C*-uniqueness of group algebras

Arnab Bhattacharjee¹ Malay Mandal² Timothy Rainone³ Marco Roschkowski⁴ Ujan Chakraborty⁵ Elia Vincenzi⁶

¹ IISER Bhopal, ²CMI, ³Occidental College, ⁴University of Hagen, ⁵IISER Kolkata (MS, 2020), ⁶Tor Vergata (Uni Roma II)

ISem 24, Project 3, under supervision of Martijn Caspers, Mario Klisse, and Gerrit Vos

Outline

- Part 1, by Arnab Bhattacherjee
 - $\bullet\,$ Algebraically $\mathrm{C}^*\mbox{-unique groups: definition, (non)-example}$
 - Conditions for C*-uniqueness
- 2

Part 2, by Malay Mandal

- A Bit on Actions ...
- C*-algebra of semidirect product vs crossed product
- Part 3, by Timothy Rainone
 - Topologically free actions and ideal structure
 - A useful description of C^{*}(Z[¹/_d])
- 4

Part 4, by Marco Roschkowski

- Statement of the Theorem (Furstenberg's Approximation)
- Proof
- 5

Part 5, by Ujan Chakraborty

- Actions on the (Abelian) C* algebra vs the Spectrum
- Proof of C* uniqueness: The Main Theorem

Part 1, by Arnab Bhattacherjee

Part 2, by Malay Mandal Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty

Algebraically \mathbf{C}^* -unique groups: definition, (non)-example Conditions for \mathbf{C}^* -uniqueness

Outline

Part 1, by Arnab Bhattacherjee Algebraically C*-unique groups: definition, (non)-example Conditions for C*-uniqueness A Bit on Actions • C*-algebra of semidirect product vs crossed product Topologically free actions and ideal structure • A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$ Statement of the Theorem (Furstenberg's Approximation) Proof • Actions on the (Abelian) C* algebra vs the Spectrum Proof of C* uniqueness: The Main Theorem

Part 1, by Arnab Bhattacherjee

Part 2, by Malay Mandal Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty

Algebraically \mathbf{C}^* -unique groups: definition, (non)-example Conditions for \mathbf{C}^* -uniqueness

Algebraically C*-unique group

Definition : A group *G* is said to be algebraically C^* -unique if the group algebra $\mathbb{C}[G]$ admits a unique C^* -norm.

Examples : Finite groups are algebraically C^* -unique. More generally, locally finite groups are also algebraically C^* -unique.

Every algebraically C*-unique group is amenable.

Caspers, Skalski studied algebraically $\mathrm{C}^*\mbox{-unique groups}$ in the context of discrete quantum groups.

Algebraically \mathbf{C}^* -unique groups: definition, (non)-example Conditions for \mathbf{C}^* -uniqueness

Non-example : For $G = \mathbb{Z}$, $\mathbb{C}[\mathbb{Z}]$ has more than one C^* -completion.

Let $\mathcal{A}(\mathbb{T})$ be the *-subalgebra of $C(\mathbb{T})$ generated by the identity function on \mathbb{T} . $\mathbb{C}[\mathbb{Z}] \simeq \mathcal{A}(\mathbb{T})$.

Depending on the norm defined on $\mathcal{A}(\mathbb{T})$, we can have many C^* -completions on $\mathbb{C}[\mathbb{Z}]$.

Any infinite closed subset F of \mathbb{T} gives rise to a distinct C^* -norm on $\mathcal{A}(\mathbb{T})$ defined by $||P|| := \sup_{z \in F} |P(z)|$.

Part 1, by Arnab Bhattacherjee

Part 2, by Malay Mandal Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty

Algebraically C^* -unique groups: definition, (non)-example Conditions for C^* -uniqueness

Outline

- Part 1, by Arnab Bhattacherjee
 Algebraically C*-unique groups: definition, (non)-example
 Conditions for C*-uniqueness
 Part 2, by Malay Mandal
 A Bit on Actions ...
 C*-algebra of semidirect product vs crossed product
 Part 3, by Timothy Rainone
 - Topologically free actions and ideal structure
 - A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$
- Part 4, by Marco Roschkowski
 - Statement of the Theorem (Furstenberg's Approximation)
 - Proof
- Part 5, by Ujan Chakrabo
 - Actions on the (Abelian) C* algebra vs the Spectrum
 - Proof of C* uniqueness: The Main Theorem

Part 1, by Arnab Bhattacherjee Part 2, by Malay Mandal

Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty Algebraically C^* -unique groups: definition, (non)-example Conditions for C^* -uniqueness

Necessary-sufficient condition for algebraically C^\ast unique group

Given a discrete group *G*, we write $C^*(G)$ for the full group C^* -algebra of *G*.

Lemma [Alekseev, Kyed]: Let *G* be a discrete group. Then *G* is algebraically C^* -unique if and only if every non-trivial closed, two-sided ideal in $C^*(G)$ intersects $\mathbb{C}[G]$ non-trivially.

Outline of the proof of \Rightarrow :

- Assume that there is a non-trivial two-sided closed ideal J intersecting C[G] trivially. So, there is a quotient map q : C^{*}(G) → C^{*}(G)/J.
- We may restrict *q* to C[*G*] which yields a faithful
 *-homomorphism π : C[*G*] → C*(*G*)/*J*. This defines a C*-norm on C[*G*] via ||*x*|| := ||π(*x*)||. It is properly majorised by the universal C*-norm of C[*G*]. Contradiction!

Part 1, by Arnab Bhattacherjee

Part 2, by Malay Mandal Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty

Algebraically C^* -unique groups: definition, (non)-example Conditions for C^* -uniqueness

Continue

Outline of the proof of \Leftarrow :

- Assume that G is not algebraically C*-unique. So, there is a C*-norm on C[G] which is properly majorised by the universal C*-norm. Let A be the closure with respect to this C*-norm. Then, there exists a *- homomorphism from C*(G) onto A.
- The kernel of this surjective *-homomorphism intersects
 C[G] trivially, since restriction of this *-homomorphism to
 C[G] is an identity map-hence it is injective. Contradiction!

We will use this lemma to discuss a group which is torsion free and algebraically C*-unique- $\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes_{\alpha} \mathbb{Z}^2$ where p, q are multiplicatively independent integers. Part 1, by Arnab Bhattacherjee

Part 2, by Malay Mandal Part 3, by Timothy Rainone Part 4, by Marco Roschkowski Part 5, by Ujan Chakraborty

Algebraically C^* -unique groups: definition, (non)-example Conditions for C^* -uniqueness

A torsion-free algebraically C*-unique group

Let $p, q \ge 2$ be two multiplicatively independent integers (i.e., there exist no $r, s \in \mathbb{N}$ such that $p^r = q^s$). Let $\mathbb{Z} \begin{bmatrix} \frac{1}{pq} \end{bmatrix}$ be the additive group $\left\{ \frac{a}{(pq)^n} \in \mathbb{Q} \mid a \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Let $\alpha : \mathbb{Z}^2 \curvearrowright \mathbb{Z} \begin{bmatrix} \frac{1}{pq} \end{bmatrix}$ be given by $\alpha_{(m,n)}(x) = p^m q^n x$ for $m, n \in \mathbb{Z}$ and $x \in \mathbb{Z} \begin{bmatrix} \frac{1}{pq} \end{bmatrix}$. Our goal is to prove that the torsion-free semi-direct product group $\mathbb{Z} \begin{bmatrix} \frac{1}{pq} \end{bmatrix} \rtimes_{\alpha} \mathbb{Z}^2$ is algebraically C*-unique.

Actions Semidirect product vs crossed product

Outline

 Algebraically C*-unique groups: definition, (non)-example Conditions for C*-uniqueness Part 2, by Malay Mandal A Bit on Actions ... C*-algebra of semidirect product vs crossed product Topologically free actions and ideal structure • A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$ Statement of the Theorem (Furstenberg's Approximation) Proof Actions on the (Abelian) C* algebra vs the Spectrum Proof of C* uniqueness: The Main Theorem

Actions Semidirect product vs crossed product

Faithful action

First we are going to prove that the action $\alpha : \mathbb{Z}^2 \curvearrowright \mathbb{Z}[1/pq]$ defined by $\alpha_{(n,m)}(x) = p^n q^m x$ is faithful. **Proof.**

• p and q are multiplicatively independent

$$\implies p^n q^m = 1 \implies n = m = 0.$$

• Now $\alpha_{(n,m)} = Id_{\mathbb{Z}[1/pq]} \implies p^n q^m = 1$. So, the action is faithful.

くロン くぼう くほう くほう 二日

Actions Semidirect product vs crossed product

Topologically free action

Let *G* and *A* be discrete groups with *A* abelian. Write \hat{A} for the Pontryagin dual, which is compact Hausdorff. Recall that any action $\beta : G \curvearrowright A$ induces a dual (continuous) action

$$\hat{\beta}: \boldsymbol{G} \frown \hat{\mathcal{A}}; \quad \hat{\beta}_{\boldsymbol{g}}(\chi)(\boldsymbol{x}) = \chi(\beta_{\boldsymbol{g}^{-1}}(\boldsymbol{x})).$$

Definition

An action of a group *G* on a locally compact Hausdorff space *X* is said to be topologically free if for each $g \in G \setminus \{e\}$, the set of points of *X* fixed by *g* has empty interior.

Lemma

If \mathcal{A} is torsion-free, and $\beta : \mathbf{G} \curvearrowright \mathcal{A}$ is a faithful action, then the dual action $\hat{\beta} : \mathbf{G} \curvearrowright \widehat{\mathcal{A}}$ is topologically free.

Actions Semidirect product vs crossed product

Proof of lemma

- For $g \in G$ let $F_g = \{\chi \in \widehat{\mathcal{A}} : \widehat{\beta}_g(\chi) = \chi\}$. We will show that if $(F_g)^{\circ} \neq \emptyset$ then g = e.
- Note that F_g is a subgroup of $\widehat{\mathcal{A}}$.
- F_g has nonempty interior \implies F_g is open subgroup.
- $\hat{\beta}_g$ is continuous \implies F_g is closed subgroup.

イロン イロン イヨン イヨン 三日

Actions Semidirect product vs crossed product

Proof...

- \mathcal{A} is discrete, abelian and torsion-free $\implies \widehat{\mathcal{A}}$ is connected $\implies F_g = \widehat{\mathcal{A}}$.
- We have $\chi(g^{-1}p) = \chi(p)$, $\forall p \in \mathcal{A}$ and $\forall \chi \in \widehat{\mathcal{A}}$ $\implies g^{-1}p = p$, $\forall p$. As β is faithful, we have g = e.

Now $\alpha : \mathbb{Z}^2 \curvearrowright \mathbb{Z}[1/pq]$ is faithful \implies from the previous lemma $\hat{\alpha} : \mathbb{Z} \curvearrowright \mathbb{Z}[1/pq]$ is a topologically free action.

Actions Semidirect product vs crossed product

Outline

- Part 1, by Arnab Bhattacherjee
- Algebraically C*-unique groups: definition, (non)-example
- Conditions for C*-uniqueness
- Part 2, by Malay Mandal
 - A Bit on Actions . . .
 - C*-algebra of semidirect product vs crossed product
 - Part 3, by Timothy Rainone
 - Topologically free actions and ideal structure
 - A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$
- Part 4, by Marco Roschkowski
 - Statement of the Theorem (Furstenberg's Approximation)
 - Proof
- Part 5, by Ujan Chakrabo
 - Actions on the (Abelian) C* algebra vs the Spectrum
 - Proof of C* uniqueness: The Main Theorem

Actions Semidirect product vs crossed product

Semidirect product of two groups

Let *G* and Γ be two discrete groups and suppose that $\beta : \Gamma \frown G$ is an action.

The semidirect product is defined as the set

$$\Big\{(oldsymbol{g},t)\mid oldsymbol{g}\in oldsymbol{G},t\in \Gamma\Big\}$$

equipped with the operation

$$(g,t) \cdot (h,s) := (g\beta_t(h), ts).$$

This gives the set a group structure (with the identity (e, e)). We denote this group by $G \rtimes \Gamma$.

Actions Semidirect product vs crossed product

C*-dynamical systems

Definition

By a C*-dynamical system we mean a triple (A, α, Γ) where A is a C*-algebra, Γ is a discrete group, and $\alpha : \Gamma \mapsto Aut(A)$ is a group homomorphism.

Given a $\mathrm{C}^*\mbox{-dynamical system we may form the algebraic crossed product <math display="inline">*\mbox{-algebra}$

$$\mathrm{C}_{\boldsymbol{c}}(\Gamma,\boldsymbol{A}) = \bigg\{ \sum_{\boldsymbol{s}\in \boldsymbol{F}} \boldsymbol{a}_{\boldsymbol{s}}\boldsymbol{s} \mid \boldsymbol{F} \subseteq \Gamma \text{ finite }, \ \boldsymbol{a}_{\boldsymbol{s}} \in \boldsymbol{A} \bigg\}.$$

with operations

$$(a_s s)(b_t t) := a_s \alpha_s(b_t) st, \quad (a_s s)^* = \alpha_{s^{-1}}(a_s^*) s^{-1}.$$

Actions Semidirect product vs crossed product

Covariant representations

Definition

A covariant representation of a C*-system (A, α, Γ) is a pair (π, u) consisting of a representation $\pi : A \mapsto \mathbb{B}(\mathcal{H})$ and a unitary representation $u : \Gamma \mapsto \mathcal{U}(\mathcal{H})$ satisfying:

$$\pi(\alpha_{s}(a)) = u_{s}\pi(a)u_{s}^{*}; \quad \forall s \in \Gamma, \ \forall a \in A.$$

If (π, u) is a covariant representation on \mathcal{H} , we get a *-representation

$$\pi \rtimes u : C_c(\Gamma, A) \to \mathbb{B}(\mathcal{H}); \quad \pi \rtimes u(a_s s) = \pi(a_s)u(s).$$

We get a C^* -norm on $C_c(\Gamma, A)$ as follows: for $x \in C_c(\Gamma, A)$

$$\|x\|_{\max} := \sup \left\{ \|(\pi \rtimes u)(x)\| \mid (\pi, u) \text{ all covariant representations} \right\}$$

Actions Semidirect product vs crossed product

$A \rtimes \Gamma$ and Universal properties

Completing with respect to this C*-norm gives the **full crossed** product C*-algebra $A \rtimes \Gamma := \overline{C_c(\Gamma, A)}^{\|\cdot\|_{max}}$.

Recall that if *u* : Γ → U(H) is a unitary representation we get a *-homomorphism

$$\psi_{u}: \mathrm{C}^{*}(\Gamma) \to \mathbb{B}(\mathcal{H}); \quad \psi_{u}(\delta_{t}) = u_{t}.$$

 If (π, u) is a covariant representation of (A, Γ, α) on H the *-representation π × u extends continuously to the full crossed product

$$\pi \rtimes \boldsymbol{u} : \boldsymbol{A} \rtimes \boldsymbol{\Gamma} \mapsto \mathbb{B}(\mathcal{H}).$$

ヘロト 人間 とくほ とくほ とう

Actions Semidirect product vs crossed product

Crossed and semidirect products

Suppose Λ and Γ are discrete groups with an action $\beta : \Gamma \frown \Lambda$. The universal property of $C^*(\Lambda)$ gives us an induced C^* -action

$$ilde{eta}: \Gamma o \operatorname{Aut}(\operatorname{C}^*(\Lambda)); \quad ilde{eta}_t(\delta_{\mathsf{X}}) = \delta_{eta_t(\mathsf{X})}.$$

We then have

Fact

There is a C*-isomorphism

```
\mathrm{C}^*(\Lambda\rtimes\Gamma)\cong\mathrm{C}^*(\Lambda)\rtimes\Gamma.
```

Actions Semidirect product vs crossed product

Proof

- φ : Λ ⋊ Γ → C*(Λ) ⋊ Γ, (x, s) ↦ δ_xs is a unitary representation. By the universal property of C*(Λ ⋊ Γ) we then get a *-homo Φ : C*(Λ ⋊ Γ) → C*(Λ) ⋊ Γ.
- Now $v : \Lambda \mapsto C^*(\Lambda \rtimes \Gamma)$, $x \mapsto (x, e_{\Gamma})$ is a unitary rep, so we get a *-homomorphism $\pi : C^*(\Lambda) \mapsto C^*(\Lambda \rtimes \Gamma)$ with $\pi|_{\Lambda} = v$.
- Also, $u : \Gamma \mapsto C^*(\Lambda \rtimes \Gamma)$, $y \mapsto (e_{\Lambda}, y)$ is a unitary rep.
- (π, u) -covariant representation (by semi-direct product).
- Universal property of full crossed product C*-algebra gives a *-homomorphism Ψ : C*(Λ) ⋊ Γ → C*(Λ ⋊ Γ).
- Now we can prove that $\Psi \circ \Phi = Id$ and $\Phi \circ \Psi = Id$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Outline

- Part 1, by Arnab Bhattacherjee
 Algebraically C*-unique groups: definition, (non)-example
 Conditions for C*-uniqueness
 Part 2, by Malay Mandal
 A Bit on Actions ...
 C*-algebra of semidirect product vs crossed product
 Part 3, by Timothy Rainone
 Topologically free actions and ideal structure
 A useful description of C* (Z[¹/_d])
 Part 4, by Marco Roschkowski
 Statement of the Theorem (Furstenberg's Approximation)
 - Proof
- Part 5, by Ujan Chakrabo
 - Actions on the (Abelian) C* algebra vs the Spectrum
 - Proof of C* uniqueness: The Main Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

 $D_t := \{x \in X \mid t.x \neq x\}.$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$. The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{\in F\setminus\{e\}} D_t \quad \text{ is dense in } X.$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $\mathbb{Q}(X) \rtimes \mathbb{Q}$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

$$D_t := \{x \in X \mid t.x \neq x\}.$$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$. The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{t \in F \setminus \{e\}} D_t \quad \text{ is dense in } X .$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $\mathbb{Q}(X) \rtimes \mathbb{Q}$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

$$D_t := \{x \in X \mid t.x \neq x\}.$$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$.

The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{t \in F \setminus \{e\}} D_t \quad \text{ is dense in } X .$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $\mathbb{Q}(X)$, \mathbb{Q} ,

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

$$D_t := \{x \in X \mid t.x \neq x\}.$$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$. The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{\in F\setminus\{e\}} D_t \quad \text{ is dense in } X .$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $\mathbb{Q}(X)$, \mathbb{Q} ,

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

$$D_t := \{x \in X \mid t \cdot x \neq x\}.$$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$. The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{t\in F\setminus \{e\}} D_t \quad \text{ is dense in } X .$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $\mathbb{Q}(X) \rtimes \mathbb{I}$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Topologically Free Actions

Throughout, Γ is a discrete group with neutral element *e*, *X* is a compact Hausdorff space, and $\Gamma \frown X$ is a continuous action. Given $t \in \Gamma$, we have the open set of elements displaced by *t*:

$$D_t := \{x \in X \mid t \cdot x \neq x\}.$$

The action $\Gamma \curvearrowright X$ is called **free** if for all $t \neq e$, $D_t = X$. The action $\Gamma \curvearrowright X$ is called **topologically free** if for all $t \neq e$, $\overline{D_t} = X$. Equivalently, $\Gamma \curvearrowright X$ is called **topologically free** if for all finite subsets $F \subseteq \Gamma$

$$\bigcap_{\in F\setminus \{e\}} D_t \quad \text{ is dense in } X .$$

 $\Gamma \curvearrowright X$ topologically free \rightsquigarrow ideal structure of $C(X) \rtimes \Gamma$.

t

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \curvearrowright X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of **definite states**.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

 $L_{\varphi} := \left\{ b \in B \mid \varphi(b^*b) = 0 \right\} \subseteq \ker(\varphi).$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in ker(\varphi)$. Now compute ...

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \frown X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of definite states.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

 $L_{\varphi} := \left\{ b \in B \mid \varphi(b^*b) = 0 \right\} \subseteq \ker(\varphi).$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in ker(\varphi)$. Now compute ...

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \curvearrowright X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of definite states.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

 $L_{\varphi} := \left\{ b \in B \mid \varphi(b^*b) = 0 \right\} \subseteq \ker(\varphi).$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in ker(\varphi)$. Now compute $\Box = \Box$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \curvearrowright X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of definite states.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

$$L_{arphi} := ig\{ b \in B \mid arphi(b^*b) = 0 ig\} \subseteq \ker(arphi).$$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in ker(\varphi)$. Now compute ...

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \curvearrowright X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of definite states.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

$$L_{arphi} := ig\{ b \in B \mid arphi(b^*b) = 0 ig\} \subseteq \ker(arphi).$$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in \ker(\varphi)$. Now compute

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Theorem

Let $\Gamma \curvearrowright X$ be a topologically free action. If $I \subseteq C(X) \rtimes_{r} \Gamma$ is any non-zero closed ideal, then $I \cap C(X) \neq \{0\}$.

Our proof will use the idea of definite states.

Fact

Let B be a C*-algebra and suppose $\varphi \in S(B)$ is a state. If φ is **definite** with respect to a self-adjoint element $k \in B$; that is $\varphi(k^2) = \varphi(k)^2$, then for every $b \in B$ we have

 $\varphi(bk) = \varphi(kb) = \varphi(k)\varphi(b).$

Proof. It is easily checked that $k - \varphi(k) \mathbf{1}_B$ belongs to the left ideal

$$L_{arphi} := ig\{ oldsymbol{b} \in oldsymbol{B} \mid arphi(oldsymbol{b}^*oldsymbol{b}) = oldsymbol{0} ig\} \subseteq \ker(arphi).$$

Therefore, if $b \in B$ then $bk - \varphi(k)b \in ker(\varphi)$. Now compute...

Proof of Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Let $I \subseteq C(X) \rtimes_r \Gamma$ be a closed ideal with $I \cap C(X) = \{0\}$. We will show that $I = \{0\}$ by showing that $I_+ = \{0\}$.

Let $a \in I_+$. It suffices to show that $f := \mathbb{E}(a) = 0$, since the expectation \mathbb{E} is faithful. If $\varepsilon > 0$ we will arrive at $||f|| \le \varepsilon$. Fix $x \in X$. Since *f* is continuous there is an open neighborhood *U* of *x* with

$$z \in U \implies |f(z) - f(x)| \le \varepsilon/3.$$

Now find a $b \in C_c(\Gamma, C(X))$ with $||a - b|| \le \varepsilon/3$, and say

$$b = \sum_{t\in F} b_t u_t, \quad b_t \in \mathrm{C}(X).$$

Then

 $\|f - b_e\| = \|\mathbb{E}(a) - \mathbb{E}(b)\| = \|\mathbb{E}(a - b)\| \le \|\mathbb{E}\|\|a - b\| \le \varepsilon/3.$

Proof of Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

くロン くぼう くほう くほう 二日

Let $I \subseteq C(X) \rtimes_r \Gamma$ be a closed ideal with $I \cap C(X) = \{0\}$. We will show that $I = \{0\}$ by showing that $I_+ = \{0\}$. Let $a \in I_+$. It suffices to show that $f := \mathbb{E}(a) = 0$, since the expectation \mathbb{E} is faithful. If $\varepsilon > 0$ we will arrive at $||f|| \le \varepsilon$.

Fix $x \in X$. Since *f* is continuous there is an open neighborhood *U* of *x* with

$$z \in U \implies |f(z) - f(x)| \le \varepsilon/3.$$

Now find a $b \in C_c(\Gamma, C(X))$ with $||a - b|| \le \varepsilon/3$, and say

$$b = \sum_{t\in F} b_t u_t, \quad b_t \in \mathrm{C}(X).$$

Then

 $\|f - b_e\| = \|\mathbb{E}(a) - \mathbb{E}(b)\| = \|\mathbb{E}(a - b)\| \le \|\mathbb{E}\|\|a - b\| \le \varepsilon/3.$

Proof of Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

(ロ) (同) (ヨ) (ヨ) (ヨ)

Let $I \subseteq C(X) \rtimes_r \Gamma$ be a closed ideal with $I \cap C(X) = \{0\}$. We will show that $I = \{0\}$ by showing that $I_+ = \{0\}$. Let $a \in I_+$. It suffices to show that $f := \mathbb{E}(a) = 0$, since the expectation \mathbb{E} is faithful. If $\varepsilon > 0$ we will arrive at $||f|| \le \varepsilon$. Fix $x \in X$. Since *f* is continuous there is an open neighborhood *U* of *x* with

$$z \in U \implies |f(z) - f(x)| \le \varepsilon/3.$$

Now find a $b \in C_c(\Gamma, C(X))$ with $||a - b|| \le \varepsilon/3$, and say $b = \sum_{t \in F} b_t u_t, \quad b_t \in C(X).$

Then

 $\|f - b_e\| = \|\mathbb{E}(a) - \mathbb{E}(b)\| = \|\mathbb{E}(a - b)\| \le \|\mathbb{E}\|\|a - b\| \le \varepsilon/3.$

Proof of Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

御下 くまた くまた しま

Let $I \subseteq C(X) \rtimes_r \Gamma$ be a closed ideal with $I \cap C(X) = \{0\}$. We will show that $I = \{0\}$ by showing that $I_+ = \{0\}$. Let $a \in I_+$. It suffices to show that $f := \mathbb{E}(a) = 0$, since the expectation \mathbb{E} is faithful. If $\varepsilon > 0$ we will arrive at $||f|| \le \varepsilon$. Fix $x \in X$. Since *f* is continuous there is an open neighborhood *U* of *x* with

$$z \in U \implies |f(z) - f(x)| \le \varepsilon/3.$$

Now find a $b \in C_c(\Gamma, C(X))$ with $||a - b|| \le \varepsilon/3$, and say

$$b = \sum_{t \in F} b_t u_t, \quad b_t \in \mathrm{C}(X).$$

Then

 $\|f-b_e\|=\|\mathbb{E}(a)-\mathbb{E}(b)\|=\|\mathbb{E}(a-b)\|\leq \|\mathbb{E}\|\|a-b\|\leq \varepsilon/3.$

Proof of Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Let $I \subseteq C(X) \rtimes_r \Gamma$ be a closed ideal with $I \cap C(X) = \{0\}$. We will show that $I = \{0\}$ by showing that $I_+ = \{0\}$. Let $a \in I_+$. It suffices to show that $f := \mathbb{E}(a) = 0$, since the expectation \mathbb{E} is faithful. If $\varepsilon > 0$ we will arrive at $||f|| \le \varepsilon$. Fix $x \in X$. Since *f* is continuous there is an open neighborhood *U* of *x* with

$$z \in U \implies |f(z) - f(x)| \le \varepsilon/3.$$

Now find a $b \in C_c(\Gamma, C(X))$ with $||a - b|| \le \varepsilon/3$, and say

$$b = \sum_{t \in F} b_t u_t, \quad b_t \in \mathrm{C}(X).$$

Then

$$\|f - b_e\| = \|\mathbb{E}(a) - \mathbb{E}(b)\| = \|\mathbb{E}(a - b)\| \le \|\mathbb{E}\|\|a - b\| \le \varepsilon/3.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

For any $y \in U$ we have

$$egin{aligned} |f(x)| &\leq |f(x)-f(y)|+|f(y)-b_e(y)|+|b_e(y)|\ &\leq arepsilon/3+\|f-b_e\|_u+|b_e(y)|\leq 2arepsilon/3+|b_e(y)|. \end{aligned}$$

Using topological freeness we will choose a certain $y \in U$ making $|b_e(y)|$ small. In fact we pick

$$y \in \left(\bigcap_{t\in F_0} D_t\right) \cap U \neq \emptyset,$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

イロン イロン イヨン イヨン 三日

Proof

For any $y \in U$ we have

$$egin{aligned} |f(x)| &\leq |f(x)-f(y)|+|f(y)-b_e(y)|+|b_e(y)|\ &\leq arepsilon/3+\|f-b_e\|_u+|b_e(y)|\leq 2arepsilon/3+|b_e(y)|. \end{aligned}$$

Using topological freeness we will choose a certain $y \in U$ making $|b_e(y)|$ small.

In fact we pick

$$y \in \left(\bigcap_{t\in F_0} D_t\right) \cap U \neq \emptyset,$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

For any $y \in U$ we have

$$egin{aligned} |f(x)| &\leq |f(x)-f(y)|+|f(y)-b_e(y)|+|b_e(y)|\ &\leq arepsilon/3+\|f-b_e\|_u+|b_e(y)|\leq 2arepsilon/3+|b_e(y)|. \end{aligned}$$

Using topological freeness we will choose a certain $y \in U$ making $|b_e(y)|$ small. In fact we pick

$$y \in \left(\bigcap_{t \in F_0} D_t\right) \cap U \neq \emptyset,$$

Topologically free actions and ideal structure A useful description of $\mathrm{C}^*(\mathbb{Z}[\frac{1}{d}])$

Proof

For any $y \in U$ we have

$$egin{aligned} |f(x)| &\leq |f(x)-f(y)|+|f(y)-b_e(y)|+|b_e(y)|\ &\leq arepsilon/3+\|f-b_e\|_u+|b_e(y)|\leq 2arepsilon/3+|b_e(y)|. \end{aligned}$$

Using topological freeness we will choose a certain $y \in U$ making $|b_e(y)|$ small. In fact we pick

$$\mathbf{y} \in \left(\bigcap_{t \in F_0} D_t\right) \cap \mathbf{U} \neq \emptyset,$$

Topologically free actions and ideal structure A useful description of $\mathrm{C}^*(\mathbb{Z}[rac{1}{d}])$

Proof

The evaluation map $ev_y : C(X) \to \mathbb{C}$, $f \mapsto f(y)$ is a state on C(X), and since $C(X) \cap I = \{0\}$ there is a well-defined state

$$\phi: \mathrm{C}(X) + I
ightarrow \mathbb{C}; \quad \phi(h + \xi) = \mathrm{ev}_{y}(h) = h(y)$$

which we can extend to state φ on $C(X) \rtimes_r \Gamma$. Note that φ kills *I* and is definite with respect to self-adjoint elements of C(X); indeed, if $k \in C(X)_{s.a.}$ then

$$\varphi(k^2) = k^2(y) = k(y)^2 = \varphi(k)^2.$$

Topologically free actions and ideal structure A useful description of $\mathrm{C}^*(\mathbb{Z}[rac{1}{d}])$

Proof

The evaluation map $ev_y : C(X) \to \mathbb{C}$, $f \mapsto f(y)$ is a state on C(X), and since $C(X) \cap I = \{0\}$ there is a well-defined state

$$\phi: \mathrm{C}(X) + I
ightarrow \mathbb{C}; \quad \phi(h + \xi) = \mathrm{ev}_y(h) = h(y)$$

which we can extend to state φ on $C(X) \rtimes_r \Gamma$. Note that φ kills *I* and is definite with respect to self-adjoint elements of C(X); indeed, if $k \in C(X)_{s.a.}$ then

$$\varphi(k^2) = k^2(y) = k(y)^2 = \varphi(k)^2.$$

Topologically free actions and ideal structure A useful description of $\mathrm{C}^*(\mathbb{Z}[rac{1}{d}])$

くロン くぼう くほう くほう 二日

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$.

For $t \in F_0$ we know $t^{-1}.y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1}.y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$. For $t \in F_0$ we know $t^{-1} \cdot y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1} \cdot y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$. For $t \in F_0$ we know $t^{-1} \cdot y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1} \cdot y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

くロン くぼう くほう くほう 二日

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$. For $t \in F_0$ we know $t^{-1} \cdot y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1} \cdot y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$. For $t \in F_0$ we know $t^{-1} \cdot y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1} \cdot y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

くロン くぼう くほう くほう 二日

Proof

Claim. For every $t \in F_0$ we have $\varphi(u_t) = 0$. For $t \in F_0$ we know $t^{-1} \cdot y \neq y$. Urysohn's Lemma gives a $k \in C_c(X, [0, 1])$ with $k(y) \neq k(t^{-1} \cdot y)$. By our above fact we see that

$$k(t^{-1}.y)\varphi(u_t) = \alpha_t(k)(y)\varphi(u_t) = \varphi(\alpha_t(k))\varphi(u_t)$$

= $\varphi(\alpha_t(k)u_t) = \varphi(u_tk) = \varphi(u_t)\varphi(k) = \varphi(u_t)k(y).$

Thus $(k(t^{-1}.y) - k(y))\varphi(u_t) = 0$ which means $\varphi(u_t) = 0$. Now for each $t \in F_0$ we write $b_t = h_t + ik_t$ with h_t, k_t self-adjoint, and using our fact again we get

$$\varphi(b_t u_t) = \varphi(h_t u_t) + i\varphi(k_t u_t) = \varphi(h_t)\varphi(u_t) + i\varphi(k_t)\varphi(u_t) = 0.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

We now have

$$\varphi(b) = \varphi\left(\sum_{f\in F} b_t u_t\right) = \sum_{f\in F} \varphi(b_t u_t) = \varphi(b_e) = b_e(y).$$

Finally, since $\varphi(a) = 0$ (φ kills *I* and $a \in I$) we have

 $|b_e(y)| = |\varphi(b)| = |\varphi(b) - \varphi(a)| \le ||\varphi|| ||b - a|| \le \varepsilon/3.$

By our above estimate we arrive at $|f(x)| \le \varepsilon$. Since x was arbitrary we conclude $||f||_u \le \varepsilon$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

We now have

$$\varphi(b) = \varphi\left(\sum_{f\in F} b_t u_t\right) = \sum_{f\in F} \varphi(b_t u_t) = \varphi(b_e) = b_e(y).$$

Finally, since $\varphi(a) = 0$ (φ kills *I* and $a \in I$) we have

$$|b_e(y)| = |\varphi(b)| = |\varphi(b) - \varphi(a)| \le \|\varphi\| \|b - a\| \le \varepsilon/3.$$

By our above estimate we arrive at $|f(x)| \le \varepsilon$. Since *x* was arbitrary we conclude $||f||_u \le \varepsilon$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Proof

We now have

$$\varphi(b) = \varphi\left(\sum_{t\in F} b_t u_t\right) = \sum_{t\in F} \varphi(b_t u_t) = \varphi(b_e) = b_e(y).$$

Finally, since $\varphi(a) = 0$ (φ kills *I* and $a \in I$) we have

$$|b_e(y)| = |\varphi(b)| = |\varphi(b) - \varphi(a)| \le ||\varphi|| ||b - a|| \le \varepsilon/3.$$

By our above estimate we arrive at $|f(x)| \le \varepsilon$. Since *x* was arbitrary we conclude $||f||_u \le \varepsilon$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

くロン くぼう くほう くほう 二日

Outline

- Part 1, by Arnab Bhattacherjee
 Algebraically C*-unique groups: definition, (non)-example
 Conditions for C*-uniqueness
- Part 2, by Malay Manda
 - A Bit on Actions . . .
 - C*-algebra of semidirect product vs crossed product
- Part 3, by Timothy Rainone
 - Topologically free actions and ideal structure
 - A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$
- Part 4, by Marco Roschkowski
- Statement of the Theorem (Furstenberg's Approximation)
- Proof
- Part 5, by Ujan Chakrabo
 - Actions on the (Abelian) C* algebra vs the Spectrum
 - Proof of C* uniqueness: The Main Theorem

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Given $d \ge 1$, we are considering the (discrete) additive subgroup of \mathbb{Q} :

$$\Lambda := \mathbb{Z}\left[rac{1}{d}
ight] = \left\{rac{a}{d^n} \mid a \in \mathbb{Z}, n \geq 0
ight\}.$$

 Λ can be realized as the inductive limit of the system

$$\mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \cdots \longrightarrow \varinjlim_{\overrightarrow{n}} (\mathbb{Z}, \cdot d) \cong \Lambda.$$

Identifying the circle group $\mathbb T$ with the Pontryagin dual $\hat{\mathbb Z}$ and dualizing this system gives the topological projective system:

$$\mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \cdots, \quad \rho_d(z) = z^d.$$

$$(X, (\pi_n)_n) := \lim_{\stackrel{\leftarrow}{n}} (\mathbb{T}, \rho_d).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Given $d \ge 1$, we are considering the (discrete) additive subgroup of \mathbb{Q} :

$$\Lambda := \mathbb{Z}\left[\frac{1}{d}\right] = \bigg\{\frac{a}{d^n} \mid a \in \mathbb{Z}, n \ge 0\bigg\}.$$

 Λ can be realized as the inductive limit of the system

$$\mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \cdots \longrightarrow \lim_{\overrightarrow{n}} (\mathbb{Z}, \cdot d) \cong \Lambda.$$

Identifying the circle group $\mathbb T$ with the Pontryagin dual $\hat{\mathbb Z}$ and dualizing this system gives the topological projective system:

$$\mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \cdots, \quad \rho_d(z) = z^d.$$

$$(X, (\pi_n)_n) := \lim_{\stackrel{\leftarrow}{n}} (\mathbb{T}, \rho_d).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Given $d \ge 1$, we are considering the (discrete) additive subgroup of \mathbb{Q} :

$$\Lambda := \mathbb{Z}\left[\frac{1}{d}\right] = \bigg\{\frac{a}{d^n} \mid a \in \mathbb{Z}, n \ge 0\bigg\}.$$

A can be realized as the inductive limit of the system

$$\mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \cdots \longrightarrow \varinjlim_{\overrightarrow{n}} (\mathbb{Z}, \cdot d) \cong \Lambda.$$

Identifying the circle group $\mathbb T$ with the Pontryagin dual $\hat{\mathbb Z}$ and dualizing this system gives the topological projective system:

$$\mathbb{T} \stackrel{\rho_d}{\leftarrow} \mathbb{T} \stackrel{\rho_d}{\leftarrow} \mathbb{T} \stackrel{\rho_d}{\leftarrow} \mathbb{T} \cdots, \quad \rho_d(z) = z^d.$$

$$(X, (\pi_n)_n) := \lim_{\stackrel{\leftarrow}{\to}} (\mathbb{T}, \rho_d).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Given $d \ge 1$, we are considering the (discrete) additive subgroup of \mathbb{Q} :

$$\Lambda := \mathbb{Z}\left[\frac{1}{d}\right] = \bigg\{\frac{a}{d^n} \mid a \in \mathbb{Z}, n \ge 0\bigg\}.$$

A can be realized as the inductive limit of the system

$$\mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \xrightarrow{\cdot d} \mathbb{Z} \cdots \longrightarrow \lim_{\overrightarrow{n}} (\mathbb{Z}, \cdot d) \cong \Lambda.$$

Identifying the circle group $\mathbb T$ with the Pontryagin dual $\hat{\mathbb Z}$ and dualizing this system gives the topological projective system:

$$\mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \xleftarrow{\rho_d} \mathbb{T} \cdots, \quad \rho_d(z) = z^d.$$

$$(X, (\pi_n)_n) := \lim_{\stackrel{\leftarrow}{n}} (\mathbb{T}, \rho_d).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

More concretely, X has picture

$$X = \left\{ (z_k)_k \mid z_k \in \mathbb{T}, \ z_k = z_{k+1}^d \right\}; \ \pi_n : X \to \mathbb{T}, \ \pi_n(z_k)_k = z_n,$$

and is equipped with the relative product topology $X \subseteq \prod_k \mathbb{T}$. Useful fact: if $(z_k)_k \in X$ and $m \ge n$, then

$$z_n = z_m^{d^{m-n}}.$$

Our goal is to show that X is homeomorphic to $\hat{\Lambda}$; the Pontryagin dual of Λ . We do this by establishing:

_emma

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{dn}})((z_k)_k) = z_n^a$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

More concretely, X has picture

$$X = \left\{ (z_k)_k \mid z_k \in \mathbb{T}, \ z_k = z_{k+1}^d \right\}; \ \pi_n : X \to \mathbb{T}, \ \pi_n(z_k)_k = z_n,$$

and is equipped with the relative product topology $X \subseteq \prod_k \mathbb{T}$. **Useful fact:** if $(z_k)_k \in X$ and $m \ge n$, then

$$z_n=z_m^{d^{m-n}}.$$

Our goal is to show that X is homeomorphic to $\hat{\Lambda}$; the Pontryagin dual of Λ . We do this by establishing:

_emma

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{dn}})((z_k)_k) = z_n^a$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

More concretely, X has picture

$$X = \left\{ (z_k)_k \mid z_k \in \mathbb{T}, \ z_k = z_{k+1}^d \right\}; \ \pi_n : X \to \mathbb{T}, \ \pi_n(z_k)_k = z_n,$$

and is equipped with the relative product topology $X \subseteq \prod_k \mathbb{T}$. **Useful fact:** if $(z_k)_k \in X$ and $m \ge n$, then

$$z_n=z_m^{d^{m-n}}.$$

Our goal is to show that X is homeomorphic to $\hat{\Lambda}$; the Pontryagin dual of Λ . We do this by establishing:

_emma

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{dn}})((z_k)_k) = z_n^a.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

More concretely, X has picture

$$X = \left\{ (z_k)_k \mid z_k \in \mathbb{T}, \ z_k = z_{k+1}^d \right\}; \ \pi_n : X \to \mathbb{T}, \ \pi_n(z_k)_k = z_n,$$

and is equipped with the relative product topology $X \subseteq \prod_k \mathbb{T}$. **Useful fact:** if $(z_k)_k \in X$ and $m \ge n$, then

$$z_n=z_m^{d^{m-n}}.$$

Our goal is to show that X is homeomorphic to $\hat{\Lambda}$; the Pontryagin dual of Λ . We do this by establishing:

Lemma

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})((z_k)_k) = z_n^a.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

The evaluation isomorphism

First we consider any discrete abelian group Λ with its Pontryagin dual $\hat{\Lambda}$, and $\Omega_{\Lambda} := \Omega(C^*(\Lambda))$; the character space of $C^*(\Lambda)$.

Each character $\chi \in \hat{\Lambda}$ gives rise to a character h_{χ} on $C^*(\Lambda)$ satisfying $h_{\chi}(\delta_t) = \chi(t)$, and the map

 $\widehat{\Lambda} \to \Omega_{\Lambda}; \quad \chi \mapsto h_{\chi}$

is a homeomorphism. Dualizing we get the *-isomorphism

$$C(\Omega_{\Lambda}) \longrightarrow C(\widehat{\Lambda}).$$

Composing with the Gelfand isomorphism $\gamma_{C^*(\Lambda)} : C^*(\Lambda) \to C(\Omega_{\Lambda})$ gives the *-isomorphism

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

The evaluation isomorphism

First we consider any discrete abelian group Λ with its Pontryagin dual $\hat{\Lambda}$, and $\Omega_{\Lambda} := \Omega(C^*(\Lambda))$; the character space of $C^*(\Lambda)$.

Each character $\chi \in \hat{\Lambda}$ gives rise to a character h_{χ} on $C^*(\Lambda)$ satisfying $h_{\chi}(\delta_t) = \chi(t)$, and the map

$$\widehat{\Lambda}
ightarrow \Omega_{\Lambda}; \quad \chi \mapsto h_{\chi}$$

is a homeomorphism. Dualizing we get the *-isomorphism

$$C(\Omega_{\Lambda}) \longrightarrow C(\widehat{\Lambda}).$$

Composing with the Gelfand isomorphism $\gamma_{C^*(\Lambda)} : C^*(\Lambda) \to C(\Omega_{\Lambda})$ gives the *-isomorphism

$$\operatorname{ev}: \operatorname{C}^*(\Lambda) \longrightarrow \operatorname{C}(\widehat{\Lambda}); \quad \delta_t \mapsto (\operatorname{ev}_t: \chi \mapsto \chi(t)).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

The evaluation isomorphism

First we consider any discrete abelian group Λ with its Pontryagin dual $\hat{\Lambda}$, and $\Omega_{\Lambda} := \Omega(C^*(\Lambda))$; the character space of $C^*(\Lambda)$.

Each character $\chi \in \hat{\Lambda}$ gives rise to a character h_{χ} on $C^*(\Lambda)$ satisfying $h_{\chi}(\delta_t) = \chi(t)$, and the map

$$\widehat{\Lambda}
ightarrow \Omega_{\Lambda}; \quad \chi \mapsto h_{\chi}$$

is a homeomorphism. Dualizing we get the *-isomorphism

$$\mathrm{C}(\Omega_{\Lambda}) \longrightarrow \mathrm{C}(\widehat{\Lambda}).$$

Composing with the Gelfand isomorphism $\gamma_{\mathrm{C}^*(\Lambda)} : \mathrm{C}^*(\Lambda) \to \mathrm{C}(\Omega_{\Lambda})$ gives the *-isomorphism

$$\operatorname{ev}: \operatorname{C}^*(\Lambda) \longrightarrow \operatorname{C}(\widehat{\Lambda}); \quad \delta_t \mapsto \big(\operatorname{ev}_t: \chi \mapsto \chi(t)\big).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

The evaluation isomorphism

First we consider any discrete abelian group Λ with its Pontryagin dual $\hat{\Lambda}$, and $\Omega_{\Lambda} := \Omega(C^*(\Lambda))$; the character space of $C^*(\Lambda)$.

Each character $\chi \in \hat{\Lambda}$ gives rise to a character h_{χ} on $C^*(\Lambda)$ satisfying $h_{\chi}(\delta_t) = \chi(t)$, and the map

$$\widehat{\Lambda}
ightarrow \Omega_{\Lambda}; \quad \chi \mapsto h_{\chi}$$

is a homeomorphism. Dualizing we get the *-isomorphism

$$\operatorname{C}(\Omega_{\Lambda}) \longrightarrow \operatorname{C}(\widehat{\Lambda}).$$

Composing with the Gelfand isomorphism $\gamma_{C^*(\Lambda)} : C^*(\Lambda) \to C(\Omega_\Lambda)$ gives the *-isomorphism

$$\operatorname{\mathsf{ev}}: \operatorname{C}^*(\Lambda) \longrightarrow \operatorname{C}(\widehat{\Lambda}); \quad \delta_t \mapsto (\operatorname{\mathsf{ev}}_t: \chi \mapsto \chi(t)).$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Building ψ via a unitary representation

Given $\frac{a}{d^n} \in \Lambda$, the map

$$U_{\frac{a}{d^n}}: X \to \mathbb{C}; \quad U_{\frac{a}{d^n}}(z) = \pi_n(z)^a = z_n^a$$

is clearly continuous and \mathbb{T} -valued, so $U_{\frac{a}{d^n}}$ is a unitary in C(X). We claim that

$$U: \Lambda
ightarrow {
m C}(X); \quad Uigg(rac{a}{d^n}igg):=U_{rac{a}{d^n}}$$

is a well-defined unitary representation of Λ . **well-defined:** Suppose $\frac{a}{d^n} = \frac{b}{d^m}$ with $m \ge n$. In that case $z_n = z_m^{d^{m-n}}$ so

$$Z_n^a = (Z_m^{d^{m-n}})^a = Z_m^{ad^m d^{-n}} = Z_m^{bd^n d^{-n}} = Z_m^b.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

<ロト (日本)(日本)(日本)(日本)(日本)(日本)

Building ψ via a unitary representation

Given $\frac{a}{d^n} \in \Lambda$, the map

$$U_{\frac{a}{d^n}}: X \to \mathbb{C}; \quad U_{\frac{a}{d^n}}(z) = \pi_n(z)^a = z_n^a$$

is clearly continuous and \mathbb{T} -valued, so $U_{\frac{a}{d^n}}$ is a unitary in C(X). We claim that

$$U: \Lambda
ightarrow \mathrm{C}(X); \quad U\!\left(rac{a}{d^n}
ight):=U_{rac{a}{d^n}}$$

is a well-defined unitary representation of A. well-defined: Suppose $\frac{a}{d^n} = \frac{b}{d^m}$ with $m \ge n$. In that case $z_n = z_m^{d^{m-n}}$ so

$$z_n^a = (z_m^{d^{m-n}})^a = z_m^{ad^m d^{-n}} = z_m^{bd^n d^{-n}} = z_m^b$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Building ψ via a unitary representation

Given $\frac{a}{d^n} \in \Lambda$, the map

$$U_{\frac{a}{d^n}}: X \to \mathbb{C}; \quad U_{\frac{a}{d^n}}(z) = \pi_n(z)^a = z_n^a$$

is clearly continuous and \mathbb{T} -valued, so $U_{\frac{a}{d^n}}$ is a unitary in C(X). We claim that

$$U: \Lambda
ightarrow \mathrm{C}(X); \quad U\!\left(rac{a}{d^n}
ight):=U_{rac{a}{d^n}}$$

is a well-defined unitary representation of Λ . **well-defined:** Suppose $\frac{a}{d^n} = \frac{b}{d^m}$ with $m \ge n$. In that case $z_n = z_m^{d^{m-n}}$ so

$$Z_n^a = (Z_m^{d^{m-n}})^a = Z_m^{ad^m d^{-n}} = Z_m^{bd^n d^{-n}} = Z_m^b.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Unitary Rep: Next, if $\frac{a}{d^n}$ and $\frac{b}{d^m}$ are in Λ with $m \ge n$ then

$$U\left(\frac{a}{d^{n}} + \frac{b}{d^{m}}\right)(z) = U\left(\frac{d^{m-n}a + b}{d^{m}}\right) = z_{m}^{ad^{m-n}+b} = z_{m}^{ad^{m-n}}z_{m}^{b}$$
$$= (z_{m}^{d^{m-n}})^{a}z_{m}^{b} = z_{n}^{a}z_{m}^{b} = U\left(\frac{a}{d^{n}}\right)(z) \cdot U\left(\frac{b}{d^{m}}\right)(z)$$
$$= \left(U\left(\frac{a}{d^{n}}\right) \cdot U\left(\frac{b}{d^{m}}\right)\right)(z).$$

By the universal property of $C^*(\Lambda)$, there is a unital *-homomorphism $\psi : C^*(\Lambda) \to C(X)$ satisfying

$$\psi(\delta_{\frac{a}{d^n}}) = U_{\frac{a}{d^n}}.$$

Evaluating at $z \in X$ we get $\psi(\delta_{\frac{a}{d^n}})(z) = U_{\frac{a}{d^n}}(z) = z_n^a$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Unitary Rep: Next, if $\frac{a}{d^n}$ and $\frac{b}{d^m}$ are in Λ with $m \ge n$ then

$$U\left(\frac{a}{d^{n}} + \frac{b}{d^{m}}\right)(z) = U\left(\frac{d^{m-n}a + b}{d^{m}}\right) = z_{m}^{ad^{m-n}+b} = z_{m}^{ad^{m-n}}z_{m}^{b}$$
$$= (z_{m}^{d^{m-n}})^{a}z_{m}^{b} = z_{n}^{a}z_{m}^{b} = U\left(\frac{a}{d^{n}}\right)(z) \cdot U\left(\frac{b}{d^{m}}\right)(z)$$
$$= \left(U\left(\frac{a}{d^{n}}\right) \cdot U\left(\frac{b}{d^{m}}\right)\right)(z).$$

By the universal property of $C^*(\Lambda)$, there is a unital *-homomorphism $\psi : C^*(\Lambda) \to C(X)$ satisfying

$$\psi(\delta_{\frac{a}{d^n}}) = U_{\frac{a}{d^n}}.$$

Evaluating at $z \in X$ we get $\psi(\delta_{\frac{a}{d^n}})(z) = U_{\frac{a}{d^n}}(z) = z_n^a$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Unitary Rep: Next, if $\frac{a}{d^n}$ and $\frac{b}{d^m}$ are in Λ with $m \ge n$ then

$$U\left(\frac{a}{d^{n}} + \frac{b}{d^{m}}\right)(z) = U\left(\frac{d^{m-n}a + b}{d^{m}}\right) = z_{m}^{ad^{m-n}+b} = z_{m}^{ad^{m-n}}z_{m}^{b}$$
$$= (z_{m}^{d^{m-n}})^{a}z_{m}^{b} = z_{n}^{a}z_{m}^{b} = U\left(\frac{a}{d^{n}}\right)(z) \cdot U\left(\frac{b}{d^{m}}\right)(z)$$
$$= \left(U\left(\frac{a}{d^{n}}\right) \cdot U\left(\frac{b}{d^{m}}\right)\right)(z).$$

By the universal property of $C^*(\Lambda)$, there is a unital *-homomorphism $\psi : C^*(\Lambda) \to C(X)$ satisfying

$$\psi(\delta_{\frac{a}{d^n}}) = U_{\frac{a}{d^n}}.$$

Evaluating at $z \in X$ we get $\psi(\delta_{\frac{a}{d^n}})(z) = U_{\frac{a}{d^n}}(z) = z_n^a$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Unitary Rep: Next, if $\frac{a}{d^n}$ and $\frac{b}{d^m}$ are in Λ with $m \ge n$ then

$$U\left(\frac{a}{d^{n}} + \frac{b}{d^{m}}\right)(z) = U\left(\frac{d^{m-n}a + b}{d^{m}}\right) = z_{m}^{ad^{m-n}+b} = z_{m}^{ad^{m-n}} z_{m}^{b}$$
$$= (z_{m}^{d^{m-n}})^{a} z_{m}^{b} = z_{n}^{a} z_{m}^{b} = U\left(\frac{a}{d^{n}}\right)(z) \cdot U\left(\frac{b}{d^{m}}\right)(z)$$
$$= \left(U\left(\frac{a}{d^{n}}\right) \cdot U\left(\frac{b}{d^{m}}\right)\right)(z).$$

By the universal property of $C^*(\Lambda)$, there is a unital *-homomorphism $\psi : C^*(\Lambda) \to C(X)$ satisfying

$$\psi(\delta_{\frac{a}{d^n}}) = U_{\frac{a}{d^n}}.$$

Evaluating at $z \in X$ we get $\psi(\delta_{\frac{a}{d^n}})(z) = U_{\frac{a}{d^n}}(z) = z_n^a$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Unitary Rep: Next, if $\frac{a}{d^n}$ and $\frac{b}{d^m}$ are in Λ with $m \ge n$ then

$$U\left(\frac{a}{d^{n}} + \frac{b}{d^{m}}\right)(z) = U\left(\frac{d^{m-n}a + b}{d^{m}}\right) = z_{m}^{ad^{m-n}+b} = z_{m}^{ad^{m-n}}z_{m}^{b}$$
$$= (z_{m}^{d^{m-n}})^{a}z_{m}^{b} = z_{n}^{a}z_{m}^{b} = U\left(\frac{a}{d^{n}}\right)(z) \cdot U\left(\frac{b}{d^{m}}\right)(z)$$
$$= \left(U\left(\frac{a}{d^{n}}\right) \cdot U\left(\frac{b}{d^{m}}\right)\right)(z).$$

By the universal property of $C^*(\Lambda)$, there is a unital *-homomorphism $\psi : C^*(\Lambda) \to C(X)$ satisfying

$$\psi(\delta_{\frac{a}{d^n}}) = U_{\frac{a}{d^n}}.$$

Evaluating at $z \in X$ we get $\psi(\delta_{\frac{a}{d^n}})(z) = U_{\frac{a}{d^n}}(z) = z_n^a$.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(z) = z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(X). Also, the range ψ (C*(Λ)) separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in X, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective. To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(z) = z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(*X*).

Also, the range $\psi(C^*(\Lambda))$ separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in *X*, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective. To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(z) = z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(*X*). Also, the range ψ (C*(Λ)) separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in *X*, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective. To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(Z) = Z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(*X*). Also, the range ψ (C*(Λ)) separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in *X*, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective. To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

イロト 不良 とうせい イロト

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(z) = z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(X). Also, the range ψ (C*(Λ)) separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in X, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective.

To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

イロト イポト イヨト イヨト

We therefore have our desired unital *-homomorphism

$$\psi: \mathrm{C}^*(\Lambda) \to \mathrm{C}(X); \quad \psi(\delta_{\frac{a}{d^n}})(Z) = Z_n^a.$$

The range of ψ is a unital C*-subalgebra of C(*X*). Also, the range ψ (C*(Λ)) separates points; indeed, if $(z_k)_k = z \neq w = (w_k)_k$ in *X*, then $z_n \neq w_n$ for some *n*, so

$$\psi(\delta_{d^{-n}})(z) = z_n \neq w_n = \psi(\delta_{d^{-n}})(w).$$

By the Stone Weierstrass Theorem, ψ is surjective. To complete the proof we need only show that ψ is injective, and we do this by constructing a commutative diagram.

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Consider the sequence of continuous maps

$$p_n: \hat{\Lambda} \to \mathbb{T}; \quad p_n(\chi) = \chi(d^{-n}).$$

These satisfy $\rho \circ p_{n+1} = p_n$. Indeed,

$$\rho \circ p_{n+1}(\chi) = \rho(\chi(d^{-(n+1)})) = \chi(d^{-(n+1)})^d$$

= $\chi(dd^{-(n+1)}) = \chi(d^{-n}) = p_n(\chi).$

$$T_h: \mathrm{C}(X) \to \mathrm{C}(\hat{\Lambda}); \quad T_h(f) = f \circ h.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Consider the sequence of continuous maps

$$p_n: \hat{\Lambda} \to \mathbb{T}; \quad p_n(\chi) = \chi(d^{-n}).$$

These satisfy $\rho \circ p_{n+1} = p_n$. Indeed,

$$\rho \circ p_{n+1}(\chi) = \rho(\chi(d^{-(n+1)})) = \chi(d^{-(n+1)})^d$$

= $\chi(dd^{-(n+1)}) = \chi(d^{-n}) = p_n(\chi).$

$$T_h: \mathrm{C}(X) \to \mathrm{C}(\hat{\Lambda}); \quad T_h(f) = f \circ h.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Consider the sequence of continuous maps

$$p_n: \hat{\Lambda} \to \mathbb{T}; \quad p_n(\chi) = \chi(d^{-n}).$$

These satisfy $\rho \circ p_{n+1} = p_n$. Indeed,

$$\rho \circ p_{n+1}(\chi) = \rho(\chi(d^{-(n+1)})) = \chi(d^{-(n+1)})^d$$

= $\chi(dd^{-(n+1)}) = \chi(d^{-n}) = p_n(\chi).$

$$T_h: \mathrm{C}(X) \to \mathrm{C}(\hat{\Lambda}); \quad T_h(f) = f \circ h.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

Consider the sequence of continuous maps

$$p_n: \hat{\Lambda} \to \mathbb{T}; \quad p_n(\chi) = \chi(d^{-n}).$$

These satisfy $\rho \circ p_{n+1} = p_n$. Indeed,

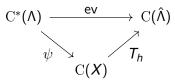
$$\rho \circ p_{n+1}(\chi) = \rho(\chi(d^{-(n+1)})) = \chi(d^{-(n+1)})^d$$

= $\chi(dd^{-(n+1)}) = \chi(d^{-n}) = p_n(\chi).$

$$T_h : \mathrm{C}(X) \to \mathrm{C}(\hat{\Lambda}); \quad T_h(f) = f \circ h.$$

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We claim that $T_h \circ \psi = ev$.

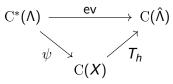


For every
$$\frac{a}{d^n} \in \Lambda$$
 and $\chi \in \hat{\Lambda}$
 $T_h \circ \psi(\delta_{\frac{a}{d^n}})(\chi) = T_h \circ U\left(\frac{a}{d^n}\right)(\chi) = U\left(\frac{a}{d^n}\right) \circ h(\chi)$
 $= \left(\pi_n(h(\chi))\right)^a = p_n(\chi)^a = \chi(d^{-n})^a = \chi\left(\frac{a}{d^n}\right) = \operatorname{ev}_{\frac{a}{d^n}}(\chi).$

By linearity the *-homomorphisms $T_h \circ \psi$ and ev agree on $\mathbb{C}[\Lambda]$, and by continuity they agree on $\mathbb{C}^*(\Lambda)$. Finally, since ev is injective, so is ψ .

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We claim that $T_h \circ \psi = ev$.

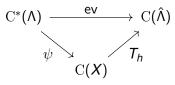


For every
$$\frac{a}{d^n} \in \Lambda$$
 and $\chi \in \hat{\Lambda}$
 $T_h \circ \psi(\delta_{\frac{a}{d^n}})(\chi) = T_h \circ U\left(\frac{a}{d^n}\right)(\chi) = U\left(\frac{a}{d^n}\right) \circ h(\chi)$
 $= (\pi_n(h(\chi)))^a = p_n(\chi)^a = \chi(d^{-n})^a = \chi\left(\frac{a}{d^n}\right) = \operatorname{ev}_{\frac{a}{d^n}}(\chi).$

By linearity the *-homomorphisms $T_h \circ \psi$ and ev agree on $\mathbb{C}[\Lambda]$, and by continuity they agree on $\mathbb{C}^*(\Lambda)$. Finally, since ev is injective, so is ψ .

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We claim that $T_h \circ \psi = ev$.

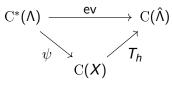


For every
$$\frac{a}{d^n} \in \Lambda$$
 and $\chi \in \hat{\Lambda}$
 $T_h \circ \psi(\delta_{\frac{a}{d^n}})(\chi) = T_h \circ U\left(\frac{a}{d^n}\right)(\chi) = U\left(\frac{a}{d^n}\right) \circ h(\chi)$
 $= (\pi_n(h(\chi)))^a = p_n(\chi)^a = \chi(d^{-n})^a = \chi\left(\frac{a}{d^n}\right) = \operatorname{ev}_{\frac{a}{d^n}}(\chi).$

By linearity the *-homomorphisms $T_h \circ \psi$ and ev agree on $\mathbb{C}[\Lambda]$, and by continuity they agree on $C^*(\Lambda)$. Finally, since ev is injective, so is ψ .

Topologically free actions and ideal structure A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$

We claim that $T_h \circ \psi = ev$.



For every
$$\frac{a}{d^n} \in \Lambda$$
 and $\chi \in \hat{\Lambda}$
 $T_h \circ \psi(\delta_{\frac{a}{d^n}})(\chi) = T_h \circ U\left(\frac{a}{d^n}\right)(\chi) = U\left(\frac{a}{d^n}\right) \circ h(\chi)$
 $= \left(\pi_n(h(\chi))\right)^a = p_n(\chi)^a = \chi(d^{-n})^a = \chi\left(\frac{a}{d^n}\right) = \operatorname{ev}_{\frac{a}{d^n}}(\chi).$

By linearity the *-homomorphisms $T_h \circ \psi$ and ev agree on $\mathbb{C}[\Lambda]$, and by continuity they agree on $\mathbb{C}^*(\Lambda)$. Finally, since ev is injective, so is ψ .

Statement of the Theorem (Furstenberg's Approximation) Proof

くロン くぼう くほう くほう 二日

Outline

- Algebraically C*-unique groups: definition, (non)-example Conditions for C*-uniqueness A Bit on Actions • C*-algebra of semidirect product vs crossed product Topologically free actions and ideal structure • A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$ Part 4, by Marco Roschkowski Statement of the Theorem (Furstenberg's Approximation)
 - Proof
 - Part 5, by Ujan Chakrabo
 - Actions on the (Abelian) C* algebra vs the Spectrum
 - Proof of C* uniqueness: The Main Theorem

Statement of the Theorem (Furstenberg's Approximation) Proof

Furstenberg's Theorem

Theorem (Furstenberg)

If $B \subset \mathbb{T}$ is an infinite closed subset such that

$$B = \{ z^{p^r q^s} \mid z \in B \text{ and } r, s \in \mathbb{N} \},$$
(1)

then $B = \mathbb{T}$.

Why do we need this?

Statement of the Theorem (Furstenberg's Approximation) Proof

Furstenberg's Theorem

•
$$C^*(\mathbb{Z}[\frac{1}{pq}] \rtimes \mathbb{Z}^2) \cong C(X) \rtimes \mathbb{Z}^2$$

• Need to show: $I \triangleleft C(X)$ is trivial

•
$$I = C_0(B^c)$$
 with $B \subseteq X$ closed
 $(B = \{x \in X \mid f(x) = 0 \ \forall f \in I\})$

• Furstenberg $\Rightarrow B = X \rightarrow I = 0$

Statement of the Theorem (Furstenberg's Approximation) Proof

くロン くぼう くほう くほう 二日

Furstenberg's Theorem

- $C^*(\mathbb{Z}[\frac{1}{pq}] \rtimes \mathbb{Z}^2) \cong C(X) \rtimes \mathbb{Z}^2$
- Need to show: $I \triangleleft C(X)$ is trivial
- $I = C_0(B^c)$ with $B \subseteq X$ closed $(B = \{x \in X \mid f(x) = 0 \ \forall f \in I\})$
- Furstenberg $\Rightarrow B = X \rightarrow I = 0$

Statement of the Theorem (Furstenberg's Approximation) Proof

Furstenberg's Theorem

•
$$C^*(\mathbb{Z}[\frac{1}{pq}] \rtimes \mathbb{Z}^2) \cong C(X) \rtimes \mathbb{Z}^2$$

• Need to show: $I \triangleleft C(X)$ is trivial

•
$$I = C_0(B^c)$$
 with $B \subseteq X$ closed
 $(B = \{x \in X \mid f(x) = 0 \ \forall f \in I\})$

• Furstenberg $\Rightarrow B = X \rightarrow I = 0$

Statement of the Theorem (Furstenberg's Approximation) Proof

Furstenberg's Theorem

•
$$C^*(\mathbb{Z}[\frac{1}{pq}] \rtimes \mathbb{Z}^2) \cong C(X) \rtimes \mathbb{Z}^2$$

• Need to show: $I \triangleleft C(X)$ is trivial

•
$$I = C_0(B^c)$$
 with $B \subseteq X$ closed
 $(B = \{x \in X \mid f(x) = 0 \ \forall f \in I\})$

• Furstenberg $\Rightarrow B = X \rightarrow I = 0$

notation

• will identify \mathbb{T} with [0, 1)

- 0 ~ 1
- $t \mapsto e^{2\pi t i}$ homeomorphism

Statement of the Theorem (Furstenberg's Approximation)
Proof

notation

- will identify \mathbb{T} with [0, 1)
- 0 ~ 1
- $t \mapsto e^{2\pi t i}$ homeomorphism

Statement of the Theorem (Furstenberg's Approximation)
Proof

Statement of the Theorem (Furstenberg's Approximation)
Proof

notation

- will identify \mathbb{T} with [0, 1)
- 0 ~ 1
- $t\mapsto e^{2\pi t i}$ homeomorphism

Statement of the Theorem (Furstenberg's Approximation) Proof

イロト 不得 とくほ とくほ とうほ

notation

Definition

A subset $B \subseteq \mathbb{T}$ is said to be $\times p$ – *invariant* if $p \cdot B = B$. $(p \cdot B = \{p \cdot z \mid z \in B\})$

Theorem (Furstenberg)

If $B \subseteq \mathbb{T}$ is an infinite, closed subset, which is $\times p-$ and $\times q-$ invariant, then $B = \mathbb{T}$.

Fix a set B with these properties

For $S \subseteq \mathbb{T}$ let S' denote the set of **limit points of S**. $(S' = \{z \mid z \in \overline{S} \cap \overline{S \setminus \{z\}})$

Lemma (Lemma 1)

If $B' \cap \mathbb{Q} \neq \emptyset$, then $B = \mathbb{T}$.

Lemma (Lemma 2)

If $\emptyset \neq S \subseteq \mathbb{T}$ is closed and $\times p-$, $\times q-$ invariant. Then $S \cap \mathbb{Q} \neq \emptyset$.

イロト 不得 とくほ とくほ とうほ

Statement of the Theorem (Furstenberg's Approximation) Proof

Outline

- Part 1, by Arnab Bhattacherjee
 Algebraically C*-unique groups: definition, (non)-example
 Conditions for C*-uniqueness
 Part 2, by Malay Mandal
 A Bit on Actions . . .
 - C*-algebra of semidirect product vs crossed product
- Part 3, by Timothy Rainone
 - Topologically free actions and ideal structure
 - A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$
- Part 4, by Marco Roschkowski
- Statement of the Theorem (Furstenberg's Approximation)
- Proof
- 5

Part 5, by Ujan Chakraborty

- Actions on the (Abelian) C* algebra vs the Spectrum
- Proof of C* uniqueness: The Main Theorem

outline of the proof

Statement of the Theorem (Furstenberg's Approximation) Proof

proof of Furstenberg's Theorem.

• B infinite
$$\Rightarrow$$
 B' $\neq \varnothing$

• $B' \times p-$, $\times q-$ invariant $\Rightarrow B' \cap \mathbb{Q} \neq \varnothing$

 $\bullet \Rightarrow B = \mathbb{T}$

outline of the proof

Statement of the Theorem (Furstenberg's Approximation) Proof

proof of Furstenberg's Theorem.

• B infinite
$$\Rightarrow$$
 B' $\neq \varnothing$

•
$$B' \times p-, \times q-invariant \Rightarrow B' \cap \mathbb{Q} \neq \emptyset$$

 $\bullet \Rightarrow B = \mathbb{T}$

outline of the proof

Statement of the Theorem (Furstenberg's Approximation) Proof

proof of Furstenberg's Theorem.

• B infinite
$$\Rightarrow$$
 B' $\neq \varnothing$

•
$$B' \times p-, \times q-invariant \Rightarrow B' \cap \mathbb{Q} \neq \emptyset$$

•
$$\Rightarrow B = \mathbb{T}$$

Statement of the Theorem (Furstenberg's Approximation) Proof

3

Lemma 1

Lemma (Lemma 1)

If $B' \cap \mathbb{Q} \neq \emptyset$, then $B = \mathbb{T}$.

Lemma

Write
$$\{p^r q^s \mid r, s \in \mathbb{N}_0\} = \{s_1, s_2, ...\}$$
 with $s_i < s_{i+1}$.
Then $s_{i+1}/s_i \to 1$ $(i \to \infty)$.

Statement of the Theorem (Furstenberg's Approximation) **Proof**

Lemma 1

• First, suppose $0 \in B'$, fix small ϵ

- Take $n \in \mathbb{N}$ with $1 < s_{i+1}/s_i < 1 + \epsilon$
- Choose $z \in B$ with $0 < |z| < \epsilon/s_n$
- $\{s_i z \mid i \ge n\}$ is ϵ' -dense

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

- First, suppose $0 \in B'$, fix small ϵ
- Take $n \in \mathbb{N}$ with $1 < s_{i+1}/s_i < 1 + \epsilon$
- Choose $z \in B$ with $0 < |z| < \epsilon/s_n$
- $\{s_i z \mid i \ge n\}$ is ϵ' -dense

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

- First, suppose $0 \in B'$, fix small ϵ
- Take $n \in \mathbb{N}$ with $1 < s_{i+1}/s_i < 1 + \epsilon$
- Choose $z \in B$ with $0 < |z| < \epsilon/s_n$

• { $s_i z \mid i \ge n$ } is ϵ' -dense

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

- First, suppose $0 \in B'$, fix small ϵ
- Take $n \in \mathbb{N}$ with $1 < s_{i+1}/s_i < 1 + \epsilon$
- Choose $z \in B$ with $0 < |z| < \epsilon/s_n$
- $\{s_i z \mid i \ge n\}$ is ϵ' -dense

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

• Now, $r = n/t \in \mathbb{Q} \cap B'$

• (n,t) = (t,p) = (t,q) = 1 $[(\cdot, \cdot)$ greatest common divisor]

p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

• $B - r, B' - r \times p^u - , \times q^u - invariant$ and $0 \in B'$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$
$$= p^{u} \cdot B - (mt + 1)n/t$$
$$= B - r \pmod{1}$$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

- Now, $r = n/t \in \mathbb{Q} \cap B'$
- (n,t) = (t,p) = (t,q) = 1 $[(\cdot, \cdot)$ greatest common divisor]
- p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

• $B - r, B' - r \times p^u -, \times q^u - invariant$ and $0 \in B'$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$
$$= p^{u} \cdot B - (mt + 1)n/t$$
$$= B - r \pmod{1}$$

Statement of the Theorem (Furstenberg's Approximation)
Proof

Lemma 1

- Now, $r = n/t \in \mathbb{Q} \cap B'$
- (n,t) = (t,p) = (t,q) = 1 $[(\cdot, \cdot)$ greatest common divisor]
- *p*, *q* invertible (mod t)
- $\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$
- $B r, B' r \times p^u -, \times q^u invariant$ and $0 \in B^u$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$
$$= p^{u} \cdot B - (mt + 1)n/t$$
$$= B - r \pmod{1}$$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 1

- Now, $r = n/t \in \mathbb{Q} \cap B'$
- (n,t) = (t,p) = (t,q) = 1 $[(\cdot, \cdot)$ greatest common divisor]
- p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

• $B - r, B' - r \times p^u -, \times q^u - invariant$ and $0 \in B'$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$
$$= p^{u} \cdot B - (mt + 1)n/t$$
$$= B - r \pmod{1}$$

Statement of the Theorem (Furstenberg's Approximation)
Proof

Lemma 1

• Now, $r = n/t \in \mathbb{Q} \cap B'$

•
$$(n,t) = (t,p) = (t,q) = 1$$
 $[(\cdot, \cdot)$ greatest common divisor]

• p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

• $B - r, B' - r \times p^u - , \times q^u - invariant$ and $0 \in B'$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$
$$= p^{u} \cdot B - (mt + 1)n/t$$
$$= B - r \pmod{1}$$

Statement of the Theorem (Furstenberg's Approximation)
Proof

Lemma 1

• Now, $r = n/t \in \mathbb{Q} \cap B'$

•
$$(n,t) = (t,p) = (t,q) = 1$$
 $[(\cdot, \cdot)$ greatest common divisor]

p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

• $B - r, B' - r \times p^u - , \times q^u - invariant$ and $0 \in B'$

$$p^{u} \cdot (B-r) = p^{u} \cdot B - p^{u} \cdot r$$

= $p^{u} \cdot B - (mt+1)n/t$ (2)
= $B - r \pmod{1}$

Statement of the Theorem (Furstenberg's Approximation)
Proof

Lemma 1

• Now, $r = n/t \in \mathbb{Q} \cap B'$

•
$$(n,t) = (t,p) = (t,q) = 1$$
 $[(\cdot, \cdot)$ greatest common divisor]

p, q invertible (mod t)

•
$$\Rightarrow \exists u : p^u, q^u = 1 \pmod{t}$$

•
$$B - r, B' - r \times p^u - , \times q^u - invariant$$
 and $0 \in B'$

$$p^{u} \cdot (B - r) = p^{u} \cdot B - p^{u} \cdot r$$

= $p^{u} \cdot B - (mt + 1)n/t$ (2)
= $B - r \pmod{1}$

• $\Rightarrow B = \mathbb{T}$

Statement of the Theorem (Furstenberg's Approximation) Proof

(ロ) (同) (日) (日) (日)

Lemma (Lemma 2)

If $\varnothing \neq S \subseteq \mathbb{T}$ is closed and $\times p-$, $\times q-$ invariant. Then $S \cap \mathbb{Q} \neq \varnothing$.

- Assume $S \cap \mathbb{Q} = \emptyset$
- Fix $\epsilon > 0$, $t > 1/\epsilon$
- $p^{u}, q^{u} = 1 \pmod{t}$
- Set $S_0 = S$, $S_{i+1} = S_i \cap (S_i 1/t)$

Statement of the Theorem (Furstenberg's Approximation) Proof

(ロ) (同) (日) (日) (日)

Lemma (Lemma 2)

If $\varnothing \neq S \subseteq \mathbb{T}$ is closed and $\times p-$, $\times q-$ invariant. Then $S \cap \mathbb{Q} \neq \emptyset$.

- Assume $S \cap \mathbb{Q} = \emptyset$
- Fix $\epsilon > 0$, $t > 1/\epsilon$
- $p^{u}, q^{u} = 1 \pmod{t}$
- Set $S_0 = S$, $S_{i+1} = S_i \cap (S_i 1/t)$

Lemma 2

Lemma (Lemma 2)

If $\varnothing \neq S \subseteq \mathbb{T}$ is closed and $\times p-$, $\times q-$ invariant. Then $S \cap \mathbb{Q} \neq \emptyset$.

Proof.

- Assume $S \cap \mathbb{Q} = \emptyset$
- Fix $\epsilon > 0$, $t > 1/\epsilon$
- $p^{u}, q^{u} = 1 \pmod{t}$

• Set $S_0 = S$, $S_{i+1} = S_i \cap (S_i - 1/t)$

Statement of the Theorem (Furstenberg's Approximation) Proof

(ロ) (同) (日) (日) (日)

Lemma 2

Lemma (Lemma 2)

If $\varnothing \neq S \subseteq \mathbb{T}$ is closed and $\times p-$, $\times q-$ invariant. Then $S \cap \mathbb{Q} \neq \emptyset$.

Proof.

- Assume $S \cap \mathbb{Q} = \emptyset$
- Fix $\epsilon > 0$, $t > 1/\epsilon$

•
$$p^{u}, q^{u} = 1 \pmod{t}$$

• Set
$$S_0 = S$$
, $S_{i+1} = S_i \cap (S_i - 1/t)$

Statement of the Theorem (Furstenberg's Approximation)
Proof

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

1)
$$S_i \times p^u - , \times q^u - invariant$$

- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
- Now S_{i+1} :
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
- K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
- 0 ∈ *K*′
- $\Rightarrow K = \mathbb{T}$ (Lemma 1)
- $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now S_{i+1} :
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
- K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
- 0 ∈ *K*′
- $\Rightarrow K = \mathbb{T}$ (Lemma 1)
- $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
- K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
- 0 ∈ *K*′
- $\Rightarrow K = \mathbb{T}$ (Lemma 1)
- $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
- Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
- K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
- 0 ∈ *K*′
- $\Rightarrow K = \mathbb{T}$ (Lemma 1)
- $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
- Now *S*_{*i*+1}:

3)
$$K = S_i - S_i = \{z - z' \mid z, z' \in S_i\}$$

- K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
- 0 ∈ *K*′
- $\Rightarrow K = \mathbb{T}$ (Lemma 1)
- $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
 - K closed, infinite, $\times p^u$ -, $\times q^u$ invariant
 - 0 ∈ K'
 - $\Rightarrow K = \mathbb{T}$ (Lemma 1)
 - $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
 - K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
 - 0 ∈ *K*′
 - $\Rightarrow K = \mathbb{T}$ (Lemma 1)
 - $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
 - K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
 - 0 ∈ K'
 - $\Rightarrow K = \mathbb{T}$ (Lemma 1)
 - $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- 1) $S_i \times p^u , \times q^u invariant$
- 2) S_i closed
- 3) $S_i \subseteq \mathbb{R} \setminus \mathbb{Q}$ infinite
 - Now *S*_{*i*+1}:
- 3) $K = S_i S_i = \{z z' \mid z, z' \in S_i\}$
 - K closed, infinite, $\times p^{u}$ -, $\times q^{u}$ invariant
 - 0 ∈ K'
 - $\Rightarrow K = \mathbb{T}$ (Lemma 1)
 - $S_{i+1} = S_i \cap (S_i 1/t) \neq \emptyset$

Statement of the Theorem (Furstenberg's Approximation) Proof

イロン 不得 とくほ とくほ とうほ

Lemma 2

- $s_0 \in S_{t-1}$
- $s_i = s_0 + i/t \in S$ for $0 \le i \le t 1$
- $s_i \epsilon$ dense in $\mathbb{T} (t > 1/\epsilon)$
- S closed \Rightarrow S = T, but S \cap Q = \varnothing

Statement of the Theorem (Furstenberg's Approximation) Proof

イロン 不得 とくほ とくほ とうほ

Lemma 2

- $s_0 \in S_{t-1}$
- $s_i = s_0 + i/t \in S$ for $0 \le i \le t 1$
- $s_i \epsilon$ dense in $\mathbb{T} \; (t > 1/\epsilon)$
- S closed \Rightarrow S = T, but S \cap Q = Ø

Statement of the Theorem (Furstenberg's Approximation) Proof

イロン 不得 とくほ とくほ とうほ

Lemma 2

- $s_0 \in S_{t-1}$
- $s_i = s_0 + i/t \in S$ for $0 \le i \le t 1$
- $s_i \epsilon$ dense in \mathbb{T} ($t > 1/\epsilon$)
- S closed \Rightarrow S = T, but S \cap Q = \varnothing

Statement of the Theorem (Furstenberg's Approximation) Proof

Lemma 2

- $s_0 \in S_{t-1}$
- $s_i = s_0 + i/t \in S$ for $0 \le i \le t 1$
- $s_i \epsilon$ dense in \mathbb{T} ($t > 1/\epsilon$)
- S closed \Rightarrow S = T, but S $\cap \mathbb{Q} = \emptyset$

The Action The Main Theorem

Outline

 Algebraically C*-unique groups: definition, (non)-example Conditions for C*-uniqueness A Bit on Actions • C*-algebra of semidirect product vs crossed product Topologically free actions and ideal structure • A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$ Statement of the Theorem (Furstenberg's Approximation) Proof Part 5, by Ujan Chakraborty Actions on the (Abelian) C* algebra vs the Spectrum Proof of C* uniqueness: The Main Theorem くロン くぼう くほう くほう 二日

The Action The Main Theorem

The Action on the C* Algebra ...

• Recall, the additive group $\mathbb{Z}\left[\frac{1}{pq}\right] = \left\{\frac{a}{(pq)^n} \in \mathbb{Q} \mid a \in \mathbb{Z}, n \in \mathbb{N}\right\}$ with the action $\alpha : \mathbb{Z}^2 \curvearrowright \mathbb{Z}\left[\frac{1}{pq}\right], \alpha_{(r,s)}(x) = p^r q^s x$ for $r, s \in \mathbb{Z}$ and $x \in \mathbb{Z}\left[\frac{1}{pq}\right].$

Consider the induced action

$$\tilde{\alpha}: \mathbb{Z}^2 \curvearrowright \mathrm{C}^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right)$$

(Consider $\hat{\alpha} : \mathbb{Z}^2 \curvearrowright \mathbb{Z}\left[\frac{1}{pq}\right]$, and correspondingly $\tilde{\hat{\alpha}} : \mathbb{Z}^2 \curvearrowright C_0\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right)$, and recall $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \cong C_0\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right)$.)

The Action The Main Theorem

The Action on the C* Algebra ...

- Recall, the additive group $\mathbb{Z}\left[\frac{1}{pq}\right] = \left\{\frac{a}{(pq)^n} \in \mathbb{Q} \mid a \in \mathbb{Z}, n \in \mathbb{N}\right\}$ with the action $\alpha : \mathbb{Z}^2 \curvearrowright \mathbb{Z}\left[\frac{1}{pq}\right], \alpha_{(r,s)}(x) = p^r q^s x$ for $r, s \in \mathbb{Z}$ and $x \in \mathbb{Z}\left[\frac{1}{pq}\right].$
- Consider the induced action

$$\tilde{\alpha} : \mathbb{Z}^2 \frown \mathrm{C}^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \right)$$

(Consider $\hat{\alpha} : \mathbb{Z}^2 \curvearrowright \widehat{\mathbb{Z}\left[\frac{1}{pq}\right]}$, and correspondingly $\tilde{\hat{\alpha}} : \mathbb{Z}^2 \curvearrowright C_0\left(\widehat{\mathbb{Z}\left[\frac{1}{pq}\right]}\right)$, and recall $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \cong C_0\left(\widehat{\mathbb{Z}\left[\frac{1}{pq}\right]}\right)$.

The Action The Main Theorem

... and the Spectrum

- Recall that for a group *G* and a (compact) topological space *Y*, an action ξ : *G* → *Y* induces an action ξ̃ : *G* → *C*(*Y*) in the following fashion: for all *g* ∈ *G* and *f* ∈ *C*(*Y*), ξ̃_g(*f*) = *f* ∘ ξ_{g⁻¹}, and vice versa.
- There exists an action β : Z² → X such that for f ∈ C(X) and r, s ∈ Z,

$$\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f) = f \circ \beta_{(r,s)}^{-1}$$

ヘロン 人間 とくほど 人ほどう ほ

The Action The Main Theorem

... and the Spectrum

- Recall that for a group *G* and a (compact) topological space *Y*, an action *ξ* : *G* → *Y* induces an action *ξ̃* : *G* → *C*(*Y*) in the following fashion: for all *g* ∈ *G* and *f* ∈ *C*(*Y*), *ξ̃*_g(*f*) = *f* ∘ *ξ*_{g⁻¹}, and vice versa.
- There exists an action β : Z² ∩ X such that for f ∈ C(X) and r, s ∈ Z,

$$\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f) = f \circ \beta_{(r,s)}^{-1}$$

The Action The Main Theorem

What does the action look like?

• Recall,
$$X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{T} \mid x_n = x_{n+1}^{pq}\}$$

- Functions of the form $f_m^a \in C(X)$, with $a \in \mathbb{Z}$, $m \in \mathbb{N}$, $f(x) = (x_m)^a$, form a dense subset of C(X), by the Stone-Weierstraß theorem.
- Recall the isomorphism $\psi : C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \to C(X),$

$$\delta_{\left(\frac{a}{(pq)^m}\right)} \mapsto f_m^a$$

• Hence,

$$\tilde{\alpha}_{(r,s)} \circ \psi^{-1}\left(f_{m}^{a}\right) = \delta_{\left(\frac{ap^{r}q^{s}}{(pq)^{m}}\right)}$$

The Action The Main Theorem

What does the action look like?

- Recall, $X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{T} \mid x_n = x_{n+1}^{pq}\}$
- Functions of the form $f_m^a \in C(X)$, with $a \in \mathbb{Z}$, $m \in \mathbb{N}$, $f(x) = (x_m)^a$, form a dense subset of C(X), by the Stone-Weierstraß theorem.
- Recall the isomorphism $\psi : C^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \right) \to C(X),$

$$\left(\frac{a}{(pq)^m}\right)$$

• Hence,

$$\tilde{\alpha}_{(r,s)} \circ \psi^{-1}\left(f_{m}^{a}\right) = \delta_{\left(\frac{ap^{r}q^{s}}{(pq)^{m}}\right)}$$

(ロ) (四) (モ) (モ) (モ)

The Action The Main Theorem

What does the action look like?

- Recall, $X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{T} \mid x_n = x_{n+1}^{pq}\}$
- Functions of the form $f_m^a \in C(X)$, with $a \in \mathbb{Z}$, $m \in \mathbb{N}$, $f(x) = (x_m)^a$, form a dense subset of C(X), by the Stone-Weierstraß theorem.
- Recall the isomorphism $\psi : C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \to C(X),$

$$\delta_{\left(\frac{a}{(pq)^m}\right)} \mapsto f_m^a.$$

Hence,

$$\tilde{\alpha}_{(r,s)} \circ \psi^{-1}\left(f_m^a\right) = \delta_{\left(\frac{ap^r q^s}{(pq)^m}\right)}$$

The Action The Main Theorem

What does the action look like?

• For $r, s \ge 0$, $ap^r q^s \in \mathbb{Z}$, $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_m^{ap^r q^s}$, and $\beta_{(r,s)}^{-1}(x) = x^{p^r q^s}$

• For $r, s \leq 0$, $\tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = \delta_{\left(\frac{a\rho^{|s|}q^{|r|}}{(\rho q)^{m+|r|+|s|}}\right)}$, $a\rho^{|s|}q^{|r|} \in \mathbb{Z}$,

 $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_{m+|r|+|s|}^{ap^{|s|}q^{|r|}}$, *T* being the left shift on *X*,

$$\beta_{(r,s)}^{-1}(x) = (T^{|r|+|s|}(x))^{p^{|s|}q^{|r|}}$$

$$\beta_{(1,1)} = \mathbf{7}$$

• The case(s) for *rs* < 0 follow analogously.

The Action The Main Theorem

What does the action look like?

• For
$$r, s \ge 0$$
, $ap^r q^s \in \mathbb{Z}$, $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1} (f_m^a) = f_m^{ap^r q^s}$, and
 $\beta_{(r,s)}^{-1}(x) = x^{p^r q^s}$

• For
$$r, s \leq 0$$
, $\tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = \delta_{\left(\frac{a\rho^{|s|}q^{|r|}}{(\rho q)^{m+|r|+|s|}}\right)}$, $a\rho^{|s|}q^{|r|} \in \mathbb{Z}$,

 $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_{m+|r|+|s|}^{ap^{|s|}q^{|r|}}$, *T* being the left shift on *X*,

$$\beta_{(r,s)}^{-1}(x) = (T^{|r|+|s|}(x))^{p^{|s|}q^{|r|}}$$

$$\beta_{(1,1)} = 7$$

• The case(s) for *rs* < 0 follow analogously.

The Action The Main Theorem

What does the action look like?

• For
$$r, s \ge 0$$
, $ap^r q^s \in \mathbb{Z}$, $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1} (f_m^a) = f_m^{ap^r q^s}$, and
 $\beta_{(r,s)}^{-1}(x) = x^{p^r q^s}$

• For
$$r, s \leq 0$$
, $\tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = \delta_{\left(\frac{a\rho^{|s|}q^{|r|}}{(\rho q)^{m+|r|+|s|}}\right)}$, $a\rho^{|s|}q^{|r|} \in \mathbb{Z}$,

 $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_{m+|r|+|s|}^{ap^{|s|}q^{|r|}}$, *T* being the left shift on *X*,

$$\beta_{(r,s)}^{-1}(x) = (T^{|r|+|s|}(x))^{p^{|s|}q^{|r|}}$$

$$\beta_{(1,1)}=T$$

• The case(s) for *rs* < 0 follow analogously.

The Action The Main Theorem

What does the action look like?

• For $r, s \ge 0$, $ap^r q^s \in \mathbb{Z}$, $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_m^{ap^r q^s}$, and $\beta_{(r,s)}^{-1}(x) = x^{p^r q^s}$

• For
$$r, s \leq 0$$
, $\tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = \delta_{\left(\frac{a\rho^{|s|}q^{|r|}}{(\rho q)^{m+|r|+|s|}}\right)}$, $a\rho^{|s|}q^{|r|} \in \mathbb{Z}$,

 $\psi \circ \tilde{\alpha}_{(r,s)} \circ \psi^{-1}(f_m^a) = f_{m+|r|+|s|}^{ap^{|s|}q^{|r|}}, T$ being the left shift on X,

$$\beta_{(r,s)}^{-1}(x) = (T^{|r|+|s|}(x))^{p^{|s|}q^{|r|}}$$

۲

$$\beta_{(1,1)}=T$$

• The case(s) for *rs* < 0 follow analogously.

The Action The Main Theorem

Outline

 Algebraically C*-unique groups: definition, (non)-example Conditions for C*-uniqueness A Bit on Actions • C*-algebra of semidirect product vs crossed product Topologically free actions and ideal structure • A useful description of $C^*(\mathbb{Z}[\frac{1}{d}])$ Statement of the Theorem (Furstenberg's Approximation) Proof Part 5, by Ujan Chakraborty Actions on the (Abelian) C* algebra vs the Spectrum Proof of C* uniqueness: The Main Theorem

The Action The Main Theorem

The Final Theorem

Theorem

The group $\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes_{\alpha} \mathbb{Z}^2$ is algebraically C^* unique.

ISem24, Project 3 C*-uniqueness of group algebras

イロン 不得 とくほ とくほ とうほ

The Action The Main Theorem

The Proof . . .

- Let $I \lhd C^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right)$ be an ideal such that $I \cap \mathbb{C} \left[\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right] = \{0\}$. We need to prove that $I = \{0\}$
- With the topological identification of the spectrum, $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right) \cong C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \rtimes \mathbb{Z}^2 \cong C(X) \rtimes \mathbb{Z}^2$
- It is sufficient to prove that *I* ∩ *C*(*X*) = {0}, because then it follows that *I* = {0}.
- C(X) is identified with $C(X)u_e$, a subalgebra of $C(X) \rtimes \mathbb{Z}^2$.

•
$$I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right] = \{0\} \implies I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] = \{0\}$$

The Action The Main Theorem

The Proof . . .

- Let $I \lhd C^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right)$ be an ideal such that $I \cap \mathbb{C} \left[\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right] = \{0\}$. We need to prove that $I = \{0\}$
- With the topological identification of the spectrum, $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right) \cong C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \rtimes \mathbb{Z}^2 \cong C(X) \rtimes \mathbb{Z}^2$
- It is sufficient to prove that *I* ∩ *C*(*X*) = {0}, because then it follows that *I* = {0}.
- C(X) is identified with $C(X)u_e$, a subalgebra of $C(X) \rtimes \mathbb{Z}^2$.
- $I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right] = \{0\} \implies I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] = \{0\}$

イロト イロト イヨト イヨト 三日

The Action The Main Theorem

The Proof . . .

- Let $I \lhd C^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right)$ be an ideal such that $I \cap \mathbb{C} \left[\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right] = \{0\}$. We need to prove that $I = \{0\}$
- With the topological identification of the spectrum, $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right) \cong C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \rtimes \mathbb{Z}^2 \cong C(X) \rtimes \mathbb{Z}^2$
- It is sufficient to prove that $I \cap C(X) = \{0\}$, because then it follows that $I = \{0\}$.
- C(X) is identified with $C(X)u_e$, a subalgebra of $C(X) \rtimes \mathbb{Z}^2$.
- $I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right] = \{0\} \implies I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] = \{0\}$

イロト イロト イヨト イヨト 三日

The Action The Main Theorem

The Proof . . .

- Let $I \lhd C^* \left(\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right)$ be an ideal such that $I \cap \mathbb{C} \left[\mathbb{Z} \left[\frac{1}{pq} \right] \rtimes \mathbb{Z}^2 \right] = \{0\}$. We need to prove that $I = \{0\}$
- With the topological identification of the spectrum, $C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right) \cong C^*\left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \rtimes \mathbb{Z}^2 \cong C(X) \rtimes \mathbb{Z}^2$
- It is sufficient to prove that $I \cap C(X) = \{0\}$, because then it follows that $I = \{0\}$.
- C(X) is identified with $C(X)u_e$, a subalgebra of $C(X) \rtimes \mathbb{Z}^2$.

•
$$I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right] \rtimes \mathbb{Z}^2\right] = \{0\} \implies I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] = \{0\}$$

The Action The Main Theorem

The Proof ...

 $I \cap C(X)$ is a \mathbb{Z}^2 - invariant ideal of C(X).

(This is a general fact for any group G acting on any C(X).)

- Ideal, because $C(X)u_e$ is a subalgebra.
- G invariant, because for a ∈ I ∩ C(X) and g ∈ G, g ⋅ a ∈ C(X) and (g ⋅ a) u_e = (u_g) (a u_e) (u_{g⁻¹}).

くロン くぼう くほう くほう 二日

The Action The Main Theorem

The Proof ...

 $I \cap C(X)$ is a \mathbb{Z}^2 - invariant ideal of C(X).

(This is a general fact for any group G acting on any C(X).)

- Ideal, because $C(X)u_e$ is a subalgebra.
- *G* invariant, because for $a \in I \cap C(X)$ and $g \in G$, $g \cdot a \in C(X)$ and $(g \cdot a) u_e = (u_g) (a u_e) (u_{g^{-1}})$.

くロン くぼう くほう くほう 二日

The Action The Main Theorem

The Proof ...

There exists a \mathbb{Z}^2 - invariant closed subset $F \subseteq X$ such that $I \cap C(X) = C_0(F^C)$.

- $F = \{x \in X \mid f(x) = 0 \forall f \in I \cap C_0(X)\}$
- Since the action on C(X) follows from the action β on X, F^{C} is a \mathbb{Z}^{2} -invariant subset of X, and so is F.

イロン 不得 とくほ とくほ とうほ

The Action The Main Theorem

The Proof ...

There exists a \mathbb{Z}^2 - invariant closed subset $F \subseteq X$ such that $I \cap C(X) = C_0(F^C)$.

- $F = \{x \in X \mid f(x) = 0 \forall f \in I \cap C_0(X)\}$
- Since the action on C(X) follows from the action β on X, F^C is a \mathbb{Z}^2 -invariant subset of X, and so is F.

The Action The Main Theorem

The Proof ...

- For $n \in \mathbb{N}$, let $\pi_n : X \to \mathbb{T}$ be the n^{th} canonical projection. Let $B := \pi_1(F)$.
- Recall, $X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{T} \mid x_n = x_{n+1}^{pq}\}$, and $\beta_{(1,1)}$ is the left shift on X.
- F is \mathbb{Z}^2 invariant.
- Hence, $\pi_n(F) = B \ \forall n \in \mathbb{N}$.
- By action of $\beta_{(1,0)}^{-1}$ and $\beta_{(0,1)}^{-1}$, we see that $\forall z \in B, z^{p} \in B$ and $z^{q} \in B$.

イロト 不得 とくほ とくほ とうほ

The Action The Main Theorem

The Proof ...

- For $n \in \mathbb{N}$, let $\pi_n : X \to \mathbb{T}$ be the n^{th} canonical projection. Let $B := \pi_1(F)$.
- Recall, $X = \{(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{T} \mid x_n = x_{n+1}^{pq}\}$, and $\beta_{(1,1)}$ is the left shift on X.
- F is \mathbb{Z}^2 invariant.
- Hence, $\pi_n(F) = B \ \forall n \in \mathbb{N}$.
- By action of $\beta_{(1,0)}^{-1}$ and $\beta_{(0,1)}^{-1}$, we see that $\forall z \in B, z^p \in B$ and $z^q \in B$.

イロト 不得 とくほ とくほ とうほ

The Action The Main Theorem

The Proof ...

B has infinitely many points.

• Suppose not: let *B* have only finitely many points. $\implies \exists \ p \in C(\mathbb{T}), \text{ with } p(z) = \sum_{j=0}^{n} \lambda_j z^j \text{ and } p(B) = \{0\}$ $\implies (p \circ \pi_m) \in C_0(F^C) = I \cap C(X) \quad \forall m \in \mathbb{N}$ But, recall the isomorphism $\psi : \mathbb{C}^* \left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \to C(X),$ $\delta_{\left(\frac{a}{(pq)^m}\right)} \mapsto f_m^a, \text{ and hence}$ $(p \circ \pi_m) = \psi \left(\sum_{j=1}^n \lambda_j \ \delta_{\left(\frac{j}{(pq)^m}\right)}\right)$

which implies

$$I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] \neq \{\mathbf{0}\}$$

A contradiction!

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

The Action The Main Theorem

The Proof ...

B has infinitely many points.

• Suppose not: let *B* have only finitely many points. $\implies \exists \ p \in C(\mathbb{T}), \text{ with } p(z) = \sum_{j=0}^{n} \lambda_j z^j \text{ and } p(B) = \{0\}$ $\implies (p \circ \pi_m) \in C_0(F^C) = I \cap C(X) \quad \forall m \in \mathbb{N}$ But, recall the isomorphism $\psi : C^* \left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \to C(X),$ $\delta_{\left(\frac{a}{(pq)^m}\right)} \mapsto f_m^a, \text{ and hence}$ $(p \circ \pi_m) = \psi \left(\sum_{j=1}^n \lambda_j \ \delta_{\left(\frac{j}{(pq)^m}\right)}\right)$

which implies

$$I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] \neq \{\mathbf{0}\}$$

A contradiction!

(ロ) (同) (日) (日) (日)

The Action The Main Theorem

The Proof ...

B has infinitely many points.

• Suppose not: let *B* have only finitely many points. $\implies \exists \ p \in C(\mathbb{T}), \text{ with } p(z) = \sum_{j=0}^{n} \lambda_j z^j \text{ and } p(B) = \{0\}$ $\implies (p \circ \pi_m) \in C_0(F^C) = I \cap C(X) \quad \forall m \in \mathbb{N}$ But, recall the isomorphism $\psi : C^* \left(\mathbb{Z}\left[\frac{1}{pq}\right]\right) \to C(X),$ $\delta_{\left(\frac{a}{(pq)^m}\right)} \mapsto f_m^a, \text{ and hence}$ $(p \circ \pi_m) = \psi \left(\sum_{j=1}^n \lambda_j \ \delta_{\left(\frac{j}{(pq)^m}\right)}\right)$

which implies

$$I \cap \mathbb{C}\left[\mathbb{Z}\left[\frac{1}{pq}\right]\right] \neq \{\mathbf{0}\}$$

A contradiction!

ヘロト 不通 とうき とうとう ほ

The Action The Main Theorem



- B has infinitely many points, and hence by Fürstenberg's Diophantine result, must be T.
- Hence, F = X, and $I = \{0\}$.

And that concludes the proof!

The Action The Main Theorem



- B has infinitely many points, and hence by Fürstenberg's Diophantine result, must be T.
- Hence, F = X, and $I = \{0\}$.

And that concludes the proof!

The Action The Main Theorem

A review ...

• Finite \implies C* unique, but Infinite $\not\Rightarrow$ C* non-unique

- Non-amenable ⇒ not C* unique, but Amenable ≠ C* unique¹
- Locally finite (finitely generated subgroups finite) $\implies C^*$ unique², but Not locally finite $\not\Longrightarrow C^*$ non-unique³
- Torsion-free (no finite subgroup) \implies C* non-unique⁴

¹ V. Alekseev and D. Kyed, "Uniqueness questions for C*-norms on group rings", Pacific J. Math. 298:2 (2019), 257-266

²R. Grigorchuk, M. Musat, and M. Rørdam, "Just-infinite C*-algebras", Comment. Math. Helv. 93:1 (2018), 157-201

³N. Ozawa showed that the Lamplighter group is C* unique, V. Alekseev, "(Non)-uniqueness of C*-norms on group rings of amenable groups", pp. 2292-2293 in C*-algebras, Oberwolfach Report 37/2019 16, European Mathematical Society Publishing House, 2019

⁴ E. Scarparo, "A torsion-free algebraically C*-unique group", Rocky Mountain J. Mala. 50:5 創200), 割13-12巻 - の々ぐ

The Action The Main Theorem

A review ...

- Finite \implies C* unique, but Infinite $\not\Rightarrow$ C* non-unique
- Non-amenable ⇒ not C* unique, but Amenable ≠ C* unique¹
- Locally finite (finitely generated subgroups finite) $\implies C^*$ unique², but Not locally finite $\implies C^*$ non-unique³
- Torsion-free (no finite subgroup) \implies C* non-unique⁴

 1 V. Alekseev and D. Kyed, "Uniqueness questions for $\rm C^*$ -norms on group rings", Pacific J. Math. 298:2 (2019), 257-266

² R. Grigorchuk, M. Musat, and M. Rørdam, "Just-infinite C*-algebras", Comment. Math. Helv. 93:1 (2018), 157-201

³N. Ozawa showed that the Lamplighter group is C* unique, V. Alekseev, "(Non)-uniqueness of C*-norms on group rings of amenable groups", pp. 2292-2293 in C*-algebras, Oberwolfach Report 37/2019 16, European Mathematical Society Publishing House, 2019

⁴ E. Scarparo, "A torsion-free algebraically C * -unique group", Rocky Mountain J. Mala. 50:5 趁020), 彭13-18巻5 - の々ぐ

The Action The Main Theorem

A review ...

- Finite \implies C* unique, but Infinite $\not\Rightarrow$ C* non-unique
- Non-amenable ⇒ not C* unique, but Amenable ≠ C* unique¹
- Locally finite (finitely generated subgroups finite) $\implies C^*$ unique², but Not locally finite $\implies C^*$ non-unique³

• Torsion-free (no finite subgroup) \neq C* non-unique⁴

¹ V. Alekseev and D. Kyed, "Uniqueness questions for C*-norms on group rings", Pacific J. Math. 298:2 (2019), 257-266

² R. Grigorchuk, M. Musat, and M. Rørdam, "Just-infinite C*-algebras", Comment. Math. Helv. 93:1 (2018), 157-201

 3 N. Ozawa showed that the Lamplighter group is $\rm C^*$ unique, V. Alekseev, "(Non)-uniqueness of $\rm C^*$ -norms on group rings of amenable groups", pp. 2292-2293 in $\rm C^*$ -algebras, Oberwolfach Report 37/2019 16, European Mathematical Society Publishing House, 2019

⁺E. Scarparo, "A torsion-free algebraically C*-unique group", Rocky Mountaio J. Maán. 505 創209, 第13-185 - クへで

The Action The Main Theorem

A review ...

- Finite \implies C* unique, but Infinite $\not\Rightarrow$ C* non-unique
- Non-amenable ⇒ not C* unique, but Amenable ≠ C* unique¹
- Locally finite (finitely generated subgroups finite) $\implies C^*$ unique², but Not locally finite $\not\implies C^*$ non-unique³
- Torsion-free (no finite subgroup) \implies C* non-unique⁴

 $^{^1}$ V. Alekseev and D. Kyed, "Uniqueness questions for $\rm C^*$ -norms on group rings", Pacific J. Math. 298:2 (2019), 257-266

 $^{^2}$ R. Grigorchuk, M. Musat, and M. Rørdam, "Just-infinite ${\rm C\,}^*$ -algebras", Comment. Math. Helv. 93:1 (2018), 157-201

 $^{^3}$ N. Ozawa showed that the Lamplighter group is $\rm C^*$ unique, V. Alekseev, "(Non)-uniqueness of $\rm C^*$ -norms on group rings of amenable groups", pp. 2292-2293 in $\rm C^*$ -algebras, Oberwolfach Report 37/2019 16, European Mathematical Society Publishing House, 2019

⁴E. Scarparo, "A torsion-free algebraically C*-unique group", Rocky Mountain J. Math. 50:5 (2020), 1813-1815 🔊 Q C

The Action The Main Theorem

Thank you!

ISem24, Project 3 C*-uniqueness of group algebras