Topological dynamical systems

Niklas Handke Lukas Rollier

June 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors

Topological dynamical system

A topological dynamical system is a pair $(X; \varphi)$, with nonempty compact metrizable space X and $\varphi : X \to X$ continuous. It is called **invertible**, if φ is invertible i.e. a homeomorphism.

Finite state space

Finite set $X := \{0, ..., d-1\}$ with discrete topology. Every map $\varphi : X \to X$ is continuous. $(X; \varphi)$ invertible if and only if φ permutation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A **topological group** is a group (G, \cdot) with topology s.t. inversion and multiplication are continuous.

Compact topological group G with left rotation by $a \in G$

$$\varphi_{a}: G \to G, \ \varphi_{a}(g) := a \cdot g,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

forms invertible topological system (G; φ_a). i.e. \mathbb{T} compact Abelian group.

Homomorphisms of topological dynamical systems

A **homomorphism** between topological systems $(X_1; \varphi_1), (X_2; \varphi_2)$ is continuous map $\psi: X_1 \to X_2$ such that $\psi \circ \varphi_1 = \varphi_2 \circ \psi$, i.e., the diagram

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is commutative. An **isomorphism** if ψ is bijective.

If we have a look at topological dynamical systems we are interested in questions like:

How does φ mixes the points of X as it is applied over and over again?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Will a point return to its original position?

- Will a point come arbitrarily close to any other point of X?
- Will a certain point x never leave a certain region?

Topological Transitivity Orbits

Definition

For an invertible system the **orbit** of $x \in X$ is defined as

$$orb(x) := \{ \varphi^n(x) : n \in \mathbb{Z} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $x \in X$ is **transitive** if orb(x) is dense in X. An invertible system $(X; \varphi)$ is **transitive** if there exists one transitive point.

Topological Transitivity Shift algebra

Consider $(W; \tau)$ with

$$W := \left\{0,1
ight\}^{\mathbb{Z}}$$
 with $au((x_n)_{n\in\mathbb{Z}}) = (x_{n+1})_{n\in\mathbb{Z}}$
 $x = \dots |0|1|01|10|11|000|001|010|\dots$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 $\forall U \subset W$ open $\exists n \in \mathbb{Z}$ s.t. $\tau^n(x) \in U$ by definition of product topology.

Topological Transitivity

Proposition

Let $(X; \varphi)$ be an invertible topological system. Then the following assertions are equivalent:

• $(X; \varphi)$ is topologically transitive, i.e., there is a point $x \in X$ with dense orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For all $\emptyset \neq U$, V open sets in X there is $n \in \mathbb{Z}$ with $\varphi^n(U) \cap V \neq \emptyset$.

Topological Transitivity

Proof.

Suppose x ∈ X has dense orbit. Let U, V be nonempty open subsets of X. Then φ^m(x) ∈ V for some m ∈ Z. There exists k ∈ Z s.t. φ^{k+m}(x) ∈ U. Hence

$$\varphi^m(x)\in\varphi^{-k}(U)\cap V.$$

• Countable base
$$\Big\{ U_n | n \in \mathbb{N} \Big\}$$
. Consider $G_n := \bigcup_{k \in \mathbb{Z}} \Phi^k(U_n)$

 G_n is dense in X. By Baire Category Theorem $\bigcap_{n \in \mathbb{N}} G_n$ is nonempty, dense and every point has dense forward orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Minimality

Definition

 $(X; \varphi)$ is called **minimal** if there are no nontrivial closed Φ -bi-invariant sets in X.

i.e. $A \subset X$ closed and $\varphi^{-1}(A) = A \Rightarrow A = \emptyset$ or A = X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors

C*-dynamical system

Definition

A **C*-dynamical system** is a triple (A, G, α) with a group G, unital C*-algebra A and a group action $\alpha : G \to Aut(A)$. We just use $G = \mathbb{Z}$ so write (A, T) for $T \in Aut(A)$, as the group action is completely determined by $\alpha(1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From dynamical systems to C*-dynamical systems

How to get from topological dynamical systems $(X; \varphi)$ to C*-dynamical systems? Obtain action on A = C(X):

$$T_t(f)(x) = (t \cdot f)(x) = f(\varphi^{-t}(x))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C*-dynamical systems

Definition

(A, T) and (B, S) are **conjugate** if there exist group isomorphism $f : \mathbb{Z} \to \mathbb{Z}$ and *-isomorphism $\phi : A \to B$ s.t.

$$S^{f(t)}(\phi(a)) = \phi(T^t(a)).$$

(A, T) with commutative, unital C*-algebra A conjugate to $(C(X), \tilde{T})$ where $\tilde{T}(f) = f(\tilde{T}^{-1}(x))$ is induced action on C(X).

▲□▶ ▲冊▶ ▲≣▶ ▲≣▶ = 差 = のへで

The three worlds

 (X, φ) $(C(X), T_{\varphi}) \longrightarrow C(X) \rtimes_{T_{\varphi}} \mathbb{Z}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Inner actions

Definition

٠

A group action of \mathbb{Z} on A is **inner** if there is a group homomorphism $U : \mathbb{Z} \to U(A)$ s.t.

$$\alpha^t(a) = u_t a u_t^* \ \forall t \in \mathbb{Z}, a \in A$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors

Crossed products

Covariant representation

Definition

A covariant representation of (A, T) consists of:

- unital *-representation $\pi : A \rightarrow B(H)$
- unitary representation $u : \mathbb{Z} \to U(H)$ s.t.

$$\pi(\alpha^t(a)) = u_t \pi(a) u_t^* \,\, \forall a \in A, \,\, t \in \mathbb{Z} \,.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convolution algebra

$$egin{aligned} \mathcal{C}_c(\mathbb{Z},\mathcal{A}) &= \left\{f:\mathbb{Z} o \mathcal{A} | f(t)
eq 0 ext{ for finitely many } t \in \mathbb{Z}
ight\} \ &(f*g)(t) = \sum_{s \in \mathbb{Z}} f(s) s \cdot g(s^{-1}t) \ &f^*(t) = t \cdot f(t^{-1})^* \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

becomes *-algebra.

(A, T) C*-dynamical system. The **reduced crossed product** $A \rtimes_r \mathbb{Z}$ is C*-algebra with dense subset $C_c(\mathbb{Z}, A)$ having universal property:

Given (π, U) , there exists unique unital *-homomorphism $\pi \rtimes U : A \rtimes_r \mathbb{Z} \to B(H)$ s.t.

$$(\pi \rtimes U) \circ i_A = \pi, \ (\pi \rtimes U) \circ i_{\mathbb{Z}} = U.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table of Contents

Topological dynamical systems

C*-dynamical systems

Crossed Products

Attractors

Some intuition

An attractor of an action (X, φ) is some set of points in the phase space, X, to which the system tends as 'time' passes on.

- Thermal equilibrium in an isolated heat system.
- Stillness of surface in an isolated fluid system.

•
$$\{0\}$$
 in $\mathbb{N} \curvearrowright \mathbb{D} : \varphi(z) = \frac{z}{2}$.

Various notions of attractors

Let (X, φ) be a topological dynamical system. A closed invariant set $\emptyset \neq M \subset X$ is called

- ▶ *Nilpotent* if there is some $n \in \mathbb{N}$ such that $\varphi^n(X) \subset M$.
- Uniformly attractive if for any open U ⊃ M, there exists n ∈ N such that φⁿ(X) ⊂ U.
- Pointwise attractive if for any x ∈ X and any open U ⊃ M, there exists n ∈ N such that φⁿ(x) ∈ U.

Clearly, implications flow top to bottom.

Translation to Koopmanism

The map $\varphi : X \to X$ induces a map $T : C(X) \to C(X) : f \mapsto f \circ \varphi$. Invariant closed sets in X correspond to invariant closed ideals in C(X) via

(日) (四) (日) (日) (日)

$$M \mapsto I_M := \{f \in C(X) : f|_M \equiv 0\}$$

and

$$I\mapsto M_I:=\bigcap_{f\in I}f^{-1}(\{0\})$$

We can characterize the various notions of attractivity by the behaviour of T on ideals.

Nilpotency

Theorem

Let (X, φ) be a topological dynamical system, and $\emptyset \neq M \subset X$ a closed subset. M is nilpotent if and only if the Koopman operator T restricted to the ideal I_M is nilpotent.

Proof.

- If M is nilpotent
 - Take $n \in \mathbb{N}$ such that $\varphi^n(X) \subset M$
 - Then $T^n(f)(x) = f(\varphi^n(x)) \in f(M) = \{0\}$
- If M is not nilpotent
 - ▶ Take $n \in \mathbb{N}$ arbitrarily
 - Get $x \in X$ such that $\varphi^n(x) \notin M$
 - ▶ By Urysohn's lemma, find $f \in I_M$ such that $1 = f(\varphi^n(x)) = T^n(f)(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Uniform attractivity

Theorem

Let (X, φ) be a topological dynamical system, and $\emptyset \neq M \subset X$ a closed subset. M is uniformly attractive if and only if for every $f \in I_M$ we have $\lim_{n\to\infty} ||T^n(f)||_{\infty} = 0$.

Proof.

► If *M* is uniformly attractive

Take
$$f \in I_M$$
 and $\epsilon > 0$ arbitrarily

•
$$[f < \epsilon] := \{x \in X : |f(x)| < \epsilon\}$$
 is a neighbourhood of M

• Take
$$n \in \mathbb{N}$$
 such that $arphi^n(X) \subset [f < \epsilon]$

$$||T^{n}(f)||_{\infty} = \sup_{x \in X} |f(\varphi^{n}(x))| \leq \sup_{x \in [f < \epsilon]} |f(x)| \leq \epsilon$$

• If $\lim_{n\to\infty} \|T^n(f)\|_{\infty} = 0$ for all $f \in I \triangleleft C(X)$

- Take a neighbourhood $U \supset M_I$
- ▶ By Urysohn's lemma, we find $f \in I$ such that $[f < 1] \subset U$

- ▶ Take $n \in \mathbb{N}$ such that $\|T^n(f)\|_{\infty} < 1$
- For all $x \in X$, we have $|f(\varphi^n(x))| < 1$, hence $\varphi^n(x) \in [f < 1] \subset U$

Pointwise attractivity

Theorem

Let (X, φ) be a topological dynamical system, and $\emptyset \neq M \subset X$ a closed subset. M is uniformly attractive if and only if for every $f \in I_M$ and $\psi \in C(X)'$ we have $\lim_{n\to\infty} \psi(T^n(f)) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

Almost identical to uniform attractivity

Topological Halmos-Von-Neumann Theorem

ISem24 — Project phase — Classical dynamics versus C*-dynamics Presenters: Patrick Hermle & Jens de Vries Supervisors: Henrik Kreidler & Bálint Farkas

Goal & Overview

Completely classify minimal dynamical systems that are "spectrally discrete".

- Representatives for isomorphism classes: "minimal group rotations".
- Invariant $(X, \phi) \mapsto \Gamma(X, \phi)$: "point spectrum of Koopman operator".

Koopman operator

Point spectra Spectrally discrete systems Group rotations Halmos-Von-Neumann

Koopman Operator

X compact Hausdorff space, $\phi: X \to X$ homeomorphism

The Koopman operator of (X, ϕ) is: $T_{\phi}: C(X) \to C(X),$

 $T_{\phi}f \coloneqq f \circ \phi.$

Note: T_{ϕ} is a *-automorphism of C(X).

Point Spectra

E Banach space, $T: E \rightarrow E$ bounded operator

 $\lambda \in \mathbb{C}$ is an eigenvalue of T if:

 $\exists 0 \neq f \in E \text{ with } Tf = \lambda f.$

The point spectrum of *T* is: $\sigma_{\mathbf{p}}(T) \coloneqq \{\text{eigenvalues of } T\} \subset \mathbb{C}.$

Point Spectrum of Koopman Operator

Lemma:

If (X, ϕ) is minimal, then $\sigma_p(T_\phi)$ is a subgroup of \mathbb{T} .

Sketch of proof:

 $\lambda \in$

 T_{ϕ} unital $\Rightarrow \sigma_{p}(T_{\phi})$ non-empty

$\sigma_{\rm p}(T_{\phi})$	\Rightarrow	$\exists f \neq 0 \text{ with } T_{\phi}f = \lambda f$
	\Rightarrow	$ \lambda \cdot f = \lambda f = T_{\phi}f = f $
	\Rightarrow	$\lambda \in \mathbb{T}$

 (X, ϕ) minimal $\Rightarrow \sigma_{p}(T_{\phi})$ closed under products and inverses [proof omitted]

Spectrally Discrete Systems

X compact Hausdorff space, $\phi: X \to X$ homeomorphism

 $0 \neq f \in C(X)$ is an eigenfunction of T_{ϕ} if: $\exists \lambda \in \sigma_{p}(T_{\phi})$ with $T_{\phi}f = \lambda f$.

 (X, ϕ) is spectrally discrete if: $C(X) = \overline{\text{span}}$ {eigenfunctions of T_{ϕ} }.

Koopman operator Point spectra Spectrally discrete systems Group rotations

Halmos-Von-Neumann

Important Example: Group Rotations

G compact Hausdorff group, $a \in G$

The rotation by *a* on *G* is:

$$\rho_a: G \to G, \qquad \qquad \rho_a(g) \coloneqq ag.$$

Lemma:

The system (G, ρ_a) is minimal if and only if $G = \{a^k : k \in \mathbb{Z}\}$.

Corollary:

If (G, ρ_a) is minimal, then G is abelian.

Are Group Rotations Spectrally Discrete?

Lemma:

If (G, ρ_a) is minimal, then (G, ρ_a) is spectrally discrete.

Sketch of proof:

Pontryagin dual: $G^* \coloneqq \{\text{continuous homomorphisms } G \to \mathbb{T} \} \subset C(G)$

$\gamma \in G^*$	\Rightarrow	$\forall g \in G \text{ one has } (T_{\rho_a} \gamma)(g) = (\gamma \circ \rho_a)(g) = \gamma(ag) = \gamma(a)\gamma(g)$
	\Rightarrow	$T_{\rho_a}\gamma = \gamma(a)\gamma$
	\Rightarrow	$G^* \subset \{\text{eigenfunctions of } T_{\rho_a}\}$
<i>G</i> abelian =	\Rightarrow	$C(G) = \overline{\text{span}} G^*$ by Pontryagin duality and Stone-Weierstrass [proof omitted]
	\Rightarrow	$C(G) = \overline{\text{span}} \ G^* \subset \overline{\text{span}} \ \{\text{eigenfunctions of } T_{\rho_a}\} \subset C(G)$

Halmos-Von-Neumann

MSD = Minimal & Spectrally Discrete \searrow

Theorem:

- Every MSD system is isomorphic to a minimal group rotation.
- Two MSD systems (X_1, ϕ_1) and (X_2, ϕ_2) are isomorphic if and only if $\sigma_p(T_{\phi_1}) = \sigma_p(T_{\phi_2}).$
- If Γ is a subgroup of \mathbb{T} , then there is an MSD system (X, ϕ) such that $\Gamma = \sigma_p(T_\phi)$.

The top. Halmos-von deumann theorem

1. Sketch of the proof

1.1 constr. (Uniform enveloping Ellis semigroup) Let (X; p) be a TDS. Jhen $E(X,\phi) := \{\phi^n : n \in \mathbb{Z}\} C(X,X)$ is a top remigroup. $1.2 \frac{Prop}{2}$: Let $(X_j\phi)$ be a TDS, then t.f. a.e. (i) $(X; \phi)$ is spectrally discrete. (ii) $E(X, \phi)$ is a corport top group. $(\chi, \phi) \sim D E(\chi, \phi) \sim D (E(\chi, \phi), S_{\rho})$ OHOV

1.3 <u>From.</u> ($H \vee N$ "Representation"): Set ($X_{3}\phi$) be a min. pplc. discrete \implies ($X_{3}\phi$) \cong ($E(X_{4}\phi), S_{\phi}$). ($X_{3}\phi$) \cong ($E(X_{4}\phi), S_{\phi}$). Proof: Fixe $X_{0} \in X$. Then ϕ : $E(X, \phi) \longrightarrow X_{1}$ $\mathcal{O} \mapsto \mathcal{O}(X_{0})$ is a homoemorphism.

1.3 Thm. (HvN, Uniquenen)
Sat (X_i) and (X₂, d₂) be two min.
pec. discorde TDS's. Then:

$$(X_{i}, d_{i}) \cong (X_{2i}, d_{2}) \iff \operatorname{Sp}(\operatorname{T}_{d_{i}}) = \operatorname{Op}(\operatorname{T}_{d_{2}}).$$

Proof: $_{\mu} \Longrightarrow$: " clear.
 $_{\mu} \rightleftharpoons$: " If $\operatorname{Sp}(\operatorname{T}_{d_{2}}) = \operatorname{Sp}(\operatorname{T}_{d_{2}}) =: \Gamma \subset T$
 $=$) Γ^{*} comp. top. group gen. by id p: Γ_{2} ?
 $\sim_{D} (\Gamma^{*}, \operatorname{S}_{id_{P}})$ min. + spedr. disarde
Enough to show: $=$ $(X_{2i}, d_{2})_{2}$

$$\begin{array}{l} (X_{2}, \varphi_{2}) \\ = \\ (X_{1}, \varphi_{1}) \\ (X_{1}, \varphi_{$$

2. Application of HVN to odometers
Recall: Odometer is a rotation system
on the a-adic intergy
$$\Delta_a$$
:
 a -adic intergy Δ_a :
 a -adic intergy Δ_a :
 $\Delta_a := \prod_{i=1}^{n} \{0, ..., n_i, -1\}$ compact group
 $w.\tau.p$ to product top and the addition with carryroor
avon more: $x = (1, 0, 0, ..., 0)$. gen Δ_a as comp.
 $group$
 $\sim D$ (Δ_a, S_x^a)
 $\sim D$ (Δ_a, S_x^a)

<u>decture 11 ISEM</u>: Let $a = (n_i)_{i \in N} \subseteq N$ and $b := (m_i)_{i \in N} \subseteq N_j$ $h_{i,m_i} > 1$, then t.f.a.e:(i) $C(\Delta a) \rtimes_{S^a} \mathcal{H} \cong C(\Delta_b) \rtimes_{S^a} \mathcal{H}$ (ii) $\forall prime powers p^T$, we have: p^T divides some $n_j = n_e$ iff p^T divides rome $m_j = m_e$.

2.1. Corollary of
$$HVN$$
: (ii) =) (i).

main idea : ralculate $(\Delta_q)^*$ 2.2 Def: a-Prüfer group Set $q := (h_i)_{i \in \mathbb{N}} \subseteq \mathbb{N}$; $h_i > 1$. $C(a^{\infty}) := \left\{ e^{2\pi i \frac{e}{h_1 \cdots h_R}} : \left\{ e^{2\pi}, k \in \mathbb{N}, 0 \le l \le n_1 \cdots h_R \right\} \right\}$ 2. 3 <u>Prop</u>: $C(a^{\infty}) \cong (A_q)^{*}$ via a canonical iso. Proof of corollary 2.1: $\mathbb{T} \geq \left(\left(\begin{array}{c} \alpha^{\infty} \end{array} \right) \stackrel{\sim}{=} \left(\left(\begin{array}{c} \Delta_{\alpha} \end{array} \right) \stackrel{\times}{=} \stackrel{\sim}{=} \left(\left(\begin{array}{c} \Delta_{\alpha} \\ \alpha \end{array} \right) \stackrel{\times}{=} \stackrel{\times}{=} \left(\left(\begin{array}{c} \Delta_{\alpha} \\ \alpha \end{array} \right) \stackrel{\times}{=} \left(\begin{array}{c} \Delta_{\alpha} \\ \gamma \end{array} \right) \stackrel{}{=} \left(\begin{array}{c} \Delta_{\alpha} \\ \gamma \end{array} \right) \stackrel{\times}{=} \left(\begin{array}{c} \Delta_{\alpha} \\ \gamma \end{array} \right) \stackrel{}{=} \left(\begin{array}{c} \Delta_{\alpha} \\ \gamma \end{array} \right$ Z $q: E(\Delta_{q_1} S_{\times}^{q}) \to \Delta_{q}$ $O \mapsto O(X_{o})$ 5 (-) 5 $C(a^{\infty}) = G(Tg_{x}^{q})$ J) $(D) \longrightarrow [$ $((b^{a}) = \delta (Tg_{x}^{b})$ HVN HVN $\left(\Delta_{a}, S_{x}^{a}\right) \cong \left(\Delta_{b}, S_{x}^{b}\right)$

Topological dynamical systems and related crossed product C*-algebras 24th Internet Seminar, C*-algebras and dynamics

> Emiel Lanckriet and Matteo Pagliero KU Leuven June 7, 2021

Crossed product C*-algebra

Given (X, φ) , $\mathcal{C}(X)$ $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ \mathbb{Z}

 $\mathbb{Z} \text{ is amenable } \Rightarrow \ \mathcal{C}(X) \rtimes_{\varphi, f} \mathbb{Z} \cong \mathcal{C}(X) \rtimes_{\varphi, r} \mathbb{Z},$ so we write the crossed product: $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$. Goal

Minimality, transitivity and freeness

Recall:

• (X, φ) is minimal if for every $x \in X$ the orbit of x is dense:

 $\overline{\{\varphi^n(x):n\in\mathbb{Z}\}}=X.$

- (X, φ) is topologically transitive if there exists $x \in X$ the orbit of x is dense.
- (X, φ) is topologically transitive if and only if for any two open nonempty sets U and V there is a $n \in \mathbb{Z}$, such that $\varphi^n(U) \cap V \neq \emptyset$.

Minimality, transitivity and freeness

Definition

 (X,φ) is topologically free if the set of aperiodic points is dense in X :

$$\overline{\{x\in X:\varphi^n(x)\neq x\}}=X.$$

It is clear that a topologically transitive system (with infinite X) is topologically free.

Periodic points actually determine finite representations on the crossed product:

Theorem

Each periodic point in (X, φ) induces a finite dimensional irreducible representation of $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ that is unique up to unitary equivalence.

Goal

Goal

Minimal systems vs simple crossed products

Example (Irrational rotation on the circle)

Let

- $X = \mathbb{T}$,
- $\varphi^n(z) = e^{2\pi i n \vartheta} z$ with irrational ϑ .

As we have shown during the online lectures:

Theorem

If X is infinite, (X, φ) is minimal if and only if $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ is simple.

Then since we know that (\mathbb{T}, φ) is minimal, it follows that $\mathcal{C}(\mathbb{T}) \rtimes_{\varphi} \mathbb{Z} = A_{\vartheta}$ is simple for every irrational ϑ .

Goal

Goal

Topologically free systems vs ideal intersection property

Example (Irrational rotation on the disk)

•
$$X = \overline{\mathbb{D}}$$
,

•
$$\varphi^n(z) = e^{2\pi i n \vartheta} z$$
 for an irrational ϑ .

 $(\overline{\mathbb{D}},\varphi)$ is topologically free since $\overline{\mathbb{D}}=\bigcup_{r\in[0,1]}r\,\mathbb{T}.$

Definition

We say that $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ has the ideal intersection property if for each closed ideal $I \subseteq \mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$,

$$I \neq \{0\} \iff I \cap \mathcal{C}(X) \neq \{0\}.$$

Note that " \Leftarrow " is always true!

Theorem

 (X, φ) is topologically free if and only if $C(X) \rtimes_{\varphi} \mathbb{Z}$ has the ideal intersection property.

"⇒"

Towards a contradiction, suppose $I \cap C(X) = \{0\}$.

$$E: \mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z} \longrightarrow \mathcal{C}(X)$$
 faithful

Since $I \neq \{0\}$, there is $a \in I$ with $E(a) \neq 0 \Rightarrow E(a)(x) \neq 0$ for some $x \in X$. By topological freeness we can choose x to be aperiodic. Result: if x is aperiodic, $ev_x : C(X) \to \mathbb{C}, f \mapsto f(x)$ has a unique pure state extension to $C(X) \rtimes_{\varphi} \mathbb{Z}$.

$$\begin{array}{ccc} \mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z} & \stackrel{q}{\longrightarrow} & \frac{\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}}{I} \\ E & & & \downarrow \\ E & & & \downarrow \\ \mathcal{C}(X) & \stackrel{ev_x}{\longrightarrow} & \mathbb{C} \end{array}$$

but $\psi \circ q(a) = 0 \neq \operatorname{ev}_x \circ E(a)$, a contradiction.

Goal

Goal

Topological transitive systems vs prime crossed products

Example (Bernoulli shift)

- $X = \{0, 1\}^{\mathbb{Z}}$,
- $\varphi((x_k)_{k\in\mathbb{Z}}) = (x_{k+1})_{k\in\mathbb{Z}}.$

The sequence $\dots |0| 1 |00| 0 1 |10| 1 1 |000| 0 0 1 |\dots$ has dense orbit and $(\{0,1\}^{\mathbb{Z}},\varphi)$ is topologically transitive.

Definition

A C^* -algebra is prime if, for any two ideals I and J,

$$I \cap J = \{0\} \ \Rightarrow \ I = \{0\} \lor J = \{0\}.$$

Theorem

 (X, φ) is an infinite topologically transitive dynamical system if and only if $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ is a prime C^* -algebra.

Recall that topological transitivity is equivalent to: For all open $U, V \subset X$,

there is
$$n \in \mathbb{Z}, \ \varphi^n(U) \cap V \neq \emptyset \quad \stackrel{\text{if inv.}}{\longrightarrow} \quad U \cap V \neq \emptyset.$$

Let I, J be ideals in $\mathcal{C}(X) \rtimes_{\varphi} \mathbb{Z}$ with $I \cap J = \{0\}$. Towards a contradiction, assume $I \neq \{0\}$ and $J \neq \{0\}$.Since topological transitivity implies topological freeness,

$$\begin{cases} \mathcal{C}(X) \cap I \neq \{0\} \\ \mathcal{C}(X) \cap J \neq \{0\} \end{cases} \quad \begin{cases} \mathcal{C}(X) \cap I = \{f \in \mathcal{C}(X) : f|_E = 0\} \\ \mathcal{C}(X) \cap J = \{f \in \mathcal{C}(X) : f|_F = 0\} \end{cases}$$

 E^c and F^c are invariant open subsets of X, so

 $E^c \cap F^c \neq \emptyset \ \Rightarrow \ E \cup F \neq X \ \Rightarrow \ I \cap J \neq \{0\}, \text{ a contradiction}.$

Goal

Thank you for your attention!

Questions?

Minimal C*-dynamical systems

Let A be a generic $\mathrm{C}^*\text{-}\mathsf{algebra},\,G$ a discrete group, $\alpha:G\to\operatorname{Aut}(A)$ an action:

```
(A, \alpha) is called C*-dynamical system.
```

Definition

 (A,α) is minimal if A has no non-trivial invariant ideals.

Theorem (Archbold-Spielberg 1994)

If (A, α) is minimal and topologically free (on the spectrum \hat{A}) then $A \rtimes_{\alpha,r} G$ is simple.

Topological freeness

 α is an action of a discrete group G on $\mathcal{C}(X)\text{,}$

Theorem (Kawamura–Tomiyama 1990)

If G is amenable,

 $(\mathcal{C}(X), \alpha)$ is \iff $\mathcal{C}(X) \rtimes_{\alpha} G$ has the ideal topologically free intersection property.

Theorem (Archbold–Spielberg 1993)

Let $q : \mathcal{C}(X) \rtimes_{\sigma, f} G \to \mathcal{C}(X) \rtimes_{\sigma, r} G$ be the canonical surjection.

 $\begin{array}{lll} (\mathcal{C}(X),\alpha) \text{ is } & \Longleftrightarrow & I \triangleleft \mathcal{C}(X) \rtimes_{\sigma,f} G, \ I \cap \mathcal{C}(X) = \{0\} \\ \text{topologically free} & \Rightarrow & q(I) = \{0\}. \end{array}$

For non-abelian algebras does not hold: For \mathcal{K} and $G = \mathbb{Z} \oplus \mathbb{Z}$ there is an action for which " \notin "

Invariant ideals

Let ${\boldsymbol{G}}$ be a discrete group. The map

```
\{ \text{ideals in } A \rtimes_{\alpha,r} G \} \to \{ \text{ invariant ideals in } \mathsf{A} \}I \mapsto I \cap A
```

is always surjective. When it is also injective we say that A separates ideals in $A\rtimes_{\alpha,r}G.$

Topological freeness is not enough to ensure that A separates ideals in $A\rtimes_{\alpha,r}G.$

It is believed that essential freeness is enough (Renault), with some more assumptions it is (Sierakovski).