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Representation

Let A be a C*-algebra. A Representation of A is a pair (7, H), where H is Hilbert space and

m:A— B(H),

is *-homomorphism.

We also say that 7 is a representation.

o Let A be a *-algebra and let (7, H) be a representation of A. A subspace N C H is said
to be invariant if m(a)N C N for all a € A.

@ A representation (7, H) of A is called non-degenerate if m(A)H is dense in H, otherwise
the representation is called degenerate.
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Irreducible Representation

Definition

A representation of a*-algebra is irreducible if the only closed invariant subspaces are {0} and
H, otherwise it is reducible.

@ A representation (m,H) is a cyclic representation if there is a cyclic vector in H for w(A).

@ A cyclic representation is non-degenerate.
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Definition
Positive linear functional:- Let A be C*-algebra, A linear functional ¢ on A is positive,
written ¢ > 0, if ¢(x) > 0 whenever x > 0.

Definition (State)

A state on A is a positive linear functional of norm 1. We denote S(A) the set of all states on
A, called the state space of A.

Example

If Ais a concrete C*-algebra of operators acting non-degenerately on H and £ € H and

pe(x) = (x£,€) for x € A, then ¢ is a positive linear functional on A of norm |[£[|? , so ¢ is
a state if ||¢|| = 1. Such a state is called a vector state.
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GNS Representation

o GNS-construction: For ¢ € S(A) there are a Hilbert space H,, a representation
m, : A— B(H,) and a cyclic vector x, € H,
such that ¢(a) = (m,(a)x,, x,) for all a € A

» Construction of H,:
(a, b) := p(b*a) — mod out elements of zero norm — complete

» 7, is left multiplication viewed in H,,
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Definition (Pure states PS(A))

A state ¢ on a C*-algebra A, is pure if it has the property that whenever p is a positive linear
functional on A such that p < ¢, necessarily there is a number t € [0, 1] such that p = tep.

Theorem

Let ¢ € S(A):
¢ € PS(A) < (H,,m,) is irreducible.
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Idea of proof from the commutative case

e For A commutative (and unital), A = C(X), with X compact (G-N)

@ Riesz-Markov: States correspond to Radon measures of mass one:

on) = [ Fan
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Idea of proof from the commutative case

e For A commutative (and unital), A = C(X), with X compact (G-N)

@ Riesz-Markov: States correspond to Radon measures of mass one:

on) = [ Fan

— Pure states correspond exactly to Dirac measures
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Idea of proof from the commutative case

e For A commutative (and unital), A = C(X), with X compact (G-N)

@ Riesz-Markov: States correspond to Radon measures of mass one:

on) = [ Fan

— Pure states correspond exactly to Dirac measures

@ GNS-construction w.r.t. Dirac measure?
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Idea of proof from the commutative case

e For A commutative (and unital), A = C(X), with X compact (G-N)

@ Riesz-Markov: States correspond to Radon measures of mass one:

on) = [ Fan

— Pure states correspond exactly to Dirac measures

@ GNS-construction w.r.t. Dirac measure?
— C with complex multiplication: clearly irreducible.
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Idea of proof from the commutative case

Proof of the other direction (by contrapositive: assume that ¢ is not pure, show that (H,, )
is reducible):

o GNS-constr. of ¢ € S(A), with corresponding measure i, is L2(X, 1)
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Idea of proof from the commutative case

Proof of the other direction (by contrapositive: assume that ¢ is not pure, show that (H,, )
is reducible):

o GNS-constr. of ¢ € S(A), with corresponding measure i, is L2(X, 1)

© When p is not a Dirac measure:
— the support of © has a proper subset Y C X
= L?(Y,pu) is a reducing subspace. [
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Idea of proof from the commutative case

Proof of the other direction (by contrapositive: assume that ¢ is not pure, show that (H,, )
is reducible):

o GNS-constr. of ¢ € S(A), with corresponding measure i, is L2(X, 1)

© When p is not a Dirac measure:
— the support of © has a proper subset Y C X
= L?(Y,pu) is a reducing subspace. [

L2(Y7:U’) = XYHgo
Existence of projections — Invariant subspaces
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Characterisation of irreducibility with commutant

Definition (Commutant)
m,(A) = {v € B(H,) s.t. v commutes with all 7,(a) € m,(A)}

Lemma
m,(A) is irreducible <= m,(A) = C1

Proof.
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Characterisation of irreducibility with commutant

Definition (Commutant)
m,(A) = {v € B(H,) s.t. v commutes with all 7,(a) € m,(A)}

Lemma
m,(A) is irreducible <= m,(A) = C1

Proof.
o m,(A) is irreducible <= m,(A)" has no nontrivial projections
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Characterisation of irreducibility with commutant

Definition (Commutant)
m,(A) = {v € B(H,) s.t. v commutes with all 7,(a) € m,(A)}

Lemma
m,(A) is irreducible <= m,(A) = C1

Proof.
o m,(A) is irreducible <= m,(A)" has no nontrivial projections

o = m,(A) = Cl1 because m,(A)" is a vNA, and thus a linear span of its projections.

O]

v
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Proof: (¢ € PS(A) <= (H,,,) is irreducible)

= : (assume ¢ is pure, show that 7,(A)" = C1).
o Let v € m,(A),0 < v < 1. Define a positive linear functional p(a) := (vm,(a)x,, x,)
@ Wehave p< g, thusp=tp = - = v=tl

o — 7,(A) = Cl as element of B(H) can be decomposed into a linear combination of
positive elements
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Proof: (¢ € PS(A) <= (H,,,) is irreducible)

<= (assume m,(A) = C1, show that ¢ is pure)

o Let p < ¢ be a positive linear functional

o = Thereis v em,(A),0<v <1, st p(a) = (vry(a)xy, xp)
(cf. Radon-Nikodym theorem for absolutely continuous measures)

@ By the assumption v = A1, A € C

@ Moreover A € [0,1] because 0 < v <1 = p=Ap [
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Overview

@ Preliminaries: The Krein-Milman theorem

Motivation: States and Pure States on C(X)

@ PS(A) are extreme points of S(A)

Example: States and Pure States in Quantum Mechanics.
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Preliminaries: The Krein-Milman theorem

O

Definition
Let X be a locally convex space and S C X. We define a closed convex hull of S, denoted by
¢o(S), to be the smallest closed convex set containing S.
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Preliminaries: The Krein-Milman theorem

O

Definition
Let K be a convex subset of a vector space X. We say that x € K is an extreme point of K if

x=ty+(1—-1t)z,t€(0,1),y,ze K = x=y=7z.

We denote the set of all extreme points of K by ext(K).
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Preliminaries: The Krein-Milman theorem

O

Definition
Let K be a convex subset of a vector space X andlet FC K. If x€ F, y,z € K and

x=ty+(1—t)z, forsomete (0,1) = y,ze F,

then F is called a face of F.
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Preliminaries: The Krein-Milman theorem

O

Theorem (Krein-Milman)

Let X be a locally convex space and K C X non-empty, compact, convex subset. Then
ext(K) # @ and
K = co(ext(K)) .
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States and Pure States on C(X)

o Let X be a compact Hausdorff space.
e M(X) = space of all Radon measures on X.

@ Riesz representation theorem: C(X)* ~ M(X)

We have wk* topology on M(X) induced from C(X)* and a measure p acts on C(X) by

() = [ 7G0du
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States and Pure States on C(X)

@ Recall that by Gelfan-Naimark theorem unital abelian C* algebra A is isometrically
x-isomorphic to C(Spec(A))
X = Spec(A) = space of all characters on A

e State ¢ on A corresponds to Radon probability measure 114 on X

6(f) = /X F(x)dpi ().
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States and Pure States on C(X)

Theorem
@ The set P(X) of Radon probability measures on X is a wk*-compact convex subset of
M(X).

@ The extreme points of P(X) are exactly the Dirac measures §x which assign mass 1 at
the point x € X and zero everywhere else.

© The map x — 0y € ext(P(X)) is a homeomorphism from X to the space
(ext(P (X)), wk*)
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States and Pure States on C(X)

Theorem

Let T be a state on an abelian C* algebra A. Then 7 is pure if and only if it is a character on
A, ie. Spec(A) = PS(A).

@ Since Dirac measures correspond to characters, they correspond to pure states.

@ We expect an analogous result of pure states being extreme points of the state space in
the non-commutative case! And that is our goal.
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H Classical probability ‘ Quantum Probability H

Probability measure 1 on a
cpt. Hausdorff space
X 3 x— 0y € P(X)

homeomorphism
P(X) is
wk*-cpt. and convex

p aon unital C* alg. A

PS(A) = Spec(A) for abelian

S(A) is wk*-cpt. and convex

0x are extreme pts. of

P(X) PS(A) are extreme pts. of S(A)
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PS(A) are extreme points of S(A)

Theorem

If Ais a C* algebra, then the set S of norm decreasing positive linear functionals on A forms a
convex wk*-compact set and ext(S) = {0} U PS(A).

Proof
S is wk*-compact and convex.

o Let ¢ — ¢ = ¢i(a*a) — ¢(a*a) = ¢ is positive.
o [¢i(a)l < lal = l¢(a)l <llal = ll¢ll <1 = S is wk™-closed.
@ Banach-Alaoglu thm: S is wk*-compact.

o Convexity is clear.
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PS(A) are extreme points of S(A)

0 € ext(S).
@ Assume 0 = t7+ (1 —t)p, where0 < t<landT,p€S.
e Vae A, 0< (1—t)p(a*a) = —tr(a*a) <0 = 7(AT)=p(AT)=0 = 7=p=0.

PS(A) C ext(S).
o letpePS(A)and p=tr+(1—t)r' forO<t<land 7,77 €S.
e 0<p—trietr<p = tr=1t'pforsomet €][0,1].

o l=|pll=tlr+ A=)l = llrl=lI7ll=1. = t=|ltrl| =[t'pll =1t so
7 = p and similarly 7/ = p. Thus p € ext(S).
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PS(A) are extreme points of S(A)
ext(S) \ {0} € PS(A).

o Let p € ext(S) be non zero. Then

p = llpll(p/llell) + (1 —1lol)0
and 0, p/|lp € S.

o Therefore, ||p|| =1 as p € ext(S).

@ Let 7 be a nonzero, positive, linear functional s.t. 7 < p. Then ||7|| =t € (0,1).

o Since 1 —t = [|p — 7| we write

p=t(r/lI7l)+ @ =t)p—7)/llp -7

= p=1/|7]| = p € PS(A).
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PS(A) are extreme points of S(A)

Corollary

S = ({0} U PS(A)). J

Corollary

Let A be a non-zero C*-algebra and a € A" . Then there is p € PS(A) such that | a|| = p(a) . J
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PS(A) are extreme points of S(A)

Corollary

Let A be a C*-algebra. Then ext(S(A)) = PS(A).

Proof.
o S(A)isafaceof S: Let p € S(A), TpeSand0<t<1.

p=tr+(1-t)p = 1=t|7l[+ A -0)lol = 7l =lloll =1

o Therefore, ext(S(A)) C ext(S) = ext(S(A)) C PS(A)

@ PS(A) C ext(S(A)) similarly as before.
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PS(A) are extreme points of S(A)

Theorem
If A is a unital C*-algebra, then S(A) = co(PS(A)).

Proof.

@ S(A) is clearly convex

@ (7i)ies net in S(A) and 7; — 7 in (A%, wk*).
= 7(1) =lim;7i(1) =limi1=1 = 7€ S(A) = S(A) is wk*-closed

@ Banach-Alaouglu thm: S(A) is wk*-compact

e Krein-Milman thm: S(A) = co(ext(S(A)))

e ext(S(A)) = PS(A). O
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Example: Mixed and Pure states in Quantum Mechanics

o Physical system = unital separable C*-algebra A.
@ Observables = self-adjoint elements of A

@ States of the system = states on A.
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Example: Mixed and Pure states in Quantum Mechanics

Classical mechanics:

@ A s abelian. Gelfand representation = A ~ C(X) where X is compact and Hausdorff.
@ Observables = real continuous functions.
o States = probability measures on X.

@ Pure states = Dirac measures = points in X .
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Example: Mixed and Pure states in Quantum Mechanics

Quantum mechanics:

Theorem (Gelfand-Naimark)

Let A be a unital separable C*-algebra. Then there is a separable Hilbert space H such that

e A is isometrically *-isomorphic to a C*-subalgebra of B(H), viamw: A— B(H).

o ¢ € S(A) iff there exists a positive trace-class operator py, such that Trpy =1 and
¥(a) = Tr(pym(a)) .
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Example: Mixed and Pure states in Quantum Mechanics

@ py compact and self-adjoint = py, = Zzozl anP,, where P, is a projection on Ce,
and {e,} is a base for H

@ py positive = a, >0

Tr(py) =1 = > 1 jap=1 =

py is in a closed convex hull of one-dimensional projections.
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Kaplansky's density theorem

@ "The density theorem is Kaplansky's great gift to mankind.
It can be used every day, and twice on Sundays”. — Gert Pedersen
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Kaplansky's density theorem

@ "The density theorem is Kaplansky's great gift to mankind.
It can be used every day, and twice on Sundays”. — Gert Pedersen

Notation

We denote for any set S C A a C*-algebra:
@ S,={acS|a*=a}
o S;={ae S, |a>0}
e ball(S)={ac S| |la]| <1}
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Main Theorem

Statement

Let H be a Hilbert Space, A a sub C*-algebra of B(H) and B = AT be the SOT-closure of
Ain B(H). Then

@ A, is SOT-dense in Bs,.

ISEM 24 — Project 5 Irreducible representations and pure states June 2021




Main Theorem

Statement

Let H be a Hilbert Space, A a sub C*-algebra of B(H) and B = AT be the SOT-closure of
Ain B(H). Then

@ A, is SOT-dense in Bs,.
@ ball(Asa) is SOT-dense in ball(Bs,).
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Main Theorem

Statement

Let H be a Hilbert Space, A a sub C*-algebra of B(H) and B = AT be the SOT-closure of
Ain B(H). Then

Q@ A, is SOT-dense in Bg,.
@ ball(Asa) is SOT-dense in ball(Bs,).
@ ball(A1) is SOT-dense in ball(B..).
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Main Theorem

Statement

Let H be a Hilbert Space, A a sub C*-algebra of B(H) and B = AT be the SOT-closure of
Ain B(H). Then

Q@ A, is SOT-dense in Bg,.

@ ball(Asa) is SOT-dense in ball(Bs,).

@ ball(A1) is SOT-dense in ball(B..).

© ball(A) is SOT-dense in ball(B).
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Main Theorem

Statement

Let H be a Hilbert Space, A a sub C*-algebra of B(H) and B = AT be the SOT-closure of
Ain B(H). Then

Q@ A, is SOT-dense in Bg,.

@ ball(Asa) is SOT-dense in ball(Bs,).

@ ball(A1) is SOT-dense in ball(B..).

© ball(A) is SOT-dense in ball(B).

@ If Ais unital, U(A) is SOT-dense in U(B).
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Sketch of Proof

Strong Continuity

f : R — C is strongly continuous if for every Hilbert space H and net (T;) € B(H) of self
adjoint operators such that T; — T in SOT, we have f(T;) — f(T) in SOT.

Lemma 1

If f: R — C is bounded continuous, then f is strongly continuous.
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Sketch of Proof

Statement 1
Asa is SOT-dense in B, J
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Sketch of Proof

Statement 1
Asa is SOT-dense in Bg,.

Proof

Let b € By,. There is a net (a;) in A such that a; — b in SOT.
@ Thus a; — b in WOT.
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Sketch of Proof

Statement 1
Asa is SOT-dense in Bg,.

Proof

Let b € Bg,. There is a net (a;) in A such that a; — b in SOT.
@ Thus a; — b in WOT.

@ The map Re : x — Re(x) is WOT continuous, hence Re(a;) — Re(b) in WOT.

ISEM 24 — Project 5 Irreducible representations and pure states June 2021



Sketch of Proof

Statement 1
Asa is SOT-dense in Bs,.

Proof

Let b € Bsa. There is a net (a;) in A such that a; — b in SOT.
@ Thus a; — b in WOT.

@ The map Re : x — Re(x) is WOT continuous, hence Re(a;) — Re(b) in WOT.
SOT

@ By convexity of Ag,, b € A_SaWOT = A,
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Sketch of Proof

Statement 2
ball(Asa) is SOT-dense in ball(Bsa). J
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Sketch of Proof

Statement 2
ball(As,) is SOT-dense in ball(Bs,).

Proof
Let b € ball(Bs,), by (1), we have (a;) € Ag, such that a; — b in SOT.
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Sketch of Proof

Statement 2
ball(As,) is SOT-dense in ball(Bs,).

Proof

Let b € ball(Bsa), by (1), we have (a;) € Ag, such that a; — b in SOT.
o Let f(t) = min{max{—1,t},1}. By Lemma 1, f is strongly continuous and f(a;) — f(b)

in SOT.
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Sketch of Proof

Statement 2
ball(Asa) is SOT-dense in ball(Bg,).

Proof

Let b € ball(Bs,), by (1), we have (a;) € Asa such that a; — b in SOT.
o Let f(t) = min{max{—1,t},1}. By Lemma 1, f is strongly continuous and f(a;) — f(b)

in SOT.

o o(b) C [~1,1], 50 fly)(t) = t and £(b) = b.
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Sketch of Proof

Statement 2
ball(Asa) is SOT-dense in ball(Bs,).

Proof

Let b € ball(Bs,), by (1), we have (a;) € Ag, such that a; — b in SOT.
o Let f(t) = min{max{—1,t},1}. By Lemma 1, f is strongly continuous and f(a;) — f(b)

in SOT.

e o(b) € [-1,1], so fl,(p)(t) =t and f(b) = b.
e f(a;) € ball(Asa) and hence f(a;) — f(b) = b in SOT.
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Sketch of Proof

Statement 3
ball(Ay) is SOT-dense in ball(Bs,). J
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Sketch of Proof

Statement 3
ball(A, ) is SOT-dense in ball(Bsy,).

Proof
Let b € ball(B;). By (2), there is a net (a;) € Ag, such that a; — b in SOT.
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Sketch of Proof

Statement 3
ball(A) is SOT-dense in ball(Bs,).

Proof

Let b € ball(B;). By (2), there is a net (a;) € Asa such that a; — b in SOT.
o Define f(t) = min{max{0,t},1}. By Lemma 1, f is strongly continuous and

f(a;) — f(b) in SOT.

ISEM 24 — Project 5

Irreducible representations and pure states June 2021



Sketch of Proof

Statement 3
ball(A) is SOT-dense in ball(Bs,).

Proof

Let b € ball(B1). By (2), there is a net (a;) € Asa such that a; — b in SOT.
o Define f(t) = min{max{0,t},1}. By Lemma 1, f is strongly continuous and

f(a;) — f(b) in SOT.

o o(b) € [0,1], so fl|,(s)(t) =t and f(b) = b.
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Sketch of Proof

Statement 3
ball(A) is SOT-dense in ball(Bs,).

Proof

Let b € ball(B1). By (2), there is a net (a;) € As, such that a; — b in SOT.
o Define f(t) = min{max{0,t},1}. By Lemma 1, f is strongly continuous and

f(a;) — f(b) in SOT.

e o(b) € [0,1], so fl,(s)(t) =t and f(b) = b.
o f(a;) is self adjoint, of norm atmost 1, and positive, so f(a;) € ball(A,).
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Sketch of Proof

Statement 4
ball(A) is SOT-dense in ball(B) J

ISEM 24 — Project 5 Irreducible representations and pure states



Sketch of Proof

Statement 4
ball(A) is SOT-dense in ball(B)

Proof

Let b € ball(B), then let b = L?* g] € My(B).

e b is self adjoint and has ||b|| < 1.

ISEM 24 — Project 5 Irreducible representations and pure states



Sketch of Proof

Statement 4
ball(A) is SOT-dense in ball(B)

Proof
- 0 b
Let b € ball(B), then let b = b ol € Ma(B).
@ b is self adjoint and has ||b|| < 1.
@ It is easy to check that Mg(A)SOT = My(B).
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Sketch of Proof

Statement 4
ball(A) is SOT-dense in ball(B)

Proof
- 0 b
Let b € ball(B), then let b = b ol € My(B).
e b is self adjoint and has ||b|| < 1.
@ It is easy to check that MQ(A)SOT = My(B).

@ By part (2), there is a net (3;) € Ma(A)sa that converges to b in SOT.
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Sketch of Proof

Statement 4
ball(A) is SOT-dense in ball(B)

Proof

Let b € ball(B), then let b = L?* g] € My(B).

e b is self adjoint and has ||b|| < 1.

@ It is easy to check that Mg(A)SOT = My(B).

o By part (2), there is a net (3;) € My(A)sa that converges to b in SOT.
 (3j)12 = bin SOT and |37 5| < |[@7|| < 1.
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Sketch of Proof

Statement 5
If Ais unital, U(A) is SOT-dense in U(B).

Proof
Let u € B be unitary.

@ From functional calculus, it follows that there exists a self adjoint b € B such that
u=e®,
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Sketch of Proof

Statement 5
If Ais unital, U(A) is SOT-dense in U(B).

Proof
Let u € B be unitary.

@ From functional calculus, it follows that there exists a self adjoint b € B such that
u=e®,

@ By (1), there is a net (ay) of self adjoint operators in A such that ay — b in SOT.
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Sketch of Proof

Statement 5
If Ais unital, U(A) is SOT-dense in U(B).

Proof
Let u € B be unitary.

@ From functional calculus, it follows that there exists a self adjoint b € B such that
u=eb.

@ By (1), there is a net (ay) of self adjoint operators in A such that ay — b in SOT.

@ The function t — e is strongly continuous.
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Sketch of Proof

Statement 5
If Ais unital, U(A) is SOT-dense in U(B).

Proof
Let u € B be unitary.

@ From functional calculus, it follows that there exists a self adjoint b € B such that
u=eb.

@ By (1), there is a net (ay) of self adjoint operators in A such that ay — b in SOT.

@ The function t — e is strongly continuous.

@ By Lemma 1, e — e® = i in SOT.
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Sketch of Proof

In our context

o Let A be a C*-algebra and m: A — B(H) be an irreducible representation of A. In

particular it is non-degenerate, i.e. the set {m(a)h|a € A, h € H} is dense in H.

. —SOT
@ By the von Neumann bicommutant theorem, we know that A” = A™" .

@ By irreducibility, 7(A) = CI and w(A)” = B(H). So A is strongly dense in B(H).
@ Now we apply the theorem with B = B(H).

Theorem (Bicommutant theorem)

Let m: A— B(H) be a non-degenerate representation. Then 7w(A) is strongly dense in w(A)".

v
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Algebraic irreducibility

Let 7 : A — B(H) be a representation.

@ Topological irreducibility: there are no closed invariant subspaces.

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
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Algebraic irreducibility

Let 7 : A — B(H) be a representation.
@ Topological irreducibility: there are no closed invariant subspaces.

@ 0 C K C H closed and invariant yields a reduction 7| : A — B(K).

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
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Algebraic irreducibility

Let 7 : A — B(H) be a representation.
@ Topological irreducibility: there are no closed invariant subspaces.
@ 0 C K C H closed and invariant yields a reduction 7| : A — B(K).
o Call m algebraically irreducible if there are no invariant subspaces at all (except {0} and

H).

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.
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Algebraic irreducibility
Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Let m: A — (H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Let m: A — (H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

e 0 CKCH (eK\{o}, ne H\K.
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Let m: A — (H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

e 0 CKCH (eK\{o}, ne H\K.
7 topologically irreducible
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Let m: A — (H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

e 0 CKCH (eK\{o}, ne H\K.
7 topologically irreducible = Ja € A with 7(a)é =n ¢ K
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Algebraic irreducibility

Question: Is algebraic irreducibility a stronger property than topological irreducibility?
o 7 topologically irreducible = any invariant subspace is dense or o.

Theorem
Topological irreducibility =—> algebraic irreducibility.

Theorem (Kadison's transitivity theorem)

Let m: A — (H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

e 0 CKCH (eK\{o}, ne H\K.
7 topologically irreducible = Ja € A with 7(a)é =n ¢ K
= K is not invariant.
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Kadison's transitivity theorem

Theorem (Kadison's transitivity theorem)

Let m: A— B(H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any 1, .

..,Nd € H, there is an a € A such that m(a)¢j =n;, j=1,...,d

@ A group action G ~ X is called transitive if there is only one orbit, i.e. if Gx = X, x € X.
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Kadison's transitivity theorem

Theorem (Kadison's transitivity theorem)

Let m: A— B(H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any 1, .

..,Nd € H, there is an a € A such that w(a)¢; =n;, j=1,...,d.

@ A group action G ~ X is called transitive if there is only one orbit, i.e. if Gx = X, x € X.

e m:A— B(H) is not a group action A A H (since m(0)H = {o}).
But we are close to a group action.
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Kadison's transitivity theorem

Theorem (Kadison's transitivity theorem)

Let m: A— B(H) be topologically irreducible, and &1, .

.., &4 € H be linearly independent.
Then, for any 11,

...,Md € H, there is an a € A such that 7(a)¢; =n;, j=1,...,d.

@ A group action G ~ X is called transitive if there is only one orbit, i.e. if Gx =X, x € X

e m:A— B(H) is not a group action A A H (since m(0)H = {o}).
But we are close to a group action.

o If 7 is topologically irreducible, we have

TAE=H, ¢€H\{o}.
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Kadison's transitivity theorem

Theorem (Kadison's transitivity theorem)

Let m: A— B(H) be topologically irreducible, and &1, . ..,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that w(a)¢j =mn;, j=1,...,d.

@ A group action G ~ X is called transitive if there is only one orbit, i.e. if Gx = X, x € X.

e m:A— B(H) is not a group action A A H (since m(0)H = {o}).
But we are close to a group action.

o If m is topologically irreducible, we have
(A =H, £{eH\{o}.

@ We even have “(almost) d-transitivity” (for any d € N).
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Proving Kadison's transitivity theorem
Theorem (Kadison)

Let m: A — B(H) be topologically irreducible, and &1, ...,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

Theorem

Let 7 : A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.
There is an a € A such that w(a)|x = T|x and ||a]| < || T||.
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Proving Kadison's transitivity theorem
Theorem (Kadison)

Let m: A — B(H) be topologically irreducible, and &1, ...,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

Theorem

Let 7 : A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.
There is an a € A such that w(a)|x = T|x and ||a|]| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].
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Proving Kadison's transitivity theorem
Theorem (Kadison)

Let m: A — B(H) be topologically irreducible, and &1, ...,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

Theorem

Let 7 : A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.
There is an a € A such that w(a)|x = T|x and ||a|]| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e Kadison's theorem follows with X = span{&1,...,&y} € H and T € B(H) such that
T =m,j=1,...,d
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Proving Kadison's transitivity theorem
Theorem (Kadison)

Let m: A — B(H) be topologically irreducible, and &1, ...,&q € H be linearly independent.
Then, for any n1,...,nq € H, there is an a € A such that m(a)¢j =n;, j=1,...,d.

Theorem

Let 7 : A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.
There is an a € A such that w(a)|x = T|x and ||a|]| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e Kadison's theorem follows with X = span{&1,...,&y} € H and T € B(H) such that
T =m,j=1,...,d

@ We only prove: for ¢ > 0, there is an a = a. € A with ||a:|| < || T| + ¢ and
7['(35)|X = T|x.

ISEM 24 — Project 5 Irreducible representations and pure states June 2021



Proof

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional

There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].
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Proof

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional

There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e By irreducibility, 7(A)’ = C, n(A)" = B(H).
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Proof

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional

There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e By irreducibility, 7(A)’ = C, n(A)" = B(H).

@ By irreducibility, m(A) is non-degenerate.
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Proof

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional

There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e By irreducibility, 7(A)’ = C, n(A)" = B(H).
@ By irreducibility, m(A) is non-degenerate.

@ Bicommutant theorem: 7(A) is strongly dense in B(H).
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Proof

Theorem

Let m: A— B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.

There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e By irreducibility, 7(A)’ = C, n(A)" = B(H).
@ By irreducibility, m(A) is non-degenerate.
@ Bicommutant theorem: 7(A) is strongly dense in B(H).

o ldea: approximate T with a sequence in w(A).
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Proof

Theorem

Let m: A— B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.
There is an a € A such that m(a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

e By irreducibility, 7(A)’ = C, n(A)" = B(H).

By irreducibility, w(A) is non-degenerate.

Bicommutant theorem: 7(A) is strongly dense in B(H).

Idea: approximate T with a sequence in w(A).

Let € > 0. We find a; € A such that

[(m(a1) = T)Ixll <&/2;

by Kaplansky, we can require ||a1]| < || T|.
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Proof
e 7(A) is strongly dense in B(H).
o [la] < T, [m(a1) = T)|x|l < e/2.

ISEM 24 — Project 5 Irreducible representations and pure states



Proof
e 7(A) is strongly dense in B(H).
o [la] < T, [m(a1) = T)|x|l < e/2.

e Consider T, € B(H) given by
Tzlx=(T—7T(al))‘x, T2le=0. Then ||T2||§€/2
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Proof
e 7(A) is strongly dense in B(H).
o flaf <IITI.  [Iw(ar) — T)Ix|l < e/2.

e Consider T, € B(H) given by
Tolx =(T =m(a1))lx , Talxr =0.  Then [ T2 <&/2

e We find ay € A with [jaz]| < || T2|| < &/2 and
[(m(a1) +7(a2) = x|l = [[(z(a2) = T2)Ix[ < /4.
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Proof
e 7(A) is strongly dense in B(H).
o flaf <IITI.  [Iw(ar) — T)Ix|l < e/2.

e Consider T, € B(H) given by
TQ’)(=(T—7T(3]_))‘X, TQ‘XL=0. Then HT2”§€/2

e We find ay € A with [jaz]| < || T2|| < &/2 and
[(m(a1) +7(a2) = x|l = [[(z(a2) = T2)Ix[ < /4.

e Inductively, we find a, € A with ||a,|| < /2" and

‘ (zn: m(ak) — T) |x

k=1

<g/2", n>2.
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Proof
e 7(A) is strongly dense in B(H).
o flaf <IITI.  [Iw(ar) — T)Ix|l < e/2.

e Consider T, € B(H) given by
TQ’)(=(T—7T(3]_))‘X, TQ‘XL=0. Then HT2”§8/2

e We find ay € A with [jaz]| < || T2|| < &/2 and
[(m(a1) +7(a2) = x|l = [[(z(a2) = T2)Ix[ < /4.

e Inductively, we find a, € A with ||a,|| < /2" and

‘ (i m(ak) — T) |x

k=1

<g/2", n>2.

@ Then > a, is absolutely convergent in A, and a. = a = )_ a, satisfies

o
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Remarks

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.

There is an a € A such that (a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

Memo: a, € A successive approximations of T on X, a=a. =) _ a,.

o If T is self-adjoint, Kaplansky allows us to choose all a, self-adjoint, hence also a will be.
[resp. positive]
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Remarks

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.

There is an a € A such that (a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

Memo: a, € A successive approximations of T on X, a=a. =) _ a,.

o If T is self-adjoint, Kaplansky allows us to choose all a, self-adjoint, hence also a will be.
[resp. positive]

o We can get ||a.|| < || T|x|| +¢e (< ||T|| + ¢) for free.
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Remarks

Theorem

Let m: A — B(H) be topologically irreducible, T € B(H) and X C H be finite-dimensional.

There is an a € A such that (a)|x = T|x and ||a|| < || T||. Moreover, if T is self-adjoint
[resp. positive], we may choose a € A to be self-adjoint [resp. positive].

Memo: a, € A successive approximations of T on X, a=a. =) _ a,.

o If T is self-adjoint, Kaplansky allows us to choose all a, self-adjoint, hence also a will be.
[resp. positive]

o We can get ||a.|| < || T|x|| +¢e (< ||T|| + ¢) for free.

@ We need the stronger denseness property from Kaplansky's theorem to control the norm
of the approximating operators a,, and get convergence of the series.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

o (x,¥)y = (y*x), x,y € A.

Corollary
If o is a pure state, then H, = A/N,,. J
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

° (X,y)y = p(y*x), x,y € A.
o Consider the quotient A/Nw of A by elements with -norm 0.

Corollary

If o is a pure state, then H, = A/N,,.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

° (X,y)y = p(y*x), x,y € A.
o Consider the quotient A/Nw of A by elements with -norm 0.

o Let H, be the completion of A/N, (w.r.t. the ¢-norm).

Corollary

If o is a pure state, then H, = A/N,,.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

(x,¥)p = p(y*x), x,y € A.

Consider the quotient A/N,, of A by elements with ¢-norm 0.

Let H, be the completion of A/N, (w.r.t. the ¢-norm).

Represent A on H,, via left multiplication,

mo(a)(x+ Ny) =ax+ N,, a,x€A.

Corollary

If o is a pure state, then H, = A/N,,.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:
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Consider the quotient A/N,, of A by elements with ¢-norm 0.

Let H, be the completion of A/N, (w.r.t. the ¢-norm).

Represent A on H,, via left multiplication,

mo(a)(x+ Ny) =ax+ N,, a,x€A.

Corollary

If o is a pure state, then H, = A/N,,.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

(x,¥)p = p(y*x), x,y € A.

Consider the quotient A/N,, of A by elements with ¢-norm 0.

Let H, be the completion of A/N, (w.r.t. the ¢-norm).

Represent A on H,, via left multiplication,

mo(a)(x+ Ny) =ax+ N,, a,x€A.

Corollary

If o is a pure state, then H, = A/N,,.

@ ¢ pure state = m, irreducible.
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Corollary: GNS construction for pure states
GNS construction for a state ¢ on A:

o (X,¥)p = p(y"x), X,y € A
o Consider the quotient A/N, of A by elements with ¢-norm 0.
o Let H, be the completion of A/N, (w.r.t. the ¢-norm).

@ Represent A on H,, via left multiplication,

mo(a)(x+ Ny) =ax+ N,, a,x€A.

Corollary

If o is a pure state, then H, = A/N,,.

@ ¢ pure state = m, irreducible.

e A/N, C H, m(A)-invariant = A/N, = H,.
June 2021



Irreducible representations and pure states: an overview

@ Pure states «+— irreducible GNS representations.
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Irreducible representations and pure states: an overview

@ Pure states «+— irreducible GNS representations.

@ Pure states as extremal points of the state space.
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Irreducible representations and pure states: an overview

@ Pure states «+— irreducible GNS representations.
@ Pure states as extremal points of the state space.

@ In particular, there are many pure states (Krein-Milman).
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Irreducible representations and pure states: an overview

Pure states «— irreducible GNS representations.
@ Pure states as extremal points of the state space.

@ In particular, there are many pure states (Krein-Milman).

Classical mechanics VS quantum mechanics.
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@ Pure states as extremal points of the state space.
@ In particular, there are many pure states (Krein-Milman).
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The Kaplansky density theorem.
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Irreducible representations and pure states: an overview

Pure states «— irreducible GNS representations.

@ Pure states as extremal points of the state space.
@ In particular, there are many pure states (Krein-Milman).

Classical mechanics VS quantum mechanics.

The Kaplansky density theorem.

Topological and algebraic irreducibility are the same thing.
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Irreducible representations and pure states: an overview

Pure states «— irreducible GNS representations.

@ Pure states as extremal points of the state space.

@ In particular, there are many pure states (Krein-Milman).

Classical mechanics VS quantum mechanics.

The Kaplansky density theorem.

Topological and algebraic irreducibility are the same thing.

@ The Kadison transitivity theorem.
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