Irreducible representations and pure states Project 5

Purbayan Chakraborty¹, Soham Chakraborty², Matija Livaić³, Archana Parmar⁴, Lauri Särkiö⁵, Tim Schmatzler⁶, Fabian Gabel⁷, Christian Seifert ^{7,8}

¹University of Franche-Comté, ²Katholieke Universiteit Leuven, ³University of Zagreb,

⁴Devi Ahilya Vishwavidyalaya, ⁵Technical University of Darmstadt, ⁶Karlsruhe Institute of Technology,

⁷Hamburg University of Technology, ⁸Kiel University

ISEM Workshop - 2021

Representation

Let A be a C*-algebra. A Representation of A is a pair (π, H) , where H is Hilbert space and

 $\pi: A \to B(H)$,

is *-homomorphism.

We also say that π is a representation.

- Let A be a *-algebra and let (π, H) be a representation of A. A subspace N ⊂ H is said to be invariant if π(a)N ⊂ N for all a ∈ A.
- A representation (π, H) of A is called non-degenerate if $\pi(A)H$ is dense in H, otherwise the representation is called degenerate.

Irreducible Representation

Definition

A representation of a*-algebra is irreducible if the only closed invariant subspaces are $\{0\}$ and H, otherwise it is reducible.

- A representation (π, H) is a cyclic representation if there is a cyclic vector in H for $\pi(A)$.
- A cyclic representation is non-degenerate.

Definition

Positive linear functional:- Let A be C*-algebra, A linear functional φ on A is positive, written $\varphi \ge 0$, if $\varphi(x) \ge 0$ whenever $x \ge 0$.

Definition (State)

A state on A is a positive linear functional of norm 1. We denote S(A) the set of all states on A, called the state space of A.

Example

If A is a concrete C*-algebra of operators acting non-degenerately on H and $\xi \in H$ and $\varphi_{\xi}(x) = \langle x\xi, \xi \rangle$ for $x \in A$, then φ_{ξ} is a positive linear functional on A of norm $||\xi||^2$, so φ_{ξ} is a state if $||\xi|| = 1$. Such a state is called a vector state.

GNS Representation

- GNS-construction: For $\varphi \in S(A)$ there are a Hilbert space H_{φ} , a representation $\pi_{\varphi} : A \to B(H_{\varphi})$ and a cyclic vector $x_{\varphi} \in H_{\varphi}$ such that $\varphi(a) = \langle \pi_{\varphi}(a) x_{\varphi}, x_{\varphi} \rangle$ for all $a \in A$
 - Construction of H_{φ} :

 $\langle a,b
angle:=arphi(b^*a) o \mathsf{mod} \mathsf{ out} \mathsf{ elements} \mathsf{ of} \mathsf{ zero} \mathsf{ norm} o \mathsf{ complete}$

• π_{φ} is left multiplication viewed in H_{φ}

Definition (Pure states PS(A))

A state φ on a C^* -algebra A, is pure if it has the property that whenever ρ is a positive linear functional on A such that $\rho \leq \varphi$, necessarily there is a number $t \in [0, 1]$ such that $\rho = t\varphi$.

Theorem

Let $\varphi \in S(A)$: $\varphi \in PS(A) \iff (H_{\varphi}, \pi_{\varphi})$ is irreducible.

• For A commutative (and unital), A = C(X), with X compact (G-N)

• Riesz-Markov: States correspond to Radon measures of mass one:

$$\varphi(f) = \int_X f \, d\mu$$

• For A commutative (and unital), A = C(X), with X compact (G-N)

• Riesz-Markov: States correspond to Radon measures of mass one:

$$arphi(f) = \int_X f \, d\mu$$

 \rightarrow Pure states correspond exactly to Dirac measures

• For A commutative (and unital), A = C(X), with X compact (G-N)

• Riesz-Markov: States correspond to Radon measures of mass one:

$$arphi(f) = \int_X f \, d\mu$$

- \rightarrow Pure states correspond exactly to Dirac measures
- GNS-construction w.r.t. Dirac measure?

• For A commutative (and unital), A = C(X), with X compact (G-N)

• Riesz-Markov: States correspond to Radon measures of mass one:

$$arphi(f) = \int_X f \, d\mu$$

- \rightarrow Pure states correspond exactly to Dirac measures
- GNS-construction w.r.t. Dirac measure?
 - $\rightarrow \mathbb{C}$ with complex multiplication: clearly irreducible.

Proof of the other direction (by contrapositive: assume that φ is not pure, show that $(H_{\varphi}, \pi_{\varphi})$ is reducible):

• GNS-constr. of $\varphi \in S(A)$, with corresponding measure μ , is $L^2(X, \mu)$

Proof of the other direction (by contrapositive: assume that φ is not pure, show that $(H_{\varphi}, \pi_{\varphi})$ is reducible):

- GNS-constr. of $\varphi \in S(A)$, with corresponding measure μ , is $L^2(X, \mu)$
- When μ is not a Dirac measure:
 - \implies the support of μ has a proper subset ${\it Y} \subset {\it X}$
 - $\implies L^2(Y,\mu)$ is a reducing subspace. \Box

Proof of the other direction (by contrapositive: assume that φ is not pure, show that $(H_{\varphi}, \pi_{\varphi})$ is reducible):

- GNS-constr. of $\varphi \in S(A)$, with corresponding measure μ , is $L^2(X, \mu)$
- When μ is not a Dirac measure:
 - \implies the support of μ has a proper subset $Y \subset X$
 - $\implies L^2(Y,\mu)$ is a reducing subspace. \Box

 $L^2(Y,\mu) = \chi_Y H_{arphi}$ Existence of projections ightarrow Invariant subspaces

Characterisation of irreducibility with commutant

Definition (Commutant) $\pi_{\varphi}(A)' := \{ v \in B(H_{\varphi}) \text{ s.t. } v \text{ commutes with all } \pi_{\varphi}(a) \in \pi_{\varphi}(A) \}$

Lemma

$$\pi_{arphi}(\mathsf{A})$$
 is irreducible $\iff \pi_{arphi}(\mathsf{A})' = \mathbb{C}1$

Proof.

Characterisation of irreducibility with commutant

Definition (Commutant) $\pi_{\varphi}(A)' := \{ v \in B(H_{\varphi}) \text{ s.t. } v \text{ commutes with all } \pi_{\varphi}(a) \in \pi_{\varphi}(A) \}$

Lemma

$$\pi_{arphi}({\sf A})$$
 is irreducible $\iff \pi_{arphi}({\sf A})' = \mathbb{C} 1$

Proof.

• $\pi_{\varphi}(A)$ is irreducible $\iff \pi_{\varphi}(A)'$ has no nontrivial projections

Characterisation of irreducibility with commutant

Definition (Commutant) $\pi_{\varphi}(A)' := \{ v \in B(H_{\varphi}) \text{ s.t. } v \text{ commutes with all } \pi_{\varphi}(a) \in \pi_{\varphi}(A) \}$

Lemma

$$\pi_{arphi}({\sf A})$$
 is irreducible $\iff \pi_{arphi}({\sf A})' = \mathbb{C} 1$

Proof.

• $\pi_{\varphi}(A)$ is irreducible $\iff \pi_{\varphi}(A)'$ has no nontrivial projections

• $\iff \pi_{\varphi}(A)' = \mathbb{C}1$ because $\pi_{\varphi}(A)'$ is a vNA, and thus a linear span of its projections.

Proof: $(\varphi \in PS(A) \iff (H_{\varphi}, \pi_{\varphi})$ is irreducible)

- \implies : (assume φ is pure, show that $\pi_{\varphi}(A)' = \mathbb{C}1$).
 - Let $v \in \pi_{\varphi}(A)', 0 \le v \le 1$. Define a positive linear functional $\rho(a) := \langle v \pi_{\varphi}(a) x_{\varphi}, x_{\varphi} \rangle$
 - We have $ho \leq arphi$, thus $ho = t arphi \implies \cdots \implies v = t 1$
 - ⇒ π_φ(A)' = C1 as element of B(H) can be decomposed into a linear combination of positive elements

Proof: $(\varphi \in PS(A) \iff (H_{\varphi}, \pi_{\varphi})$ is irreducible)

- \Leftarrow : (assume $\pi_{\varphi}(A)' = \mathbb{C}1$, show that φ is pure)
 - Let $\rho \leq \varphi$ be a positive linear functional
 - \implies There is $v \in \pi_{\varphi}(A)', 0 \le v \le 1$, s.t. $\rho(a) = \langle v \pi_{\varphi}(a) x_{\varphi}, x_{\varphi} \rangle$ (cf. Radon-Nikodym theorem for absolutely continuous measures)
 - By the assumption $v = \lambda 1, \lambda \in \mathbb{C}$
 - Moreover $\lambda \in [0,1]$ because $0 \le v \le 1 \implies \rho = \lambda \varphi$ \Box

- Preliminaries: The Krein-Milman theorem
- Motivation: States and Pure States on C(X)
- PS(A) are extreme points of S(A)
- Example: States and Pure States in Quantum Mechanics.

Definition

Let \mathcal{X} be a locally convex space and $S \subset \mathcal{X}$. We define a *closed convex hull* of S, denoted by $\overline{co}(S)$, to be the smallest closed convex set containing S.

Definition

Let K be a convex subset of a vector space \mathcal{X} . We say that $x \in K$ is an *extreme point* of K if

$$x = ty + (1 - t)z$$
, $t \in (0, 1)$, $y, z \in K \implies x = y = z$.

We denote the set of all extreme points of K by ext(K).

Definition

Let K be a convex subset of a vector space \mathcal{X} and let $F \subset K$. If $x \in F$, $y, z \in K$ and

$$x = ty + (1-t)z$$
, for some $t \in (0,1) \implies y, z \in F$,

then F is called a *face* of F.

Theorem (Krein-Milman)

Let X be a locally convex space and $K \subset X$ non-empty, compact, convex subset. Then $ext(K) \neq \emptyset$ and

 $K = \overline{\operatorname{co}}(\operatorname{ext}(K)).$

- Let X be a compact Hausdorff space.
- $\mathcal{M}(X) =$ space of all Radon measures on X.
- Riesz representation theorem: $C(X)^* \simeq \mathcal{M}(X)$

We have wk^* topology on $\mathcal{M}(X)$ induced from $C(X)^*$ and a measure μ acts on C(X) by

$$\mu(f) = \int_X f(x) d\mu(x)$$

- Recall that by Gelfan-Naimark theorem unital abelian C* algebra A is isometrically *-isomorphic to C(Spec(A))
 X = Spec(A) = space of all characters on A
- State ϕ on $\mathcal A$ corresponds to Radon probability measure μ_{ϕ} on X

$$\phi(f) = \int_X f(x) d\mu_\phi(x).$$

Theorem

- The set P(X) of Radon probability measures on X is a wk*-compact convex subset of M(X).
- Output: The extreme points of P(X) are exactly the Dirac measures δ_x which assign mass 1 at the point x ∈ X and zero everywhere else.
- The map x → δ_x ∈ ext(P(X)) is a homeomorphism from X to the space (ext(P(X)), wk*)

Theorem

Let τ be a state on an abelian C^* algebra A. Then τ is pure if and only if it is a character on A, i.e. Spec(A) = PS(A).

- Since Dirac measures correspond to characters, they correspond to pure states.
- We expect an analogous result of pure states being extreme points of the state space in the non-commutative case! And that is our goal.

Classical probability	Quantum Probability
Probability measure μ on a	a a on unital C* alg A
cpt. Hausdorff space	p a on anital c alg. r
$X \ni x \mapsto \delta_x \in \mathcal{P}(X)$	PS(A) = Spec(A) for abolian
homeomorphism	T S(A) = Spec(A) for abelian
$\mathcal{P}(X)$ is	S(A) is wk*-opt and convey
wk*-cpt. and convex	S(A) is we contend and convex
δ_{x} are extreme pts. of $\mathcal{P}(X)$	PS(A) are extreme pts. of $S(A)$

Theorem

If A is a C^{*} algebra, then the set S of norm decreasing positive linear functionals on A forms a convex wk^{*}-compact set and $ext(S) = \{0\} \cup PS(A)$.

Proof

- S is wk^* -compact and convex.
 - Let $\phi_i \longrightarrow \phi \implies \phi_i(a^*a) \longrightarrow \phi(a^*a) \implies \phi$ is positive.
 - $|\phi_i(a)| \le ||a|| \implies |\phi(a)| \le ||a|| \implies ||\phi|| \le 1 \implies S$ is wk^* -closed.
 - Banach-Alaoglu thm: S is wk*-compact.
 - Convexity is clear.

 $0 \in \text{ext}(S)$.

• Assume 0 = t au + (1-t)
ho, where 0 < t < 1 and $au,
ho \in S$.

•
$$\forall a \in A, 0 \leq (1-t)\rho(a^*a) = -t\tau(a^*a) \leq 0 \implies \tau(A^+) = \rho(A^+) = 0 \implies \tau = \rho = 0.$$

 $PS(A) \subset \operatorname{ext}(S).$

- Let $\rho \in PS(\mathcal{A})$ and $\rho = t\tau + (1-t)\tau'$ for 0 < t < 1 and $\tau, \tau' \in S$.
- $0 \le
 ho t au$ i.e $t au \le
 ho \implies t au = t'
 ho$ for some $t' \in [0, 1]$.
- $1 = \|\rho\| = t\|\tau\| + (1-t)\|\tau'\| \implies \|\tau\| = \|\tau'\| = 1$. $\implies t = \|t\tau\| = \|t'\rho\| = t'$ so $\tau = \rho$ and similarly $\tau' = \rho$. Thus $\rho \in \text{ext}(S)$.

 $\operatorname{ext}(S)\setminus\{0\}\subset PS(A)$.

• Let $ho \in \operatorname{ext}(S)$ be non zero. Then

$$ho = \|
ho\|(
ho/\|
ho\|) + (1 - \|
ho\|)0$$

and $0, \rho / \|\rho\| \in S$.

- Therefore, $\|\rho\| = 1$ as $ho \in \operatorname{ext}(S)$.
- Let τ be a nonzero, positive, linear functional s.t. $\tau \leq \rho$. Then $\|\tau\| = t \in (0, 1)$.
- Since $1-t=\|
 ho- au\|$ we write

$$\rho=t(\tau/\|\tau\|)+(1-t)(\rho-\tau)/\|\rho-\tau\|$$

 $\implies \rho = \tau / \|\tau\| \implies \rho \in PS(A).$

Corollary

 $S = \overline{\operatorname{co}}(\{0\} \cup PS(A))$.

Corollary

Let A be a non-zero C^{*}-algebra and $a \in A^+$. Then there is $\rho \in PS(A)$ such that $||a|| = \rho(a)$.

Corollary

Let A be a C^* -algebra. Then ext(S(A)) = PS(A).

Proof.

• S(A) is a face of S: Let $\phi \in S(A)$, $au
ho \in S$ and 0 < t < 1.

$$\phi=t au+(1-t)
ho \implies 1=t\| au\|+(1-t)\|
ho\| \implies \| au\|=\|
ho\|=1$$

- Therefore, $\operatorname{ext}(S(A)) \subset \operatorname{ext}(S) \implies \operatorname{ext}(S(A)) \subset PS(A)$
- $PS(A) \subset ext(S(A))$ similarly as before.

Theorem

If A is a unital C^{*}-algebra, then $S(A) = \overline{co}(PS(A))$.

Proof.

- S(A) is clearly convex
- $(\tau_i)_{i \in I}$ net in S(A) and $\tau_i \to \tau$ in (A^*, wk^*) . $\implies \tau(1) = \lim_i \tau_i(1) = \lim_i 1 = 1 \implies \tau \in S(A) \implies S(A)$ is wk^* -closed
- Banach-Alaouglu thm: S(A) is wk^* -compact
- Krein-Milman thm: $S(A) = \overline{co}(ext(S(A)))$
- $\operatorname{ext}(S(A)) = PS(A)$.

Example: Mixed and Pure states in Quantum Mechanics

- *Physical system* = unital separable C*-algebra A.
- Observables = self-adjoint elements of A
- States of the system = states on A.

Example: Mixed and Pure states in Quantum Mechanics

Classical mechanics:

- A is abelian. Gelfand representation $\implies A \simeq C(X)$ where X is compact and Hausdorff.
- Observables = real continuous functions.
- States = probability measures on X.
- Pure states = Dirac measures = points in X.
Example: Mixed and Pure states in Quantum Mechanics

Quantum mechanics:

Theorem (Gelfand-Naimark)

Let A be a unital separable C^* -algebra. Then there is a separable Hilbert space H such that

- A is isometrically *-isomorphic to a C*-subalgebra of B(H), via $\pi : A \longrightarrow B(H)$.
- $\psi \in S(A)$ iff there exists a positive trace-class operator ρ_{ψ} such that $\operatorname{Tr} \rho_{\psi} = 1$ and $\psi(a) = \operatorname{Tr}(\rho_{\psi}\pi(a))$.

Example: Mixed and Pure states in Quantum Mechanics

- ρ_{ψ} compact and self-adjoint $\implies \rho_{\psi} = \sum_{n=1}^{\infty} \alpha_n P_n$, where P_n is a projection on $\mathbb{C}e_n$ and $\{e_n\}$ is a base for \mathcal{H}
- ρ_{ψ} positive $\implies \alpha_n \ge 0$
- $\operatorname{Tr}(\rho_{\psi}) = 1 \implies \sum_{n=1}^{\infty} \alpha_n = 1 \implies$
- ρ_{ψ} is in a closed convex hull of one-dimensional projections.

Kaplansky's density theorem

• "The density theorem is Kaplansky's great gift to mankind. It can be used every day, and twice on Sundays". - Gert Pedersen

Kaplansky's density theorem

• "The density theorem is Kaplansky's great gift to mankind. It can be used every day, and twice on Sundays". - Gert Pedersen

Notation

We denote for any set $S \subseteq A$ a C^* -algebra:

•
$$S_{sa} = \{a \in S \mid a^* = a\}$$

• $S_{\perp} = \{a \in S_{ca} \mid a > 0\}$

• ball(S) =
$$\{a \in S \mid ||a|| \le 1\}$$

Statement

Let *H* be a Hilbert Space, *A* a sub *C**-algebra of B(H) and $B = \overline{A}^{SOT}$ be the SOT-closure of *A* in B(H). Then **1** A_{sa} is SOT-dense in B_{sa} .

Statement

Let *H* be a Hilbert Space, *A* a sub *C*^{*}-algebra of B(H) and $B = \overline{A}^{SOT}$ be the SOT-closure of *A* in B(H). Then

1
$$A_{\rm sa}$$
 is SOT-dense in $B_{\rm sa}$

2 ball(A_{sa}) is SOT-dense in ball(B_{sa}).

Statement

Let *H* be a Hilbert Space, *A* a sub *C*^{*}-algebra of B(H) and $B = \overline{A}^{SOT}$ be the SOT-closure of *A* in B(H). Then

- A_{sa} is SOT-dense in B_{sa} .
- **2** ball(A_{sa}) is SOT-dense in ball(B_{sa}).
- **3** ball(A_+) is SOT-dense in ball(B_+).

Statement

Let *H* be a Hilbert Space, *A* a sub *C*^{*}-algebra of B(H) and $B = \overline{A}^{SOT}$ be the SOT-closure of *A* in B(H). Then

- A_{sa} is SOT-dense in B_{sa} .
- **2** ball(A_{sa}) is SOT-dense in ball(B_{sa}).
- ball(A_+) is SOT-dense in ball(B_+).
- ball(A) is SOT-dense in ball(B).

Statement

Let *H* be a Hilbert Space, *A* a sub *C*^{*}-algebra of B(H) and $B = \overline{A}^{SOT}$ be the SOT-closure of *A* in B(H). Then

- A_{sa} is SOT-dense in B_{sa} .
- **2** ball(A_{sa}) is SOT-dense in ball(B_{sa}).
- ball(A_+) is SOT-dense in ball(B_+).
- ball(A) is SOT-dense in ball(B).
- If A is unital, U(A) is SOT-dense in U(B).

Strong Continuity

 $f : \mathbb{R} \to \mathbb{C}$ is strongly continuous if for every Hilbert space H and net $(T_i) \in B(H)$ of self adjoint operators such that $T_i \to T$ in SOT, we have $f(T_i) \to f(T)$ in SOT.

Lemma 1

If $f : \mathbb{R} \to \mathbb{C}$ is bounded continuous, then f is strongly continuous.

Statement 1

 $A_{\rm sa}$ is SOT-dense in $B_{\rm sa}$.

Statement 1

 $A_{\rm sa}$ is SOT-dense in $B_{\rm sa}$.

Proof

Let $b \in B_{sa}$. There is a net (a_i) in A such that $a_i \to b$ in SOT.

• Thus $a_i \rightarrow b$ in WOT.

Statement 1

 $A_{\rm sa}$ is SOT-dense in $B_{\rm sa}$.

Proof

Let $b \in B_{sa}$. There is a net (a_i) in A such that $a_i \to b$ in SOT.

- Thus $a_i \rightarrow b$ in WOT.
- The map $Re: x \mapsto Re(x)$ is WOT continuous, hence $Re(a_i) \to Re(b)$ in WOT.

Statement 1

 $A_{\rm sa}$ is SOT-dense in $B_{\rm sa}$.

- Let $b \in B_{sa}$. There is a net (a_i) in A such that $a_i \to b$ in SOT.
 - Thus $a_i \rightarrow b$ in WOT.
 - The map Re : x → Re(x) is WOT continuous, hence Re(a_i) → Re(b) in WOT.
 By convexity of A_{sa}, b ∈ A_{sa}^{WOT} = A_{sa}^{SOT}.

Statement 2

 $\operatorname{ball}(A_{\operatorname{sa}})$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Statement 2 ball(A_{sa}) is SOT-dense in ball(B_{sa}).

Proof

Let $b \in \text{ball}(B_{\text{sa}})$, by (1), we have $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

Statement 2 ball(A_{sa}) is SOT-dense in ball(B_{sa}).

Proof

Let $b \in \operatorname{ball}(B_{\operatorname{sa}})$, by (1), we have $(a_i) \in A_{\operatorname{sa}}$ such that $a_i \to b$ in SOT.

• Let $f(t) = min\{max\{-1, t\}, 1\}$. By Lemma 1, f is strongly continuous and $f(a_i) \rightarrow f(b)$ in SOT.

Statement 2

 $\operatorname{ball}(A_{\operatorname{sa}})$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Proof

Let $b \in \text{ball}(B_{\text{sa}})$, by (1), we have $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

Let f(t) = min{max{-1, t}, 1}. By Lemma 1, f is strongly continuous and f(a_i) → f(b) in SOT.

•
$$\sigma(b) \subseteq [-1,1]$$
, so $f|_{\sigma(b)}(t) = t$ and $f(b) = b$.

Statement 2

 $\operatorname{ball}(A_{\operatorname{sa}})$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Proof

Let $b \in \operatorname{ball}(B_{\operatorname{sa}})$, by (1), we have $(a_i) \in A_{\operatorname{sa}}$ such that $a_i \to b$ in SOT.

Let f(t) = min{max{-1, t}, 1}. By Lemma 1, f is strongly continuous and f(a_i) → f(b) in SOT.

•
$$\sigma(b) \subseteq [-1,1]$$
, so $f|_{\sigma(b)}(t) = t$ and $f(b) = b$.
• $f(a_i) \in \text{ball}(A_{\text{sa}})$ and hence $f(a_i) \to f(b) = b$ in SOT.

Statement 3

 $\operatorname{ball}(A_+)$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Statement 3 ball(A_+) is SOT-dense in ball(B_{sa}).

Proof

Let $b \in \text{ball}(B_+)$. By (2), there is a net $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

Statement 3 ball(A_+) is SOT-dense in ball(B_{sa}).

Proof

Let $b \in \text{ball}(B_+)$. By (2), there is a net $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

Define f(t) = min{max{0, t}, 1}. By Lemma 1, f is strongly continuous and f(a_i) → f(b) in SOT.

Statement 3

 $\operatorname{ball}(A_+)$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Proof

Let $b \in \text{ball}(B_+)$. By (2), there is a net $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

• Define $f(t) = min\{max\{0, t\}, 1\}$. By Lemma 1, f is strongly continuous and $f(a_i) \rightarrow f(b)$ in SOT.

•
$$\sigma(b) \subseteq [0,1]$$
, so $f|_{\sigma(b)}(t) = t$ and $f(b) = b$.

Statement 3

 $\operatorname{ball}(A_+)$ is SOT-dense in $\operatorname{ball}(B_{\operatorname{sa}})$.

Proof

Let $b \in \text{ball}(B_+)$. By (2), there is a net $(a_i) \in A_{\text{sa}}$ such that $a_i \to b$ in SOT.

• Define $f(t) = min\{max\{0, t\}, 1\}$. By Lemma 1, f is strongly continuous and $f(a_i) \rightarrow f(b)$ in SOT.

•
$$\sigma(b) \subseteq [0,1]$$
, so $f|_{\sigma(b)}(t) = t$ and $f(b) = b$.

• $f(a_i)$ is self adjoint, of norm atmost 1, and positive, so $f(a_i) \in \text{ball}(A_+)$.

Statement 4

 $\operatorname{ball}(A)$ is SOT-dense in $\operatorname{ball}(B)$

Statement 4

 $\operatorname{ball}(A)$ is SOT-dense in $\operatorname{ball}(B)$

Let
$$b \in \text{ball}(B)$$
, then let $\overline{b} = \begin{bmatrix} 0 & b \\ b^* & 0 \end{bmatrix} \in M_2(B)$.
• \overline{b} is self adjoint and has $\|\overline{b}\| \le 1$.

Statement 4

 $\operatorname{ball}(A)$ is SOT-dense in $\operatorname{ball}(B)$

Let
$$b \in \text{ball}(B)$$
, then let $\overline{b} = \begin{bmatrix} 0 & b \\ b^* & 0 \end{bmatrix} \in M_2(B)$.

•
$$\overline{b}$$
 is self adjoint and has $\|\overline{b}\| \leq 1$.

• It is easy to check that
$$\overline{M_2(A)}^{\text{SOT}} = M_2(B)$$
.

Statement 4

 $\operatorname{ball}(A)$ is SOT-dense in $\operatorname{ball}(B)$

Let
$$b \in \operatorname{ball}(B)$$
, then let $\overline{b} = \begin{bmatrix} 0 & b \\ b^* & 0 \end{bmatrix} \in M_2(B)$.

- \overline{b} is self adjoint and has $\|\overline{b}\| \leq 1$.
- It is easy to check that $\overline{M_2(A)}^{SOT} = M_2(B)$.
- By part (2), there is a net $(\overline{a_i}) \in M_2(A)_{sa}$ that converges to \overline{b} in SOT.

Statement 4

 $\operatorname{ball}(A)$ is SOT-dense in $\operatorname{ball}(B)$

Let
$$b \in \operatorname{ball}(B)$$
, then let $\overline{b} = \begin{bmatrix} 0 & b \\ b^* & 0 \end{bmatrix} \in M_2(B)$.

- \overline{b} is self adjoint and has $\|\overline{b}\| \leq 1$.
- It is easy to check that $\overline{M_2(A)}^{SOT} = M_2(B)$.
- By part (2), there is a net $(\overline{a_i}) \in M_2(A)_{sa}$ that converges to \overline{b} in SOT.
- $(\overline{a_i})_{1,2} \to b \text{ in SOT and } \|\overline{a_i}_{1,2}\| \le \|\overline{a_i}\| \le 1.$

Statement 5

If A is unital, U(A) is SOT-dense in U(B).

Proof

Let $u \in B$ be unitary.

 From functional calculus, it follows that there exists a self adjoint b ∈ B such that u = e^{ib}.

Statement 5

If A is unital, U(A) is SOT-dense in U(B).

Proof

Let $u \in B$ be unitary.

- From functional calculus, it follows that there exists a self adjoint b ∈ B such that u = e^{ib}.
- By (1), there is a net (a_{λ}) of self adjoint operators in A such that $a_{\lambda} \rightarrow b$ in SOT.

Statement 5

If A is unital, U(A) is SOT-dense in U(B).

Proof

Let $u \in B$ be unitary.

- From functional calculus, it follows that there exists a self adjoint b ∈ B such that u = e^{ib}.
- By (1), there is a net (a_{λ}) of self adjoint operators in A such that $a_{\lambda} \rightarrow b$ in SOT.
- The function $t \to e^{it}$ is strongly continuous.

Statement 5

If A is unital, U(A) is SOT-dense in U(B).

Proof

Let $u \in B$ be unitary.

- From functional calculus, it follows that there exists a self adjoint b ∈ B such that u = e^{ib}.
- By (1), there is a net (a_{λ}) of self adjoint operators in A such that $a_{\lambda} \rightarrow b$ in SOT.
- The function $t \to e^{it}$ is strongly continuous.
- By Lemma 1, $e^{ia_{\lambda}} \rightarrow e^{ib} = u$ in SOT.

In our context

- Let A be a C*-algebra and $\pi : A \to B(H)$ be an irreducible representation of A. In particular it is non-degenerate, i.e. the set $\{\pi(a)h \mid a \in A, h \in H\}$ is dense in H.
- By the von Neumann bicommutant theorem, we know that $A'' = \overline{A}^{SOT}$.
- By irreducibility, $\pi(A)' = \mathbb{C}I$ and $\pi(A)'' = B(H)$. So A is strongly dense in B(H).
- Now we apply the theorem with B = B(H).

Theorem (Bicommutant theorem)

Let $\pi : A \to B(H)$ be a non-degenerate representation. Then $\pi(A)$ is strongly dense in $\pi(A)''$.

Algebraic irreducibility

- Let $\pi : A \to B(H)$ be a representation.
 - Topological irreducibility: there are no closed invariant subspaces.

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

Algebraic irreducibility

Let $\pi: A \to B(H)$ be a representation.

- Topological irreducibility: there are no closed invariant subspaces.
- $o \subsetneq K \subsetneq H$ closed and invariant yields a *reduction* $\pi|_K : A \to B(K)$.

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
Let $\pi: A \to B(H)$ be a representation.

- Topological irreducibility: there are no closed invariant subspaces.
- $o \subsetneq K \subsetneq H$ closed and invariant yields a *reduction* $\pi|_K : A \to B(K)$.
- Call π algebraically irreducible if there are no invariant subspaces at all (except $\{o\}$ and H).

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

•
$$o \subsetneq K \subsetneq H, \xi \in K \setminus \{o\}, \eta \in H \setminus K.$$

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

•
$$o \subsetneq K \subsetneq H, \xi \in K \setminus \{o\}, \eta \in H \setminus K$$
.
 π topologically irreducible

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

•
$$o \subsetneq K \subsetneq H$$
, $\xi \in K \setminus \{o\}$, $\eta \in H \setminus K$.
 π topologically irreducible $\implies \exists a \in A$ with $\pi(a)\xi = \eta \notin K$

Question: Is algebraic irreducibility a stronger property than topological irreducibility?

• π topologically irreducible \implies any invariant subspace is dense or o.

Theorem

Topological irreducibility \implies algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

•
$$o \subsetneq K \subsetneq H$$
, $\xi \in K \setminus \{o\}$, $\eta \in H \setminus K$.
 π topologically irreducible $\implies \exists a \in A$ with $\pi(a)\xi = \eta \notin K$
 $\implies K$ is not invariant.

Theorem (Kadison's transitivity theorem)

Let $\pi : A \to B(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

• A group action $G \curvearrowright X$ is called *transitive* if there is only one orbit, i.e. if Gx = X, $x \in X$.

Theorem (Kadison's transitivity theorem)

- A group action $G \curvearrowright X$ is called *transitive* if there is only one orbit, i.e. if Gx = X, $x \in X$.
- π : A → B(H) is not a group action A ^π → H (since π(o)H = {o}).
 But we are close to a group action.

Theorem (Kadison's transitivity theorem)

- A group action $G \curvearrowright X$ is called *transitive* if there is only one orbit, i.e. if Gx = X, $x \in X$.
- π : A → B(H) is not a group action A ^π → H (since π(o)H = {o}).
 But we are close to a group action.
- If π is topologically irreducible, we have

$$\pi(A)\xi = H$$
, $\xi \in H \setminus \{o\}$.

Theorem (Kadison's transitivity theorem)

Let $\pi : A \to B(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

- A group action $G \curvearrowright X$ is called *transitive* if there is only one orbit, i.e. if Gx = X, $x \in X$.
- π : A → B(H) is not a group action A ^π → H (since π(o)H = {o}).
 But we are close to a group action.
- If π is topologically irreducible, we have

$$\pi(A)\xi = H$$
, $\xi \in H \setminus \{o\}$.

• We even have "(almost) *d*-transitivity" (for any $d \in \mathbb{N}$).

Theorem (Kadison)

Let $\pi : A \to \mathcal{B}(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \leq ||T||$.

Theorem (Kadison)

Let $\pi : A \to \mathcal{B}(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

Theorem

Theorem (Kadison)

Let $\pi : A \to \mathcal{B}(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \leq ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

• Kadison's theorem follows with $X = \text{span}\{\xi_1, \dots, \xi_d\} \subseteq H$ and $T \in B(H)$ such that $T\xi_j = \eta_j, j = 1, \dots, d$.

Theorem (Kadison)

Let $\pi : A \to \mathcal{B}(H)$ be topologically irreducible, and $\xi_1, \ldots, \xi_d \in H$ be linearly independent. Then, for any $\eta_1, \ldots, \eta_d \in H$, there is an $a \in A$ such that $\pi(a)\xi_j = \eta_j$, $j = 1, \ldots, d$.

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \le ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

• Kadison's theorem follows with $X = \text{span}\{\xi_1, \dots, \xi_d\} \subseteq H$ and $T \in B(H)$ such that $T\xi_j = \eta_j$, $j = 1, \dots, d$.

• We only prove: for $\varepsilon > 0$, there is an $a = a_{\varepsilon} \in A$ with $||a_{\varepsilon}|| \le ||T|| + \varepsilon$ and $\pi(a_{\varepsilon})|_{X} = T|_{X}$.

Theorem

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \leq ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

• By irreducibility, $\pi(A)' = \mathbb{C}$, $\pi(A)'' = B(H)$.

Theorem

- By irreducibility, $\pi(A)' = \mathbb{C}$, $\pi(A)'' = B(H)$.
- By irreducibility, $\pi(A)$ is non-degenerate.

Theorem

- By irreducibility, $\pi(A)' = \mathbb{C}$, $\pi(A)'' = B(H)$.
- By irreducibility, $\pi(A)$ is non-degenerate.
- Bicommutant theorem: $\pi(A)$ is strongly dense in B(H).

Theorem

- By irreducibility, $\pi(A)' = \mathbb{C}$, $\pi(A)'' = B(H)$.
- By irreducibility, $\pi(A)$ is non-degenerate.
- Bicommutant theorem: $\pi(A)$ is strongly dense in B(H).
- Idea: approximate T with a sequence in $\pi(A)$.

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \leq ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

- By irreducibility, $\pi(A)' = \mathbb{C}$, $\pi(A)'' = B(H)$.
- By irreducibility, $\pi(A)$ is non-degenerate.
- Bicommutant theorem: $\pi(A)$ is strongly dense in B(H).
- Idea: approximate T with a sequence in $\pi(A)$.
- Let $\varepsilon > 0$. We find $a_1 \in A$ such that

$$\|(\pi(a_1)-T)|_X\|\leq \varepsilon/2;$$

by Kaplansky, we can require $||a_1|| \le ||T||$.

• $\pi(A)$ is strongly dense in B(H).

•
$$\|a_1\| \le \|T\|$$
, $\|\pi(a_1) - T)|_X\| \le \varepsilon/2.$

- $\pi(A)$ is strongly dense in B(H).
- $||a_1|| \le ||T||$, $||\pi(a_1) T)|_X|| \le \varepsilon/2$.
- Consider $T_2 \in B(H)$ given by

$$T_2|_X=(\mathit{T}-\pi(a_1))|_X\;,\quad T_2|_{X^\perp}=0\;.$$
 Then $\|\mathit{T}_2\|\leq arepsilon/2$

- $\pi(A)$ is strongly dense in B(H).
- $||a_1|| \le ||T||$, $||\pi(a_1) T)|_X|| \le \varepsilon/2$.
- Consider $T_2 \in B(H)$ given by

$$T_2|_X=(\mathit{T}-\pi(a_1))|_X\;,\quad T_2|_{X^\perp}=0\;.$$
 Then $\|\mathit{T}_2\|\leq arepsilon/2$

• We find
$$a_2 \in A$$
 with $||a_2|| \le ||T_2|| \le \varepsilon/2$ and
 $||(\pi(a_1) + \pi(a_2) - T)|_X|| = ||(\pi(a_2) - T_2)|_X|| \le \varepsilon/4$.

- $\pi(A)$ is strongly dense in B(H).
- $||a_1|| \le ||T||$, $||\pi(a_1) T)|_X|| \le \varepsilon/2$.
- Consider $T_2 \in B(H)$ given by

$$T_2|_X=(\mathit{T}-\pi(a_1))|_X\;,\quad T_2|_{X^\perp}=0\;.$$
 Then $\|\mathit{T}_2\|\leq arepsilon/2$

• We find
$$a_2 \in A$$
 with $||a_2|| \le ||T_2|| \le \varepsilon/2$ and
 $||(\pi(a_1) + \pi(a_2) - T)|_X|| = ||(\pi(a_2) - T_2)|_X|| \le \varepsilon/4$.

• Inductively, we find $a_n \in A$ with $\|a_n\| \leq arepsilon/2^{n-1}$ and

$$\left\|\left(\sum_{k=1}^n \pi(a_k) - T\right)|_X\right\| \le \varepsilon/2^n , \quad n \ge 2.$$

- $\pi(A)$ is strongly dense in B(H).
- $||a_1|| \le ||T||, \qquad ||\pi(a_1) T)|_X|| \le \varepsilon/2.$
- Consider $T_2 \in B(H)$ given by

$$T_2|_X = (T - \pi(a_1))|_X \;, \quad T_2|_{X^\perp} = 0 \;.$$
 Then $||T_2|| \le \varepsilon/2$

• We find
$$a_2 \in A$$
 with $||a_2|| \le ||T_2|| \le \varepsilon/2$ and
 $||(\pi(a_1) + \pi(a_2) - T)|_X|| = ||(\pi(a_2) - T_2)|_X|| \le \varepsilon/4$.

• Inductively, we find $a_n \in A$ with $\|a_n\| \leq arepsilon/2^{n-1}$ and

$$\left\|\left(\sum_{k=1}^n \pi(a_k) - T\right)|_X\right\| \le \varepsilon/2^n \ , \quad n \ge 2 \ .$$

 ∞

• Then $\sum a_n$ is absolutely convergent in A, and $a_{\varepsilon} = a = \sum a_n$ satisfies

Remarks

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \le ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

Memo: $a_n \in A$ successive approximations of T on X, $a = a_{\varepsilon} = \sum a_n$.

• If T is self-adjoint, Kaplansky allows us to choose all a_n self-adjoint, hence also a will be. [resp. positive]

Remarks

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \le ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

Memo: $a_n \in A$ successive approximations of T on X, $a = a_{\varepsilon} = \sum a_n$.

- If T is self-adjoint, Kaplansky allows us to choose all a_n self-adjoint, hence also a will be. [resp. positive]
- We can get $||a_{\varepsilon}|| \le ||T|_X|| + \varepsilon \ (\le ||T|| + \varepsilon)$ for free.

Remarks

Theorem

Let $\pi : A \to B(H)$ be topologically irreducible, $T \in B(H)$ and $X \subseteq H$ be finite-dimensional. There is an $a \in A$ such that $\pi(a)|_X = T|_X$ and $||a|| \le ||T||$. Moreover, if T is self-adjoint [resp. positive], we may choose $a \in A$ to be self-adjoint [resp. positive].

Memo: $a_n \in A$ successive approximations of T on X, $a = a_{\varepsilon} = \sum a_n$.

- If T is self-adjoint, Kaplansky allows us to choose all a_n self-adjoint, hence also a will be. [resp. positive]
- We can get $||a_{\varepsilon}|| \leq ||T|_X|| + \varepsilon \ (\leq ||T|| + \varepsilon)$ for free.
- We need the stronger denseness property from Kaplansky's theorem to control the norm of the approximating operators *a_n*, and get convergence of the series.

GNS construction for a state φ on A:

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

Corollary

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

• Consider the quotient A/N_{φ} of A by elements with φ -norm 0.

Corollary

GNS construction for a state φ on A:

- $\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$
- Consider the quotient A/N_{φ} of A by elements with φ -norm 0.
- Let H_{φ} be the completion of A/N_{φ} (w.r.t. the φ -norm).

Corollary

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

- Consider the quotient A/N_{φ} of A by elements with φ -norm 0.
- Let H_{φ} be the completion of A/N_{φ} (w.r.t. the φ -norm).
- Represent A on H_{φ} via left multiplication,

$$\pi_{\varphi}(a)(x+N_{\varphi})=ax+N_{\varphi}\,,\quad a,x\in A\,.$$

Corollary
Corollary: GNS construction for pure states

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

- Consider the quotient A/N_{φ} of A by elements with φ -norm 0.
- Let H_{φ} be the completion of A/N_{φ} (w.r.t. the φ -norm).
- Represent A on H_{φ} via left multiplication,

$$\pi_{\varphi}(a)(x+N_{\varphi})=ax+N_{\varphi}\,,\quad a,x\in A\,.$$

Corollary

If φ is a pure state, then $H_{\varphi} = A/N_{\varphi}$.

Corollary: GNS construction for pure states

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

- Consider the quotient A/N_{φ} of A by elements with φ -norm 0.
- Let H_{φ} be the completion of A/N_{φ} (w.r.t. the φ -norm).
- Represent A on H_{φ} via left multiplication,

$$\pi_{\varphi}(a)(x+N_{\varphi})=ax+N_{\varphi}\,,\quad a,x\in A\,.$$

Corollary

If φ is a pure state, then $H_{\varphi} = A/N_{\varphi}$.

• φ pure state $\implies \pi_{\varphi}$ irreducible.

Corollary: GNS construction for pure states

GNS construction for a state φ on A:

•
$$\langle x, y \rangle_{\varphi} := \varphi(y^*x), x, y \in A.$$

- Consider the quotient A/N_{φ} of A by elements with φ -norm 0.
- Let H_{φ} be the completion of A/N_{φ} (w.r.t. the φ -norm).
- Represent A on H_{φ} via left multiplication,

$$\pi_{\varphi}(a)(x+N_{\varphi})=ax+N_{\varphi}\,,\quad a,x\in A\,.$$

Corollary

If φ is a pure state, then $H_{\varphi} = A/N_{\varphi}$.

• φ pure state $\implies \pi_{\varphi}$ irreducible.

•
$$A/N_{\varphi} \subseteq H_{\varphi} \ \pi(A)$$
-invariant $\implies A/N_{\varphi} = H_{\varphi}.$

ISEM 24 - Project 5

June 2021

 \bullet Pure states \longleftrightarrow irreducible GNS representations.

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.
- In particular, there are many pure states (Krein-Milman).

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.
- In particular, there are many pure states (Krein-Milman).
- Classical mechanics VS quantum mechanics.

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.
- In particular, there are many pure states (Krein-Milman).
- Classical mechanics VS quantum mechanics.
- The Kaplansky density theorem.

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.
- In particular, there are many pure states (Krein-Milman).
- Classical mechanics VS quantum mechanics.
- The Kaplansky density theorem.
- Topological and algebraic irreducibility are the same thing.

- Pure states \longleftrightarrow irreducible GNS representations.
- Pure states as extremal points of the state space.
- In particular, there are many pure states (Krein-Milman).
- Classical mechanics VS quantum mechanics.
- The Kaplansky density theorem.
- Topological and algebraic irreducibility are the same thing.
- The Kadison transitivity theorem.