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- Graphs

Group 4

Graph
Algebras

Definition
A directed graph E = (E°, E, s, r) consists of a countable set of

vertices E?, a countable set of edges E' and source/range
functions s, r : E1 — EO.

A path of length n is a sequence y = 1 ... it of edges in E such
that s(ui) = rpis1)-
The adjacency matrix Ag = (Ag(Vv, W))(v,w)ceoxeo is defined as

Ae(v,w) = #{e € E': r(e) = v,s(e) = w}

A graph is row-finite if each vertex receives at most finitely many
edges.

11
e Cv W {e,f,ee, ef  eef, eece,...} Ag = (0 0)



- Dual Graph

Group 4 A vertex v is called a source, if it receives no edges.

Algebras L. ) i
o Let E be a row-finite directed graph without sources.

Spaces

Connec- The dual graph is defined as

tions

2 — e = and se(ef) =f re(ef) =e.

e ge
e \
.\_/.Og ef fe g O &8
f

f</fg

The adjacency matrix of the dual graph is a 0-1-Matrix.



- Cuntz-Krieger Family

Group 4 Idea: Represent a graph by operators on a Hilbert space.
Definition (Cuntz—Krieger E-Family of Operators)
- Let E be a row-finite graph. An E-family {S, P} on a Hilbert
Connec- space H consists of
o {P, : v € E®} ¢ B(#H) mutually orthogonal protections
{Se : e € E'} C B(H) partial isometries

such that
(CK1) 52Se = Py(e) for all edges e € E*
(CK2) P, = Z SeS: Vv € E? that are not a source

e€El:r(e)=v

Analogous for general C*-algebras due to representation on H.



- Graph Algebra

ot Definition (Graph Algebra of E)

Ageras C*(E) = Universal C*-algebra generated by a Cuntz-Krieger
Spaces E-family.

o Symbols: p, and s, for vertices v € E® and edges e € E?

Relations: (CK1), (CK2)
pv mutually orthogonal projections
Se partial isometries



- Graph Algebra

ot Definition (Graph Algebra of E)

Ageras C*(E) = Universal C*-algebra generated by a Cuntz-Krieger
Spaces E-family.

o Symbols: p, and s, for vertices v € E® and edges e € E?

Relations: (CK1), (CK2)
pv mutually orthogonal projections
Se partial isometries

Proposition (Universal Property)

Let A be a C*-algebra and {S, P} a Cuntz—Krieger E-family in A
for a row-finite graph E.

Then there exists a *-homomorphism C*(E) — A.
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- Examples
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Graph CK-Relations Graph C*-Algebra
: %

Spaces o p2 = p, = p; C

Connec- v
tions .Q e S:Se =py = SeS: C(’]I‘)




- Examples

Group 4
Graph CK-Relations Graph C*-Algebra
Algebras

] v
Shif 2 — == *
SD:J;,FS o pv o pV o pv C
Connec- v
tions .Q e S:Se = py = Ses(;'< C(’]T)

*
v sej56j = Pv
° €n

n *
Zj:o SejSEj = Pv

Cuntz Algebra O,



- Example - Matrix Algebra

Group 4

e M,(C) is a graph algebra

Algebras €1 & en_1 S;(jsej — pVJ

. Vi — Vp — -+ —5 Vp
Shift s S* — p
Spaces €j—1 €i—1 vj
Connec-

tions



- Example - Matrix Algebra

Group 4

e M,(C) is a graph algebra

Graph
Algebras e]_ e2 en—l

Shift Bm— V22— —Vn
Spaces
Connec- [ ] K(H) IS a graph algebra

tions

€1 €2 €3

Vi — Vp —> V3 —

* —
Se;Se; = Py;

Sejflsej—l

* _
S&S¢; = Py

*
Sej—1 ej 1

jeN
pVJaJEN>1



- Example - Matrix Algebra

Group 4

e M,(C) is a graph algebra

Algebras €1 & en_1 ngsej — pVJ

Shift i—>V2— - —"Vn ¥ =
Spaces Sejflsej—l - pVJ
e e K(H) is a graph algebra
tions
e e 5* Se, = e N
%1 =, Vo —>e2 v3 35 g = Py J

Sejlzjl Pv;> JeNx
e Different graphs can generate the same graph algebra

el °
. R . \// \
€n—1 Vi Vo cee o Vpo1

These graphs also generate M,(C).



- Example - Toeplitz algebra

Want to investigate the following graph:
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Graph
Algebras
e 14

Connec-
tions

The associated Cuntz-Krieger relations are

(CK1) : sise = pv, SFSf = Pw
(CK2) : ses; + sesp = py



- Example - Toeplitz algebra

G Want to investigate the following graph:
Algebras

Shift e v (L w
Spaces

Connec-
tions

The associated Cuntz-Krieger relations are

(CK1) : sise = pv, SFSf = Pw
(CK2) : sess + sfsf = py

A representation on H = (?(Np) is given by

PV(X(),X]_, ) = (O,Xl, ) PW(Xo,Xl, ) = (Xo, 0,
Se(Xo,Xl, ) = (0,0,Xl,XQ, ) Sf(Xo,Xl, ) = (O,XQ, 0,



- Example -Toeplitz algebra

Group 4

Graph
Algebras

Se + Sr is an isometry for C*(S, P). This leads to the following:

= (Se + S)(Se + S¢)*
= (Se + S£)*(Se + Sf) —
(5 + Sf)PV
= ( )

Se + S5¢)P,,

e C*(S,P) is generated by the isometry S + Sr.

e Coburn's Theorem: C*(S, P) is isomorphic to the Toeplitz
algebra T generated by the unilateral shift.



- Example -Toeplitz algebra

Group 4

Graph
Algebras

Se + Sr is an isometry for C*(S, P). This leads to the following:

= (Se + S¢)(Se + S¢)°
= (Se + 5¢)"(Se + Sf) —
= (Se + Sf)P,
= ( )

Se + S5¢)P,,

e C*(S,P) is generated by the isometry S + Sr.

e Coburn's Theorem: C*(S, P) is isomorphic to the Toeplitz
algebra T generated by the unilateral shift.

Idea: If CK-E-families are nontrivial (P, # 0)
= CK-E-families generate isomorphic C*-algebras.



- Uniqueness Theorems

Group 4

Let
e E row-finite directed graph
o e {5, P} CK E-family in C*-algebra B with P, # 0
o Proposition (Gauge-Invariant Uniqueness Theorem)

If there is a gauge action, i.e. §: T — Aut(B) continuous with

B:(P,)=P, YveE® and B,(S.)=zS. VeecE.

Then
TSP : C(E)— B

is an isomorphism of C*(E) onto C*(S, P).

C*(E) always has gauge action!



- Uniqueness Theorems

Let

Group 4

o e FE row-finite directed graph
e {5, P} CK E-family in C*-algebra B with P, # 0

Shift

Spaces

— Proposition (Cuntz-Krieger Uniqueness Theorem)

tions

If every cycle in E has an entry, i.e.

Veyclep=pa,...un Jedgeed p: r(e)=s(u).
Then C*(E) = C*(S, P).



- Application of Uniqueness Theorem

Group 4

Graph
We consider again the graph of the Toeplitz algebra:
Shift

Spaces

Connec-
tions f
e V «e— W

e Every cycle has an entry.
e CK-Uniqueness: C*(S, P) unique up to isomorphism

e The CK Uniqueness Theorem generalizes Coburn’s Theorem.



- Graph Algebra of the Dual Graph

e
Group 4 e € ’\K
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Algebras
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tions

Let E be a row finite graph with no sources: C*(E) = C*(E)



- Graph Algebra of the Dual Graph
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Shift f f&_Xg
Spaces

eI Proposition
tions

Let E be a row finite graph with no sources: C*(E) = C*(E)

Sketch of the proof:

Let {s, p} be a CK family generating C*(E)
Define Qe := Sesy, Tfe := SfSeSa

Can check that {T, Q} is a CK E-family in C*(E)

A

Universal property: 3 *-hom. 71, : C*(E) — C*(E)

Gauge action exists for C*(E)
Gauge Uniqueness: C*(E) = C*(T, Q) = C*(E)



- Simplicity of Graph Algebras

Group 4
’ e Preorder on E%: v < w if 3 a path u € E* fromw to v
o ES® := E> U {finite path beginning at sources}
Shift
Connec- . g - .
tions A directed graph E is cofinal if for every y € ES® and v € E°

there exists a vertex w on p such that v < w, i.e. there is a path
from w to v.



- Simplicity of Graph Algebras

Group 4
’ e Preorder on E%: v < w if 3 a path u € E* fromw to v
o ES® := E> U {finite path beginning at sources}
Shift
Connec- . g - .
tions A directed graph E is cofinal if for every y € ES® and v € E°

there exists a vertex w on p such that v < w, i.e. there is a path
from w to v.

Proposition

Suppose E is a row finite graph. Then

C*(E) simple < Every cycle in E has an entry and E is cofinal.

E strongly connected and every cycle has an entry = C*(E) simple



- Simplicity of Graph Algebras

Group 4 Sketch of the proof of “<«<=":

e Every ideal in a C*-algebra is a kernel of a representation.
Algebras

o e Aim: every nonzero representation ws p of C*(E) is faithful.

Spaces

Connec-
tions



- Simplicity of Graph Algebras

Group 4 Sketch of the proof of “<«<=":
e Every ideal in a C*-algebra is a kernel of a representation.
Algebras

- e Aim: every nonzero representation ws p of C*(E) is faithful.

e Let {5, P} be a CK-E-family such that 75 p # 0.
= P, # 0 for some v € EO.

e E cofinal: P, # 0 for some v € E® = P, # 0 for all v € E°.
e CK-Uniqueness Theorem: 75 p is faithful.



- Simplicity of Graph Algebras

Group 4 Sketch of the proof of “<«<=":
e Every ideal in a C*-algebra is a kernel of a representation.
Algebras

- e Aim: every nonzero representation ws p of C*(E) is faithful.

e Let {5, P} be a CK-E-family such that 75 p # 0.
= P, # 0 for some v € EO.

e E cofinal: P, # 0 for some v € E® = P, # 0 for all v € E°.
e CK-Uniqueness Theorem: 75 p is faithful.

Application to Cuntz-Algebra O,:

Y The graph is cofinal and every cycle has an
L € entry = O, is simple.
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- Edge Shift

Group 4
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Graph /—\

Algebras L] \—/ o g
Shift

f

Connec-

Definition (Edge Shift)

Let £ = (E° E') be a graph with no sinks or sources. The edge
shift of E is the set of bi-infinite paths in E:

Xe = {(m)iez € (B | Vi : rluia) = s(ui) }



- Edge Shift

Group 4
e
Algebras
7
Spaces
Connec-
Definition (Edge Shift)

Let £ = (E° E') be a graph with no sinks or sources. The edge
shift of E is the set of bi-infinite paths in E:

Xe = {(m)iez € (B | Vi : rluia) = s(ui) }

The dynamics of the system are described by the left shift
(o XE — XE

(i)iez = (Mit1)iez



- Edge Shift — Forbidden Blocks

Group 4
e
Shift
L F
f

e The requirement r(u;i+1) = s(u;) can be restated by saying
that blocks of the form uv are forbidden whenever

r(v) # s(u).
e If E is a finite graph, the set of forbidden blocks is finite.
e In the example graph, the forbidden blocks are

F = {ee,eg,ff,gf}.



- Vertex Shift

Group 4

/\
Graph 1 2
Algebras \_/
Spaces —_— -
o Definition (Vertex Shift)

tions

Let E = (E°, E') be a graph with no sinks, sources or multiple
edges. The vertex shift of E is the set of bi-infinite
“vertex-paths” in E:

Xg = {(v,-),-ez € (EO)Z | Vi: there is an edge from v;;; to v,-}.



- Vertex Shift
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Connec-
tions

\_/

Definition (Vertex Shift)

Let E = (E°, E') be a graph with no sinks, sources or multiple
edges. The vertex shift of E is the set of bi-infinite
“vertex-paths” in E:

Xg = {(v,-),-ez € (EO)Z | Vi: there is an edge from v;;; to v,-}.

The dynamics of the system are described by the left shift
o )A(E — )A(E

(vi)iez = (Vit1)iez



- Dual Graph

Group 4

Graph
Algebras
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The edge shift of a graph E is the vertex shift of its dual graph E.

<=0 ()e e

Connec-
tions



- Vertex Shift — Forbidden Blocks

Group 4
~ N
Shift 1 2
Spaces \/

e The requirement of having an edge from v;;1 to v; can be
restated by saying that blocks of the form vw are forbidden
whenever there is no such edge.

e If E is a finite graph, the set of forbidden blocks is finite.
e In the example graph, the forbidden blocks are

F={11}.



- Shift Spaces

Group 4

Graph DefinitiOn

Algebras

The full two-sided shift over a finite alphabet A is the space A%
o of bi-infinite A-sequences.

Connec-
tions

The shift map o: AZ — AZ is defined by o(x); = xi 1.



- Shift Spaces

Group 4

Graph DefinitiOn

Algebras

The full two-sided shift over a finite alphabet A is the space A%
- of bi-infinite .A-sequences.

Connec-
tions

The shift map o: AZ — AZ is defined by o(x); = xi 1.

If F is a set of finite sequences in A called forbidden blocks, we
define X7 to be the set of sequences in A% that contain no block
of F.

A shift space is a subset X C AZ such that X = Xr for some F.

One-sided shifts are defined analogously as subsets of AN,



- Sliding Block Codes

Group 4

S @ Bmynp1(X) — s a block map into another alphabet, the
map ¢: X — A% defined by

paces

g ¢(x)i = P(Xi—mXi—m+1 - - Xitn) = P(Xi—m,itn])

is called sliding block code

A conjugacy between two shifts is a bijective sliding block code.

X = .. -Xi—m—l‘ Xi—mXi—m+1 - - - Xi4-n—1Xi4-n ‘ Xit+n+1---

]o
¢(X) = s Yi-1 j+1 L.




For a shift space X and n € N, take 2 = B,(X) and ® = idg x).
We obtain the sliding block code £,: X — (B,(X))*

X_1 X0 X1
X0 X1 X2
5,,(...X_1XOX1...) = ...
Xn—3 Xn—2 Xn—1

| Xn—2] | Xn—1] Xn

The image of 3, is called higher order shift XI"l and S, is a
conjugacy between X and X[,



- Topology

We equip A% with the product topology of the discrete topology.

If |A| > 1, A% is a Cantor set, i.e. compact, totally disconnected,
metrizable and has no isolated points.

Shift
Spaces



- Topology

We equip A% with the product topology of the discrete topology.

Group 4

ety If |A| > 1, A% is a Cantor set, i.e. compact, totally disconnected,
Algebras metrizable and has no isolated points.

Shift
Spaces

Connec-
tions

o A subset X C A” is a shift space if and only if it is closed and
o-invariant.



- Topology

We equip A% with the product topology of the discrete topology.

Group 4

ety If |A| > 1, A% is a Cantor set, i.e. compact, totally disconnected,
Algebras metrizable and has no isolated points.

Shift

Spaces

Connec-

tions

o A subset X C A” is a shift space if and only if it is closed and
o-invariant.

o Amap ¢: X — Y C A% is a sliding block code if and only if
¢ Is continuous and ¢ o ox = Oy © ¢.



- Shifts of finite type

Group 4

Graph Definition

Algebras

A (sub-)shift of finite type is a shift space X which can be
— described by a finite set of forbidden blocks F.

Connec-
tions

If the maximum length of a block in F is k 4+ 1, we say that X is
a k-step SFT.



- Shifts of finite type

Group 4

Graph Definition

Algebras

A (sub-)shift of finite type is a shift space X which can be
— described by a finite set of forbidden blocks F.

Connec-
tions

If the maximum length of a block in F is k 4+ 1, we say that X is
a k-step SFT.

Remark

e 1-step SFT are exactly the vertex shifts of finite graphs.



- Shifts of finite type

Group 4

Graph Definition

Algebras

A (sub-)shift of finite type is a shift space X which can be
— described by a finite set of forbidden blocks F.

Connec-
tions

If the maximum length of a block in F is k 4+ 1, we say that X is
a k-step SFT.

Remark

e 1-step SFT are exactly the vertex shifts of finite graphs.

o If X is a k-step SFT, then the higher order shift X" is
max{k — n, 1}-step.



- Shifts of finite type

Group 4

Corollary
Graph

b Every SFT is conjugate to a vertex shift and an edge shift. In
particular, if X is a k-step SFT, then there is a graph E such that
XK = Xg and XU+ = X

A=1{0,1}, F={11,101}

Connec-
tions

001

01 ’\
010 < OOQOOO
107



- (Stationary) Markov Chains

Groupkt Here: family (X;)¢>n, of random variables X; : Q — ¥ where X is
finite and Q is ambient probability space s.t.

— e Markov property (1-memory):
vneN7t0<"'<tn€N07i07"'7inEZ:

Pr[th = in ‘ th—l = in_l, e 7Xt0 = IO] = Pr[th = in | th—l = in_l]

whenever conditional prob.’s are well-defined
e stationary: Vt,t' € Ny, i,j € ¥:

Pr[Xt+1 :j | Xt = i] = Pr[Xt/+1 :j ’ th = i] = T,'j



- (Stationary) Markov Chains

Groupkt Here: family (X;)¢>n, of random variables X; : Q — ¥ where X is
finite and Q is ambient probability space s.t.

— e Markov property (1-memory):
vneN7t0<"'<tn€N07i07"'7inEZ:

Pr[th = in ‘ th—l = in_l, e 7Xt0 = IO] = Pr[th = in | th—l = in_l]

whenever conditional prob.’s are well-defined
e stationary: Vt,t' € Ny, i,j € ¥:

Pr[Xt+1 :j | Xt = i] = Pr[Xt/+1 :j ’ th = i] = T,'j

VteNo,ieX: pi(t) :=Pr[Xe =1]



- Markov Chains in C*-Language

Given by state
et p(0) € (C")* and (completely) positive unital operator T on
1

Graph

Algebras C*—algebra (Cn: (]]. = < ))
1

Shift
Spaces

Connec-

p(t) = p(0) T* at time t € Np
p(0) € &(C") <= pi(0) = 0 A p(0)1 = ZPI(O) =1

tions

Tl=1<=rowsumVi:» T;=1
j



- Markov Chains in C*-Language

Given by state
et p(0) € (C")* and (completely) positive unital operator T on
1

Graph

Algebras C*-algebra C™: (1 = < ))
i

Shift
Spaces

Connec-

p(t) = p(0) T* at time t € Np
p(0) € &(C") <= pi(0) = 0 A p(0)1 = ZPI(O) =1

tions

Tl=1<=rowsumVi:» T;=1
j

no sinks!

1



- Topological Markov Chains

Group 4 e forget probabilities and wait a finite time ~~ end up with graph

. without sinks or sources, no mutliple edges
raph

Algebras

Shift
Spaces

Connec-
tions



- Topological Markov Chains

Group 4 e forget probabilities and wait a finite time ~~ end up with graph

. without sinks or sources, no mutliple edges
sraph

Algebras
3 Ae e (0.7
D
Ez:::cc— E — no zero C0|umnS
NnO Zero rows
—
4 5

L new X = {3,4,5}



- Topological Markov Chains

Group 4 o forget probabilities and wait a finite time ~» end up with graph
without sinks or sources, no mutliple edges

i I XY
o Aeco

3
E— T —_,  no zero columns
5

NnO Zero rows
—

4
2 new ¥ = {3,4,5)

e want to be able to measure probabilities of cylinder sets

Z= 1] Z. 2 =X for almost all t € N
teNg

Pr(Z) =Prixy € Z4,, ..., x¢, € Z,] if Zy, # X



- Topological Markov Chains

Group 4

Shift
Spaces

o forget probabilities and wait a finite time ~» end up with graph
without sinks or sources, no mutliple edges

35 Ag € {0,1}2x%
E— T —_,  no zero columns
5

NnO Zero rows
—

4
2 new ¥ = {3,4,5)

e want to be able to measure probabilities of cylinder sets

Z= 1] Z. 2 =X for almost all t € N
teNg

Pr(Z) =Prixy € Z4,, ..., x¢, € Z,] if Zy, # X

e cylinder sets as basis of topology ~~ product topology HteNo ha



- Topological Markov Chains

SAS RN Definition (Topological Markov Chain)

. Let £ = (E®, E') be a graph without sinks, sources and multiple
edges. Then the vertex shift

Spaces

Xe == {(ve)een € (B | ¥t : viyave € E)

tions . teN - Vi1Vt 9

endowed with subspace topology of the product topology of
(E®)N, is called topological Markov chain.



- Topological Markov Chains

SAS RN Definition (Topological Markov Chain)

Graph

Algcbras Let £ = (E®, E') be a graph without sinks, sources and multiple

edges. Then the vertex shift

Spaces

Connec- X — {( ) c EO N Vt . E]_
E: Ve)een € (E7) |Vt veq1ve € ET ),

tions

endowed with subspace topology of the product topology of
(E®)N, is called topological Markov chain.

A Wikipedia calls arbitrary shifts of finite type “topological
Markov chain”



- Topological Markov Chains

SAS RN Definition (Topological Markov Chain)

Graph

Algebras Let £ = (E®, E') be a graph without sinks, sources and multiple

edges. Then the vertex shift

Spaces

Connec- v o 0\N . 1
Xe = {(ve)ten € (E°)" |Vt : ver1ve € E7},

tions

endowed with subspace topology of the product topology of
(E®)N, is called topological Markov chain.

A Wikipedia calls arbitrary shifts of finite type “topological
Markov chain”

Recall: Arbitrary k-step shift X is conjugate (=isomorphic) to
XK = Xg for some graph E.

Similar: stochastic process (Xt)ten, is k-memory
= ((Xe4k-1, Xetk—25 - s Xt)) 1eny, i Markov
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- Cuntz-Krieger Algebra

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Definition (Cuntz-Krieger Algebra)

Let A € M,({0,1}) be a matrix with no zero rows and columns.
The Cuntz-Krieger-algebra O, is defined as universal C*-algebra
generated by partial isometries s; satisfying

n n
s'si = Z ajjs;s; and Z sis; = 1.
j=1 i=1
We will call a family S ={S; | i =1,...,n} of partial isometries
in a C*-algebra A satisfying these relations a CK-A-family.
Corresponding graph:
EJ:={1,..,n}, Ei={ij:a;=1}, s(i)=j, r(i)=i

A is the incidence matrix of Eg4.



- CK-Algebras are Graph Algebras

Group 4
Graph
Algebras

Shift

Spaces

Connec-
tions

Proposition

Oa and C*(Ep) are isomorphic, where the Cuntz-Krieger
Ea-family {t,q} is given by

— *
qi = Sis;

tij = S,'SJ'SJ?k
In particular, the projections q; are mutually orthogonal.

How to get sj back: sj=s;- > 1, 5i57 = 37/ jiepa By

—> CK-Algebras are the C*-algebras of finite graphs with no

sinks, sources ormtttipte—edges.



- CK-Algebras are Graph Algebras

Group 4
Graph
Algebras

Shift

Spaces

Connec-
tions

Proposition

Oa and C*(Ep) are isomorphic, where the Cuntz-Krieger
Ea-family {t,q} is given by

— *
qi = Sis;

tij = S,'SJ'SJ?k
In particular, the projections q; are mutually orthogonal.

How to get sj back: sj=s;- > 1, 5i57 = 37/ jiepa By

—> CK-Algebras are the C*-algebras of finite graphs with no

sinks, sources ormtttipte—edges.

use C*(E) = C*(E) for graphs E without sources,
dual graph E never has multiple edges.



- Dynamics on CK-Algebra

Group 4 Define

Graph q)A . A — -/47 X — E SIXS/*

Algebras ;

Shift i . o )
Spaces —> @4 is Quantum Operation (= completely positive unital

operator on A) with so-called Kraus operators S;
tions
(¢0 © DL )ten, for initial state ¢ on A

— compare with Markov chain p(t) = p(0)T*



- Dynamics on CK-Algebra

Group 4 Define

Pt A=A x> Y SixXS

—> @4 is Quantum Operation (= completely positive unital
operator on A) with so-called Kraus operators S;
tions

(¢0 © DL )ten, for initial state ¢ on A

— compare with Markov chain p(t) = p(0)T*

Da = C*({@4(5iS)

ieX, ke No}> = Spanc {SMSZ | p] =1}
where 5, := 5., 5y, - Sy,

= D, is commutative AF-subalgebra of A, invariant under ® 4



- Dynamics on CK-Algebra

Group 4 Define

Pt A=A x> Y SixXS

—> @4 is Quantum Operation (= completely positive unital
operator on A) with so-called Kraus operators S;
tions

(¢0 © DL )ten, for initial state ¢ on A

— compare with Markov chain p(t) = p(0)T*

Da = C*({@4(5iS)

ieX, ke No}> = Spanc {SMSZ | u| > 1}
where 5, := 5., 5y, - Sy,
= D, is commutative AF-subalgebra of A, invariant under ® 4

Compare: C*(S) =spanc {S.S; | |pl, v =1} C A



- Dynamics on CK-Algebra

Group 4 Theorem

Let A be C*-algebra with a CK-A-family such that S;'S; # 0 for
all i, where A € {0,1}*** has no sinks (i.e. no zero columns).
There is an isomorphism w : Da — C(Xa) of commutative unital

C*-algebras such that
tions
DA L) C(XA)
1. ld,A lgz commutes, where o;f := f o o4.
DA L) C(?A)
2. Vi: w(S;SF) = xi, where x; is the characteristic function of

the cylinder set Z(i) = {x € Xa : xq = i}

In other words, the Quantum Markov Chain generated by ®4 is
isomorphic to the dual dynamical system of the one-sided shift
Xa, given corresponding initial states ¢g = g o w.



- Example 1: M(C(T))

Group 4 A:<0 1), Ea= 0" 1 =v_ _w
1 0 ~— — _ ~
Graph 01 f
;f:m CK A-family and CK Ex-family, generating My(C(T)):
o (0 i\ _ L (00\__ .

. 10 . 00
S0Sg = 0 0 =:qv 5151 = 0 1 = quw

where t € T is arbitrary.



- Example 1: M(C(T))

01 = S
Group 4 A=<1 0>, Ea=0_ “1l=v_ "w
01 f

CK A-family and CK Ex-family, generating My (C(T)):
ponnee So = 0 tidy = sps15] =: t s1 = 00 = 515855 =: L,

. 10 . 00
050 = 0 0 =:4qv 5151 = 0 1 = dw

where t € T is arbitrary.
Gauge Uniqueness Theorem = M,(C(T)) = C*(E)

X X X 0
by i x= A2y, SoxSy + S1xsp = 22
X21  X22 0 xq1

2= {(5 )

Z1,2p € (C} =: Dz((C),



- Example 1: M(C(T))

Group 4 0 1 10
~—
Graph A = <1 0> ’ EA - 0 ) 1
Algebras 01
Shift
Spaces
Xa = {0101---,1010---} = Z(0) U Z(1)

w 215055 + ZQS;[Sik —> Z1X0 + Z2X1-

For arbitrary z1,z € C:
z1 O w 0101+ 2z
0 =» 1010+ - — 2z
l‘DA l"f\

z 0 w 1010+ — 7z
0 7 0101 - +— 2o



Connec-
tions

10

11
A:( >, EA:oo©031©11

01
dual graph of E= 0 C.Q 1

Cuntz-Krieger Uniqueness Thm. (every cycle has an entry!) +
dual graph (no sources!) = every C*-algebra generated by
CK-A-family or C.K.-Ea-family is isomorphic to C*(E) = O,.

iso.:. CK A-family s: Si
CK Ep-family {t,q}: t; = Sisis;s Qi = sis;
CK E-family {s, p}: s = sj, Pe =1

one-sided vertex shift X4 = one-sided edge shift Xg = {0, 11N

Xg is Cantor set ~ What's C(Xg)?



- Example 2: O,

Group 4

L C(Xg) = spang {Xz(“) | pe{0,1}", n> 1} Z(p)=A{p---}
Algebras

Shift

Spaces

Connec-
tions



- Example 2: O,

Group 4

ey =smane {xggy e {01} 01} Z(n) = {u}
Algebras

shi Da = spanc {sus; | n € {0,1}", n>1}

paces

w: Dp — C(Xg) given by w(s#s;j) = Xz(y)



Connec-
tions

C(Xe) =panc { Xz | € 10,1}, =1} Z(u) = (-}
Da = spanc {sus; | n € {0,1}", n>1}
w: Da— C(Xg) given by w(sys,) = XZ(1)

For any finite set M of paths i and coefficients z, € C:

b4 :Da — Da, Z Z,SuS;, Z 2, (SouSop + S1451,.)
neM neM
oh: CXe) = C(Xe), D 2uXz) ™ D ZuXz(0u) L 2(1p)
neM neM

— fits to w and such sums are dense!



- More Cantor Set Stuff

Theorem (The Cantor set Xg is very big)

Group 4
Let Y be an arbitrary compact metrizable space, then there exists
Graph

Algebras a continuous surjection F : Xg — Y.

Shift

Spaces

Connec- 3

Example: Xg = ST =
) ]




- More Cantor Set Stuff

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Theorem (The Cantor set Xg is very big)

Let Y be an arbitrary compact metrizable space, then there exists
a continuous surjection F : Xg — Y.

3
Example: Xg = —- T =

i | |
Corollary (The Cuntz algebra O, is very big)

For every compact metrizable space Y, the C*-algebra C(Y') can
be injectively embedded into O,. This embedding is given by

wloF*: C(Y) 25 C(Xe) 2 DaCc 0,

Either &4 acts periodically on image or there exist co many
embeddings: ®% ow™ o F*, n € No.



- Embedding O; = C(T) — O,

Group 4
S Can extract construction from the proof of the Theorem above,
Alecbias which leads to embedding given by:
Shift
Spaces n
Connec- -1 *\(i — | i- —k *
R R D WED I
lul=n k=1 -~
-~ mutually
approx. every t € T orth. proj.



- Isomorphic Graph Algebras

Grerp & Question: How to show that two graph algebras are isomorphic,
given their graphs?

Graph
Algebras

Shift

Spaces

Connec-
tions



- Isomorphic Graph Algebras

Grerp & Question: How to show that two graph algebras are isomorphic,
given their graphs?

Graph
Algebras

Shite Already saw: Dual graph gives same C*-algebra, if no sources.

Spaces

Connec-
tions



- Isomorphic Graph Algebras

Gep Question: How to show that two graph algebras are isomorphic,
given their graphs?

Graph
Algebras

Shite Already saw: Dual graph gives same C*-algebra, if no sources.

Spaces

connec Also saw: M,(C) is isomorphic to graph algebra of

tions

Y e )
Vi SeS;
€1
/.\x
. : v ° >
\e—/ P, \ .
n—1
Vn—l Se,,_l 5:,171

sink splitting works for all graphs with sinks!



- In-Splitting /In-Amalgamation

fl
° - ) Vl - 5
Group 4 / Sp|ltt|ng
[ ] _— [ f2
Grapt f 2
aph 'Y >V ° v
Algebras
SO
Shift .
Spaces ° amalgamatlon °

Pai= > SSi, Ppi= Y S5 Spii=SP,,
e

e blue

every other Se, P, unchanged.



- In-Splitting /In-Amalgamation
* * splittin *
Group 4 . /f' p g .

Graph e — VvV o —— > V2

Algebras
Shift Q>\A .
o 2amalgamation

Spaces
= Z Se5:7 Pv2 = Z SES:’ Sfi = SfPVi’
e

Connec-
tions
e blue

every other S, P, unchanged. Now use

> S¢PLi(S¢Pi) = S¢P,SF = S¢S}
i=1,2
P*S; S¢P,i = P5P,P,i = P,

—> Cuntz-Krieger relations hold!
= get isom. of graph C*-algebras



- Out-Splitting/Out-Amalgamation

Group 4

Graph ° ° PY
Algebras f Spl[tt]ng
Shift d °
Spaces

paces v ° °

Connec-
tions Q
o amalgamation

We could set P,1 = P> = P, and Sp = sz = 5¢ to satisfy
Cuntz-Krieger relations, but P,1, P> have to be mutually
orthogonal!



- Out-Splitting/Out-Amalgamation

Group 4

f * spllttlng
\ .
vV — @ —_—
e
tions
o amalgamation

We could set P,1 = P> = P, and 5p1 = S,cz = 5f to satisfy
Cuntz-Krieger relations, but P, i, P2 have to be mutually
orthogonal!

~~ unclear how to choose Cuntz-Krieger family for splitted graph
to obtain an isomorphism, need extra assumptions on the graph.



- Shift Conjugacies Induce C*-Isomorphisms

. Let G, H be finite graphs without sinks or sources and X¢, Xy
Shift their both-sided edge shifts. Then X¢ and Xy are conjugate if
B and only if H can be obtained by successive application of in- and

out-splitting/amalgamation.



- Shift Conjugacies Induce C*-Isomorphisms

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Proposition

Let G, H be finite graphs without sinks or sources and X¢g, Xy
their both-sided edge shifts. Then X¢ and Xy are conjugate if
and only if H can be obtained by successive application of in- and
out-splitting/amalgamation.

Theorem ([CK80, Proposition 2.17])

Let A,B € {0,1}"*" have no zero columns or rows and assume
that Ea, Eg both satisfy condition (1). If the one-sided shifts

Xa, Xg are conjugate, then there is an isomorphism

1 : Oa — Op mapping Dp to Dg such that ®a|lp, o ) = Pg|p,.

Every vertex in E, is reachable by a path from
another vertex such that the latter has two disjoint cycles through
it. = every cycle has an entry



- Stably Isomorphic CK-Algebras

cowp4  Question (cont'd): ... or at least stably isomorphic,

_— ie. C*(E) ® K = C*(F) ® K where KC are the compact operators
Algebras on a separable Hilbert space?

Shift

Spaces

Connec-
tions



- Stably Isomorphic CK-Algebras

Group 4
Graph
Algebras

Shift

Spaces

Connec-
tions

Question (cont'd): ...or at least stably isomorphic,
ie. C*(E)® K = C*(F) ® K where K are the compact operators
on a separable Hilbert space?

Theorem

Let A, B € {0,1}"*" have no zero columns or rows and assume
that

o E,, Eg are single cycles or
o Ep, Eg are both satisfy condition (I) or
e A, B are both acyclic.
If the one-sided shifts )A(A, Xg are flow-equivalent, then

(K® 0a,C®Da) = (K® Op,C R Dg)

where C is a maximal commutative subalgebra of K.



- Flow-Equivalence

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

suspension of a both-sided shift (X, o):

SX = XX R/ (00,0 ~ (e +1) = XX [0.1]/(0(9,0) ~ (1)
For one-sided shift: R instead of R
— has natural R resp. R action

flow-equivalence := homeomorphism 1 : SX — SY mapping
orbits to orbits




- Flow-Equivalence

Group 4

Graph
Algebras

Shift
Spaces Flow equivalence is generalization of conjugacy,

on graph level: in/out-splitting/amalgamation + expansion
[ ] [
exp.
MCecT () —— /N  Ms(C)ec(T)
[ ] e — O

~> are stably isomomorphic
in/out-splitting/amalg. cannot be applied



- Invariants of Graph Algebras

Group 4

Connec-
tions

Question: How to show that two graph algebras are not
isomorphic, given their graphs?

Can construct invariants (under isomorphisms) for graph algebras,
and compute them using the adjacency matrix Ag
Example:

Main idea: Ext(.A) = equivalence classes of injective *-homo-
morphisms into Calkin-algebra o : A — B(H)/K(H)



- Extension group and classification

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Recall Every vertex in E, is reachable by a path
from another vertex such that the latter has two disjoint cycles
through it.

Theorem ([CK80, Theorem 5.1])

Suppose A € {0,1}"*" has no zero columns or rows and satisfies
condition (I). Then the semigroups Ext Oa and Z" /(1 — A)Z" are
isomorphic.



- Extension group and classification

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Recall Every vertex in E, is reachable by a path
from another vertex such that the latter has two disjoint cycles
through it.

Theorem ([CK80, Theorem 5.1])

Suppose A € {0,1}"*" has no zero columns or rows and satisfies
condition (I). Then the semigroups Ext Oa and Z" /(1 — A)Z" are
isomorphic.

Furthermore, by Elementarteilersatz we have
Z"/(1-AZ"=7"/DL" 2 7] L DL LS - D L/d,Z

for suitable d; € Np.



- Extension group and classification

Group 4

Graph
Algebras

Shift

Spaces

Connec-
tions

Recall Every vertex in E4 is reachable by a path
from another vertex such that the latter has two disjoint cycles
through it.

Theorem ([CK80, Theorem 5.1])

Suppose A € {0,1}"*" has no zero columns or rows and satisfies

condition (I). Then the semigroups Ext Oa and Z" /(1 — A)Z" are

isomorphic.

Furthermore, by Elementarteilersatz we have
Z"/(1—-AZ"=Z"|DL" =7/ hZ BL|hZ D --- & ZL/dZ

for suitable d; € Np.

Bowen and Franks showed that Z"/(1 — A)Z" is invariant under
flow equivalence of topological Markov chains.



- One Final Example

G 4 .

o Consider the graphs (
Graph 1
Algebras E p
Shift 1= T
Spaces —

e
tions



- One Final Example

¢e® % Consider the graphs ( )
/ ;_._;7M1> El _ E2 _ \
] N
e e
tions
Their adjacency matrices are
0 0 1 P
Al—-1=10 -1 1 A —1= 1 0 -1
0 10 1 0 O

— ExtOa, 2 73/(1-A)Z3 =7
ExtOp, 2 Z4/(1 — A))Z* =0

= C*(E1) = Oa, and C*(Ez) = Oa, are not isomorphic!

o = O O



Grou
a o |deal structure of graph algebras can be read off their graphs! E.g.:
A irreducible =— O, simple
e K-Theory of graph algebras (row-finite, no sources):
Ko(C*(E)) = coker(1—AL), Ki(C*(E)) = ker(1-AL) C D, Z
Connec-
e Graph algebras with infinite receivers (non-row-finite graphs)

e Can reconstruct L ® Q4 from Dy as huge double crossed product
with group of homeomorphisms of “unstable manifold” W



Ideal structure of graph algebras can be read off their graphs! E.g.:
A irreducible =— O, simple

K-Theory of graph algebras (row-finite, no sources):
Ko(C*(E)) = coker(1—AL), Ki(C*(E)) = ker(1-AL) C D, Z

Graph algebras with infinite receivers (non-row-finite graphs)

Connec-
tions

e Can reconstruct L ® Q4 from Dy as huge double crossed product
with group of homeomorphisms of “unstable manifold” W

(Homeoy, ¢.4.(W) x Go(W)) )

K®Oa=r"
® Oa r-x <<ﬁPB — \A/PB : u|B: V|B7 B Cpt Open>

where r € Homeoy, f.4.+index shire( VW) arbitrary.
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- THANK YOU FOR YOUR ATTENTION!

Group 4 How to make a graph C*-algebra:
Graph
Algebras
Shift
Spaces
tions
Step 1: Draw the Step 2:
Petersen graph Erase the outside
Step 3: Step 4:

Add a "C" Do algebra!
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