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Topological dynamical system

A topological dynamical system is a pair (X ;ϕ), with nonempty
compact metrizable space X and ϕ : X → X continuous. It is
called invertible, if ϕ is invertible i.e. a homeomorphism.



Finite state space

Finite set X := {0, . . . , d − 1} with discrete topology.
Every map ϕ : X → X is continuous.
(X ;ϕ) invertible if and only if ϕ permutation.



Rotation on Compact Groups

A topological group is a group (G , ·) with topology s.t. inversion
and multiplication are continuous.
Compact topological group G with left rotation by a ∈ G

ϕa : G → G , ϕa(g) := a · g ,

forms invertible topological system (G ;ϕa). i.e. T compact
Abelian group.



Homomorphisms of topological dynamical systems

A homomorphism between topological systems (X1;ϕ1), (X2;ϕ2)
is continuous map ψ : X1 → X2 such that ψ ◦ϕ1 = ϕ2 ◦ψ, i.e., the
diagram

X1 X1

X2 X2

ψ

ϕ1

ψ

ϕ2

is commutative. An isomorphism if ψ is bijective.



Topological Transitivity

If we have a look at topological dynamical systems we are
interested in questions like:
How does ϕ mixes the points of X as it is applied over and over
again?
Will a point return to its original position?
Will a point come arbitrarily close to any other point of X?
Will a certain point x never leave a certain region?



Topological Transitivity
Orbits

Definition
For an invertible system the orbit of x ∈ X is defined as

orb(x) := {ϕn(x) : n ∈ Z}.

x ∈ X is transitive if orb(x) is dense in X .
An invertible system (X ;ϕ) is transitive if there exists one
transitive point.



Topological Transitivity
Shift algebra

Consider (W ; τ) with

W :=
{

0, 1
}Z

with τ((xn)n∈Z) = (xn+1)n∈Z

x = . . . |0|1|01|10|11|000|001|010| . . .

∀U ⊂W open ∃n ∈ Z s.t. τn(x) ∈ U by definition of product
topology.



Topological Transitivity

Proposition

Let (X ;ϕ) be an invertible topological system. Then the following
assertions are equivalent:

I (X ;ϕ) is topologically transitive, i.e., there is a point x ∈ X
with dense orbit.

I For all ∅ 6= U, V open sets in X there is n ∈ Z with
ϕn(U) ∩ V 6= ∅.



Topological Transitivity

Proof.
I Suppose x ∈ X has dense orbit. Let U,V be nonempty open

subsets of X . Then ϕm(x) ∈ V for some m ∈ Z. There exists
k ∈ Z s.t. ϕk+m(x) ∈ U. Hence

ϕm(x) ∈ ϕ−k(U) ∩ V .

I Countable base
{
Un| n ∈ N

}
. Consider

Gn :=
⋃
k∈Z

Φk(Un)

Gn is dense in X . By Baire Category Theorem
⋂

n∈N Gn is
nonempty, dense and every point has dense forward orbit.



Minimality

Definition
(X ;ϕ) is called minimal if there are no nontrivial closed
Φ-bi-invariant sets in X .
i.e. A ⊂ X closed and ϕ−1(A) = A⇒ A = ∅ or A = X .



Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors



C*-dynamical system

Definition
A C*-dynamical system is a triple (A,G , α) with a group G ,
unital C*-algebra A and a group action α : G → Aut(A).
We just use G = Z so write (A,T ) for T ∈ Aut(A), as the group
action is completely determined by α(1).



From dynamical systems to C*-dynamical systems

How to get from topological dynamical systems (X ;ϕ) to
C*-dynamical systems?
Obtain action on A = C (X ):

Tt(f )(x) = (t · f )(x) = f (ϕ−t(x))



C*-dynamical systems

Definition
(A,T ) and (B, S) are conjugate if there exist group isomorphism
f : Z→ Z and *-isomorphism φ : A→ B s.t.

S f (t)(φ(a)) = φ(T t(a)).

(A,T ) with commutative, unital C*-algebra A conjugate to
(C (X ), T̃ ) where T̃ (f ) = f (T̃−1(x)) is induced action on C(X).



The three worlds



Inner actions

Definition
A group action of Z on A is inner if there is a group
homomorphism U : Z→ U(A) s.t.

αt(a) = utau
∗
t ∀t ∈ Z, a ∈ A

.
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Crossed products
Covariant representation

Definition
A covariant representation of (A,T ) consists of:

I unital *-representation π : A→ B(H)

I unitary representation u : Z→ U(H) s.t.

π(αt(a)) = utπ(a)u∗t ∀a ∈ A, t ∈ Z .



Convolution algebra

Cc(Z,A) =
{
f : Z→ A|f (t) 6= 0 for finitely many t ∈ Z

}
(f ∗ g)(t) =

∑
s∈Z

f (s)s · g(s−1t)

f ∗(t) = t · f (t−1)∗

becomes *-algebra.



Crossed product

(A,T ) C*-dynamical system. The reduced crossed product
Aor Z is C*-algebra with dense subset Cc(Z,A) having universal
property:
Given (π,U), there exists unique unital *-homomorphism
π o U : Aor Z→ B(H) s.t.

(π o U) ◦ iA = π, (π o U) ◦ iZ = U.
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Some intuition

An attractor of an action (X , ϕ) is some set of points in the phase
space, X , to which the system tends as ‘time’ passes on.

I Thermal equilibrium in an isolated heat system.

I Stillness of surface in an isolated fluid system.

I {0} in N y D : ϕ(z) = z
2 .



Various notions of attractors

Let (X , ϕ) be a topological dynamical system. A closed invariant
set ∅ 6= M ⊂ X is called

I Nilpotent if there is some n ∈ N such that ϕn(X ) ⊂ M.

I Uniformly attractive if for any open U ⊃ M, there exists
n ∈ N such that ϕn(X ) ⊂ U.

I Pointwise attractive if for any x ∈ X and any open U ⊃ M,
there exists n ∈ N such that ϕn(x) ∈ U.

Clearly, implications flow top to bottom.



Translation to Koopmanism

The map ϕ : X → X induces a map
T : C (X )→ C (X ) : f 7→ f ◦ ϕ.
Invariant closed sets in X correspond to
invariant closed ideals in C (X ) via

M 7→ IM := {f ∈ C (X ) : f |M ≡ 0}

and
I 7→ MI :=

⋂
f ∈I

f −1({0})

.
We can characterize the various notions of attractivity by the
behaviour of T on ideals.



Nilpotency

Theorem
Let (X , ϕ) be a topological dynamical system, and ∅ 6= M ⊂ X a
closed subset. M is nilpotent if and only if the Koopman operator
T restricted to the ideal IM is nilpotent.

Proof.
I If M is nilpotent

I Take n ∈ N such that ϕn(X ) ⊂ M
I Then T n(f )(x) = f (ϕn(x)) ∈ f (M) = {0}

I If M is not nilpotent
I Take n ∈ N arbitrarily
I Get x ∈ X such that ϕn(x) 6∈ M
I By Urysohn’s lemma, find f ∈ IM such that

1 = f (ϕn(x)) = T n(f )(x)



Uniform attractivity

Theorem
Let (X , ϕ) be a topological dynamical system, and ∅ 6= M ⊂ X a
closed subset. M is uniformly attractive if and only if for every
f ∈ IM we have limn→∞ ‖T n(f )‖∞ = 0.

Proof.
I If M is uniformly attractive

I Take f ∈ IM and ε > 0 arbitrarily
I [f < ε] := {x ∈ X : |f (x)| < ε} is a neighbourhood of M
I Take n ∈ N such that ϕn(X ) ⊂ [f < ε]
I ‖T n(f )‖∞ = supx∈X |f (ϕn(x))| ≤ supx∈[f<ε] |f (x)| ≤ ε

I If limn→∞ ‖T n(f )‖∞ = 0 for all f ∈ I / C (X )
I Take a neighbourhood U ⊃ MI

I By Urysohn’s lemma, we find f ∈ I such that [f < 1] ⊂ U
I Take n ∈ N such that ‖T n(f )‖∞ < 1
I For all x ∈ X , we have |f (ϕn(x))| < 1, hence

ϕn(x) ∈ [f < 1] ⊂ U



Pointwise attractivity

Theorem
Let (X , ϕ) be a topological dynamical system, and ∅ 6= M ⊂ X a
closed subset. M is uniformly attractive if and only if for every
f ∈ IM and ψ ∈ C (X )′ we have limn→∞ ψ(T n(f )) = 0.

Proof.
Almost identical to uniform attractivity
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Goal & Overview

Completely classify minimal dynamical systems that are “spectrally discrete”.

• Representatives for isomorphism classes: “minimal group rotations”. 

• Invariant X, 𝜙 ↦ Γ 𝑋, 𝜙 : “point spectrum of Koopman operator”.

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations

Halmos-Von-Neumann



Koopman Operator

𝑋 compact Hausdorff space, 𝜙: 𝑋 → 𝑋 homeomorphism

The Koopman operator of (𝑋, 𝜙) is:

𝑇𝜙: 𝐶 𝑋 → 𝐶 𝑋 , 𝑇𝜙𝑓 ≔ 𝑓 ∘ 𝜙.

Note: 𝑇𝜙 is a ∗-automorphism of 𝐶(𝑋).

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations

Halmos-Von-Neumann



Point Spectra

𝐸 Banach space, 𝑇: 𝐸 → 𝐸 bounded operator

𝜆 ∈ ℂ is an eigenvalue of 𝑇 if:

∃ 0 ≠ 𝑓 ∈ 𝐸 with 𝑇𝑓 = 𝜆𝑓.

The point spectrum of 𝑇 is:

𝜎p(𝑇) ≔ {eigenvalues of 𝑇} ⊂ ℂ.

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations

Halmos-Von-Neumann



Point Spectrum of Koopman Operator

Lemma:

If (𝑋, 𝜙) is minimal, then 𝜎p(𝑇𝜙) is a subgroup of 𝕋.

Sketch of proof:

𝑇𝜙 unital ⇒ 𝜎p(𝑇𝜙) non-empty

𝜆 ∈ 𝜎p(𝑇𝜙) ⇒ ∃ 𝑓 ≠ 0 with 𝑇𝜙𝑓 = 𝜆𝑓

⇒ |𝜆| ⋅ ||𝑓|| = ||𝜆𝑓|| = ||𝑇𝜙𝑓|| = ||𝑓||

⇒ 𝜆 ∈ 𝕋

(𝑋, 𝜙) minimal ⇒ 𝜎p(𝑇𝜙) closed under products and inverses [proof omitted]

Koopman operator
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Group rotations

Halmos-Von-Neumann



Spectrally Discrete Systems

𝑋 compact Hausdorff space, 𝜙:𝑋 → 𝑋 homeomorphism

0 ≠ 𝑓 ∈ 𝐶(𝑋) is an eigenfunction of 𝑇𝜙 if:

∃ 𝜆 ∈ 𝜎p(𝑇𝜙) with 𝑇𝜙𝑓 = 𝜆𝑓.

(𝑋, 𝜙) is spectrally discrete if:

𝐶 𝑋 = span {eigenfunctions of 𝑇𝜙}.

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations
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Important Example: Group Rotations

𝐺 compact Hausdorff group, 𝑎 ∈ 𝐺

The rotation by 𝑎 on 𝐺 is:

𝜌𝑎: 𝐺 → 𝐺, 𝜌𝑎(𝑔) ≔ 𝑎𝑔.

Lemma:

The system (𝐺, 𝜌𝑎) is minimal if and only if 𝐺 = {𝑎𝑘 ∶ 𝑘 ∈ ℤ}.

Corollary:

If (𝐺, 𝜌𝑎) is minimal, then 𝐺 is abelian.

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations
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Are Group Rotations Spectrally Discrete?

Lemma:
If (G, 𝜌𝑎) is minimal, then (𝐺, 𝜌𝑎) is spectrally discrete.

Sketch of proof:

Pontryagin dual: 𝐺∗ ≔ {continuous homomorphisms 𝐺 → 𝕋} ⊂ 𝐶(𝐺)

𝛾 ∈ 𝐺∗ ⇒ ∀ 𝑔 ∈ 𝐺 one has (𝑇𝜌𝑎𝛾) 𝑔 = 𝛾 ∘ 𝜌𝑎 𝑔 = 𝛾 𝑎𝑔 = 𝛾 𝑎 𝛾 𝑔

⇒ 𝑇𝜌𝑎𝛾 = 𝛾 𝑎 𝛾

⇒ 𝐺∗ ⊂ {eigenfunctions of 𝑇𝜌𝑎}

𝐺 abelian ⇒ 𝐶 𝐺 = span 𝐺∗ by Pontryagin duality and Stone-Weierstrass [proof omitted]

⇒ 𝐶 𝐺 = span 𝐺∗⊂ span {eigenfunctions of 𝑇𝜌𝑎} ⊂ 𝐶(𝐺)

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations
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Halmos-Von-Neumann

Theorem:

• Every MSD system is isomorphic to a minimal group rotation.

• Two MSD systems 𝑋1, 𝜙1 and (𝑋2, 𝜙2) are isomorphic if and only if

𝜎p(𝑇𝜙1
) = 𝜎p(𝑇𝜙2

).

• If Γ is a subgroup of 𝕋, then there is an MSD system 𝑋, 𝜙 such that

Γ = 𝜎p(𝑇𝜙).

Koopman operator
Point spectra

Spectrally discrete systems
Group rotations

Halmos-Von-Neumann

MSD = Minimal & 
Spectrally Discrete 
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Topological dynamical system
(X,ϕ)

compact metrizable space homeomorphism

action
{
Z→ Homeo(X)
n 7→ ϕn

(C(X),φ)

continuous functions automorphism: ϕ(f) = f ◦ ϕ−1

action
{
Z→ Aut(C(X))
n 7→ ϕn
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Crossed product C∗-algebra

Given (X,ϕ),
C(X)

C(X) oϕ Z

Z

Z is amenable ⇒ C(X) oϕ,f Z ∼= C(X) oϕ,r Z,

so we write the crossed product: C(X) oϕ Z .
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Goal

(X,ϕ) C(X) oϕ Z

{periodic points} ←→ {finite dimensional
irreducible representations}

minimal ←→ simple
⇓ ⇓

topologically transitive ←→ prime
⇓ ⇓

topologically free ←→ ideal intersection property
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Minimality, transitivity and freeness

Recall:
• (X,ϕ) is minimal if for every x ∈ X the orbit of x is dense:

{ϕn(x) : n ∈ Z} = X.

• (X,ϕ) is topologically transitive if there exists x ∈ X the orbit of x is
dense.

• (X,ϕ) is topologically transitive if and only if for any two open
nonempty sets U and V there is a n ∈ Z, such that ϕn(U) ∩ V 6= ∅.
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Minimality, transitivity and freeness

Definition
(X,ϕ) is topologically free if the set of aperiodic points is dense in X:

{x ∈ X : ϕn(x) 6= x} = X.

It is clear that a topologically transitive system (with infinite X) is
topologically free.

Periodic points actually determine finite representations on the crossed
product:

Theorem
Each periodic point in (X,ϕ) induces a finite dimensional irreducible
representation of C(X) oϕ Z that is unique up to unitary equivalence.
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Minimal systems vs simple crossed products

Example (Irrational rotation on the circle)
Let
• X = T,
• ϕn(z) = e2πinϑz with irrational ϑ.

As we have shown during the online lectures:

Theorem
If X is infinite, (X,ϕ) is minimal if and only if C(X) oϕ Z is simple.

Then since we know that (T,ϕ) is minimal, it follows that C(T) oϕ Z = Aϑ
is simple for every irrational ϑ.
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Topologically free systems vs ideal intersection
property

Example (Irrational rotation on the disk)

• X = D,
• ϕn(z) = e2πinϑz for an irrational ϑ.

(D,ϕ) is topologically free since D =
⋃
r∈[0,1] rT.

Definition
We say that C(X) oϕ Z has the ideal intersection property if for each closed
ideal I ⊆ C(X) oϕ Z,

I 6= {0} ⇔ I ∩ C(X) 6= {0}.

Note that “⇐” is always true!
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Theorem
(X,ϕ) is topologically free if and only if C(X) oϕ Z has the ideal
intersection property.

“⇒”
Towards a contradiction, suppose I ∩ C(X) = {0}.

E : C(X) oϕ Z −→ C(X) faithful

Since I 6= {0}, there is a ∈ I with E(a) 6= 0 ⇒ E(a)(x) 6= 0 for some
x ∈ X. By topological freeness we can choose x to be aperiodic.
Result: if x is aperiodic, evx : C(X)→ C, f 7→ f(x) has a unique pure state
extension to C(X) oϕ Z.

C(X) oϕ Z C(X)oϕZ
I

C(X) C

q

E

evx

∃ψ

but ψ ◦ q(a) = 0 6= evx ◦E(a), a contradiction.
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Topological transitive systems vs prime crossed
products

Example (Bernoulli shift)

• X = {0, 1}Z,
• ϕ((xk)k∈Z) = (xk+1)k∈Z.

The sequence . . . | 0 | 1 | 0 0 | 0 1 | 1 0 | 1 1 | 0 0 0 | 0 0 1 | . . . has
dense orbit and ({0, 1}Z,ϕ) is topologically transitive.

Definition
A C∗-algebra is prime if, for any two ideals I and J ,

I ∩ J = {0} ⇒ I = {0} ∨ J = {0}.

E. Lanckriet, M. Pagliero (KU Leuven) Topological dynamics vs crossed products June 7, 2021 15/18



Theorem
(X,ϕ) is an infinite topologically transitive dynamical system if and only if
C(X) oϕ Z is a prime C∗-algebra.

“⇒”
Recall that topological transitivity is equivalent to: For all open U ,V ⊂ X,

there is n ∈ Z, ϕn(U) ∩ V 6= ∅ if inv.−→ U ∩ V 6= ∅.

Let I, J be ideals in C(X) oϕ Z with I ∩ J = {0}.
Towards a contradiction, assume I 6= {0} and J 6= {0}.Since topological
transitivity implies topological freeness,{

C(X) ∩ I 6= {0}
C(X) ∩ J 6= {0}

{
C(X) ∩ I = {f ∈ C(X) : f |E = 0}
C(X) ∩ J = {f ∈ C(X) : f |F = 0}

Ec and F c are invariant open subsets of X, so

Ec ∩ F c 6= ∅ ⇒ E ∪ F 6= X ⇒ I ∩ J 6= {0}, a contradiction.
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Thank you for your attention!

Questions?



Minimal C∗-dynamical systems

Let A be a generic C∗-algebra, G a discrete group, α : G→ Aut(A) an
action:

(A,α) is called C∗-dynamical system.

Definition
(A,α) is minimal if A has no non-trivial invariant ideals.

Theorem (Archbold–Spielberg 1994)
If (A,α) is minimal and topologically free (on the spectrum Â) then
Aoα,r G is simple.



Topological freeness

α is an action of a discrete group G on C(X),

Theorem (Kawamura–Tomiyama 1990)
If G is amenable,

(C(X),α) is
topologically free

⇐⇒ C(X) oα G has the ideal
intersection property.

Theorem (Archbold–Spielberg 1993)
Let q : C(X) oσ,f G→ C(X) oσ,r G be the canonical surjection.

(C(X),α) is
topologically free

⇐⇒ I / C(X) oσ,f G, I ∩ C(X) = {0}
⇒ q(I) = {0}.

For non-abelian algebras does not hold:
For K and G = Z⊕Z there is an action for which “6⇐”



Invariant ideals

Let G be a discrete group. The map

{ideals in Aoα,r G} → { invariant ideals in A}
I 7→ I ∩A

is always surjective. When it is also injective we say that A separates ideals
in Aoα,r G.

Topological freeness is not enough to ensure that A separates ideals in
Aoα,r G.

It is believed that essential freeness is enough (Renault), with some more
assumptions it is (Sierakovski).


