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Section 1

Graph Algebras
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Graphs

Definition

A directed graph E = (E 0,E 1, s, r) consists of a countable set of
vertices E 0, a countable set of edges E 1 and source/range
functions s, r : E 1 → E 0.

A path of length n is a sequence µ = µ1 . . . µn of edges in E such
that s(µi ) = r(µi+1).

The adjacency matrix AE = (AE (v ,w))(v ,w)∈E0xE0 is defined as

AE (v ,w) = #{e ∈ E 1 : r(e) = v , s(e) = w}

A graph is row-finite if each vertex receives at most finitely many
edges.

ve wf {e, f , ee, ef , eef , eee, ...} AE =

(
1 1
0 0

)
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Dual Graph

A vertex v is called a source, if it receives no edges.

Definition

Let E be a row-finite directed graph without sources.

The dual graph is defined as

Ê 0 := E 1 Ê 1 := E 2 and sÊ (ef ) = f rÊ (ef ) = e.

e

f

g

e

f

gef fe

ge

fg

gg

The adjacency matrix of the dual graph is a 0-1–Matrix.
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Cuntz-Krieger Family

Idea: Represent a graph by operators on a Hilbert space.

Definition (Cuntz–Krieger E -Family of Operators)

Let E be a row-finite graph. An E -family {S ,P} on a Hilbert
space H consists of

{Pv : v ∈ E 0} ⊂ B(H) mutually orthogonal protections

{Se : e ∈ E 1} ⊂ B(H) partial isometries

such that

(CK 1) S∗e Se = Ps(e) for all edges e ∈ E 1

(CK 2) Pv =
∑

e∈E1 : r(e)=v

SeS∗e ∀v ∈ E 0 that are not a source

Analogous for general C*-algebras due to representation on H.
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Graph Algebra

Definition (Graph Algebra of E )

C ∗(E ) = Universal C*-algebra generated by a Cuntz-Krieger
E-family.

Symbols: pv and se for vertices v ∈ E 0 and edges e ∈ E 1

Relations: (CK1), (CK2)
pv mutually orthogonal projections
se partial isometries

Proposition (Universal Property)

Let A be a C*-algebra and {S ,P} a Cuntz–Krieger E -family in A
for a row-finite graph E .

Then there exists a *-homomorphism C ∗(E )→ A.
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Examples

Graph CK-Relations Graph C*-Algebra
v

p2
v = pv = p∗v C

v
e s∗e se = pv = ses∗e C (T)

v
e1 · · · en

s∗ej sej = pv∑n
j=0 sej s

∗
ej

= pv
Cuntz Algebra On
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Example - Matrix Algebra

• Mn(C) is a graph algebra

v1 v2 · · · vn
e1 e2 en−1 s∗ej sej = pvj

sej−1s∗ej−1
= pvj

• K (H) is a graph algebra

v1 v2 v3 · · ·e1 e2 e3 s∗ej sej = pvj , j ∈ N
sej−1s∗ej−1

= pvj , j ∈ N>1

• Different graphs can generate the same graph algebra

• •...

e1

en−1

•

v1 · · · vn−1v2

These graphs also generate Mn(C).
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Example - Toeplitz algebra

Want to investigate the following graph:

ve wf

The associated Cuntz-Krieger relations are

(CK 1) : s∗e se = pv , s∗f sf = pw

(CK 2) : ses∗e + sf s∗f = pv

A representation on H = `2(N0) is given by

Pv (x0, x1, ...) = (0, x1, ...) Pw (x0, x1, ...) = (x0, 0, ...)

Se(x0, x1, ...) = (0, 0, x1, x2, ...) Sf (x0, x1, ...) = (0, x0, 0, ...)
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Example -Toeplitz algebra

Se + Sf is an isometry for C ∗(S ,P). This leads to the following:

Pv = (Se + Sf )(Se + Sf )∗

Pw = (Se + Sf )∗(Se + Sf )− Pv

Se = (Se + Sf )Pv

Sf = (Se + Sf )Pw

• C ∗(S ,P) is generated by the isometry Se + Sf .

• Coburn’s Theorem: C ∗(S ,P) is isomorphic to the Toeplitz
algebra T generated by the unilateral shift.

Idea: If CK-E-families are nontrivial (Pv 6= 0)
⇒ CK-E-families generate isomorphic C*-algebras.
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Uniqueness Theorems

Let

• E row-finite directed graph

• {S ,P} CK E -family in C*-algebra B with Pv 6= 0

Proposition (Gauge-Invariant Uniqueness Theorem)

If there is a gauge action, i.e. β : T→ Aut(B) continuous with

βz(Pv ) = Pv ∀v ∈ E 0 and βz(Se) = zSe ∀e ∈ E 1.

Then
πS ,P : C ∗(E )→ B

is an isomorphism of C ∗(E ) onto C ∗(S ,P).

C ∗(E ) always has gauge action!
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Uniqueness Theorems

Let

• E row-finite directed graph

• {S ,P} CK E -family in C*-algebra B with Pv 6= 0

Proposition (Cuntz-Krieger Uniqueness Theorem)

If every cycle in E has an entry, i.e.

∀ cycle µ = µ1, . . . µn ∃ edge e /∈ µ : r(e) = s(µi ).

Then C ∗(E ) ∼= C ∗(S ,P).

e

f

g
e

f

g



Group 4

Graph
Algebras

Shift
Spaces

Connec-
tions

14/57

Application of Uniqueness Theorem

We consider again the graph of the Toeplitz algebra:

ve wf

• Every cycle has an entry.

• CK-Uniqueness: C ∗(S ,P) unique up to isomorphism

• The CK Uniqueness Theorem generalizes Coburn’s Theorem.
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Graph Algebra of the Dual Graph

e

f

g

e

f

gef fe

ge

fg

gg

Proposition

Let E be a row finite graph with no sources: C ∗(Ê ) ∼= C ∗(E )

Sketch of the proof:

• Let {s, p} be a CK family generating C ∗(E )

• Define Qe := ses∗e , Tfe := sf ses∗e

• Can check that {T ,Q} is a CK Ê -family in C ∗(E )

• Universal property: ∃ *-hom. πT ,Q : C ∗(Ê )→ C ∗(E )

• Gauge action exists for C ∗(E )

• Gauge Uniqueness: C ∗(Ê ) ∼= C ∗(T ,Q) = C ∗(E )
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Simplicity of Graph Algebras

• Preorder on E 0: v 6 w if ∃ a path µ ∈ E ∗ from w to v

• E6∞ := E∞ ∪ {finite path beginning at sources}

Definition

A directed graph E is cofinal if for every µ ∈ E6∞ and v ∈ E 0

there exists a vertex w on µ such that v 6 w , i.e. there is a path
from w to v .

Proposition

Suppose E is a row finite graph. Then

C ∗(E ) simple ⇔ Every cycle in E has an entry and E is cofinal.

E strongly connected and every cycle has an entry⇒ C ∗(E ) simple
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Simplicity of Graph Algebras

Sketch of the proof of “⇐“:

• Every ideal in a C*-algebra is a kernel of a representation.

• Aim: every nonzero representation πS,P of C ∗(E ) is faithful.

• Let {S ,P} be a CK-E-family such that πS ,P 6= 0.
⇒ Pv 6= 0 for some v ∈ E 0.

• E cofinal: Pv 6= 0 for some v ∈ E 0 ⇒ Pv 6= 0 for all v ∈ E 0.

• CK-Uniqueness Theorem: πS ,P is faithful.

Application to Cuntz-Algebra On:

v
e1 · · · en

The graph is cofinal and every cycle has an
entry ⇒ On is simple.
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Section 2

Shift Spaces
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Edge Shift

e

f

g

Definition (Edge Shift)

Let E = (E 0,E 1) be a graph with no sinks or sources. The edge
shift of E is the set of bi-infinite paths in E :

XE :=
{

(µi )i∈Z ∈ (E 1)Z | ∀i : r(µi+1) = s(µi )
}
.

The dynamics of the system are described by the left shift

σ : XE → XE

(µi )i∈Z 7→ (µi+1)i∈Z
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Edge Shift – Forbidden Blocks

e

f

g

• The requirement r(µi+1) = s(µi ) can be restated by saying
that blocks of the form µν are forbidden whenever
r(ν) 6= s(µ).

• If E is a finite graph, the set of forbidden blocks is finite.

• In the example graph, the forbidden blocks are

F = {ee, eg ,ff , gf } .
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Vertex Shift

1 2

Definition (Vertex Shift)

Let E = (E 0,E 1) be a graph with no sinks, sources or multiple
edges. The vertex shift of E is the set of bi-infinite
“vertex-paths” in E :

X̂E :=
{

(vi )i∈Z ∈ (E 0)Z | ∀i : there is an edge from vi+1 to vi

}
.

The dynamics of the system are described by the left shift

σ : X̂E → X̂E

(vi )i∈Z 7→ (vi+1)i∈Z
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Dual Graph

Remark

The edge shift of a graph E is the vertex shift of its dual graph Ê .

e

f

g

e

f

gef fe

ge

fg

gg
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Vertex Shift – Forbidden Blocks

1 2

• The requirement of having an edge from vi+1 to vi can be
restated by saying that blocks of the form vw are forbidden
whenever there is no such edge.

• If E is a finite graph, the set of forbidden blocks is finite.

• In the example graph, the forbidden blocks are

F = {11} .



Group 4

Graph
Algebras

Shift
Spaces

Connec-
tions

24/57

Shift Spaces

Definition

The full two-sided shift over a finite alphabet A is the space AZ

of bi-infinite A-sequences.

The shift map σ : AZ → AZ is defined by σ(x)i = xi+1.

If F is a set of finite sequences in A called forbidden blocks, we
define XF to be the set of sequences in AZ that contain no block
of F .

A shift space is a subset X ⊆ AZ such that X = XF for some F .

One-sided shifts are defined analogously as subsets of AN.
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Sliding Block Codes

Definition

If Φ: Bm+n+1(X )→ A is a block map into another alphabet, the
map φ : X → AZ defined by

φ(x)i = Φ(xi−mxi−m+1 . . . xi+n) = Φ(x[i−m,i+n])

is called sliding block code

A conjugacy between two shifts is a bijective sliding block code.

. . . xi−m−1 xi−mxi−m+1 . . . xi+n−1xi+n xi+n+1 . . .

. . . yi−1 yi yi+1 . . .

Φ

x =

φ(x) =
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Higher Order Shifts

For a shift space X and n ∈ N, take A = Bn(X ) and Φ = idBn(X ).

We obtain the sliding block code βn : X → (Bn(X ))Z

βn (. . . x−1x0x1 . . . ) = . . .


x−1

x0
...

xn−3

xn−2




x0

x1
...

xn−2

xn−1




x1

x2
...

xn−1

xn

 . . .

The image of βn is called higher order shift X [n] and βn is a
conjugacy between X and X [n].



Group 4

Graph
Algebras

Shift
Spaces

Connec-
tions

27/57

Topology

We equip AZ with the product topology of the discrete topology.

If |A| > 1, AZ is a Cantor set, i.e. compact, totally disconnected,
metrizable and has no isolated points.

Proposition

• A subset X ⊆ AZ is a shift space if and only if it is closed and
σ-invariant.

• A map φ : X → Y ⊆ AZ is a sliding block code if and only if
φ is continuous and φ ◦ σX = σY ◦ φ.
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Shifts of finite type

Definition

A (sub-)shift of finite type is a shift space X which can be
described by a finite set of forbidden blocks F .

If the maximum length of a block in F is k + 1, we say that X is
a k-step SFT.

Remark

• 1-step SFT are exactly the vertex shifts of finite graphs.

• If X is a k-step SFT, then the higher order shift X [n] is
max{k − n, 1}-step.
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Shifts of finite type

Corollary

Every SFT is conjugate to a vertex shift and an edge shift. In
particular, if X is a k-step SFT, then there is a graph E such that
X [k] = X̂E and X [k+1] = XE .

Example

A = {0, 1} , F = {11, 101}

01

10

00010

001

100

000
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(Stationary) Markov Chains

Here: family (Xt)t>N0 of random variables Xt : Ω→ Σ where Σ is
finite and Ω is ambient probability space s.t.

• Markov property (1-memory):
∀n ∈ N, t0 < · · · < tn ∈ N0, i0, . . . , in ∈ Σ:

Pr[Xtn = in | Xtn−1 = in−1, . . . ,Xt0 = i0] = Pr[Xtn = in | Xtn−1 = in−1]

whenever conditional prob.’s are well-defined

• stationary: ∀t, t ′ ∈ N0, i , j ∈ Σ:

Pr[Xt+1 = j | Xt = i ] = Pr[Xt′+1 = j | Xt′ = i ] =: Tij

→ we don’t really care about Ω, only distributions (p(t))t∈N0,

∀t ∈ N0, i ∈ Σ : pi (t) := Pr[Xt = i ]
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Markov Chains in C*-Language

Stationary Markov Chain on Finite Set Σ: Given by state
p(0) ∈ (Cn)∗ and (completely) positive unital operator T on

C*-algebra Cn: (1 =

( 1
...
1

)
)

p(t) = p(0) T t at time t ∈ N0

p(0) ∈ S(Cn)⇐⇒ pi (0) > 0 ∧ p(0)1 =
∑
i

pi (0) = 1

T1 = 1⇐⇒ row sum ∀i :
∑
j

Tij = 1

1
gone t>1

gone t>2
2

no sinks!
3

4 5

1 0.7

0.3

1

1

0.3

0.5

0.2
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Topological Markov Chains

• forget probabilities and wait a finite time  end up with graph
without sinks or sources, no mutliple edges

E =

3

4 5

=⇒

AE ∈ {0, 1}Σ×Σ

no zero columns
no zero rows

new Σ = {3, 4, 5}

• want to be able to measure probabilities of cylinder sets

Z =
∏
t∈N0

Zt , Zt = Σ for almost all t ∈ N0

Pr(Z ) = Pr[xt1 ∈ Zt1 , . . . , xtn ∈ Ztn ] if Ztk 6= Σ

• cylinder sets as basis of topology  product topology
∏

t∈N0
Σ
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Topological Markov Chains

Definition (Topological Markov Chain)

Let E = (E 0,E 1) be a graph without sinks, sources and multiple
edges. Then the vertex shift

X̂E := {(vt)t∈N ∈ (E 0)N | ∀t : vt+1vt ∈ E 1},

endowed with subspace topology of the product topology of
(E 0)N, is called topological Markov chain.

! Wikipedia calls arbitrary shifts of finite type “topological
Markov chain”

Recall: Arbitrary k-step shift X is conjugate (=isomorphic) to
X [k] ∼= X̂E for some graph E .

Similar: stochastic process (Xt)t∈N0 is k-memory
=⇒ ((Xt+k−1,Xt+k−2, . . . ,Xt))t∈N0

is Markov
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Section 3

Connections
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Cuntz-Krieger Algebra

Definition (Cuntz-Krieger Algebra)

Let A ∈ Mn({0, 1}) be a matrix with no zero rows and columns.
The Cuntz-Krieger-algebra OA is defined as universal C*-algebra
generated by partial isometries si satisfying

s∗i si =
n∑

j=1

aijsjs
∗
j and

n∑
i=1

si s
∗
i = 1.

We will call a family S = {Si | i = 1, . . . , n} of partial isometries
in a C*-algebra A satisfying these relations a CK-A-family.

Corresponding graph:

E 0
A := {1, ..., n}, E 1

A := {ij : aij = 1}, s(ij) = j , r(ij) = i

A is the incidence matrix of EA.
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CK-Algebras are Graph Algebras

Proposition

OA and C ∗(EA) are isomorphic, where the Cuntz-Krieger
EA-family {t, q} is given by

qi = si s
∗
i , tij = si sjs

∗
j

In particular, the projections qi are mutually orthogonal.

How to get si back: si = si ·
∑n

j=1 sjs
∗
j =

∑
j : ij∈E1

A
tij .

=⇒ CK-Algebras are the C*-algebras of finite graphs with no
sinks, sources or multiple edges.

↑
use C ∗(E ) ∼= C ∗(Ê ) for graphs E without sources,
dual graph Ê never has multiple edges.



Group 4

Graph
Algebras

Shift
Spaces

Connec-
tions

36/57

CK-Algebras are Graph Algebras

Proposition

OA and C ∗(EA) are isomorphic, where the Cuntz-Krieger
EA-family {t, q} is given by

qi = si s
∗
i , tij = si sjs

∗
j

In particular, the projections qi are mutually orthogonal.

How to get si back: si = si ·
∑n

j=1 sjs
∗
j =

∑
j : ij∈E1

A
tij .

=⇒ CK-Algebras are the C*-algebras of finite graphs with no
sinks, sources or multiple edges.

↑
use C ∗(E ) ∼= C ∗(Ê ) for graphs E without sources,
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Dynamics on CK-Algebra

Define
ΦA : A → A, x 7→

∑
i

SixS∗i

=⇒ ΦA is Quantum Operation (= completely positive unital
operator on A) with so-called Kraus operators Si

Quantum Markov Chain (φ0 ◦ Φt
A)t∈N0 for initial state φ0 on A

↪→ compare with Markov chain p(t) = p(0)T t

DA := C ∗
({

Φk
A(SiS

∗
i )
∣∣∣ i ∈ Σ, k ∈ N0

})
= spanC

{
SµS∗µ | |µ| > 1

}
where Sµ := Sµ1Sµ2 · · · Sµ|µ|

=⇒ DA is commutative AF-subalgebra of A, invariant under ΦA

Compare: C ∗(S) = spanC {SµS∗ν | |µ|, |ν| > 1} ⊆ A
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Dynamics on CK-Algebra

Theorem

Let A be C*-algebra with a CK-A-family such that S∗i Si 6= 0 for
all i , where A ∈ {0, 1}Σ×Σ has no sinks (i.e. no zero columns).
There is an isomorphism ω : DA → C (X̂A) of commutative unital
C*-algebras such that

1.

DA C (X̂A)

DA C (X̂A)

ω

ΦA
σ∗A

ω

commutes, where σ∗Af := f ◦ σA.

2. ∀i : ω(SiS
∗
i ) = χi , where χi is the characteristic function of

the cylinder set Z (i) = {x ∈ X̂A : x1 = i}

In other words, the Quantum Markov Chain generated by ΦA is
isomorphic to the dual dynamical system of the one-sided shift
X̂A, given corresponding initial states φ0 = µ0 ◦ ω.
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Example 1: M2(C (T))

A =

(
0 1
1 0

)
, EA = 0 1

10

01

= v w

e

f

CK A-family and CK EA-family, generating M2(C (T)):
s0 =

(
0 t idT
0 0

)
= s0s1s∗1 =: tf s1 =

(
0 0
t 0

)
= s1s0s∗0 =: te

s0s∗0 =

(
1 0
0 0

)
=: qv s1s∗1 =

(
0 0
0 1

)
=: qw

where t ∈ T is arbitrary.
Gauge Uniqueness Theorem =⇒ M2(C (T)) ∼= C ∗(E )

ΦA : x =

(
x11 x12

x21 x22

)
7−→ s0xs∗0 + s1xs∗1 =

(
x22 0
0 x11

)
DA =

{(
z1 0
0 z2

) ∣∣∣∣ z1, z2 ∈ C
}

=: D2(C),
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Example 1: M2(C (T))

A =

(
0 1
1 0

)
, EA = 0 1

10

01

X̂A = {0101 · · · , 1010 · · · } = Z (0) ∪ Z (1)

ω : z1s0s∗0 + z2s1s∗1 7−→ z1χ0 + z2χ1.

For arbitrary z1, z2 ∈ C:(
z1 0
0 z2

) {
0101 · · · 7→ z1

1010 · · · 7→ z2

}

(
z2 0
0 z1

) {
1010 · · · 7→ z1

0101 · · · 7→ z2

}
ω

ΦA σ∗A

ω
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Example 2: O2

A =

(
1 1
1 1

)
, EA = 0 100

10

01

11

dual graph of E = •0 1

Cuntz-Krieger Uniqueness Thm. (every cycle has an entry!) +
dual graph (no sources!) =⇒ every C*-algebra generated by
CK-A-family or C.K.-EA-family is isomorphic to C ∗(E ) = O2.

iso.: CK A-family s: si
CK EA-family {t, q}: tij = si sjs

∗
j , qi = si s

∗
i

CK E -family {s, p}: si = si , p• = 1

one-sided vertex shift X̂A = one-sided edge shift XE = {0, 1}N

XE is Cantor set  What’s C (XE )?
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Example 2: O2

C (XE ) = spanC

{
χZ(µ) | µ ∈ {0, 1}

n , n > 1
}

Z (µ) = {µ · · · }

DA = spanC
{

sµs∗µ
∣∣µ ∈ {0, 1}n , n > 1

}
ω : DA → C (XE ) given by ω(sµs∗µ) = χZ(µ)

For any finite set M of paths µ and coefficients zµ ∈ C:

ΦA : DA → DA,
∑
µ∈M

zµsµs∗µ 7−→
∑
µ∈M

zµ(s0µs∗0µ + s1µs∗1µ)

σ∗A : C (XE )→ C (XE ),
∑
µ∈M

zµχZ(µ) 7−→
∑
µ∈M

zµχZ(0µ) ∪ Z(1µ)

→ fits to ω and such sums are dense!
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More Cantor Set Stuff

Theorem (The Cantor set XE is very big)

Let Y be an arbitrary compact metrizable space, then there exists
a continuous surjection F : XE → Y .

Example: XE =
∃
� T =

Corollary (The Cuntz algebra O2 is very big)

For every compact metrizable space Y , the C*-algebra C (Y ) can
be injectively embedded into O2. This embedding is given by

ω−1 ◦ F ∗ : C (Y )
◦F−→ C (XE ) ∼= DA ⊂ O2

Either ΦA acts periodically on image or there exist ∞ many
embeddings: Φn

A ◦ ω−1 ◦ F ∗, n ∈ N0.
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Embedding O1 = C (T) ↪→ O2

Can extract construction from the proof of the Theorem above,
which leads to embedding given by:

(ω−1 ◦ F ∗)(idT) = lim
n→∞

∑
|µ|=n

exp
(

2πi ·
n∑

k=1

µk2−k
)

︸ ︷︷ ︸
approx. every t ∈ T

sµs∗µ︸︷︷︸
mutually

orth. proj.

· · · ·
·

·
· ·
·

·· ·
· ·
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Isomorphic Graph Algebras

Question: How to show that two graph algebras are isomorphic,
given their graphs?

Already saw: Dual graph gives same C*-algebra, if no sources.

Also saw: Mn(C) is isomorphic to graph algebra of

• •· · ·

• v
Pv

...

e1

en−1

•

v1

...

vn−1

Se1S∗e1

...

Sen−1S∗en−1

sink splitting works for all graphs with sinks!
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In-Splitting/In-Amalgamation

v•
•
•

•

•

f

splitting

amalgamation

v 1

v 2•
•
•

•

•f 1

f 2

Pv1 :=
∑

e green

SeS∗e , Pv2 :=
∑
e blue

SeS∗e , Sf i := Sf Pv i ,

every other Se ,Pv unchanged. Now use∑
i=1,2

Sf Pv i (Sf Pv i )∗ = Sf PvS∗f = Sf S∗f

P∗v i S
∗
f Sf Pv i = P∗v i PvPv i = Pv i

=⇒ Cuntz-Krieger relations hold!
=⇒ get isom. of graph C*-algebras
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In-Splitting/In-Amalgamation

v•
•
•

•

•

f

splitting

amalgamation

v 1

v 2•
•
•

•

•f 1

f 2

Pv1 :=
∑

e green

SeS∗e , Pv2 :=
∑
e blue

SeS∗e , Sf i := Sf Pv i ,

every other Se ,Pv unchanged. Now use∑
i=1,2

Sf Pv i (Sf Pv i )∗ = Sf PvS∗f = Sf S∗f

P∗v i S
∗
f Sf Pv i = P∗v i PvPv i = Pv i

=⇒ Cuntz-Krieger relations hold!
=⇒ get isom. of graph C*-algebras
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Out-Splitting/Out-Amalgamation

v •
•
•

•

•
f splitting

amalgamation

v 1

v 2 •
•
•

•

• f 1

f 2

We could set Pv1 = Pv2 = Pv and Sf 1 = Sf 2 = Sf to satisfy
Cuntz-Krieger relations, but Pv1 ,Pv2 have to be mutually
orthogonal!

 unclear how to choose Cuntz-Krieger family for splitted graph
to obtain an isomorphism, need extra assumptions on the graph.
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Shift Conjugacies Induce C*-Isomorphisms

Proposition

Let G ,H be finite graphs without sinks or sources and XG ,XH

their both-sided edge shifts. Then XG and XH are conjugate if
and only if H can be obtained by successive application of in- and
out-splitting/amalgamation.

Theorem ([CK80, Proposition 2.17])

Let A,B ∈ {0, 1}n×n have no zero columns or rows and assume
that EA,EB both satisfy condition (I). If the one-sided shifts
X̂A, X̂B are conjugate, then there is an isomorphism
ψ : OA → OB mapping DA to DB such that ΦA|DA

◦ ψ = ΦB |DB
.

Condition (I): Every vertex in EA is reachable by a path from
another vertex such that the latter has two disjoint cycles through
it. =⇒ every cycle has an entry
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Stably Isomorphic CK-Algebras

Question (cont’d): . . . or at least stably isomorphic,
i.e. C ∗(E )⊗K ∼= C ∗(F )⊗K where K are the compact operators
on a separable Hilbert space?

Theorem

Let A,B ∈ {0, 1}n×n have no zero columns or rows and assume
that

• EA,EB are single cycles or

• EA,EB are both satisfy condition (I) or

• A,B are both acyclic.

If the one-sided shifts X̂A, X̂B are flow-equivalent, then

(K ⊗OA, C ⊗ DA) ∼= (K ⊗OB , C ⊗ DB)

where C is a maximal commutative subalgebra of K.
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Flow-Equivalence

suspension of a both-sided shift (X , σ):

SX := X × R
/
〈(σ(x), t) ∼ (x , t + 1)〉 = X × [0, 1]

/
〈(σ(x), 0) ∼ (x , 1)〉

For one-sided shift: R+ instead of R
→ has natural R resp. R+ action

flow-equivalence := homeomorphism ψ : SX → SY mapping
orbits to orbits
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Flow-Equivalence

Flow equivalence is generalization of conjugacy,
on graph level: in/out-splitting/amalgamation + expansion

M2(C)⊗ C (T) M3(C)⊗ C (T)

•

•

•

• •

exp.

 are stably isomomorphic
in/out-splitting/amalg. cannot be applied
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Invariants of Graph Algebras

Question: How to show that two graph algebras are not
isomorphic, given their graphs?

Can construct invariants (under isomorphisms) for graph algebras,
and compute them using the adjacency matrix AE

Example: Extension semigroup Ext(A)

Main idea: Ext(A) = equivalence classes of injective *-homo-
morphisms into Calkin-algebra σ : A → B(H)/K(H)
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Extension group and classification

Recall Condition (I): Every vertex in EA is reachable by a path
from another vertex such that the latter has two disjoint cycles
through it.

Theorem ([CK80, Theorem 5.1])

Suppose A ∈ {0, 1}n×n has no zero columns or rows and satisfies
condition (I). Then the semigroups ExtOA and Zn/(1−A)Zn are
isomorphic.

Furthermore, by Elementarteilersatz we have

Zn/(1− A)Zn ∼= Zn/DZn ∼= Z/d1Z⊕ Z/d2Z⊕ · · · ⊕ Z/dnZ

for suitable di ∈ N0.

Bowen and Franks showed that Zn/(1− A)Zn is invariant under
flow equivalence of topological Markov chains.
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One Final Example

Consider the graphs (Condition (I) X)

E1 =

1

2 3

E2 =

1 4

2 3

Their adjacency matrices are

A1 − 1 =

0 0 1
0 −1 1
0 1 0

 A2 − 1 =


−1 1 0 0
0 −1 1 0
1 0 −1 1
1 0 0 0


=⇒ ExtOA1

∼= Z3/(1− A1)Z3 ∼= Z
ExtOA2

∼= Z4/(1− A2)Z4 ∼= 0

=⇒ C ∗(E1) ∼= OA1 and C ∗(E2) ∼= OA2 are not isomorphic!
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Outlook

• Ideal structure of graph algebras can be read off their graphs! E.g.:
A irreducible =⇒ OA simple

• K -Theory of graph algebras (row-finite, no sources):
K0(C∗(E )) ∼= coker(1−A>E ), K1(C∗(E )) ∼= ker(1−A>E ) ⊂

⊕
E0
Z

• Graph algebras with infinite receivers (non-row-finite graphs)

• Can reconstruct K ⊗OA from DA as huge double crossed product
with group of homeomorphisms of “unstable manifold” W

K ⊗OA = rZ n
(

(Homeou.f .d.(W ) n C0(W ))

〈ûPB − v̂PB : u|B= v |B , B cpt. open〉

)
where r ∈ Homeou.f .d.+index shift(W ) arbitrary.
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THANK YOU FOR YOUR ATTENTION!
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