mor}(\mathcal{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}}),-)\cong\operatorname{Mor}(\mathcal{C}(\mathbb{Y}),\mathcal{C}(\mathbb{X})\otimes(-))$$



Motivation 00	Gelfand's Duality 00000	Families of Maps	Existence of Mapping Spaces	Functoriality •000000000000	Examples 000000

Definitions

Functors, covariant and contravariant

$$\blacktriangleright F: \mathsf{C} \to \mathsf{D}$$

$$\blacktriangleright X, Y \in \mathrm{Obj}(C) \colon X \mapsto F(X)$$

▶ $f \in Mor(X, Y) \mapsto F(f) \in Mor(F(X), F(Y))$ (covariant) or $f \in Mor(X, Y) \mapsto F(f) \in Mor(F(Y), F(X))$, s.t.

▶ 1.
$$F(\operatorname{id}_X) = \operatorname{id}_{F(X)}, X \in \operatorname{Obj}(C).$$

▶ 2a.
$$F(g \circ f) = F(g) \circ F(f)$$
, $f: X \to Y$, $g: Y \to Z$ (Covariant)

▶ 2b. $F(g \circ f) = F(f) \circ F(g)$, $f: X \to Y$, $g: Y \to Z$. (Contravariant)

Bifunctors

$$\blacktriangleright G \colon \mathsf{C} \times \mathsf{C}' \to \mathsf{D}$$

Functor (co- or contravariant) in both arguments

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		0●00000000000	000000
Sat_un					

Spaces and maps

- ▶ X_i, Y_i are quantum spaces such that C(X_i) is finite dimensional & C(Y_i) is finitely generated and unital (for any index, including empty indices)
- Given any $\pi \colon C(\mathbb{Y}_2) \to C(\mathbb{Y}_1)$, there is a unique morphism $\Lambda \colon C(\mathbb{M}_{\mathbb{X},\mathbb{Y}_2}) \to C(\mathbb{M}_{\mathbb{X},\mathbb{Y}_1})$ making the upper diagram on the next slide commute.
- Given any $\rho \colon C(\mathbb{X}_1) \to C(\mathbb{X}_2)$, there is a unique morphism $\tilde{\Lambda} \colon C(\mathbb{M}_{\mathbb{X}_2,\mathbb{Y}}) \to C(\mathbb{M}_{\mathbb{X}_1,\mathbb{Y}})$ making the lower diagram on the next page commute.

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000000000	000000
Defining	g Λ and $ ilde{\Lambda}$				

Diagrams

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		000000000000000000000000000000000000	000000
Notatio	n				

$$\blacktriangleright \text{ Given } \pi\colon \mathrm{C}(\mathbb{Y}_2)\to \mathrm{C}(\mathbb{Y}_1) \And \rho\colon \mathrm{C}(\mathbb{X}_1)\to \mathrm{C}(\mathbb{X}_2) \text{, consider}$$

$$(\rho \otimes \mathrm{id}) \circ \Phi_{\mathbb{X}_1, \mathbb{Y}_1} \circ \pi \colon \mathrm{C}(\mathbb{Y}_2) \to \mathrm{C}(\mathbb{X}_2) \otimes \mathrm{C}(\mathbb{M}_{\mathbb{X}_1, \mathbb{Y}_1})$$

 $\blacktriangleright \mbox{ This morphism is also of the form } (\mathrm{id}\otimes\Lambda)\circ\Phi_{X_2,Y_2} \mbox{ for some } \Lambda\colon C(\mathbb{M}_{X_2,Y_2})\to C(\mathbb{M}_{X_1,Y_1})$

The New Notation

Call this unique $\Lambda \stackrel{\mbox{\tiny def}}{=} \mathbb{M}_{\rho,\pi}$

Motivation 00	Gelfand's Duality 00000	Families of Maps	Existence of Mapping Spaces	Functoriality 00000000000000	Examples 000000
Notatio	n continued				

 \blacktriangleright Hence ${\rm I\!M}_{\rho,\pi}$ is the unique morphism making the following diagram commute:

$$\begin{array}{ccc} \mathcal{C}(\mathbb{Y}_2) & \xrightarrow{\pi} & \mathcal{C}(\mathbb{Y}_1) \\ & & & \downarrow^{(\rho \otimes \mathrm{id}) \circ (\Phi_{\mathbb{X}_1, \mathbb{Y}_1})} \\ \mathcal{C}(\mathbb{X}_2) \otimes \mathcal{C}(\mathbb{M}_{\mathbb{X}_2, \mathbb{Y}_2}) & \xrightarrow{\mathrm{id} \otimes \mathbb{M}_{\rho, \pi}} \mathcal{C}(\mathbb{X}_2) \otimes \mathcal{C}(\mathbb{M}_{\mathbb{X}_1, \mathbb{Y}_1}) \end{array}$$

Motivation 00	Gelfand's Duality 00000	Families of Maps	Existence of Mapping Spaces	Functoriality 00000●0000000	Examples 000000
Functor	iality of $\mathbb{M}_{\mathbb{N}}$				

Theorem

 ${\rm I\!M}_{\cdot,\cdot}$ is a bifunctor which assigns the object ${\rm I\!M}_{X,Y}$ to a pair of objects (X,Y).

Additionally, ${\rm I\!M}_{\cdot,\cdot}$ is covariant in the first slot and contravariant in the second slot.

 \blacktriangleright In the proof of the above theorem, we will denote $\Phi_{\mathbf{X}_i,\mathbf{Y}_i}$ by Φ_i for notational simplicity.

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 0000
 0000
 00000
 000000
 000000
 000000

Proof of the Functoriality of $\mathbb{M}_{...}$

Proof.

Consider the maps

$$\mathcal{C}(\mathbb{Y}_3) \xrightarrow{\pi_2} \mathcal{C}(\mathbb{Y}_2) \xrightarrow{\pi_1} \mathcal{C}(\mathbb{Y}_1)$$

and

$$\mathcal{C}(\mathbb{X}_1) \xrightarrow{\rho_1} \mathcal{C}(\mathbb{X}_2) \xrightarrow{\rho_2} \mathcal{C}(\mathbb{X}_3)$$

 $\blacktriangleright~\mathbb{M}_{\rho_1,\pi_1}$ and $\mathbb{M}_{\rho_2,\pi_2}$ are respectively defined by

$$(\mathrm{id}\otimes\mathbb{M}_{\rho_1,\pi_1})\circ\Phi_2=(\rho_1\otimes\mathrm{id})\circ\Phi_1\circ\pi_1$$

$$(\mathrm{id}\otimes\mathbb{M}_{\rho_2,\pi_2})\circ\Phi_3=(\rho_2\otimes\mathrm{id})\circ\Phi_2\circ\pi_2$$

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples

Proof of the Functoriality of $\mathbb{M}_{,,\cdot}$

Proof continued.

This implies

$$\begin{split} \operatorname{id}\otimes(\mathbb{M}_{\rho_{1},\pi_{1}}\circ\mathbb{M}_{\rho_{2},\pi_{2}})\circ\Phi_{3} &= (\operatorname{id}\otimes\mathbb{M}_{\rho_{1},\pi_{1}})\circ(\operatorname{id}\otimes\mathbb{M}_{\rho_{2},\pi_{2}})\circ\Phi_{3})\\ &= (\operatorname{id}\otimes\mathbb{M}_{\rho_{1},\pi_{1}})\circ(\rho_{2}\otimes\operatorname{id})\circ\Phi_{2}\circ\pi_{2}\\ &= (\rho_{2}\otimes\operatorname{id})\circ((\operatorname{id}\otimes\mathbb{M}_{\rho_{1},\pi_{1}})\circ\Phi_{2})\circ\pi_{2}\\ &= (\rho_{2}\otimes\operatorname{id})\circ(\rho_{1}\otimes\operatorname{id})\circ\Phi_{1}\circ\pi_{1}\circ\pi_{2}\\ &= ((\rho_{2}\circ\rho_{1})\otimes\operatorname{id})\circ\Phi_{1}\circ(\pi_{1}\circ\pi_{2})\\ &= (\operatorname{id}\otimes\mathbb{M}_{\rho_{2}\circ\rho_{1},\pi_{1}\circ\pi_{2}})\circ\Phi_{3} \end{split}$$
 It follows that $\mathbb{M}_{\rho_{1},\sigma_{1}}\circ\mathbb{M}_{\rho_{1},\sigma_{2}}=\mathbb{M}_{\rho_{1}\circ\rho_{1},\sigma_{2}}$ as desired. \Box

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 0000
 0000
 00000
 000000
 000000
 000000

Theorem on surjectivity and injectivity

Full theorem

$$\label{eq:main_state} \begin{split} \bullet \mbox{ if } \pi \mbox{ is surjective, } \mathbb{M}_{\mathrm{id},\pi} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X},Y_2}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X},Y_1}) \mbox{ is surjective } \\ \bullet \mbox{ if } \rho \mbox{ is injective, } \mathbb{M}_{\rho,\mathrm{id}} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X}_2,\mathbb{Y}}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X}_1,\mathbb{Y}}) \mbox{ is surjective } \\ \bullet \mbox{ if } \pi \mbox{ is injective, } \mathbb{M}_{\mathrm{id},\pi} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X},Y_2}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X},Y_1}) \mbox{ is injective } \\ \bullet \mbox{ if } \rho \mbox{ is surjective, } \mathbb{M}_{\rho,\mathrm{id}} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X}_2,\mathbb{Y}}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X}_1,\mathbb{Y}}) \mbox{ is injective } \end{split}$$

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000●000	000000

Proving the theorem

Proof of part 1

$$\begin{split} & \blacktriangleright \text{ if } \pi \text{ is surjective, } \mathbb{M}_{\mathrm{id},\pi} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X},\mathrm{Y}_2}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X},\mathrm{Y}_1}) \text{ is surjective} \\ & \blacktriangleright \{(\omega \otimes \mathrm{id}) \Phi_{\mathrm{X},\mathrm{Y}_1}(y_1) | y_1 \in \mathrm{C}(\mathbb{Y}_1), \omega \in \mathrm{C}(\mathbb{X})^* \} \\ & = \{(\omega \otimes \mathrm{id}) \Phi_{\mathrm{X},\mathrm{Y}_1}(\pi(y_2)) \mid y_2 \in \mathrm{C}(\mathbb{Y}_2), \omega \in \mathrm{C}(\mathbb{X})^* \} \\ & = \mathbb{M}_{\mathrm{id},\pi} (\{(\omega \otimes \mathrm{id}) \Phi_{\mathrm{X},\mathrm{Y}_2}(y_2) \mid y_2 \in \mathrm{C}(\mathbb{Y}_2), \omega \in \mathrm{C}(\mathbb{X})^* \}). \end{split}$$

Proof of part 2

$$\begin{split} & \blacktriangleright \text{ if } \rho \text{ is injective, } \mathbb{M}_{\rho, \mathrm{id}} \colon \mathrm{C}(\mathbb{M}_{\mathrm{X}_{2}, \mathbb{Y}}) \to \mathrm{C}(\mathbb{M}_{\mathrm{X}_{1}, \mathbb{Y}}) \text{ is surjective} \\ & \blacktriangleright \mathbb{M}_{\rho, \mathrm{id}} \big(\{ (\omega_{2} \otimes \mathrm{id}) \Phi_{\mathrm{X}_{2}, \mathbb{Y}}(y) \mid y \in \mathrm{C}(\mathbb{Y}), \omega_{2} \in \mathrm{C}(\mathrm{X}_{2})^{*} \} \big) \\ & = \{ ((\omega_{2} \circ \rho) \otimes \mathrm{id}) \Phi_{\mathrm{X}_{1}, \mathbb{Y}}(y) \mid y \in \mathrm{C}(\mathbb{Y}), \omega_{2} \in \mathrm{C}(\mathrm{X}_{2})^{*} \} \\ & = \{ (\omega_{1} \otimes \mathrm{id}) \Phi_{\mathrm{X}_{1}, \mathbb{Y}}(y) \mid y \in \mathrm{C}(\mathbb{Y}), \omega_{1} \in \mathrm{C}(\mathrm{X}_{1})^{*} \}. \end{split}$$

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 0000
 0000
 00000
 000000
 00000
 000000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000

Proving the theorem, continued

Proof of part 3

• if π is injective, $\mathbb{M}_{\mathrm{id},\pi} \colon \mathrm{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}_2}) \to \mathrm{C}(\mathbb{M}_{\mathbb{X},\mathbb{Y}_1})$ is injective

See [Arkadiusz Bochniak, Paweł Kasprzak, Piotr M. Sołtan. Quantum correlations on quantum spaces, https://arxiv.org/abs/2105.07820, May 2021]

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000	0000000	00000000000000	000000

Proving the theorem, continued

Proof of part 4

 \blacktriangleright if ρ is surjective, $\mathbb{M}_{\rho, \mathrm{id}} \colon \mathrm{C}(\mathbb{M}_{\mathbb{X}_{\rho}, \mathbb{Y}}) \to \mathrm{C}(\mathbb{M}_{\mathbb{X}_{+}, \mathbb{Y}})$ is injective \triangleright C(X₁) and C(X₂) finite dimensional, $\rho \colon C(X_1) \to C(X_2)$ surjective $\models \exists X', \sigma \colon C(X') \oplus C(X_2) \to C(X_1)$ isomorphism s. th. $\rho \circ \sigma \colon C(X') \oplus C(X_2) \to C(X_2)$ is the projection onto $C(X_2)$ Fact: $C(\mathbb{M}_{W' \cup W_{\alpha}, W}) \cong C(\mathbb{M}_{W', W}) * C(\mathbb{M}_{W_{\alpha}, W})$ lnclusion mapping $\iota_2 \colon C(\mathbb{M}_{\mathbb{W}_2,\mathbb{W}}) \to C(\mathbb{M}_{\mathbb{W}' \cup \mathbb{W}_2,\mathbb{W}})$ Then $((\rho \circ \sigma) \otimes id) \circ \Phi_{\mathbf{X}_0 \cup \mathbf{X}', \mathbf{Y}} = (id \otimes \iota_2) \circ \Phi_{\mathbf{X}_0, \mathbf{Y}}$ Find the associated $\mathbb{M}_{\sigma, \mathrm{id}} \colon \mathrm{C}(\mathbb{M}_{\mathbb{X}_{\tau}, \mathbb{Y}}) \to \mathrm{C}(\mathbb{M}_{\mathbb{X}_{\sigma} \cup \mathbb{X}', \mathbb{Y}})$, which satisfies $(\sigma \otimes id) \circ \Phi_{\mathbb{X}_{+} \cup \mathbb{X}', \mathbb{Y}} = (id \otimes \mathbb{M}_{\sigma, id}) \circ \Phi_{\mathbb{X}_{+}, \mathbb{Y}}$ Equivalently $(\sigma \otimes \mathbb{M}_{\sigma id}^{-1}) \circ \Phi_{\mathbb{X}_{\sigma} \cup \mathbb{X}', \mathbb{Y}} = \Phi_{\mathbb{X}_{\tau}, \mathbb{Y}}.$

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 0000
 0000
 000000
 000000
 000000
 000000

Proving the theorem, continued

Proof of part 4, continued

$$\begin{array}{l} \bullet \quad \text{Combine } ((\rho \circ \sigma) \otimes \operatorname{id}) \circ \Phi_{X_2 \sqcup X',Y} = (\operatorname{id} \otimes \iota_2) \circ \Phi_{X_2,Y} \text{ and} \\ \Phi_{X_1,Y} = (\sigma \otimes \mathbb{M}_{\sigma,\operatorname{id}}^{-1}) \circ \Phi_{X_2 \sqcup X',Y} \\ \bullet \quad (\rho \otimes \operatorname{id}) \circ \Phi_{X_1,Y} = (\rho \otimes \operatorname{id}) \circ (\sigma \otimes \mathbb{M}_{\sigma,\operatorname{id}}^{-1}) \circ \Phi_{X_2 \sqcup X',Y} = \\ ((\rho \circ \sigma) \otimes \mathbb{M}_{\sigma,\operatorname{id}}^{-1}) \circ \Phi_{X_2 \sqcup X',Y} = (\operatorname{id} \otimes (\mathbb{M}_{\sigma,\operatorname{id}}^{-1} \circ \iota_2)) \circ \Phi_{X_2,Y} \\ \bullet \quad \text{By definition, } (\rho \otimes \operatorname{id}) \circ \Phi_{X_1,Y} = (\operatorname{id} \otimes \mathbb{M}_{\rho,\operatorname{id}}) \circ \Phi_{X_2,Y} \\ \bullet \quad \text{Conclusion: } \quad \mathbb{M}_{\rho,\operatorname{id}} = \mathbb{M}_{\sigma,\operatorname{id}}^{-1} \circ \iota_2 \end{array}$$

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000	0000000	000000000000	00000

Maps from a set to a compact quantum space

Quantum family of maps from X to \mathbb{A}

A quantum family Ψ of maps indexed by \mathbb{B} (with $A := C(\mathbb{A})$, $B := C_0(\mathbb{B})$):

$$\begin{split} \Psi \in &\operatorname{Mor}(A, \mathcal{C}_0(X) \otimes B) \simeq \operatorname{Mor}(A, \mathcal{C}_{\mathbf{b}}(X, \mathcal{M}(B))) \\ \simeq &\operatorname{Mor}(A, \ell^{\infty}_X(\mathcal{M}(B))) \simeq \left\{\operatorname{Mor}(A, \mathcal{M}(B))\right\}^X \end{split}$$

(**)

- By (**), to give such a Ψ is the same as to give a family of unital C^{*}-morphisms from A to M(B). Universal way to do this is
- ▶ Universal quantum family of maps: $C(\mathbb{M}_{X,\mathbb{A}}) = \underset{X}{*}_X A$ (free power of A over X), Φ determined by $(\iota_x : A \to \underset{X}{*}_X A)_{x \in X}$ on r.h.s. of (**) with $B = C(\mathbb{M}_{X,\mathbb{A}})$.

Motivation
ooGelfand's Duality
oocoFamilies of Maps
oocoExistence of Mapping Spaces
oocoocoFunctoriality
oocoocoExamples
oocooco

Maps from a two point set to itself

- ▶ Special case of the previous case with $A = X = \mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$, $A = C_0(X) = C(X) = \mathbb{C}^2$.
- Universal quantum family of maps: $C(\mathbb{M}_{X,X}) = \mathbb{C}^2 * \mathbb{C}^2$ (free product of \mathbb{C}^2 with itself), $\Phi \colon \mathbb{C}^2 \to \mathbb{C}^2 \otimes (\mathbb{C}^2 * \mathbb{C}^2)$ the unital C^* -morphism sending $v \in \mathbb{C}^2$ to $e_1 \otimes \iota_1(v) + e_2 \otimes \iota_2(v)$.
- ▶ $C(\mathbb{M}_{X,X})$ as a group algebra: by the universal properties of free products of C^{*}-algebras and groups, $\mathbb{C}^2 * \mathbb{C}^2 \simeq C^*(\mathbb{Z}_2 * \mathbb{Z}_2)$.
- $\begin{array}{l} \blacktriangleright \hspace{0.1cm} \mathbb{Z}_{2} \ast \mathbb{Z}_{2} \simeq \mathbb{Z} \rtimes \mathbb{Z}_{2}. \mbox{ Proof: A presentation for } \mathbb{Z}_{2} \ast \mathbb{Z}_{2} \mbox{ is } \\ \langle a,b \mid a^{2} = b^{2} = 1 \rangle. \mbox{ Then } \mathbb{Z}_{2} \ast \mathbb{Z}_{2} = AN = NA = N \rtimes A, \mbox{ where } \\ N = \langle ab \rangle \simeq \mathbb{Z}, \mbox{ } A = \langle a \rangle \simeq \mathbb{Z}_{2}. \end{array}$
- ▶ By sharp contrast, in the classical case, $|{X \to X}| = 4$.

$\mathbb{M}_{\mathbb{X},\mathbb{X}}$ as a compact quantum semi-group

- $\blacktriangleright \ \ \mathbb{X} \ \ \text{a finite quantum space, so the universal quantum family of} \\ \textbf{maps} \ \ \Phi \in Mor\big(C(\mathbb{X}), C(\mathbb{X}) \otimes C(\mathbb{M}_{\mathbb{X},\mathbb{X}})\big) \ \text{exists and is unique up to} \\ \text{isomorphism.} \\ \end{cases}$
- Consider

$$\Psi\colon C(X)\xrightarrow{\Phi} C(X)\otimes C(\mathbb{M}_{X,X})\xrightarrow{\Phi\otimes id} C(X)\otimes C(\mathbb{M}_{X,X})\otimes C(\mathbb{M}_{X,X}).$$

• (Sołtan) Uniqueness part of the universal property of Φ yields a unique unital C^{*}-morphism $\Delta \colon C(\mathbb{M}_{X,X}) \to C(\mathbb{M}_{X,X}) \otimes C(\mathbb{M}_{X,X})$, such that $\Psi = (id \otimes \Delta)\Phi$. The morphism Δ (called comultiplication) is coassociative, i.e. $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$ (uniqueness part of the universal property of Φ again).

▶ (Sołtan) Similarly, the morphism $id: C(X) \to C(X) = C(X) \otimes \mathbb{C}$ yields a counit $\epsilon: C(\mathbb{M}_{X,X}) \to \mathbb{C}$ for Δ . So $(C(\mathbb{M}_{X,X}), \Delta, \epsilon)$ is a counital coalgebra.
 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 00000
 0000
 000000
 0000000
 0000000
 0000000

$\mathbb{M}_{\operatorname{Mat}_2, \mathbb{Z}_2}$ is not a compact quantum group

- (Woronowicz) Definition. A compact quantum group is given by a pair $\mathbb{G} = (A, \Delta)$, where A is a unital C^{*}-algebra (we often write $A = C(\mathbb{G})$), $\Delta : A \to A \otimes A$ a unital C^{*}-morphism that is coassociative, such that Δ is bi-simplifiable in the sense that the linear spans of both $\{(1 \otimes a)\Delta(b) \mid a, b \in A\}$ and $\{(a \otimes 1)\Delta(b) \mid a, b \in A\}$ are dense in $A \otimes A$.
- C = (A, ∆) a compact quantum group implies that *χ*(C) := {nonzero multiplicative functionals on A} is a compact Hausdorff group, where the multiplication is the convolution *f* * *g* := (*f* ⊗ *g*)∆, and the underlying topology is the weak-* topology.

 (Sołtan) C(M_{Mat₂,Z₂}) is the unital universal C*-algebra generated by *p*, *q*, *z* with the relations

$$\begin{split} p &= p^2 + z^* z, \; q = q^2 + z z^*, \; p z = (1-z) q, \\ p &= p^*, \; q = q^*. \end{split}$$

36 / 38

 Motivation
 Gelfand's Duality
 Families of Maps
 Existence of Mapping Spaces
 Functoriality
 Examples

 00
 00000
 000000
 000000
 000000
 000000

$\mathbb{M}_{\mathrm{Mat}_2,\mathbb{Z}_2}$ is not a compact quantum group (continued)

Theorem (Sołtan)

 $\chi \Big(C(M_{Mat_2,\mathbb{Z}_2}) \Big)$ is homeomorphic to the topological sum the two sphere S^2 and two isolated points, thus does not carry a topological group structure. Consequently, M_{Mat_2,\mathbb{Z}_2} can not be a compact quantum group.

Remark

- ▶ (S. Wang) If $A = C(\mathbb{G})$ for some compact quantum group, $n \in \mathbb{N}$, then the free power A^{*n} carries a compact quantum group structure.
- ▶ $A^{*n} = C(\mathbb{M}_{X, \mathbb{G}})$ where X is a set of n points.
- ▶ The analogue result of S. Wang fails even for C = Z₂ if one replaces X with Mat₂ (new phenomenon of the quantum mapping space).

Motivation	Gelfand's Duality	Families of Maps	Existence of Mapping Spaces	Functoriality	Examples
00	00000	0000		00000000000000	00000●

Further results

Suppose $\mathbb X$ is a finite quantum space, $\mathbb Y$ a compact quantum space. Recall

- A C*-algebra A is said to be RFD (residually finite dimensional), if for all 0 ≠ a ∈ A, there is a finite dimensional representation π: A → Mat_n such that π(a) ≠ 0.
- A C^{*}-algebra *B* is said to have the **lifting property**, if whenever *J* is a closed ideal of *B*, $u: C \to B/J$ is a c.c.p map, then *u* lifts to a c.c.p map $\tilde{u}: C \to B$.

Theorem (Bochniak, Kasprzak and Sołtan)

 $\blacktriangleright \ \ \mathsf{If} \ C(\mathbb{Y}) \ \ \mathsf{is} \ \mathsf{RFD}, \ \mathsf{then} \ C(\mathbb{M}_{\mathbb{X},\mathbb{Y}}) \ \mathsf{is} \ \mathsf{RFD}.$

▶ If C(Y) is *separable* and has the lifting property, then $C(M_{X,Y})$ has the lifting property.