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Representation

Let A be a C*-algebra. A Representation of A is a pair (π,H), where H is Hilbert space and

π : A→ B(H) ,

is ∗-homomorphism.

We also say that π is a representation.

Let A be a *-algebra and let (π,H) be a representation of A. A subspace N ⊂ H is said
to be invariant if π(a)N ⊂ N for all a ∈ A.

A representation (π,H) of A is called non-degenerate if π(A)H is dense in H, otherwise
the representation is called degenerate.
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Irreducible Representation

Definition

A representation of a*-algebra is irreducible if the only closed invariant subspaces are {0} and
H, otherwise it is reducible.

A representation (π,H) is a cyclic representation if there is a cyclic vector in H for π(A).

A cyclic representation is non-degenerate.
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Definition

Positive linear functional:- Let A be C*-algebra, A linear functional ϕ on A is positive,
written ϕ ≥ 0, if ϕ(x) ≥ 0 whenever x ≥ 0.

Definition (State)

A state on A is a positive linear functional of norm 1. We denote S(A) the set of all states on
A, called the state space of A.

Example

If A is a concrete C ∗-algebra of operators acting non-degenerately on H and ξ ∈ H and
ϕξ(x) = 〈xξ, ξ〉 for x ∈ A , then ϕξ is a positive linear functional on A of norm ||ξ||2 , so ϕξ is
a state if ||ξ|| = 1. Such a state is called a vector state.

ISEM 24 – Project 5 Irreducible representations and pure states June 2021



GNS Representation

GNS-construction: For ϕ ∈ S(A) there are a Hilbert space Hϕ, a representation
πϕ : A→ B(Hϕ) and a cyclic vector xϕ ∈ Hϕ
such that ϕ(a) = 〈πϕ(a)xϕ, xϕ〉 for all a ∈ A

I Construction of Hϕ:
〈a, b〉 := ϕ(b∗a) → mod out elements of zero norm → complete

I πϕ is left multiplication viewed in Hϕ
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Definition (Pure states PS(A))

A state ϕ on a C ∗-algebra A, is pure if it has the property that whenever ρ is a positive linear
functional on A such that ρ ≤ ϕ, necessarily there is a number t ∈ [0, 1] such that ρ = tϕ.

Theorem

Let ϕ ∈ S(A):
ϕ ∈ PS(A) ⇐⇒ (Hϕ, πϕ) is irreducible.
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Idea of proof from the commutative case

For A commutative (and unital), A = C (X ), with X compact (G-N)

Riesz-Markov: States correspond to Radon measures of mass one:

ϕ(f ) =

∫
X
f dµ

→ Pure states correspond exactly to Dirac measures

GNS-construction w.r.t. Dirac measure?
→ C with complex multiplication: clearly irreducible.
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Idea of proof from the commutative case

Proof of the other direction (by contrapositive: assume that ϕ is not pure, show that (Hϕ, πϕ)
is reducible):

GNS-constr. of ϕ ∈ S(A), with corresponding measure µ, is L2(X , µ)

When µ is not a Dirac measure:
=⇒ the support of µ has a proper subset Y ⊂ X
=⇒ L2(Y , µ) is a reducing subspace.

L2(Y , µ) = χYHϕ
Existence of projections → Invariant subspaces
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Characterisation of irreducibility with commutant

Definition (Commutant)

πϕ(A)′ := {v ∈ B(Hϕ) s.t. v commutes with all πϕ(a) ∈ πϕ(A)}

Lemma

πϕ(A) is irreducible ⇐⇒ πϕ(A)′ = C1

Proof.

πϕ(A) is irreducible ⇐⇒ πϕ(A)′ has no nontrivial projections

⇐⇒ πϕ(A)′ = C1 because πϕ(A)′ is a vNA, and thus a linear span of its projections.
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Proof: (ϕ ∈ PS(A) ⇐⇒ (Hϕ, πϕ) is irreducible)

=⇒ : (assume ϕ is pure, show that πϕ(A)′ = C1).

Let v ∈ πϕ(A)′, 0 ≤ v ≤ 1. Define a positive linear functional ρ(a) := 〈vπϕ(a)xϕ, xϕ〉

We have ρ ≤ ϕ, thus ρ = tϕ =⇒ · · · =⇒ v = t1

=⇒ πϕ(A)′ = C1 as element of B(H) can be decomposed into a linear combination of
positive elements
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Proof: (ϕ ∈ PS(A) ⇐⇒ (Hϕ, πϕ) is irreducible)

⇐= : (assume πϕ(A)′ = C1, show that ϕ is pure)

Let ρ ≤ ϕ be a positive linear functional

=⇒ There is v ∈ πϕ(A)′, 0 ≤ v ≤ 1, s.t. ρ(a) = 〈vπϕ(a)xϕ, xϕ〉
(cf. Radon-Nikodym theorem for absolutely continuous measures)

By the assumption v = λ1, λ ∈ C

Moreover λ ∈ [0, 1] because 0 ≤ v ≤ 1 =⇒ ρ = λϕ
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Overview

Preliminaries: The Krein-Milman theorem

Motivation: States and Pure States on C (X )

PS(A) are extreme points of S(A)

Example: States and Pure States in Quantum Mechanics.
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Preliminaries: The Krein-Milman theorem

Definition

Let X be a locally convex space and S ⊂ X . We define a closed convex hull of S , denoted by
co(S), to be the smallest closed convex set containing S .
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Preliminaries: The Krein-Milman theorem

Definition

Let K be a convex subset of a vector space X . We say that x ∈ K is an extreme point of K if

x = ty + (1− t)z , t ∈ (0, 1) , y , z ∈ K =⇒ x = y = z .

We denote the set of all extreme points of K by ext(K ).
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Preliminaries: The Krein-Milman theorem

Definition

Let K be a convex subset of a vector space X and let F ⊂ K . If x ∈ F , y , z ∈ K and

x = ty + (1− t)z , for some t ∈ (0, 1) =⇒ y , z ∈ F ,

then F is called a face of F .
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Preliminaries: The Krein-Milman theorem

Theorem (Krein-Milman)

Let X be a locally convex space and K ⊂ X non-empty, compact, convex subset. Then
ext(K ) 6= ∅ and

K = co(ext(K )) .
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States and Pure States on C (X )

Let X be a compact Hausdorff space.

M(X ) = space of all Radon measures on X .

Riesz representation theorem: C (X )∗ 'M(X )

We have wk∗ topology on M(X ) induced from C (X )∗ and a measure µ acts on C (X ) by

µ(f ) =

∫
X
f (x)dµ(x)

.
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States and Pure States on C (X )

Recall that by Gelfan-Naimark theorem unital abelian C ∗ algebra A is isometrically
∗-isomorphic to C (Spec(A))
X = Spec(A) = space of all characters on A

State φ on A corresponds to Radon probability measure µφ on X

φ(f ) =

∫
X
f (x)dµφ(x).
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States and Pure States on C (X )

Theorem
1 The set P(X ) of Radon probability measures on X is a wk∗-compact convex subset of
M(X ).

2 The extreme points of P(X ) are exactly the Dirac measures δx which assign mass 1 at
the point x ∈ X and zero everywhere else.

3 The map x 7→ δx ∈ ext(P(X )) is a homeomorphism from X to the space
(ext(P(X )) ,wk∗)
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States and Pure States on C (X )

Theorem

Let τ be a state on an abelian C ∗ algebra A. Then τ is pure if and only if it is a character on
A , i.e. Spec(A) = PS(A) .

Since Dirac measures correspond to characters, they correspond to pure states.

We expect an analogous result of pure states being extreme points of the state space in
the non-commutative case! And that is our goal.
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Classical probability Quantum Probability

Probability measure µ on a
cpt. Hausdorff space

ρ a on unital C ∗ alg. A

X 3 x 7→ δx ∈ P(X )
homeomorphism

PS(A) = Spec(A) for abelian

P(X ) is
wk∗-cpt. and convex

S(A) is wk∗-cpt. and convex

δx are extreme pts. of
P(X )

PS(A) are extreme pts. of S(A)
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PS(A) are extreme points of S(A)

Theorem

If A is a C ∗ algebra, then the set S of norm decreasing positive linear functionals on A forms a
convex wk∗-compact set and ext(S) = {0} ∪ PS(A).

Proof
S is wk∗-compact and convex.

Let φi −→ φ =⇒ φi (a
∗a) −→ φ(a∗a) =⇒ φ is positive.

|φi (a)| ≤ ‖a‖ =⇒ |φ(a)| ≤ ‖a‖ =⇒ ‖φ‖ ≤ 1 =⇒ S is wk∗-closed.

Banach-Alaoglu thm: S is wk∗-compact.

Convexity is clear.
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PS(A) are extreme points of S(A)

0 ∈ ext(S).

Assume 0 = tτ + (1− t)ρ, where 0 < t < 1 and τ, ρ ∈ S .

∀a ∈ A , 0 ≤ (1− t)ρ(a∗a) = −tτ(a∗a) ≤ 0 =⇒ τ(A+) = ρ(A+) = 0 =⇒ τ = ρ = 0 .

PS(A) ⊂ ext(S).

Let ρ ∈ PS(A) and ρ = tτ + (1− t)τ ′ for 0 < t < 1 and τ, τ ′ ∈ S .

0 ≤ ρ− tτ i.e tτ ≤ ρ =⇒ tτ = t ′ρ for some t ′ ∈ [0, 1] .

1 = ‖ρ‖ = t‖τ‖+ (1− t)‖τ ′‖ =⇒ ‖τ‖ = ‖τ ′‖ = 1 . =⇒ t = ‖tτ‖ = ‖t ′ρ‖ = t ′ so
τ = ρ and similarly τ ′ = ρ. Thus ρ ∈ ext(S) .
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PS(A) are extreme points of S(A)

ext(S) \ {0} ⊂ PS(A) .

Let ρ ∈ ext(S) be non zero. Then

ρ = ‖ρ‖(ρ/‖ρ‖) + (1− ‖ρ‖)0

and 0, ρ/‖ρ‖ ∈ S .

Therefore, ‖ρ‖ = 1 as ρ ∈ ext(S).

Let τ be a nonzero, positive, linear functional s.t. τ � ρ. Then ‖τ‖ = t ∈ (0, 1).

Since 1− t = ‖ρ− τ‖ we write

ρ = t(τ/‖τ‖) + (1− t)(ρ− τ)/‖ρ− τ‖

=⇒ ρ = τ/‖τ‖ =⇒ ρ ∈ PS(A) .
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PS(A) are extreme points of S(A)

Corollary

S = co({0} ∪ PS(A)) .

Corollary

Let A be a non–zero C ∗-algebra and a ∈ A+ . Then there is ρ ∈ PS(A) such that ‖a‖ = ρ(a) .
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PS(A) are extreme points of S(A)

Corollary

Let A be a C ∗-algebra. Then ext(S(A)) = PS(A) .

Proof.

S(A) is a face of S : Let φ ∈ S(A) , τρ ∈ S and 0 < t < 1 .

φ = tτ + (1− t)ρ =⇒ 1 = t‖τ‖+ (1− t)‖ρ‖ =⇒ ‖τ‖ = ‖ρ‖ = 1

Therefore, ext(S(A)) ⊂ ext(S) =⇒ ext(S(A)) ⊂ PS(A)

PS(A) ⊂ ext(S(A)) similarly as before.
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PS(A) are extreme points of S(A)

Theorem

If A is a unital C ∗-algebra, then S(A) = co(PS(A)) .

Proof.

S(A) is clearly convex

(τi )i∈I net in S(A) and τi → τ in (A∗,wk∗) .
=⇒ τ(1) = limi τi (1) = limi 1 = 1 =⇒ τ ∈ S(A) =⇒ S(A) is wk∗-closed

Banach-Alaouglu thm: S(A) is wk∗-compact

Krein-Milman thm: S(A) = co(ext(S(A)))

ext(S(A)) = PS(A) .
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Example: Mixed and Pure states in Quantum Mechanics

Physical system = unital separable C ∗-algebra A.

Observables = self-adjoint elements of A

States of the system = states on A .
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Example: Mixed and Pure states in Quantum Mechanics

Classical mechanics:

A is abelian. Gelfand representation =⇒ A ' C (X ) where X is compact and Hausdorff.

Observables = real continuous functions.

States = probability measures on X .

Pure states = Dirac measures = points in X .
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Example: Mixed and Pure states in Quantum Mechanics

Quantum mechanics:

Theorem (Gelfand-Naimark)

Let A be a unital separable C ∗-algebra. Then there is a separable Hilbert space H such that

A is isometrically *-isomorphic to a C ∗-subalgebra of B(H) , via π : A −→ B(H) .

ψ ∈ S(A) iff there exists a positive trace-class operator ρψ such that Trρψ = 1 and
ψ(a) = Tr(ρψπ(a)) .
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Example: Mixed and Pure states in Quantum Mechanics

ρψ compact and self-adjoint =⇒ ρψ =
∑∞

n=1 αnPn , where Pn is a projection on Cen
and {en} is a base for H

ρψ positive =⇒ αn ≥ 0

Tr(ρψ) = 1 =⇒
∑∞

n=1 αn = 1 =⇒

ρψ is in a closed convex hull of one-dimensional projections.
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Kaplansky’s density theorem

”The density theorem is Kaplansky’s great gift to mankind.
It can be used every day, and twice on Sundays”. – Gert Pedersen
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Kaplansky’s density theorem

”The density theorem is Kaplansky’s great gift to mankind.
It can be used every day, and twice on Sundays”. – Gert Pedersen

Notation

We denote for any set S ⊆ A a C ∗-algebra:
Ssa = {a ∈ S | a∗ = a}
S+ = {a ∈ Ssa | a ≥ 0}
ball(S) = {a ∈ S | ||a|| ≤ 1}
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Main Theorem

Statement

Let H be a Hilbert Space, A a sub C ∗-algebra of B(H) and B = A
SOT

be the SOT-closure of
A in B(H). Then

1 Asa is SOT-dense in Bsa.

2 ball(Asa) is SOT-dense in ball(Bsa).
3 ball(A+) is SOT-dense in ball(B+).
4 ball(A) is SOT-dense in ball(B).
5 If A is unital, U(A) is SOT-dense in U(B).
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Sketch of Proof

Strong Continuity

f : R→ C is strongly continuous if for every Hilbert space H and net (Ti ) ∈ B(H) of self
adjoint operators such that Ti → T in SOT, we have f (Ti )→ f (T ) in SOT.

Lemma 1

If f : R→ C is bounded continuous, then f is strongly continuous.
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Sketch of Proof

Statement 1

Asa is SOT-dense in Bsa.
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Sketch of Proof

Statement 1

Asa is SOT-dense in Bsa.

Proof

Let b ∈ Bsa. There is a net (ai ) in A such that ai → b in SOT.
Thus ai → b in WOT.
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Sketch of Proof

Statement 1

Asa is SOT-dense in Bsa.

Proof

Let b ∈ Bsa. There is a net (ai ) in A such that ai → b in SOT.
Thus ai → b in WOT.
The map Re : x 7→ Re(x) is WOT continuous, hence Re(ai )→ Re(b) in WOT.
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Sketch of Proof

Statement 1

Asa is SOT-dense in Bsa.

Proof

Let b ∈ Bsa. There is a net (ai ) in A such that ai → b in SOT.
Thus ai → b in WOT.
The map Re : x 7→ Re(x) is WOT continuous, hence Re(ai )→ Re(b) in WOT.

By convexity of Asa, b ∈ Asa
WOT

= Asa
SOT

.
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Sketch of Proof

Statement 2

ball(Asa) is SOT-dense in ball(Bsa).
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Sketch of Proof

Statement 2

ball(Asa) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(Bsa), by (1), we have (ai ) ∈ Asa such that ai → b in SOT.
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Sketch of Proof

Statement 2

ball(Asa) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(Bsa), by (1), we have (ai ) ∈ Asa such that ai → b in SOT.
Let f (t) = min{max{−1, t}, 1}. By Lemma 1, f is strongly continuous and f (ai )→ f (b)
in SOT.
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Sketch of Proof

Statement 2

ball(Asa) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(Bsa), by (1), we have (ai ) ∈ Asa such that ai → b in SOT.
Let f (t) = min{max{−1, t}, 1}. By Lemma 1, f is strongly continuous and f (ai )→ f (b)
in SOT.

σ(b) ⊆ [−1, 1], so f |σ(b)(t) = t and f (b) = b.
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Sketch of Proof

Statement 2

ball(Asa) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(Bsa), by (1), we have (ai ) ∈ Asa such that ai → b in SOT.
Let f (t) = min{max{−1, t}, 1}. By Lemma 1, f is strongly continuous and f (ai )→ f (b)
in SOT.

σ(b) ⊆ [−1, 1], so f |σ(b)(t) = t and f (b) = b.
f (ai ) ∈ ball(Asa) and hence f (ai )→ f (b) = b in SOT.
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Sketch of Proof

Statement 3

ball(A+) is SOT-dense in ball(Bsa).
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Sketch of Proof

Statement 3

ball(A+) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(B+). By (2), there is a net (ai ) ∈ Asa such that ai → b in SOT.
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Sketch of Proof

Statement 3

ball(A+) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(B+). By (2), there is a net (ai ) ∈ Asa such that ai → b in SOT.
Define f (t) = min{max{0, t}, 1}. By Lemma 1, f is strongly continuous and
f (ai )→ f (b) in SOT.
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Sketch of Proof

Statement 3

ball(A+) is SOT-dense in ball(Bsa).

Proof

Let b ∈ ball(B+). By (2), there is a net (ai ) ∈ Asa such that ai → b in SOT.
Define f (t) = min{max{0, t}, 1}. By Lemma 1, f is strongly continuous and
f (ai )→ f (b) in SOT.

σ(b) ⊆ [0, 1], so f |σ(b)(t) = t and f (b) = b.
f (ai ) is self adjoint, of norm atmost 1, and positive, so f (ai ) ∈ ball(A+).
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[
0 b
b∗ 0

]
∈ M2(B).

b is self adjoint and has ‖b‖ ≤ 1.

It is easy to check that M2(A)
SOT

= M2(B).
By part (2), there is a net (ai ) ∈ M2(A)sa that converges to b in SOT.
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Sketch of Proof

Statement 4

ball(A) is SOT-dense in ball(B)

Proof

Let b ∈ ball(B), then let b =

[
0 b
b∗ 0

]
∈ M2(B).

b is self adjoint and has ‖b‖ ≤ 1.

It is easy to check that M2(A)
SOT

= M2(B).
By part (2), there is a net (ai ) ∈ M2(A)sa that converges to b in SOT.
(ai )1,2 → b in SOT and ‖ai 1,2‖ ≤ ‖ai‖ ≤ 1.
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Sketch of Proof

Statement 5

If A is unital, U(A) is SOT-dense in U(B).

Proof

Let u ∈ B be unitary.
From functional calculus, it follows that there exists a self adjoint b ∈ B such that
u = e ib.

By (1), there is a net (aλ) of self adjoint operators in A such that aλ → b in SOT.
The function t → e it is strongly continuous.
By Lemma 1, e iaλ → e ib = u in SOT.
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Sketch of Proof

In our context

Let A be a C ∗-algebra and π : A→ B(H) be an irreducible representation of A. In
particular it is non-degenerate, i.e. the set {π(a)h | a ∈ A, h ∈ H} is dense in H.

By the von Neumann bicommutant theorem, we know that A′′ = A
SOT

.
By irreducibility, π(A)′ = CI and π(A)′′ = B(H). So A is strongly dense in B(H).
Now we apply the theorem with B = B(H).

Theorem (Bicommutant theorem)

Let π : A→ B(H) be a non-degenerate representation. Then π(A) is strongly dense in π(A)′′.
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Algebraic irreducibility

Let π : A→ B(H) be a representation.

Topological irreducibility: there are no closed invariant subspaces.

o ( K ( H closed and invariant yields a reduction π|K : A→ B(K ).

Call π algebraically irreducible if there are no invariant subspaces at all (except {o} and
H).

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

π topologically irreducible =⇒ any invariant subspace is dense or o.

Theorem

Topological irreducibility =⇒ algebraic irreducibility.

Theorem (Kadison’s transitivity theorem)

Let π : A→ (H) be topologically irreducible, and ξ1, . . . , ξd ∈ H be linearly independent.
Then, for any η1, . . . , ηd ∈ H, there is an a ∈ A such that π(a)ξj = ηj , j = 1, . . . , d.

o ( K ( H, ξ ∈ K \ {o}, η ∈ H \ K .
π topologically irreducible =⇒ ∃a ∈ A with π(a)ξ = η /∈ K
=⇒ K is not invariant.
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Kadison’s transitivity theorem

Theorem (Kadison’s transitivity theorem)

Let π : A→ B(H) be topologically irreducible, and ξ1, . . . , ξd ∈ H be linearly independent.
Then, for any η1, . . . , ηd ∈ H, there is an a ∈ A such that π(a)ξj = ηj , j = 1, . . . , d.

A group action G y X is called transitive if there is only one orbit, i.e. if Gx = X , x ∈ X .

π : A→ B(H) is not a group action A
πy H (since π(o)H = {o}).

But we are close to a group action.

If π is topologically irreducible, we have

π(A)ξ = H , ξ ∈ H \ {o} .

We even have “(almost) d-transitivity” (for any d ∈ N).
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Proving Kadison’s transitivity theorem

Theorem (Kadison)

Let π : A→ B(H) be topologically irreducible, and ξ1, . . . , ξd ∈ H be linearly independent.
Then, for any η1, . . . , ηd ∈ H, there is an a ∈ A such that π(a)ξj = ηj , j = 1, . . . , d.

Theorem

Let π : A→ B(H) be topologically irreducible, T ∈ B(H) and X ⊆ H be finite-dimensional.
There is an a ∈ A such that π(a)|X = T |X and ‖a‖ ≤ ‖T‖.

Moreover, if T is self-adjoint
[resp. positive], we may choose a ∈ A to be self-adjoint [resp. positive].

Kadison’s theorem follows with X = span{ξ1, . . . , ξd} ⊆ H and T ∈ B(H) such that
T ξj = ηj , j = 1, . . . , d .

We only prove: for ε > 0, there is an a = aε ∈ A with ‖aε‖ ≤ ‖T‖+ ε and
π(aε)|X = T |X .
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Proof
Theorem

Let π : A→ B(H) be topologically irreducible, T ∈ B(H) and X ⊆ H be finite-dimensional.
There is an a ∈ A such that π(a)|X = T |X and ‖a‖ ≤ ‖T‖. Moreover, if T is self-adjoint
[resp. positive], we may choose a ∈ A to be self-adjoint [resp. positive].

By irreducibility, π(A)′ = C, π(A)′′ = B(H).

By irreducibility, π(A) is non-degenerate.

Bicommutant theorem: π(A) is strongly dense in B(H).

Idea: approximate T with a sequence in π(A).

Let ε > 0. We find a1 ∈ A such that

‖(π(a1)− T )|X‖ ≤ ε/2 ;

by Kaplansky, we can require ‖a1‖ ≤ ‖T‖.
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Proof
π(A) is strongly dense in B(H).
‖a1‖ ≤ ‖T‖, ‖π(a1)− T )|X‖ ≤ ε/2.

Consider T2 ∈ B(H) given by

T2|X = (T − π(a1))|X , T2|X⊥ = 0 . Then ‖T2‖ ≤ ε/2

We find a2 ∈ A with ‖a2‖ ≤ ‖T2‖ ≤ ε/2 and

‖(π(a1) + π(a2)− T )|X‖ = ‖(π(a2)− T2)|X‖ ≤ ε/4 .

Inductively, we find an ∈ A with ‖an‖ ≤ ε/2n−1 and∥∥∥∥∥
(

n∑
k=1

π(ak)− T

)
|X

∥∥∥∥∥ ≤ ε/2n , n ≥ 2 .

Then
∑

an is absolutely convergent in A, and aε = a =
∑

an satisfies

‖a‖ ≤ ‖T‖+ ε , π(a)|X =
∞∑
n=1

π(an)|X = T |X .
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Remarks

Theorem

Let π : A→ B(H) be topologically irreducible, T ∈ B(H) and X ⊆ H be finite-dimensional.
There is an a ∈ A such that π(a)|X = T |X and ‖a‖ ≤ ‖T‖. Moreover, if T is self-adjoint
[resp. positive], we may choose a ∈ A to be self-adjoint [resp. positive].

Memo: an ∈ A successive approximations of T on X , a = aε =
∑

an.

If T is self-adjoint, Kaplansky allows us to choose all an self-adjoint, hence also a will be.
[resp. positive]

We can get ‖aε‖ ≤ ‖T |X‖+ ε (≤ ‖T‖+ ε) for free.

We need the stronger denseness property from Kaplansky’s theorem to control the norm
of the approximating operators an, and get convergence of the series.
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Corollary: GNS construction for pure states
GNS construction for a state ϕ on A:

〈x , y〉ϕ := ϕ(y∗x), x , y ∈ A.

Consider the quotient A/Nϕ of A by elements with ϕ-norm 0.

Let Hϕ be the completion of A/Nϕ (w.r.t. the ϕ-norm).

Represent A on Hϕ via left multiplication,

πϕ(a)(x + Nϕ) = ax + Nϕ , a, x ∈ A .

Corollary

If ϕ is a pure state, then Hϕ = A/Nϕ.

ϕ pure state =⇒ πϕ irreducible.

A/Nϕ ⊆ Hϕ π(A)-invariant =⇒ A/Nϕ = Hϕ.
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Irreducible representations and pure states: an overview

Pure states ←→ irreducible GNS representations.

Pure states as extremal points of the state space.

In particular, there are many pure states (Krein-Milman).

Classical mechanics VS quantum mechanics.

The Kaplansky density theorem.

Topological and algebraic irreducibility are the same thing.

The Kadison transitivity theorem.
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