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The Duality of Geometry and Algebra

Geometric World Algebraic World
{Euclidean Geometry} 4= {vector spaces}
{smooth manifolds} €= {commutative R-algebras}

{measure spaces} €= {commutative von Neumann algebras}

{compact Hausdorff spaces} ¢=» {commutative unital C*-algebras}

{affine schemes} = {commutative rings}
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Non-Commutative Geometry in a Nutshell

» Find an association “€" between a geometric space and a
commutative algebraic structure (classical setting)

P> Apply “4=" to the non-commutative version of said algebraic
structure (quantum or non-classical setting)

‘ quantum tools

generalize / \ discover theories

classical results / / concepts /
statements / methods that are

theorems to the “invisible” in the
quantum setting classical setting
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Naive Corresp ce

Gelfand-Naimark

Let's phrase this in terms of categories!
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The Categories

The Category C

com.

P Obj(C:,,.):={A| Ais a commutative C"-algebra}
P Mor(A, B) :={¢: A — M(B) | ¢ is a non-degen. *-hom.}
for any A, B € Obj(C;

com. )

The Category Toploc.cpt.

> Obj(Toploc.cpt.) :={X | X is a locally compact Hausdorff space}

P Mor(X,Y):={f: X - Y| fis a continuous map}
for any X,Y € Obj(ToplOC.Cpt.)
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Functorial Correspondence

Gelfand’s Duality

We now have established “$=" for the classical setting.

Next we need to extend CZ, to arbitrary C*-algebras.

6/38



Motivation Gelfand’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples
Q0 000e0 Q000 0000000 0000000000000 000000

Extending C:

com.

The Category of C*-algebras

P Obj(C*):={A| Ais a C-algebra}

» Mor(A, B) :={p: A — M(B) | ¢ is a non-degen. *-hom.}
for any A, B € Obj(C*)

— Note: With our definitions C;_ _ is a so-called full subcategory of C*.

com.

Quantum spaces
We call an object in the dual category of C* a quantum space.

Notation: X,Y,... — quantum spaces
Cy(X), Cy(Y), ... — corresponding C*-algebras
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Quantum Space Dictionary

‘ How do we define topological properties of quantum spaces? ‘

Idea: Use Gelfandesque equivalences, e.g.
X is compact < Cy(X) is unital

to generalize classical concepts!

Dictionary of the Quantum Space Language

Co(X) is a C*-algebra
C(X) := Cy(X) is unital
Cy(X) is finite-dimensional
C(X) is separable

X is a quantum space

X is compact

X is finite

X is compact and metrizable

SR Y
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Our Classical Blueprint: Families of Maps and Jackson’s Theorem

Setting: Let X, Y and P be topological spaces.
We call a continuous map

V:XxP—Y

a (classical) family of maps parametrized or indexed over P.

The Problem
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Our Classical Blueprint: Jackson’s Answer

C(X x P,Y) = C(P,YX) (+)

— Note: If we ignore the topologies on X, Y and P,

YX={f|f: X = Yisamap}.

Jackson’s Theorem (1952)
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The Quantum Version
classical
topological spaces X, Y, P

Cartesian product x
continuous maps C(-, -)

New Problem

I
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quantum
quantum spaces X, Y, P
Co(X) = A,Cy(Y) = B,Cy(P)=C
topological tensor product ® = ®,,;,
morphisms Mor(-, )

We call ¥ € Mor(B,A® C) a quantum family of maps indexed by P.
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A Universal Property for Quantum Families of Maps

We say that
Py v Co(Y) — Co(X) ® Cp(My )
is universal if

P for all quantum spaces P and

P for all quantum families of maps ¥ € Mor(C,(Y), Cy(X) ® Cy(P))
there exists a unique A € Mor(Cy(My y ), Cy(IP)) such that

Co(X) ® Cy(Mx )

Co(Y) id®A

T

Co(X) ® Cy(P)

commutes.
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Simple Case

Existence of a Universal Family of Maps
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Simple Case

Construction

Reminder
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Simple Case

» Morphisms C(Y) — C(X) ® B

P Unitary elements of M(C(X) ® B)
P Unitary elements of Mat,,(M(B))
» Morphisms C(My y) — B

P C(Y) is the universal algebra with a unitary generator §
P C(X) = Mat,(C) is a simple matrix algebra

» Mat,, (C(IMy y)) is universal with a unitary n x n matrix
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Larger Spaces

More generators
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Subspaces

More relations

Algebraic quotients
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General Case

Existence of a Universal Family of Maps
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Universal Property

Isomorphic Functors

Diagram
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Definitions
Functors, covariant and contravariant
b F:C—>D

> X,Y € Obj(C): X s F(X)
P feMor(X,Y) F(f) € Mor(F(X),F(Y)) (covariant) or
feMor(X,Y)— F(f) € Mor(F(Y), F(X)), s.t.

P 2a. F(gof)=F(g)oF(f), f: X =Y, g: Y — Z (Covariant)
P 2b. F(go f)=F(f)oF(g), f: X =Y, g: Y — Z. (Contravariant)

b G:CxC =D

P Functor (co- or contravariant) in both arguments
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Set-up

Spaces and maps

P X, Y, are quantum spaces such that C(X,) is finite dimensional &
C(Y,) is finitely generated and unital (for any index, including empty
indices)

P Given any m: C(Y,) — C(Y,), there is a unique morphism
A: C(My y,) — C(Mx y,) making the upper diagram on the next
slide commute.

P Given any p: C(X;) — C(X,), there is a unique morphism

A: C(My, y) — C(Mx, y) making the lower diagram on the next
page commute.
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Defining A and A

Diagrams
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Notation

P Given 7: C(Y,) = C(Y;) & p: C(X;) = C(X,), consider
(p®id) o @y vy, om: C(Yy) = C(X;y) @ C(My, y,)

P This morphism is also of the form (id ® A) o @y v for some
A C<MX2,Y2> - C(Mxl,yl)

The New Notation
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Notation continued

» Hence M,
commute:

. is the unique morphism making the following diagram

C(Ys) = » C(Yy)
@XQ,YQl l(P@’id)"(‘I)xl,Yl)

C(X,) ® C(My, v, ) Saeh, L C(X;) ® C(My, v,)
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Functoriality of I\

Theorem

P In the proof of the above theorem, we will denote Py, y, by @; for
notational simplicity.
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Proof of the Functoriality of M

Proof.
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Proof of the Functoriality of M

Proof continued.
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Full theorem

28/38



Motivation Gelfand'’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples
Q0 00000 Q000 0000000 0000000008000 000000

Proving the theorem

Proof of part 1

P if 7 is surjective, M, .- C(My y,) — C(My y,) is surjective
P {(w®id)®x v, (¥1)|y; € C(Yy),w € C(X)*}
={(w®id)Px y, (7(y2)) | y2 € C(Y3),w € C(X)"}
=My ({(w®id)Px v (y2) | o € C(Y,),w € C(X)*}).

Proof of part 2

P if pis injective, M, ;3: C(My_ y) — C(My, y) is surjective

> Mp,id({(w2 ® id)Q)XQ,Y(y) |y € C(Y),wy € C(Xy)*})
={((wy0p) ®id)Px, y(y) | y € C(Y),w, € C(Xy)"}
={(w; ®id)®x, v(y) |y € C(Y),w; € C(Xy)"}.
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Proving the theorem, continued

Proof of part 3
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Proving the theorem, continued

Proof of part 4

P if pis surjective, M, ;4 C(My, y) — C(My, y) is injective
P C(X;) and C(X,) finite dimensional, p: C(X;) — C(X,) surjective
P 3X',0: C(X') ® C(X,) = C(X]) isomorphism s. th.
poo: C(X')® C(X,) — C(X,) is the projection onto C(X,)
> Fact: C<]MX/I_IX2,Y) = C<MX/,Y) * C(]sz,y>
P Inclusion mapping t: C(My_ v) — C(Mxx, v)
P Then ((poo) ®id) o Oy, xy = (id®¢y) 0 Ox, v
P Find the associated M, ;4: C(My y) — C(Mx_,x v),
which satisfies (0 ® id) o Py uxy = (id® IMU’id) 0o by v
P Equivalently (¢ ® IM;:Ed) °o Py ix vy = Px, v
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Proving the theorem, continued

Proof of part 4, continued




Motivation Gelfand'’s Duality Families of Maps Existence of Mapping Spaces Functoriality Examples
Q0 00000 Q000 0000000 0000000000000 00000

Maps from a set to a compact quantum space

Quantum family of maps from X to A

P A quantum family ¥ of maps indexed by B (with A := C(A),
B = Cy(B)):

¥ eMor(A, Cy(X) ® B) ~ Mor(4, C,, (X, M(B)))

~ Mor(A, £ (M(B))) ~ {Mor(4, M(B))}* ()

P By (xx), to give such a U is the same as to give a family of unital
C*-morphisms from A to M(B). Universal way to do this is

» Universal quantum family of maps: C(My 5 ) = % x A (free power
of A over X), ® determined by (¢,: A — %y A),cx on r.h.s. of (xx)
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Maps from a two point set to itself

P Special case of the previous case with A = X = Z, := Z/27Z,
A=Cy(X)=0C(X)=C2

P Universal quantum family of maps: C(IMy y) = C? = C* (free
product of C? with itself), ®: C? — C? @ (C? » C?) the unital
C"-morphism sending v € €2 to e; ® 11 (V) + €5 ® Ly(v).

P C(My ) as a group algebra: by the universal properties of free
products of C*-algebras and groups, €2 # C? o~ C*(Zy = Z,).

W Z, % Zy ~ 7 X Zsy. Proof. A presentation for Z, = Z, is
{a,b|a?>=10b%=1). Then Zy % Zy = AN = NA = N x A, where
N = (ab) ~Z, A= (a) ~ Z,.

» C(My x) = C*(Zy + Zy) = C*(Z 1 Zy) = C*(Z) X Zy, where the
semidirect product and the cross product are the unique non-trivial
ones.

P By sharp contrast, in the classical case, [{X — X}| = 4.
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My ¢ as a compact quantum semi-group

>

>

X a finite quantum space, so the universal quantum family of
maps ® € Mor(C(X), C(X) ® C(My x)) exists and is unique up to
isomorphism.

Consider

T O(X) 2 C(X) @ C(My x) — C(X) ® C(My ) ® C(My x)-

(Sottan) Uniqueness part of the universal property of ® yields a unique

unital C*-morphism A: C(My x) = C(My x) ® C(IMy ), such that
= (id ® A)®. The morphism A (called comultiplication) is

coassociative, i.e. (id ® A)A = (A ® id)A (uniqueness part of the

universal property of ® again).

(Sottan) Similarly, the morphism id: C(X) — C(X) = C(X) ®

yields a counit e: C(IMy x) — € for A. So (C(Mx x), A, ¢€) is a

counital coalgebra.
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Myy,¢, z, i not a compact quantum group

P (Woronowicz) Definition. A compact quantum group is given by a
pair G = (A, A), where A is a unital C*-algebra (we often write
A =C(G)), A: A — A® A a unital C"-morphism that is
coassociative, such that A is bi-simplifiable in the sense that the linear
spans of both {(1® a)A(b) | a,b € A} and {(a ® 1)A(b) | a,b € A}
are dense in A® A.

» G =(A,A) a compact quantum group implies that
X(G) := {nonzero multiplicative functionals on A} is a compact
Hausdorff group, where the multiplication is the convolution
f*g:=(f®g)A, and the underlying topology is the weak-* topology.

P (Sottan) C(Myy,_ 7 ) is the unital universal C"-algebra generated by
P, q, z with the relations

p=p*+2'2, q=q* +22%, pr=(1—2)q,
pP=p,q=4q"
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My1a, .7, is nOot a compact quantum group (continued)

Theorem (Softan)

X(C(MMathz)) is homeomorphic to the topological sum the two sphere

52 and two isolated points, thus does not carry a topological group
structure. Consequently, Myat,,7, €an not be a compact quantum group.

P (S. Wang) If A = C(G) for some compact quantum group, n € N,
then the free power A*™ carries a compact quantum group structure.

> A* = C(My ) where X is a set of n points.

P> The analogue result of S. Wang fails even for G = Z, if one replaces
X with Mat, (new phenomenon of the quantum mapping space).
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Further results

Suppose X is a finite quantum space, Y a compact quantum space.
Recall
P A C*-algebra A is said to be RFD (residually finite dimensional), if for
all 0 # a € A, there is a finite dimensional representation
m: A — Mat,, such that 7(a) # 0.
P A C-algebra B is said to have the lifting property, if whenever J is a
closed ideal of B, u: C' — B/J is a c.c.p map, then u lifts to a c.c.p
map u: C' — B.

Theorem (Bochniak, Kasprzak and Softan)
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