The Reduced Group C*-Algebra of a Free Group and C*-Simplicity

Project Coordinators: Christian Voigt, Xin Li Participants: Javad Mohammadkarimi, Moritz Proell, Joseph Alexander Dessi, Milan Donvil, Ayoub Hafid, Jack Adrian Thelin af Ekenstam, Marcel Mroczek

ISEM24: Project 7

June 8, 2021

- The following is a brief summary of what we will each be covering.
 - **Joseph:** Properties of group C*-algebras and the canonical faithful, tracial state on the reduced group C*-algebra of a discrete group.
 - Omega Milan: An introduction to free groups and the notion of amenability of groups.
 - **Solution** Moritz: Two lemmas which will be useful in proving the main result.
 - Marcel: One further lemma, culminating in the proof of the main result.
 - Ayoub: The Furstenberg boundary characterisation of C*-simplicity, providing an alternate perspective on the previously explored results.

- Fix an arbitrary discrete group G.
- We define $\mathbb{C}[G]$ as follows:

 $\mathbb{C}\left[G\right] := \left\{f : G \to \mathbb{C} \mid f \text{ is a finitely supported function}\right\}.$

 $\mathbb{C}\left[G\right]$ is a $\mathbb{C}\text{-vector}$ space under pointwise addition and scalar multiplication.

• $\mathbb{C}[G]$ has a linear basis $\{\delta_t \mid t \in G\}$, where

$$\delta_t(s) = \begin{cases} 1, \text{ if } s = t \\ 0, \text{ otherwise} \end{cases}$$

for all $t, s \in G$. So an arbitrary element of $\mathbb{C}[G]$ has the form $\sum_{t \in G} \alpha_t \delta_t$ where each $\alpha_t \in \mathbb{C}$ and only finitely many are non-zero.

• We define a multiplication and involution (respectively) on $\mathbb{C}\left[G\right]$ as follows:

•
$$\left(\sum_{t\in G} \alpha_t \delta_t\right) \left(\sum_{s\in G} \beta_s \delta_s\right) := \sum_{t,s\in G} \alpha_t \beta_s \delta_{ts},$$

•
$$\left(\sum_{t\in G} \alpha_t \delta_t\right)^* := \sum_{t\in G} \overline{\alpha_t} \delta_{t^{-1}}.$$

• $\mathbb{C}[G]$, equipped with these operations, is a *-algebra.

The Reduced Group C*-Algebra $C_r^*(G)$

• Define a unitary representation of G via

$$\lambda:\mathcal{G}
ightarrow\mathcal{U}\left(\ell^{2}\left(\mathcal{G}
ight)
ight),\lambda_{t}\left(\delta_{s}
ight)=\delta_{ts} ext{ for all }t,s\in\mathcal{G}.$$

 λ is known as the **left regular representation** of *G*.

• λ canonically extends to a *-homomorphism $\tilde{\lambda}$ defined as follows:

$$\tilde{\lambda} : \mathbb{C}[G] \to B(\ell^2(G)), \tilde{\lambda}\left(\sum_{t \in G} \alpha_t \delta_t\right) = \sum_{t \in G} \alpha_t \lambda_t.$$

- λ̃ is injective, so ||x||_r := ||λ̃(x) || for all x ∈ C [G] defines a C*-norm on C [G].
- The reduced group C*-algebra of G is defined to be:

$$C_r^*(G) := \overline{\tilde{\lambda}(\mathbb{C}[G])}.$$

The Full Group C*-Algebra $C_{f}^{*}(G)$

• Now let $\pi : G \to U(H)$ be any unitary representation of G. As before, π canonically extends to a *-homomorphism $\tilde{\pi} : \mathbb{C}[G] \to B(H)$ defined via $\tilde{\pi} \left(\sum_{t \in G} \alpha_t \delta_t \right) = \sum_{t \in G} \alpha_t \pi(t)$. Observe:

$$\|\tilde{\pi}\left(\sum_{t\in G}\alpha_t\delta_t\right)\| = \|\sum_{t\in G}\alpha_t\pi(t)\| \leq \sum_{t\in G}|\alpha_t|.$$

• Hence we have a C*-norm on $\mathbb{C}[G]$ defined by:

$$\|x\|_{f} := \sup_{\tilde{\pi}} \|\tilde{\pi}(x)\|, \text{ for all } x \in \mathbb{C}[G],$$

where the supremum is taken over all unital *-representations $\tilde{\pi}$ of $\mathbb{C}[G]$.

• The **full group C*-algebra** of G is the completion of $\mathbb{C}[G]$ with respect to $\|\cdot\|_{f}$, and it is denoted by $C_{f}^{*}(G)$.

- C^{*}_f(G) has the following universal property: for any unitary representation π : G → U(H) of G, there exists a unique
 -homomorphism π̃ : C^{}_f(G) → B(H) satisfying π̃(δ_t) = π(t).
- Applying this universal property to the left regular representation of G yields a surjective *-homomorphism Φ : C^{*}_f(G) → C^{*}_r(G). Is Φ injective in general?
- Finally, G is said to be **C*-simple** if $C_r^*(G)$ is a simple C*-algebra.

The Canonical Faithful, Tracial State

Theorem

Let G be a discrete group. The map $\tau : C_r^*(G) \to \mathbb{C}$ defined by $\tau(x) = \langle \delta_e, x \delta_e \rangle$ for each $x \in C_r^*(G)$ is a faithful, tracial state. It is the unique such state satisfying $\tau(\lambda_e) = 1$ and $\tau(\lambda_t) = 0$ for each $t \in G \setminus \{e\}$.

Proof:

- Linearity and positivity are immediate. Uniqueness is similarly immediate, as every element of C^{*}_r(G) is a norm limit of finite sums ∑_{t∈G} α_tλ_t.
- τ acts on elements of $\tilde{\lambda}(\mathbb{C}[G])$ as follows:

$$\tau\left(\sum_{t\in \mathcal{G}}\alpha_t\lambda_t\right) = \sum_{t\in \mathcal{G}}\alpha_t\langle\delta_e,\lambda_t\delta_e\rangle = \sum_{t\in \mathcal{G}}\alpha_t\langle\delta_e,\delta_t\rangle = \alpha_e.$$

Thus $\tau(\lambda_e) = 1, \tau(\lambda_t) = 0$ for all $t \in G \setminus \{e\}$, and $\|\tau\| = \tau(\lambda_e) = 1$.

Proof (cont.):

• For all $t, s \in G$ we have:

$$\tau(\lambda_t \lambda_s) = \tau(\lambda_{ts}) = \langle \delta_e, \delta_{ts} \rangle = \langle \delta_e, \delta_{st} \rangle = \tau(\lambda_{st}) = \tau(\lambda_s \lambda_t).$$

Extending by linearity and continuity yields $\tau(xy) = \tau(yx)$ for all $x, y \in C_r^*(G)$.

• Faithfulness has been proven on the whiteboard, so we are done.